中考数学专题复习课件-解答题简单应用题

合集下载

题型(二) 实际应用题-2021年中考数学一轮复习知识考点课件(74张)

题型(二) 实际应用题-2021年中考数学一轮复习知识考点课件(74张)
上一页 下一页
对点训练 1.(2020·上海)去年某商店“十一”黄 周进行促销活动期间,前六天的总营业
额为450万元,第七天的营业额是前六天总营业额的12%. (1)求该商店去年“十一”黄 周这七天的总营业额;
解:(1)450+450×12%=504(万元). 答:该商店去年“十一”黄 周这七天的总营业额为504万元.
解:设甲物资采购了x吨,乙物资采购了y吨.
依题意,得
x y 540, 解得 3x 2y 1380,
x
y
300, 240.
答:甲物资采购了300吨,乙物资采购了240吨.
上一页 下一页
(2)现在计划安排A,B两种不同规格的卡车共50辆来运输这批物资.甲物资7
吨和乙物资3吨可装满一辆A型卡车;甲物资5吨和乙物资7吨可装满一辆B
上一页 下一页
以分配类问题中购买商品为例,常出现的量有:购买数量、单价及购买
额,常见等量关系式为:单价×数量=总价.
1.以购买商品背景为例,常考以下三种形式:
模型一:已知a,b的单价、购买a,b的总数量及总花费,求a,b各自购
买的数量;
模型二:已知购买一定数量的a和一定数量的b的总花费(两组信息),求
上一页 下一页
(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:A商场 买十送一,B商场全场九折,试问去哪个商场购买足球更优惠?
(2)在A商场实际需要购买的足球为100× 10 = 1000 ≈91(个),
11 11
在A商场需要的费用为162×91=14 742(元), 在B商场需要的费用为162×100× 9 =14 580(元).
方案2:安排26辆A型卡车,24辆B型卡车;
方案3:安排27辆A型卡车,23辆B型卡车.

2021年中考数学复习课件:第3轮 第44讲 解答题(二)专练

2021年中考数学复习课件:第3轮 第44讲 解答题(二)专练
AE=AD, ∵在△AEC 和△ADB 中,∠CAE=∠DAB,
AC=AB, ∴△AEC≌△ADB(SAS);
(2)若 AB=2,∠BAC=45°,当四边形 ADFC
是菱形时,求 BF 的长. 解:∵四边形 ADFC 是菱形,且∠BAC=45°, ∴∠DBA=∠BAC=45°, ∵AB=AD,∴∠DBA=∠BDA=45°, ∴△ABD 为直角边为 2 的等腰直角三角形, ∴BD2=2AB2,即 BD=2 2, ∵AD=DF=FC=AC=AB=2, ∴BF=BD-DF=2 2-2.
纯收入的年平均增长率为 x, 依题意,得 2 500(1+x)2=3 600, 解得 x1=0.2=20%,x2=-2.2(舍去). 答:该贫困户 2016 年到 2018 年家庭年人均纯
收入的年平均增长率为 20%;
(2)若年平均增长率保持不变,2019 年该贫困户 的家庭年人均纯收入是否能达到 4 200 元?
买方案? 解:设购买甲树苗 y 棵,乙树苗(10-y)棵, 根据题意可得 30y+20(10-y)≤230, 10y≤30,解得 y≤3, 购买方案 1:购买甲树苗 3 棵,乙树苗 7 棵; 购买方案 2:购买甲树苗 2 棵,乙树苗 8 棵; 购买方案 3:购买甲树苗 1 棵,乙树苗 9 棵; 购买方案 4:购买甲树苗 0 棵,乙树苗 10 棵.
烧(90-x)吨垃圾,总发电量为 y 度,则 y=300x+260(90-x)=40x+23 400, ∵x≤2(90-x),∴x≤60, ∵y 随 x 的增大而增大,∴当 x=60 时,y 有最
大值为 40×60+23 400=25 800(度).
4.元旦节前夕,某花店购进康乃馨和玫瑰两种 鲜花,销售过程中发现康乃馨比玫瑰销量大,店主 决定将玫瑰每枝降价 2 元促销,降价后 80 元可购买 玫瑰的数量是原来可购买玫瑰数量的 1.25 倍.

中考数学复习分式方程应用题(含答案)

中考数学复习分式方程应用题(含答案)

13讲分式方程应用题一、解答题(共26题;共130分)1.(2014•丹东)某服装厂接到一份加工3000件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.原计划每天加工多少件服装?2.(2017•大连)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?3.(2017•遵义)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.4.(2017•贺州)政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.5.(2017•扬州)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.6.(2016•曲靖)甲、乙两地相距240千米,一辆小轿车的速度是货车速度的2倍,走完全程,小轿车比货车少用2小时,求货车的速度.7.(2017•通辽)一汽车从甲地出发开往相距240km的乙地,出发后第一小时内按原计划的速度匀速行驶,1小时后比原来的速度加快,比原计划提前24min到达乙地,求汽车出发后第1小时内的行驶速度.8.(2015•丹东)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?9.(2015•随州)端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,求粽子与咸鸭蛋的价格各多少?10.(2017•长春)某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.11.(2014•营口)为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?12.(2017•黄冈)黄麻中学为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用12000元购买的科普类图书的本数与用5000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?13.(2017•宜宾)用A、B两种机器人搬运大米,A型机器人比B型机器人每小时多搬运20袋大米,A型机器人搬运700袋大米与B型机器人搬运500袋大米所用时间相等.求A、B型机器人每小时分别搬运多少袋大米.14.(2015•沈阳)高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.15.(2015•贵港)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?16.(2015•雅安)某车间按计划要生产450个零件,由于改进了生产设备,该车间实际每天生产的零件数比原计划每天多生产20%,结果提前5天完成任务,求该车间原计划每天生产的零件个数?17.(2015•宜宾)列方程或方程组解应用题:近年来,我国逐步完善养老金保险制度.甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?18.(2015•大连)甲、乙两人制作某种机械零件,已知甲每小时比乙多做3个,甲做96个所用的时间与乙做84个所用的时间相等,求甲、乙两人每小时各做多少个零件?19.(2016•呼和浩特)某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?20.(2011•本溪)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?21.(2015•长春)为了美化环境,某地政府计划对辖区内60km2的土地进行绿化.为了尽快完成任务.实际平均每月的绿化面积是原计划的1.5倍.结果提前2个月完成任务,求原计划平均每月的绿化面积.22.(2011•葫芦岛)某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?总费用=施工费+工程师食宿费.23.(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?24.(2015•郴州)自2014年12月启动“绿茵行动,青春聚力”郴州共青林植树活动以来,某单位筹集7000元购买了桂花树和樱花树共30棵,其中购买桂花树花费3000元.已知桂花树比樱花树的单价高50%,求樱花树的单价及棵树.25.(2014•朝阳)某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.26.(2014•辽阳)某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.答案解析部分一、解答题1.【答案】【解答】解:该服装厂原计划每天加工x件服装,则实际每天加工1.5x件服装,根据题意,得解这个方程得x=100经检验,x=100是所列方程的根.答:该服装厂原计划每天加工100件服装.【解析】【分析】设原计划每天加工x件衣服,则实际每天加工1.5x件服装,以时间做为等量关系可列方程求解.2.【答案】解:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得:=,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件【解析】【分析】设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.3.【答案】解:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,×1000+ ×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15【解析】【分析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.4.【答案】解:设乙工程队单独完成这项工程需要x天,依题意有(+ )×10=1﹣,解得x=20,经检验,x=20是原方程的解.答:乙工程队单独完成这项工程需要20天【解析】【分析】先根据已知条件由等量关系列出方程,再解分式方程即可得到所求的结论.5.【答案】解:设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:﹣=6,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.【解析】【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.6.【答案】解:设货车速度是x千米/小时,根据题意得:﹣=2,解得:x=60,经检验x=60是分式方程的解,且符合题意,答:货车的速度是60千米/小时.【解析】【分析】设货车的速度是x千米/小时,根据一辆小轿车的速度是货车速度的2倍列出方程,求出方程的解即可得到结果.此题考查了分式方程的应用,找出题中的等量关系是解本题的关键.7.【答案】解:设汽车出发后第1小时内的行驶速度是x千米/小时,根据题意可得:=1+ + ,解得:x=80,经检验得:x=80是原方程的根,答:汽车出发后第1小时内的行驶速度是80千米/小时【解析】【分析】根据题意结合行驶的时间的变化得出等式进而求出答案.8.【答案】解:设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意得,=2,解得:x=90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米.【解析】【分析】设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意可得,坐高铁走180千米比坐普通车240千米少用2小时,据此列方程求解.9.【答案】解:设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据题意得:=,去分母得:30x=12x+21.6,解得:x=1.2,经检验x=1.2是分式方程的解,且符合题意,1.8+x=1.8+1.2=3(元),故咸鸭蛋的价格为1.2元,粽子的价格为3元.【解析】【分析】设咸鸭蛋的价格为x元,则粽子的价格为(1.8+x)元,根据花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,列出分式方程,求出方程的解得到x的值,即可得到结果.10.【答案】解:设跳绳的单价为x元,则排球的单价为3x元,依题意得:﹣=30,解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.【解析】【分析】由"买跳绳的数量比购买排球的数量多30个“可构建方程,用跳绳的单价x表示两个数量,然后二者相减即可.11.【答案】解:(1)设签字笔的单价为x元,笔记本的单价为y元.则可列方程组,解得.答:签字笔的单价为1.5元,笔记本的单价为3.5元.(2)设学校获奖的同学有z人.则可列方程,解得z=48.经检验,z=48符合题意.答:学校获奖的同学有48人.【解析】【分析】(1)由题意可知此题存在两个等量关系,即买1支签字笔价钱+买2个笔记本的价钱=8.5元,买2支签字笔价钱+买3个笔记本的价钱=13.5元,根据这两个等量关系,可列出方程组,再求解;(2)设学校获奖的同学有z人,根据等量关系:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同,可列出方程,再求解.12.【答案】解:设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元.根据题意,得= .解得x= .经检验,x= 是原方程的解,且符合题意,则科普类图书平均每本的价格为+5= 元,答:文学类图书平均每本的价格为元,科普类图书平均每本的价格为元.【解析】【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为(x+5)元,根据题意可得等量关系:用12000元购进的科普类图书的本数=用5000元购买的文学类图书的本数,根据等量关系列出方程,再解即可.13.【答案】解:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:= ,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【解析】【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间= ,B型机器人所用时间= ,由所用时间相等,建立等量关系.14.【答案】解:设高速铁路列车的平均速度为xkm/h,根据题意,得:,去分母,得:690×3=690+4.6x,解这个方程,得:x=300,经检验,x=300是所列方程的解,因此高速铁路列车的平均速度为300km/h.【解析】【分析】设高速铁路列车的平均速度为xkm/h,根据高速铁路列车比普通铁路列车少运行了4.6h 列出分式方程,解分式方程即可,注意检验.15.【答案】【解答】解:设去年月平均生产效率为1,则今年一月份的生产效率为(1+m%),二月份的生产效率为1+m%+.根据题意得:,解得:m%=.经检验可知m%=是原方程的解.∴m=25.∴第一季度的总产量=120×1.25+120×1.25+50+120×2=590.答:今年第一季度生产总量是590台,m的值是25.【解析】【分析】今年一月份生产量为:120(1+m%);二月份生产量:120(1+m%)+50;根据“二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍”列出方程并解答.16.【答案】【解答】解:设该车间原计划每天生产的零件为x个,由题意得,﹣=5,解得x=15,经检验,x=15是原方程的解.答:该车间原计划每天生产的零件为15个.【解析】【分析】设该车间原计划每天生产的零件为x个,然后根据计划用的天数比实际用的天数多5列出方程,再求解即可.17.【答案】解:设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据题意得:,去分母得:15x=10x+2,解得:x=0.4,经检验x=0.4是分式方程的解,且符合题意,∴x+0.2=0.4+0.2=0.6(万元),答:甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元.【解析】【分析】设乙每年缴纳养老保险金为x万元,则甲每年缴纳养老保险金为(x+0.2)万元,根据甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元列出方程,求出方程的解即可得到结果.18.【答案】【解答】解:设乙每小时做的零件数量为x个,甲每小时做的零件数量是x+3,由题意得=解得x=21,经检验x=21是原分式方程的解,则x+3=24.答:甲每小时做24个零件,乙每小时做21个零件.【解析】【分析】由题意可知:设乙每小时做的零件数量为x个,甲每小:时做的零件数量是x+3;根据甲做90个所用的时间=乙做60个所用的时间列出方程求解.19.【答案】解:设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天.依据题意可列方程:+ = ,解得:x1=10,x2=﹣3(舍去).经检验:x=10是原方程的解.设甲队每天的工程费为y元.依据题意可列方程:6y+6(y﹣4000)=385200,解得:y=34100.甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队【解析】【分析】设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天,然后依据6天可以完成,列出关于x的方程,从而可求得甲、乙两队单独完成需要的天数,然后设甲队每天的工程费为y元,则可表示出乙队每天的工程费,接下来,根据两队合作6天的工程费用为385200元列方程求解,于是可得到两队独做一天各自的工程费,然后可求得完成此项工程的工程费,从而可得出问题的答案.本题主要考查的是分式方程的应用、一元一次方程的应用,根据题意列出关于x的方程是解题的关键.20.【答案】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,=x=15,经检验x=15是原方程的解.∴40﹣x=25.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<24.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.【解析】【分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.21.【答案】解:设原计划平均每月的绿化面积为x km2,实际平均每月的绿化面积是1.5x km2,由题意得﹣=2解得:x=10经检验x=10是原方程的解答:原计划平均每月的绿化面积为10 km2.【解析】【分析】设原计划平均每月的绿化面积为x km2,实际平均每月的绿化面积是1.5x km2,根据结果提前2个月完成任务列出方程解答即可.22.【答案】(1)设甲队单独完成需x天,则乙队单独完成需1.5x天.根据题意,得+=1.解得x=200.经检验,x=200是原分式方程的解.答:甲队单独完成需200天,乙队单独完成需300天.(2)设甲队每天的施工费为y元.根据题意,得200y+200×150×2≤300×10 000+300×150×2,解得y≤15150.答:甲队每天施工费最多为15150元.【解析】【分析】(1)假设甲队单独完成需x天,则乙队单独完成需1.5x天,根据总工作量为1得出等式方程求出即可;(2)分别表示出甲、乙两队单独施工所需费用,得出不等式,求出即可.23.【答案】解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元【解析】【分析】设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.24.【答案】【解答】解:设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,由题意得+=30解得:x=200经检验x=200是原方程的解.则(1+50%)x=300=20(棵)答:樱花树的单价为200元,有20棵.【解析】【分析】设樱花树的单价为x元,则桂花树的单价为(1+50%)x元,根据购买了桂花树和樱花树共30棵列方程解答即可.25.【答案】解:设甲队单独完成这项工程需x天,由题意得:×6+(+)×16=1,解得:x=30,经检验:x=30是原分式方程的解,2x=60,答:甲队单独完成这项工程需30天,乙队单独完成这项工程需60天.【解析】【分析】首先设甲队单独完成这项工程需x天,则乙队单独完成这项工程需2x天,根据题意可得等量关系:甲队6天的工作量+甲、乙合作16天的工作量=1,根据等量关系,列出方程,再解即可.初三复习13讲26.【答案】解:(1)设乙工程队单独完成此项工程需要x天,由题意得:+=,解得:x=30,经检验:x=30是原分式方程的解,2x=60.答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)甲工程队单独做a天后,再由甲、乙两工程队合作:(1﹣a×)÷(+)=(天),由题意可得:1•a+(1+2.5)•≤64,解得:a≥36,答:甲工程队要单独施工36天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.故答案为:天.【解析】【分析】(1)根据题意结合总工作量为1,进而表示出两队每天完成的工作情况,进而得出答案;(2)首先表示出甲、乙两工程队合作的天数,进而利用两队施工费用得出不等式求出即可.- 11 -。

2020广东省中考数学第一轮复习课件 1.题型九 实际应用题

2020广东省中考数学第一轮复习课件 1.题型九  实际应用题
(1)结合两人的对话内容,求小明原计划购买文具袋多少个? (2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不 超过400元,其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予 8折优惠,那么小明最多可购买钢笔多少支?
题型九 实际应用题
解:(1)设小明原计划购买文具袋x个,根据题意,得
题型九 实际应用题
类型三 增长率问题 (2013.21,2012.16)
1. 2017年某地在“精准扶贫”工作中投入资金1200万元用于异地安置,并规划投入异地 安置资金的年平均增长率在三年内保持不变,已知2019年在2017年的基础上增加了投 入异地安置资金1500万元. (1)2018年该地投入异地安置资金为多少元? (2)在2018年异地安置的具体实施中,该地要求投入用于优先搬迁租房奖励的资金不低 于2018年该地投入异地安置资金的25%.规定前1000户(含第1000户)每户每天奖励8元, 1000户以后每户每天奖励5元,按租房400天计算.求2018年该地至少有多少户享受到 优先搬迁租房奖励.
(2)假设安排乙队来绿化y天,则甲队需要安排的天数是 3600-50 y ,
根据题意,得 0.5y+ 3600-50 y 1.2 40 ,
100
100
解得y≥3应用题
2. (2018桂林)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进 场施工,计划用40天时间完成整个工程.当一号施工队工作5天后,承包单位接到通 知,有一大型活动要在该校田径场举行,要求比原计划提前14天完成整个工程,于 是承包单位派遣二号施工队与一号施工队共同完成剩余工程,结果按通知要求如期 完成整个工程. (1)若由二号施工队单独施工,完成整个工程需要多少天? (2)若此项工程由一号、二号施工队同时进场施工,完成整个工程需要多少天?

中考数学分式应用题解析PPT课件

中考数学分式应用题解析PPT课件

技术指导,并负担每天5元的误餐补助费。
请你帮助公司选择一种既省时又省钱的加工方
案20,20年1并0月2说日 明理由。
2
解:(1)设甲工厂每天能加工x件产品,则乙工厂每天能加 工(x+8)件产品。根据题意,得:
960 960
=
+20
x
X+8
整理得:x2+8x-384=0, x1=16,x2=-24. 经检验:x1=16,x2=-24都是原方程的根。但是每天 能加工的产品数不能为负数,
2020年10月2日
5
解:设甲种每辆客车有 x个座位,则乙种客车每 辆有(x+20)个座位,根据题意,可列方程:
3 60 3 60 +4 0

=1
x
x +2 0
解得:x1=60,x2=-120.
经检验x1=60,x2=-120都是原方程的根. 但x2=-120不合题意舍去,只取x=60,这时x+20=80. 答:甲乙两种客车的作为分别有个个座位。
x
解得:x1=-12,x2=10
经检验:x1=-12,x2=10都是原方程的根,
解:设他第一次买的小商品为x件.根据题意,可列方程:
5
2 0.8

=
x x+10 12
去分母,整理得x2-35x-750=0. 解得xl=50,x2=-15. 经检验,xl=50,x2=-15都是原方程的根.
但x=-15不合题意,舍去,所以只取x=50. 答:他第一次买小商品50件.
2020年10月2日
2020年10月2日
4
2.某校组织学生360名师生去参观某公园,如果租用甲 种客车客车刚好坐满;如果租用乙种客车可少用一 辆,且余40个空座位. (1)已知甲种客车比乙种客车少20个座位,求甲、乙两 种客车各有多少个座位。 (2)已知甲种客车的租金每辆400元,乙种客车的租 金每辆480元。这次参观同时租用这两种客车,其中甲 种客车比乙种客车少祖一辆,所用租金比单独租用任 何一种客车要节省, 按这种方案需用租金多少元?

2017年中考数学试题分项版解析汇编(第01期)专题15应用题课件

2017年中考数学试题分项版解析汇编(第01期)专题15应用题课件

专题15 应用题一、选择题1.1.某美术社团为练习素描,他们第一次用某美术社团为练习素描,他们第一次用120元买了买了若干本资料,第二次用240元在同一家商店买同一样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是(本资料,列方程正确的是( ))A.240120-=4-20x x B.240120-=4+20x x C.120240-=4-20x x D.120240-=4+20x x2.2.如图,某小区计划在一块长为如图,某小区计划在一块长为32m 32m,宽为,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm xm,则下面所列方程正确的是(,则下面所列方程正确的是(,则下面所列方程正确的是( )A .(32-2x 32-2x))(20-x 20-x))=570B =570 B..32x+2×20x=32×2032x+2×20x=32×20-570C -570C -570C..(32-x 32-x))(20-x 20-x))=32×20=32×20-570D -570 D -570 D..32x+2×20x 32x+2×20x-2x -2x 2=570 3.3.某商店今年某商店今年1月份的销售额是2万元,万元,33月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是(每月的增长率是( )A .20%B .25%C .50%D .62.5%4.4.王叔叔从市场上买一块长王叔叔从市场上买一块长80cm 80cm,宽,宽70cm 的矩形铁皮,准备制作一个工具箱,如图,他将矩形铁皮的四个角各剪掉一个边长cm x 的正方形后,剩余的部分刚好能围成一个底面积为23000cm 的无盖长方形工具箱,根据题意列方程为根据题意列方程为( ) ( )A.()()80703000x x --=B.2807043000x ?=C.()()8027023000x x --=D.()28070470803000x x ?-+=5.5.某工厂现在平均每天比原计划多生产某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是(台机器,根据题意,下面列出的方程正确的是( ) A .60048040x x =- B .600480+40x x=C .600480+40xx =D .600480-40xx =二、填空题二、填空题 1.A 1.A、、B 两地之间的路程为2380米,甲、乙两人分别从A 、B 两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A 、B 之间的C 地相遇,相遇后,甲立即返回A 地,乙继续向A 地前行.甲到达A 地时停止行走,乙到达A 地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示,则乙到达A 地时,甲与A 地相距的路程是距的路程是 米.米.2.2.经过两次连续降价,某药品销售单价由原来的经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是据题意可列方程是 .3.3.我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组人,则可以列方程组 ..4.4.一台空调标价一台空调标价2000元,若按6折销售仍可获利20%20%,则这台空调的进价是,则这台空调的进价是,则这台空调的进价是 元.元. 三、解答题三、解答题1.1.根据衢州市统计局发布的统计数据显示,衢州市近根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,所示,20162016年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示。

(初中)九年级数学《二元一次方程》中考专题阶段复习讲解教学课件

(初中)九年级数学《二元一次方程》中考专题阶段复习讲解教学课件

【解析】设入住A类旅游饭店的会议x次,入住B类旅游饭店的
会议y次.
根据题意,得
x y 18, 2x y 28,
解得
x y
10, 8.
答:此旅行社入住A类旅游饭店的会议10次,入住B类旅游饭店
的会议8次.
(初中)数学中考专题阶段复习讲解教学课件
谢谢
9 5
.
,
mx ny 7, nx my 1,
则 m 3n 13 3 9 8,所以3 m 3n 3 8 2.
55
答案:2
3.(中考)已知关于x,y的方程组
mx ny 7, 2mx 3ny
4的解为xy
1, 2,
求m,n的值.
【解析】把
x y
1, 2
代入
mx ny 7, 2mx 3ny
人数多22人”所得的方程是x-y=22;调查的吸烟的人数是
x 不,吸烟的人数是
2.5%
根y据共,调查了10 000人,列方
0.5%
程得 x y 10 000,
2.5% 0.5%
x y 22,
所以可列方程组
x 2.5%
y 0.5%
10
000.
2.(中考)学校举行“大家唱大家跳”文艺汇演,设置了歌唱
①-②,得2y=2,y=1,所以原方程组的解为xy
2, 1.
答案:xy
2, 1
2.(中考)解方程组:
2x y 3,① x y 0.②
【解析】①+②,得3x=3,x=1.
把x=1代入②,得y=1.原方程组的解为xy
1, 1.
3.(中考)解方程组
x 3y 12,① 2x 3y 6.②
与舞蹈两类节目,全校师生一共表演了30个节目,其中歌唱类

2023年九年级数学中考专题:实际问题与二次函数压轴应用题(含简单答案)

2023年九年级数学中考专题:实际问题与二次函数压轴应用题(含简单答案)

2023年九年级数学中考专题:实际问题与二次函数压轴应用题1.某工厂生产A 型产品,每件成本为20元,当A 型产品的销售单价为x 元时,销售量为y 万件.要求每件A 型产品的销售单价不低于20元且不高于28元.经市场调查发现,y 与x 之间满足一次函数关系,且当x =23时,y =34;x =25时,y =30. (1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)若某次销售刚好获得182万元的利润,则每件A 型产品的销售单价是多少元? (3)设该工厂销售A 型产品所获得的利润为w 万元,将该产品的销售单价定为多少元时,才能使销售该产品所获得的利润最大?最大利润是多少万元?2.如图,有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为12m )围成中间隔有一道篱笆的矩形花圃,设花圃的宽AB 为m x ,面积为2m S .(1)求S 与x 的函数表达式.(2)如果要围成面积为245m 的花圃,AB 的长是多少米?(3)根据(1)中求得的函数关系式,判断当x 取何值时,花圃的面积最大?最大面积是多少?3.2022年2月4日,第24届冬季奥林匹克运动会在北京举行,吉祥物“冰墩墩”备受人民的喜爱,某商店经销吉祥物“冰墩墩”玩具,销售成本为每件40元,据市场分析,若按每件50元销售,一个月能售出500件;销售单价每涨1元,月销售量就减少10件,针对这种玩具的销售情况,请解答以下问题:(1)求当销售单价涨多少元时,月销售利润能够达到8000元;(2)商店想在月销售成本不超过9000元的情况下,使得月销售利润达到8000元,求销售定价应为多少元?4.某大型商场准备购买一批A 型和B 型商品,已知一件A 型商品的进价比一件B 型商品的进价多30元,用6000元采购A 型商品的件数是用1200元采购B 型商品的件数的2倍.(1)求一件A ,B 型商品的进价分别为多少元?(2)该商场购进A 型和B 型商品若干,准备采取“买二送一”的优惠销售方案,即:买两件A 型商品赠送一件B 型商品,通过一段试销发现A 型商品每天的销售量y (件)与A 型商品的销售单价x (元)满足:2200y x =-+,若商场继续以上述优惠销售方案进行销售,当A 型商品的销售单价定为多少元时,每天的销售利润最大,并求出此时的最大销售利润.5.某数学兴趣小组想借助如图所示的直角墙角ADC ∠(两边足够长),用20m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边).(1)若围成的花园面积为291m ,求矩形花园AB 的长;(2)在点P 处有一棵树与墙CD ,AD 的距离分别为12m 和6m ,要能将这棵树围在花园内(含边界,不考虑树的粗细),又使得花园面积有最大值,求此时矩形花园AB 的长.6.第一届全国青年运动会射箭项目决赛于10月20-24日在福建省莆田市体育公园举行.我市某工艺厂为青运会设计了一款成本为每件20元的工艺品,投放市场进行试销后发现每天的销售量y (件)是售价x (元/件)的一次函数:当售价为20元/件时,每天销售量为800件;当售价为25元/件时,每天的销售量为750件. (1)求y 与x 的函数关系式(2)如果该工艺品售价最高不能超过每件50元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价-成本)7.中秋节期间,某水果超市调查某种水果的销售情况,下面是调查员的对话:小王:该水果的进价是每千克22元;小李:当销售价为每千克38元时,每天可售出160千克;若每千克降低1元,每天的销售量将增加40千克.根据他们的对话,解决下面所给问题:设降价(0)x x>元,每天所获得的利润为w元.(1)超市每天要获得销售利润3640元,又要尽可能让顾客得到实惠,求这种水果的销售价为每千克多少元?(2)这种水果的销售价定为多少时,可使每天销售利润最大?最大的利润是多少?8.贫困户李大爷在某单位精准扶贫工作队的帮扶下,将一片坡地改造后种植了优质水果蓝莓,经核算,种植成本为18元/千克.今年正式上市销售,通过30天的试销发现:①第1天卖出20千克,以后每天比前一天多卖4千克:①销售价格y(元/千克)与时间x(天)之间满足如下函数关系:76(120)(2030)mx m x xyn x x-≤<⎧=⎨≤≤⎩,为正整数,为正整数,且第12天的售价为32元/千克,第23天的售价为25元/千克.(1)填空:m=_______,n=_______;试销中销售量P(千克)与时间x(天)之间的函数关系式为_______;(2)求销售蓝莓第几天时,当天的利润W最大?最大利润是多少元?(3)求试销的30天中,当天利润W不低于870元的天数共有几天?9.某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月售出500kg,销售价每涨价1元,月销售量就减少5kg.(1)当销售单价定为60元时,计算月销售量和销售利润.(2)商店想让顾客获得更多实惠的情况下,使月销售利润达到9000元,销售单价应定为多少?(3)当售价定为多少元时会获得最大利润?求出最大利润.10.某商店出售一款商品,经市场调查反映,该商品的日销售量y(件)与销售单价x (元)之间满足一次函数关系,关于该商品的销售单价,日销售量,日销售利润的部分对应数据如表:[注:日销售利润=日销售量×(销售单价﹣成本单价)](1)根据以上信息,求y关于x的函数关系式.(2)①填空:该产品的成本单价是元,表中a的值是.①求该商品日销售利润的最大值.11.小茗同学准备用一段长为50米的篱笆在家修建一个一边靠墙的矩形花圃(矩形ABCD,墙长为25米.设花圃的一边AD为x米.)(1)如图1,写出花圃的面积S(平方米)与x(米)的函数关系式;(2)图1中花圃的面积能为300平方米吗?若能,请求出x的值;若不能,请说明理由;(3)为方便进出,小茗同学决定在BC边上留一处长为a米(04)<<的门(如图2),且最a终围成的花圃的最大面积为325平方米,直接写出a的值.12.包河区发展农业经济产业,在大圩乡种植多品种的葡萄,已知某葡萄种植户李大爷的葡萄成本为10元/kg,如果在未来40天葡萄的销售单价p(元/kg)与时间t(天)之间的函数关系式为:120(120)4135(2140)2t t tpt t t⎧+≤<⎪⎪=⎨⎪+<≤⎪⎩,为整数,为整数,且葡萄的日销量y(千克)与时间t(天)的关系如下表:(1)请直接写出y与t之间的变化规律符合什么函数关系?并求在第15天的日销售量是多少千克?(2)在后20天(即2140t≤≤,t为整数),请求出哪一天的日销售利润最大?日销售利润最大为多少?(3)在实际销售的前20天中,李大爷决定每销售1千克水果就捐赠n元利润(8n<)给留守儿童作为助学金,前20天销售完后李大爷发现,每天扣除捐赠后的日销售利润随时间t的增大而增大,请求出n的取值范围.13.红灯笼,象征着国家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对,若规定每对乙灯笼的利润不能高于30元,设乙灯笼每对售价为x元,小明一天通过乙灯笼获得利润y元.①求出y与x之间的函数解析式;①乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?14.跳台滑雪是冬季奥运会的比赛项目之一,如图,运动员通过助滑道后在点A 处起跳经空中飞行后落在着陆坡BC 上的点P 处,他在空中飞行的路线可以看作抛物线的一部分,这里OA 表示起跳点A 到地面OB 的距离,OC 表示着陆坡BC 的高度,OB 表示着陆坡底端B 到点O 的水平距离,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系:2116y x bx c =-++,已知70m OA =,60m OC =,落点P 的水平距离是40m ,竖直高度是30m .(1)点A 的坐标是_____,点P 的坐标是_______; (2)求满足的函数关系2116y x bx c =-++; (3)运动员在空中飞行过程中,当他与着陆坡BC 竖直方向上的距离达到最大时,直接写出此时的水平距离.15.某商家销售一种纪念品.每个纪念品进价40元,规定销售单价不低于44元,且不高于52元.销售期间发现,当销售单价定为44元时,每天可售出300个,销售单价每上涨1元,每天销量减少10个.现商家决定提价销售,设每天销售量为y 个,销售单价为x 元.(1)在横线上直接写出y 与x 之间的函数关系式;(2)求当每个纪念品的销售单价是多少元时,商家每天获利2400元;(3)将纪念品的销售单价定为多少元时,商家每天销售纪念品获得的利润w 元最大?最大利润是多少元?16.金秋十月,我省某农业合作社有机水稻再获丰收,加工成有机大米后通过实体和电商两种渠道进行销售.该有机大米成本为每千克 14 元,销售价格不低于成本,且不超过25 元/千克,根据各销售渠道的反馈,发现该有机大米一天的销售量y(千克)是该天的售价x(元/千克)的一次函数,部分情况如表:(1)求一天的销售量y(千克)与售价x(元/千克)之间的函数关系式并写出x的取值范围.(2)若某天销售这种大米获利2400 元,那么这天该大米的售价为多少?(3)该有机大米售价定为多少时,当天获利w最大?最大利润为多少?17.某公司为了宣传一种新产品,在某地先后举行18场产品促销会,已知该产品每台成本为4万元,设第x场产品的销售量为y(台),在销售过程中获得以下信息:信息1:已知第一场销售产品38台,然后每增加一场,产品就少卖出2台;信息2:产品的每场销售单价p(万元)由基本价和浮动价两部分组成,其中基本价保持不变,第1场—第10场浮动价与销售场次x成正比,第11场—第18场浮动价与销售场次x成反比,经过统计,得到如下数据:(1)求y与x之间的函数关系式;(2)求销售单价p与销售场次x之间的函数关系式;(3)当产品销售单价为6.5万元时,求销售场次是第几场?(4)在这18场产品促销会中,哪一场获得的利润最大,最大利润是多少?(结果保留整数) 18.某商场经营A种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x 元()40x >,请用含x 的代数式表示该玩具的销售量______.(2)若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于450件的销售任务,求商场销售该品牌玩具获得的最大利润.(3)该商场计划将(2)中所得的利润的一部分采购一批B 种玩具并转手出售,根据调查准备两种方案:方案①:月初出售,获利15%,并可用本和利再投资C 种玩具,到月末又可获利10%; 方案①:只到月末出售直接获利30%,但要另支付仓库保管费350元.请问商场如何使用这笔资金,采用哪种方案获利较多?尝试填写以下表格.参考答案:1.(1)y 与x 的函数关系式为280y x =-+,自变量x 的取值范围是2028x ≤≤ (2)每件A 型产品的销售单价是27元(3)该产品的销售单价定为28元时,才能使销售该产品所获得的利润最大,最大利润是192万元2.(1)()232448S x x x =-+≤<; (2)AB 的长为5m ;(3)当4x =时,围成的花圃的面积最大,最大面积为248m .3.(1)涨10元或30元 (2)80元4.(1)一件A ,B 型商品的进价分别为50元,20元(2)A 型商品的销售单价定为80元时,每天的销售利润最大,最大销售利润为800元5.(1)13m 和7m . (2)8m6.(1)101000y x =-+(2)当售价定为50元时,该工艺品每天获得的利润最大,最大利润为12000元.7.(1)每千克29元(2)定为32元时可使每天销售利润最大,最大的利润是4000元8.(1)12-,25,416P x =+;(2)第18天的利润最大,最大利润为968元; (3)共有12天9.(1)销售单价定为60元时,月销售量为450千克,销售利润为9000元 (2)销售单价应定为60元(3)当售价定为95元时会获得最大利润,求出最大利润为15125元.10.(1)10900y x =-+(2)①40,4560 ①该商品日销售利润的最大值为6250元11.(1)21252S x x =-+(2)能为300平方米,此时x 的值为20 (3)a 的值为112.(1)2120y t =-+;90kg (2)21天,1131元 (3)58n ≤<13.(1)甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对;(2)①222686930y x x =-+-,①乙种灯笼的销售单价为每对65元时,一天获得利润最大,最大利润是2040元.14.(1)()0,70A ,()40,30P ; (2)21370162y x x =-++; (3)18m15.(1)()107404452y x x =-+≤≤(2)当每个纪念品的销售单价是50元时,商家每天获利2400元(3)将纪念品的销售单价定为52元时,商家每天销售纪念品获得的利润w 元最大,最大利润是2640元答案第3页,共3页 16.(1)5501504201yx x(2)18元 (3)当22x =时,w 有最大值3200元.17.(1)240y x =-+ (2)()()1411044541118x x p x x⎧+≤≤⎪⎪=⎨⎪+≤≤⎪⎩ (3)当产品销售单价为6.5万元时,销售场次是第10场和第18场(4)在这18场产品促销会中,第11场获得的利润最大,最大利润约为74万元18.(1)101000x -+(2)max 11250w =元。

2024年江西省中考数学总复习:专题三 实际应用题 题型讲练 课件 46张PPT

2024年江西省中考数学总复习:专题三 实际应用题 题型讲练 课件  46张PPT

课堂提升
1.(数学文化)《九章算术》中记载:“今有甲、乙二人持钱不知其数,
甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”
其大意是:“今有甲、乙二人,不知其钱包里有多少钱,若乙把其一半
的钱给甲,则甲的钱数为 50;而甲把其23的钱给乙,则乙的钱数也为 50.
问甲、乙各有多少钱?”设甲的钱数为 x,乙的钱数为 y,根据题意,可
(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应
购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?
解析 [解] (2)设李大爷每天所获利润是 w 元,
由题意得 w=[12-0.5(x-1)-(-0.2x+8.4)]×10x=-3x2+41x
=-3x-4612+1
681 12 .
专题三 实际应用题
知识详解
方程(组)的实际应用题 [例1] 本学期学校开展以“感受中华传统美德”为主题的研学活动, 组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其 中一项活动,共支付票款2 000元,票价信息如下:
地点
票价
历史博物馆 10元/人
民俗展览馆 20元/人
(1)请问参观历史博物馆和民俗展览馆的人数各是多少? 解析 [解] (1)设参观历史博物馆的有 x 人,参观民俗展览馆的有 y 人,
方法总结 读懂一次函数图象的注意事项
1.弄清坐标轴所表示的量,看图找点. 2.图象中平行于x轴的部分表示函数值不变. 3.图象中的拐点表示函数图象在这一刻开始变化. 4.图象中的交点表示两个函数的自变量与函数值分别对应相等,交 点是函数值大小关系的分界点.
[跟踪训练] 3.为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户 发展种植业.张大爷计划明年承租村民部分土地种植某种经济作物,考 虑各种因素,预计明年种植该作物的总成本y(元)与种植面积x(亩)之间 满足一次函数关系,且部分数据如表:

2015届湘教版中考数学复习课件专题五_实际应用题

2015届湘教版中考数学复习课件专题五_实际应用题

专题五┃ 实际应用题
【解题方法点析】 解直角三角形在解决实际问题中有广泛的应用.我们要学会将各 类的实际问题转化为数学问题来解决,具体地说,要求我们善于将某 些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关 系,这样就可运用解直角三角形的方法了. 一般有以下三个步骤: (1)审题,通过图形(题目未画出图形的,可自己画出示意图),弄清 已知和未知; (2)找出有关的直角三角形,或通过作辅助线产生有关的直角三角 形,把问题转化为解直角三角形的问题; (3)根据直角三角形元素(边、角)之间的关系解有关的直角三角形.
专题五┃ 实际应用题

(1)由于蜡烛燃烧时剩余部分的高度y(cm)
与燃烧时间x(h)之间为一次函数关系. 故设y与x之间的函数表达式为y=kx+b(k≠0). 由题图知该函数图象经过点(0,24),(2,12),则
2k+b=12, k=-6, 解得 b=24, b=24,
专题五┃ 实际应用题
探究三 利用解直角三角形解决实际问题
例3 [2013· 岳阳] 某校有一露天舞台, 纵断面如图Z5-2所示,AC垂直于地面, AB表示楼梯,AE为舞台面,楼梯的坡角 ∠ABC=45°,坡长AB=2 m,为保障安 全,学校决定对该楼梯进行改造,降低坡 度,拟修新楼梯AD,使∠ADC=30°. (1)求舞台的高AC(结果保留根号); (2)在楼梯口B左侧正前方距离舞台底部C点3 m处有一株大 树,修新楼梯AD时底端D是否会触到大树?并说明理由.
专题五┃ 实际应用题
其中,找出有关的直角三角形是关键,具体方法是: 如果示意图形不是直角三角形,可添加适当的辅助线,把 它们分割成一些直角三角形和矩形,把实际问题转化为解直角 三角形问题,把可解的直角三角形纳入基本类型,确定合适的 边角关系,细心推理,按要求精确度作近似计算,最后写出答 并注明单位.

最新人教版中考数学复习第36讲 中考中档解答题专练(1)——简单应用题

最新人教版中考数学复习第36讲  中考中档解答题专练(1)——简单应用题
∵BD=BF+DF,∴ BC+ BC=20.
∴BC=
≈14.6(m).
答:乙居民楼的高约为14.6 m.
返回目录
变式诊断
7. (2021·菏泽)某天,北海舰队在 中国南海例行训练,位于A处的济南舰 突然发现北偏西30°方向上的C处有一 可疑舰艇,济南舰马上通知位于正东 方向200 n mile B处的西安舰,西安 舰测得C处位于其北偏西60°方向上, 此时两舰距C处的距离分别是多少?
20
10
(1)求y与x的函数关系式; (2)当销售单价为多少时,有最大利润,最大利润为多少? 返回目录
解:(1)由表格中数据可知,y与x之间的函数关系式为一次函 数关系. 设y=kx+b(k≠0).
10k+b=40, 由题意,得
12k+b=30. 解得 k=-5,
b=90. ∴y与x的函数关系式y=-5x+90.
15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销
售1台A型车和2台B型车,可获利1.3万元.
(1)求销售一台A型,一台B型新能源汽车的利润各是多少万元

(2)该公司准备用不超过300万元资金,采购A,B两种新能源汽
车共22台,最少需要采购A型新能源汽车多少台?
返回目录
解:(1)设销售一台A型新能源汽车的利润是x万元,销售一台B
依题意,得 10m+5(100-m)≤800.
解得53 ≤m≤60.
又∵m为整数, ∴m可以为54,55,56,57,58,59,60. ∴共有7种购买方案. 设购买总费用为w元,则w=10m+5(100-m)=5m+500. ∵5>0, ∴w随m的增大而增大. ∴当m=54时,w取得最小值,w最小值=5×54+500=770. 答:共有7种购买方案,所花资金的最小值为770元.

2015年河北省地区中考数学总复习课件 第8讲 列方程(组)解应用题

2015年河北省地区中考数学总复习课件 第8讲 列方程(组)解应用题

(5)利润问题: x 利润=销售价-进货价=标价×折扣( )-进货价(x 表示打 x 10 折); 利润 利润率= ; 进货价 销售价=(1+利润率)×进货价. (6)利息问题: 利息=本金×利率×期数; 本息和=本金+利息.
1.(2013· 河北)甲队修路 120 m 与乙队修路 100 m 所用天数相同 ,已知甲队比乙 队每天多修 10 m,设甲队每天修路 x m.依题意,下面所列方程正确的是( A ) 120 100 120 100 A. = B. = x x-10 x x+10 120 100 120 100 C. = D. = x-10 x x+10 x 2.(2007· 河北)炎炎夏日,甲安装队为 A 小区安装 66 台空调,乙安装队为 B 小 区安装 60 台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装 2 台.设 乙队每天安装 x 台,根据题意,下面所列方程中正确的是( D ) 66 60 66 60 A. = B. = x x-2 x-2 x 66 60 66 60 C. = D. = x x+2 x+2 x
3.(2014· 莱芜)已知 A, C 两地相距 40 千米 ,B,C 两地相距 50 千米 ,甲、乙两车分别从 A, B 两地同时出发到 C 地.若乙车 每小时比甲车多行驶 12 千米 ,则两车同时到达 C 地 ,设乙车的速 度为 x 千米/小时,依题意列方程正确的是( B ) 40 50 40 50 A. = B. = x x- 12 x- 12 x 40 50 C. = x x+ 12 40 50 D. = x+ 12 x
解:当5月份用电量为x度≤200度,6月份用电(500-x)度, 由题意,得0.55x+0.6(500-x)=290.5,解得x=190,∴6 月份用电500-x=310度.当5月份用电量为x度>200度,6 月份用电量为(500-x)度,由题意,得0.6x+0.6(500-x)= 290.5,300=290.5,原方程无解.∴5月份用电量为190度 ,6月份用电310度

中考数学专题复习 第十三讲二次函数的应用(共69张PPT)

中考数学专题复习 第十三讲二次函数的应用(共69张PPT)

t01 2 3 4 5 6 7…
h08
1 4
1 8
2 0
2 0
1 8
1 4

下列结论:①足球距离地面的最大高度为20m;②足球
飞行路线的对称轴是直线t= 9 ;③足球被踢出9s时落
2
地;④足球被踢出1.5s时,距离地面的高度是11m.其中
正确结论的个数是 ( )
A.1
B.2
C.3
D.4
【解析】选B.由表格可知抛物线过点(0,0),(1,8), (2,14),设该抛物线的解析式为h=at2+bt,将点(1,8), (2,14)分别代入,得:a+b=8,4a+2b=14, 即 a4ab2b8解,1得4. :a=-1,b=9.
3
3
(2)由(1)知抛物线解析式为y=- 2 (x-1)2+ 8
3
3
(0≤x≤3).
当x=1时,y=8 .
3
所以抛物线水柱的最大高度为 8 米.
3
【答题关键指导】 利用二次函数解决实际问题的步骤 (1)根据题意,列出抛物线表达式,或建立恰当的坐标 系,设出抛物线的表达式,将实际问题转化为数学模型. (2)列出函数表达式后,要标明自变量的取值范围.
5
考点二 利用二次函数解决最优化问题 【示范题2】(2017·济宁中考)某商店经销一种学生 用双肩包,已知这种双肩包的成本价为每个30元.市场 调查发现,这种双肩包每天的销售量y(个)与销售单价 x(元)有如下关系:y=-x+60(30≤x≤60).设这种双肩 包每天的销售利润为w元.
(1)求w与x之间的函数关系式. (2)这种双肩包销售单价定为多少元时,每天的销售利 润最大?最大利润是多少元? (3)如பைடு நூலகம்物价部门规定这种双肩包的销售单价不高于 42元,该商店销售这种双肩包每天要获得200元的销售 利润,销售单价应定为多少元?

中考数学专题《二次函数》复习课件(共54张PPT)

中考数学专题《二次函数》复习课件(共54张PPT)

当x b 时, y最小值为 4ac b2
2a
4a
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对 称轴的右侧, y随着x的增大而减小.
当x b 时, y最大值为 4ac b2
2a
例1: 已知二次函数 y 1 x2 x 3
2
2
(1)求抛物线开口方向,对称轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两
点,求C,A,B的坐标。
(3)x为何值时,y随的增大而减少,x为何值时,
y有最大(小)值,这个最大(小)值是多少?
(4)x为何值时,y<0?x为何值时,y>0?
写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同
a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
二次函数复习
二次函数知识点:
• 1、二次函数的定义 • 2、二次函数的图像及性质 • 3、求解析式的三种方法 • 4、a,b,c及相关符号的确定 • 5、抛物线的平移 • 6、二次函数与一元二次方程的关系 • 7、二次函数的应用题 • 8、二次函数的综合运用
1、二次函数的定义
• 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0)
a= ___. -2
2、二次函数的图像及性质
y
y
0
x
0
x
抛物线 顶点坐标 对称轴

中考数学复习讲义课件 专题4 数与代数实际应用

中考数学复习讲义课件 专题4 数与代数实际应用

(2)若该公司购进 A 商品 200 件,B 商品 300 件,准备把这些商品全部运往 甲、乙两地销售.已知每件 A 商品运往甲、乙两地的运费分别为 20 元和 25 元;每件 B 商品运往甲、乙两地的运费分别为 15 元和 24 元.若运往甲地 的商品共 240 件,运往乙地的商品共 260 件. ①设运往甲地的 A 商品为 x(件),投资总运费为 y(元),请写出 y 与 x 的函数 关系式; ②怎样调运 A,B 两种商品可使投资总费用最少?最少费用是多少元?(投 资总费用=购进商品的费用+运费)
考法示例
方程(组)应用型 ☞示例 1 (2021·大连)某校为实现垃圾分类投放,准备在校园内摆放大、小 两种垃圾桶.购买 2 个大垃圾桶和 4 个小垃圾桶共需 600 元;购买 6 个大 垃圾桶和 8 个小垃圾桶共需 1560 元. (1)求大、小两种垃圾桶的单价; [解答] 解:设大垃圾桶的单价为 x 元/个,小垃圾桶的单价为 y 元/个. 依题意,得62xx++84yy==1650600,. 解得xy==6108.0, 答:大垃圾桶的单价为 180 元/个,小垃圾桶的单价为 60 元/个.
1.(2021·西藏)列方程(组)解应用题 为振兴农村经济,某县决定购买 A,B 两种药材幼苗发给农民栽种,已知购 买 2 棵 A 种药材幼苗和 3 棵 B 种药材幼苗共需 41 元;购买 8 棵 A 种药材 幼苗和 9 棵 B 种药材幼苗共需 137 元.问每棵 A 种药材幼苗和每棵 B 种药 材幼苗的价格分别是多少元?
解:设乙工程队每天能完成 x 平方米的绿化改造面积,则甲工程队每天能 完成(x+200)平方米的绿化改造面积.依题意,得 x+200+x=800.解得 x=300. ∴x+200=300+200=500.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档