巧数图形

合集下载

巧数图形详解小学奥数ppt课件

巧数图形详解小学奥数ppt课件
例3.数出图中共有多少三角形。
A
三角形个数: 4+3+2+1=10
1 2 34
B C DE F
数三角形有时也可以用数线段的方法;有的图形要用 编号数图形的方法,还有的图形先要分成几部分分别 去数,再考虑几部分拼合起来看看有没有产生新三角 形。
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
拓展3、数出下面图形中分别有多少个三 角形?
蓝线退出后有8个三角形。 蓝线返回后增加7个三角形。
总共有:8+7= 15 个
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
搌4、数出下面图形中分别有多少个三角 形?
可看成由这个图形的3 个组合,单独一个有16 个三角形。
组合后增加8个三角形。
总共16×3+8=56
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
拓展9:下面图形中有多少个三角形?
拆走2条线后有3个三角形。 返回第1条线后增5个三角形。 返回第2条线后增8个三角形。
还原大长方形则增4

总共24+4总= 共282个8个
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
谢谢使用
1 234 5
(4+3+2+1)×2=20 个

巧数图形 知识点总结

巧数图形 知识点总结

巧数图形知识点总结一、巧数图形的定义巧数图形是用数的巧妙组合构成的图形,它们的特点是构造简单、形状美观、规律性强。

巧数图形可以用来培养学生的数学想象力和创造力,同时也可以帮助学生建立几何直观概念,加深对数学知识的理解和应用。

巧数图形的构造方法主要有以下几种:1. 数列构造法:通过数列的递推关系构造图形,例如斐波那契数列、等差数列、等比数列等;2. 几何构造法:通过几何图形的组合构造出新的巧数图形,例如通过三角形、矩形、正多边形等的组合;3. 代数构造法:通过代数式的变换构造出巧数图形,例如平方差公式、配方法、因式分解等。

二、巧数图形的常见类型1. 斐波那契数列构成的图形:斐波那契数列是一个非常有趣的数列,它的每一项都是前两项之和,即f(n)=f(n-1)+f(n-2),其中f(1)=1,f(2)=1。

将斐波那契数列的相邻两项相连,可以构成一些特殊的图形,如斐波那契螺旋、斐波那契凤凰等。

2. 等差数列构成的图形:等差数列是一个常见的数学概念,它的每一项与前一项的差都相等。

将等差数列的项以一定的规律布局在平面上,就可以构造出一些规律性强、形状美观的图形,如等差数列的排列图形、螺旋图形等。

3. 等比数列构成的图形:等比数列是另一个常见的数学概念,它的每一项与前一项的比都相等。

将等比数列的项以一定的规律布局在平面上,就可以构造出一些具有规律性的图形,如等比数列的排列图形、螺旋图形等。

4. 几何图形的组合:通过组合几何图形,可以构造出一些特殊的图形,如通过三角形的组合构造出五角星、六边形的组合构造出六芒星等。

5. 代数式的变换:通过一些代数式的变换,也可以构造出一些具有规律性和美观性的图形,如通过平方差公式构造出差平方图形、通过因式分解构造出差方形图形等。

三、巧数图形的特性巧数图形具有一些特殊的性质和规律,以下是一些常见的特性:1. 对称性:许多巧数图形都具有对称性,即可以通过某种轴对称变换得到自身。

对称性是一个非常重要的性质,它可以帮助我们更好地理解和分析图形的结构和特点。

巧数图形教案学而思

巧数图形教案学而思

巧数图形教案学而思精品文档巧数图形教案学而思:一、规则图形线段角 1. 分类数2. 公式法基本线段数依次加到1.端点,1,基本线段数一数下图中一共有多少条线段,? ? ? ?方法1: 方法2:恰含1条:4条基本线段有4条,所以从4开始加恰含2条:??、??、??条,3,2,1,10恰含3条:???、???条恰含4条:???? 1条注:肩并肩手拉手的规则图形都能用公式总数:4,3,2,1,10 法,关键是找火车头。

二、多层图形1. 多层三角形每层个数×层数,总数数一数图中有多少个三角形,每层个数:3,2,1,层数:2层总数:6×2,1 一共12个。

1 / 11精品文档2. 多层长方形每层个数× 层数 , 总数× , 总数数一数下图中一共有多少个长方形,每层个数:3,2,1,6层数:2,1,3总数:6×3,1一共18个。

三、不规则图形按方向分类分类数按大小分类按方向分类下图中有多少个三角形, ?、?、?、?、?、?6个??、??、??个???、???、???、???、???、???个?????? 1个6,3,6,1,1 一共16个。

:1. 下面图中给出的五个点之间,每两个点之间画一2 / 11精品文档条线段,一共可以画出多少条线段,2. 数一数图中有多少个正方形,3. 数一数下图中一共有多少个三角形,4. 数一数,图中共有个长方形,个三角形,条线段。

:本讲讲的是数图形的方法,根据不同类型的图形有不同的巧妙方法,同学们要仔细辨认图形种类,像是规则图形和多层图形都是有巧妙方法的;如果是不规则图形,那么一定要注意分类,数的时候思路要清楚,这样才不会数错。

二年级数学思维训练数图形教案11、使学生学会解决数线段的问题,掌握有序分类图形的方法。

增强学生应用数学的意识。

2、通过活动,培养学生的口头表达能力、初步的观察推理能力和探究问题的能力。

进一步培养学生的发散思维和创新能力。

小学四年级数学拔高-巧数图形

小学四年级数学拔高-巧数图形

第一讲巧数图形【知识要点】:我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。

要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。

要准确、迅速地计数图形必须注意以下几点:1.弄清被数图形的特征和变化规律。

2.要按一定的顺序数,做到不重复,不遗漏。

【例题精讲】例1:数出下面图中有多少条线段。

试一试:数出下列图中有多少条线段。

(2)(3)例2:数一数下图中有多少个锐角。

试一试:下列各图中各有多少个锐角?例3:数一数下图中共有多少个三角形。

试一试:数一数下面图中各有多少个三角形。

例4:右图中有多少个三角形?例5:数一数下图中有多少个长方形?试一试:数一数,下面各图中分别有几个长方形?例6:数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)试一试:数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)例7:从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?试一试:从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?这些船票中有多少种不同的票价?【巩固练习】1、数出下列图中有多少条线段。

(3)2、数一数下图中共有多少个三角形。

3、数一数下图中有多少个长方形。

4、下列图形中,不含“*”号的三角形或长方形各有几个?5、数一数下列各图中分别有多少个正方形。

6、从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?7、从成都到南京的快车,中途要停靠9个站,有几种不同的票价?。

(完整版)如何巧数图形

(完整版)如何巧数图形

如何巧数图形
1、数线段 1 2 3 4 1 2 3 4 …… n
线段条数:1+2+3+4=10(条) 线段条数:1+2+3+……+n
2、数角
角的个数:1+2+3+4=10(个) 角的个数:1+2+3+……+n
3、数三角形
三角形个数: 1+2+3+4=10(个) 三角形个数: 1+2=3(个) 三角形个数: 1+2+3+4=10 3×2=6(个) 10×4=40(个) 数多层三角形的方法:三角形的个数=一层的个数×层数
4、数长方形、平行四边形
长方形个数:1+2+3+4+5=15(个)
1+2+3+4+5=15 1+2+3+4+5+6=21
长方形个数:15×6=90(个) 平行四边形个数:21×10=210(个)
我们在数角、三角形、长方形、平行四边形的过程中,我们不难发现,当一个图形的组成有一定规律时,我们可以按规律来计数,如果没有明显的规律我们就按一定的顺序数(先一个一个、再两个两个地数的……),这样才能做到不重复、不遗漏。

1 2 3 4 1 2 3 ……
n 1 2 3 4
1 2
2层 1 2 3 4 5 1+2+3=6 1+2+3+4=10
5、数不规则图形。

(1+2+3+4+5+6)×(1+2+3)+(1+2+3)×(1+2+3+4)-(1+2+3)×(1+2+3)=150。

10巧数图形

10巧数图形

10
巧数图形
例题
⒈数一数,右图中有几条线段。

2 数一数,右图中有多少个三角形。

3 数一数,右图中有多少个长方形。

4 数一数,右图中有多少个三角形。

5 数一数,右图中有多少个正方形。

6 数一数,右图中有多少个三角形。

做一做
1 右图中有多少个锐角?
2 右图中有多少个三角形?
练习十
⒈右图中有几条线段呢?
⒉右图中有几个三角形?
⒊右图中有多少个三角形。

⒋右图中有多少个三角形?
⒌右图中有多少个三角形。

⒍右图中有几个梯形,几个三角形?
⒎数一数,右图中有多少个正方形。

⒏数一数,右图中有多少个长方形。

巧数图形

巧数图形

第一讲巧数图形数出某种图形的个数是一类有趣的图形问题。

数图形虽然很简单,但重复计数和遗漏是经常出现的错误,在细心的同时还要掌握一定的方法和技巧。

几何中的计数问题包括:数线段、数角、数长方形、数正方形、数三角形、数综合图形等。

通过这一讲的学习,可以帮助我们养成按照一定顺序去观察、去思考问题的良好习惯,同时提高我们通过观察、思考去探寻事物规律的能力。

要想有条理、不重复、不遗漏地数出所要图形的个数,最常用的方法就是分类数。

一、数线段我们把直线上两点间的部分称为线段,这两个点称为线段的端点.线段是组成三角形、正方形、长方形、多边形等最基本的元素。

因此,观察图形中的线段,探寻线段与线段之间、线段与其他图形之间的联系,对于了解图形、分析图形是很重要的。

例1、数一数,图中有多少条线段?分析与解:如果我们按照一定的顺序从左往右数,就会发现:以A点为共同端点的线段有:AB AC AD AE AF 5条;以B点为共同端点的线段有:BC BD BE BF 4条;以C点为共同左端点的线段有:CD CE CF 3条;以D点为共同左端点的线段有:DE DF 2条;以E点为共同左端点的线段有:EF 1条;总数为:5+4+3+2+1=15条。

用图示法表示更为直观明了,如右图。

想一想:①由例1可知,一条线段AF上有六个点,就有:总数=5+4+3+2+1条线段。

由此猜想如下规律(见右图):……………………还可以一直找下去,并且通过实际去按顺序数,经过验证后,能从中得出这样一个结论:当一个图形中包含的所有线段都在同一条直线上时,线段总条数是从1开始的一串连续自然数之和,其中最大的自然数比图形中的总端点数少1.②如果我们把相邻两点间的线段叫做基本线段,那么线段的总条数也是从1开始的一串连续自然数之和,其中最大的自然数等于基本线段的条数(见下图)。

基本线段数线段总条数……………………是不是存在这样的规律,同学们可以自己再举些例子试试看。

三年级上册奥数课件巧数图形2通用版(共36张ppt)

三年级上册奥数课件巧数图形2通用版(共36张ppt)
三年级上册奥数课件-巧数巧图数形图2形2通用通版用版((共共 363张6张 pptpp)t)
三年级上册奥数课件-巧数巧图数形图2形2通用通版用版((共共 363张6张 pptpp)t)
有多少个三角形呢?
练一练3
16个 7个
1个
3个
16+7+3+1=27(个)
三年级上册奥数课件-巧数巧图数形图2形2通用通版用版((共共 363张6张 pptpp)t)
第一、二课最后复习
图形中的数学——巧数图形
1、基本技能: 数线段的方法 2、知识转化:
3、知识拓展:
一共有多少条线段?
数线段复习
4条基本线段
4 + 3 + 2 + 1=10(条)
先数基本线段,再从 头 到 尾 一直加到1。
一共有多少条线段呢?
4+3+2+1=10条
6 + 10 =16条
第一、二课最后复习
有多少个正方形呢?
例二
9个
4个
能1不个能用数长方形的方法,
9+来数4正+方1形=?14(个)
三年级上册奥数课件巧数图形2 通用版 (共36张ppt)
三年级上册奥数课件-巧数巧图数形图2形2通用通版用版((共共 363张6张 pptpp)t)
有多少个正方形呢?
练一练2
16个 9个
1个
4个
16+9+4+1=30(个)
三年级上册奥数课件巧数图形2 通用版 (共36张ppt)
分类法
三年级上册奥数课件巧数图形2 通用版 (共36张ppt)
三年级上册奥数课件巧数图形2 通用版 (共36张ppt)
怎样数正方形?
三年级上册奥数课件巧数图形2 通用版 (共36张ppt)

巧数图形教案

巧数图形教案

备课人:教学目标:1、学会按照一定的顺序和类别数出某种图形的个数,数图形时能做到有条理,不重复,不遗漏。

2、会从组合图形中识别出正方形和长方形。

3、帮助孩子在写作业时养成良好的握笔习惯。

教学重点和难点:1、学生能正确区分正方形和长方形。

2、数图形不重复不遗漏。

教学对策:带着学生一个一个地数清楚。

教学准备:PPT、多媒体教学过程:一、导入〔回忆上节课内容〕〔 3’〕师:上节课我们学习了如何把一个复杂的图形简单化,只要把它分成小的我们熟悉的图形,数一数每种图形的个数,那么复杂的图形就会简单化。

今天我们继续研究这样的复杂图形。

可是,今天的复杂图形是由一种图形组成的,也就是组合图形。

我们看例1。

例 1:下列图中有多少个三角形?师:如果老师要求你们自己画出这幅图,你有什么简单的方法吗?预设 1:学生可能会说出由两个三角形组成。

预设 2:学生可能会说出有 6 个小三角形。

师:小朋友们从这幅图中看出了 2 个大三角形,也看出了有 6 个小三角形,还有没有其他的三角形了?生:没有了。

师:从这幅图中,我们很容易就看出三角形,有大的,也有小的,那我们就可以根据三角形的大小来分别数一数有多少个。

再请 2 名同学上黑板指一指大三角形和小三角形分别是哪几个。

〔板书过程〕学生跟着老师写下过程。

师:我们数过了三角形,你还知道哪些图形吗?生:圆,正方形,长方形......师:接下来我们就一起来数一数正方形。

出例如 2。

例 2:数一数,一共有多少个正方形?师:谁能说一说正方形是什么样子的?预设 1:有四条边。

预设 2:方方正正的。

预设 3:四条边都是一样的。

师:正方形和哪个图形很像呢?生:长方形。

师:那怎么区分正方形和长方形呢?或者提问:谁能说一说正方形和长方形有什么相同和不同的地方吗?根据学生的答复进行总结:相同点:都有四条边,都是方方正正的。

不同点:正方形的四条边都是一样长的,而长方形不一定,只要对边一样长即可。

师:谁来说一说你的方法?根据学生的答复进行评价,可能会出现根据大小分、根据组成的块数分。

巧数图形详解-小学奥数

巧数图形详解-小学奥数

题目三:数长方形
总结词
数长方形是巧数图形中的高级题目,主要考 察学生的空间想象力和细致的观察能力。
详细描述
题目通常会给出一张由不同形状组成的图形 ,其中包含长方形。学生需要通过空间想象 和细致的观察,数出长方形的数量。在数长 方形的过程中,学生需要注意长方形的定义 ,即两组相对边等长。此外,学生还需要注 意长方形可能存在不同的方向和旋转,确保
枚举法
总结词
逐一列举所有可能的情况,找出符合条件的结果。
详细描述
枚举法适用于图形数量较少、情况较为简单的问题。在解题时,需要逐一列举出 所有可能的情况,并逐一检验是否符合题目要求。通过排除不符合条件的情况, 最终找出符合条件的结果。
排除法
总结词
通过排除不符合条件的情况,逐步缩小范围,最终找出答案。
常见类型与实例
类型
常见的巧数图形题目包括数线段、数三角形、数正方形、数 立方体等。
实例
如数线段,给定一条直线段,在直线段上任意取n个点,将线 段分成n+1段,求这些小段的线段长度之和。
巧数图形的解题思路
观察
首先观察题目所给的图 形,寻找其中的规律或
特征。
分析
分析图形的构成和数量 关系,确定解进行逻 辑推理,得出正确的答
案。
计算
进行必要的计算,得出 最终答案。
02 巧数图形的解题技巧
观察法
总结词
通过细致观察图形特点,找出规律,解决问题。
详细描述
观察法是解决巧数图形问题的一种常用方法。在解题过程中,首先要仔细观察 图形,注意图形的形状、大小、对称性等特征,以及各图形之间的相互关系。 通过观察找出规律,从而解决问题。
详细描述
排除法是解决巧数图形问题的一种常用方法。在解题过程中,首先根据题目的要求和图形的特征,排除一些不可 能的情况。然后逐步缩小范围,最终找出符合条件的结果。排除法可以有效地减少计算量,提高解题效率。

24巧数图形

24巧数图形

巧数图形月 日 姓 名知识要点:1.巧数图形问题包括:数线段、数三角形、数正方形、数长方形等。

2.数图形的个数,不但要有一双好眼睛,还要善于开动脑筋,仔细观察,按顺序分类去做,做到不重复,不遗漏,这样才能数得又快又准。

通过数线段、数三角形、数角等总结出共用的方法:(n -1)+(n -2)+(n -3)+…+2+1经典例题:例1.(1)图4-1中有多少条线段?(2)图4-2中共有多少个角?(3)数一数图4-3中共有多少个三角形?例2.图4-4中一共有多少条线段?图4-1图4-2图4-3图4-4例3.数一数图4-5有多少个正方形?例4.图4-6中一共有多少个长方形?就地练兵1.如图4-7所示图中共有条线段。

2.数一数图4-8中有多少个三角形?3.如图4-9所示,图中共有多少条线段?4.数一数图4-10中有多少条线段?图4-5图4-6图4-7图4-8123C图4-10图4-95.图4-11中共有多少锐角?6.如图4-12所示,图中共有 线段,共有 个三角形。

7.图4-13中共有 个三角形。

8.(1)数一数图4-14中有多少个正方形。

(2)数一数图4-15中共有多少个正方形?9.数一数图4-16中有多少个长方形?A OC 1 C 2 C 20B图4-11· · · 图4-12C图4-13 图4-14图4-15图4-16课后大考验姓 名 成 绩1.如图4-17中共有 条线段。

2.数一数,图4-18中有多少条线段?3.图4-19中共有多少个角?4.数一数图4-20有多少个正方形?5.图4-21中共有多少个长方形?AB C D EF G图4-172 3 4 56图4-19图4-20图4-21图4-18。

巧数图形(课堂PPT)

巧数图形(课堂PPT)
1×4+4×(3×2)+2×(2×3)+3×(1×4) =1×(5-1) × 1+4×(5-2)×2+2×(5-3)×3+3×(5-4)×4 =52厘米 上式中的5是线段上的5个点,如果设线段上的点数为n,基本线段分别为a1、 a2、…a(n-1)。以上各线段长度的总和为L,那么 L= a1×(n-1)×1+ a2×(n-2)×2+ a3×(n-3)×3+…+ a(n-1)×1×(n-1)。
【思路导航】 边长是1个长度单位的正方形有6×3=18个, 边长是2个长度单位的正方形有5×2=10个,
32 边长是3个长度单位的正方形有4×1=4个。
所以,图中正方形的总数为:6×3+5×2+4×1= 个
经进一步分析可以发现,一般情况下,如果一个长方形的长被 分成m等份,宽被分成n等份(长和宽的每一份都是相等的) 那么正方形的总数为: mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.
AB C D E F
5+4+3+2+1=15(条 )
6+5+4+3+2+1=21(条 )
Page 4
练一练
4+3+2+1=10(条 )
5+4+3+2+1=15(条)
共计:10+15=25(条)
Page 5
数一数,下图中有几个角?
O
C
D
32 1 总共:3+2+1=6(个) 角的个数=基本角数一直加到1
Page 15
数线段: 线段条数=基本线段数一直加到1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲巧数图形
小朋友们,我们数学课上学习了四边形,你还记得他们的特点吗?你们是不是做过下面的这种题:
图中共有()个平行四边形
这属于我们奥数里边的一个专题:巧数图形,你能快速的数出来吗?有没有什么巧妙的办法呢?现在让我们一起看一下吧。

一、数线段
例1数出右图中共有多少条线段。

方法一:找规律数线段。

共有3+2+1=6(条)。

方法二:分类数线段。

共有3+2+1=6(条)。

例2.数出右面图中共有多少条线段?
解析:线段有一个重要特征:线段都是笔直的.所以
我们在数的时候,必须将这幅图分成四个部分,每一
部分分别采用以线段左端点分类数的方法,然后把四
部分算得结果加起来.
第一部分从A到E共有4+3+2+1=10条线段.
第二部分从G到J共有4+3+2+1=10条线段.
第三部分是FG一条线段.
第四部分是JK一条线段. 10+10+1+1=22(条)
例3.一条线段上共有10个点,以这10个点为端点的不同线段共有多少条?
分析:一条线段上有10个点,那么我们先把线段画出来
因此,共有线段:9+8+…+3+2+1=(9+1)×9÷2=45(条)
总结:1、找规律数线段:一般地,如果线段上有几个点(其中n是大于或等于2的自然数),那么以这n个点为端点的线段共有:
(n-1)+(n-2)+…+3+2+1=n×(n-1)÷2;
2、分类数线段
练习:下列图形中各有多少条线段?
(3)
二、数角
例4.右面图形中有几个角?
分析方法和数线段相同
练习
()个角()个角
三、数三角形
例5.数出下面图中共有多少个三角形?
方法一数三角形个数的方法与数线段的方法差不多.
方法二我们可以发现,可以抓住底边BC来考虑,底边BC
中所包含的每一条线段都恰好对应一个三角形.
底边左端点是B的三角形共有△BDA、△BEA、△BCA三个.
底边左端点是D的三角形共有△DEA、△DCA两个.
底边左端点是E的三角形只有△ECA一个.
所以一共有三角形:3+2+1=6(个).
方法三我们把图中△ABC、△ACD、△ADE看作基本三角形:
由1个基本三角形构成的三角形有△ABC、△ACD、△ADE;
由2个基本三角形构成的三角形有△ABD、△ACE;
由3个基本三角形构成的三角形有△ABE。

所以3+2+1=6(个)例6.数一数图中共有多少个三角形?
思路分析:我们可以将这幅图分成三个部分来数,即下面三幅图.
在△
ABC
中,一
共有5
+4+3
+2+1=15(个)三角形,
在△ABD中,一共有5+4+3+2+1=15(个)三角形;
在△BDC中,一共有5个三角形.所以 15+15+5=35(个)
例7.图中共有多少个不同的三角形?
思路分析:可以用上一题的方法,也可以有另外的思路:
横着看,有3个基本三角形,所以1+2+3=6
竖着看,有两行,所以三角形个数为6×2=12个
例8.数出下图中共有多少个三角形?
思路分析:这题我们可以采用按基本图形组合的方法来数.把
图中最小的一个三角形看作基本图形.
由一个基本三角形构成的三角形共有8个;
由两个基本三角形构成的三角形共有4个;
由四个基本三角形构成的三角形共有4个.因此:8+4+4=16(个)
例9.数出下面图形中共有多少个三角形?
解析:分类数三角形
由一个基本三角形构成的三角形共有9个;
由四个基本三角形构成的三角形共有3个;
由九个基本三角形构成的三角形只有1个.
因此9+3+1=13(个),所以,图形中共有13个三角形.
例10.数出下图中共有多少个三角形?
思路分析:分类编号
由一块形成的三角形有4个;
由两块拼成的三角形有5个,分别是①+②
①+③③+④②+④⑤+⑥;
由三块拼成的三角形有两个,分别为①+③+⑤,②+④+⑥;
由四块拼成的三角形有1个,即是①+②+③+④;
没有由五块拼成的三角形;
由六块拼成的三角形有1个,即最大的三角形.
所以,图中三角形一共有4+5+2+1+1=13(个).
总结:1、找规律数三角形 2、纵横数三角形 3、分类数三角形
练习:下列图形中各有多少个三角形?
()个三角形()个三角形()个三角形
()个三角形()个三角形()个三角形
四、数四边形
例11.数出各图中正方形的个数.
解析:(1)中最基本的正方形有9个 (9=3×3);
由4个基本正方形组成的正方形有4个(4=2×2);
由9个基本正方形组成的正方形有1个(1=1×1)
所以共有正方形9+4+1=14(个).
(2)中边长为1的正方形有16个,即16=4×4;
边长为2的正方形有9个,即9=3×3;
边长为3的正方形有4个,即4=2×2;
边长为4的正方形有1个,即1=1×1.
所以共有正方形有16+9+4+1=30(个).
例12.图中共有多少个正方形?
解析:将正方形分类,
由两块小三角形构成的正方形有4个;
由四块小三角形构成的正方形有4个;
由八块小三角形构成的正方形有1个;
由十六块小三角形构成的正方形有1个.
由一、三、五、七、六、九、十、十一、十二、十三、十四、十五块小三角形不能构成正方形.
所以,图中共有4+4+1+1=10(个)正方形.
例13.数出图中共有多少个正方形?
方法一:根据正方形边长的大小,我们将它们分成四类:
第1类:边长为1的正方形有24个;
第2类:边长为2的正方形有13个;
第3类:边长为3的正方形有4个;
第4类:边长为4的正方形有1个.
所以图中共有24+13+4+1=42(个)正方形.
方法二:如果把四条边长多出的8个小正方形去掉,很容易得出共有1×1+2×2+3×3+4×4=30(个)正方形,添上了去掉的小正方形后,这8个小正方形还能再和其他图形组成4个新的正方形.
所以,图中共有30+8+4=42(个)正方形.
例14:在下图中,包含“*”号的长方形和正方形共有多少个?
解析:按包含的小块分类计数。

包含1小块的有1个;包含2小块的有4个;
包含3小块的有4个;包含4小块的有7个;
包含5小块的有2个;包含6小块的有6个;
包含8小块的有4个;包含9小块的有3个;
包含10小块的有2个;包含12小块的有4个;
包含15小块的有2个。

所以共有1+4+4+7+2+6+4+3+2+4+2=39(个)。

例题15 如下图,平面上有12个点,可任意取其中四
个点围成一个正方形,这样的正方形有多少个?
分析把相邻的两点连接起来可以得到下面图形,从图
中可以看出:
(1)最小的正方形有6个;
(2)由4个小正方形组合而成的正方形有2个;
(3)中间还可围成2个正方形。

所以共有6+2+2=10个。

例16.下面两幅图中各有多少个长方形?
思路分析:(1)找规律数长方形。

所以,图中长方形共有4+3+2+1=10(个).
(2)纵横数长方形
横着看有三排,3+2+1=6
竖着看有两行,1+2=3.
所以,图中共有长方形6×3=18(个).
例17.下图中共有多少个长方形?
思路分析:分类数长方形
我们可以先将大长方形中的5小块编上号:
这5块都是符合要求的长方形.
由两小块拼成的长方形,共有4个,即①+②,②+③,③+④,④+⑤;由三小块拼成的长方形,共有2个,即①+③+④,③+④+⑤;
没有由四小块拼成的长方形;
由5小块拼成的长方形只有最大的一个.
所以,图中共有5+4+2+1=12(个)长方形.
例18
练习
1,数一数
()个正方形()个长方形()个平行四边形
2.下列图形中各有多少个长方形?
3.下列图形中,不含“*”号的三角形或长方形各有几个?。

相关文档
最新文档