概率练习题

合集下载

概率的性质练习题

概率的性质练习题

概率的性质练习题一、选择题1.设A、B为两个事件,且P(A)=0.4,P(B)=0.3,P(A∪B)=0.6,则下列哪个选项是正确的?A) P(A∩B) = 0.1B) P(A∩B) = 0.3C) P(A∩B) = 0.4D) P(A∩B) = 0.92.某公司的员工中,40%的人会英语,30%的人会法语,有20%的人既会英语又会法语。

现从该公司的员工中随机选择一个人,求以下哪个选项的概率最大?A) 它会英语,但不会法语B) 它会法语,但不会英语C) 它既会英语又会法语D) 它既不会英语也不会法语3.已知事件A和事件B独立,且P(A)=0.3,P(B)=0.4。

则下列哪个选项是正确的?A) P(A∪B) = 0.7B) P(A∪B) = 0.2C) P(A∪B) = 0.12D) P(A∪B) = 0.564.甲、乙、丙三个人分别从一副标有1至9的扑克牌中抽取一张,求以下哪个选项的概率最大?A) 乙抽到的牌是奇数B) 丙抽到的牌是偶数C) 甲、乙、丙抽到的牌都是质数D) 甲、乙、丙抽到的牌都不是整数二、计算题1.一批产品中,有100个次品和900个合格品。

现从中抽取两个产品,不放回地抽取,求以下哪个选项的概率最大?A) 两个产品都是次品B) 两个产品都是合格品C) 一个产品是次品,一个产品是合格品D) 一个产品是合格品,一个产品是次品2.某班级总共有40名学生,其中男生25人,女生15人。

现随机抽取3人,求以下哪个选项的概率最大?A) 三人全是男生B) 三人全是女生C) 两人男生,一人女生D) 两人女生,一人男生3.一批产品中有8台合格的和2台次品,现从中随机抽取3台,求以下哪个选项的概率最大?A) 三台产品都是合格品B) 三台产品都是次品C) 两台合格品,一台次品D) 两台次品,一台合格品4.一批产品中有60台合格的和40台次品,从中随机抽取5台,求以下哪个选项的概率最大?A) 五台产品都是合格品B) 五台产品都是次品C) 四台合格品,一台次品D) 四台次品,一台合格品三、解答题1.甲、乙、丙三个人参加一场比赛,已知甲获得第一名的概率是0.4,乙获得第二名的概率是0.3,丙获得第三名的概率是0.2。

概率运算练习题及答案

概率运算练习题及答案

概率运算练习题及答案概率论是数学中的一个重要分支,它研究随机现象的规律性。

在概率论中,我们经常需要进行概率的计算。

以下是一些概率运算的练习题,以及相应的答案,供学习者参考和练习。

# 练习题1一个袋子里有3个红球和2个蓝球。

随机从袋子中取出一个球,然后放回,再次取出一个球。

求以下事件的概率:A) 第一次取出的是红球。

B) 第二次取出的是红球。

C) 两次取出的都是红球。

# 答案1A) 第一次取出红球的概率是3/5,因为袋子里有5个球,其中3个是红球。

B) 由于取出的球会放回,所以第二次取出红球的概率也是3/5。

C) 两次取出都是红球的概率是第一次取出红球的概率乘以第二次取出红球的概率,即 (3/5) * (3/5) = 9/25。

# 练习题2一个骰子有6个面,每个面上的数字分别是1, 2, 3, 4, 5, 6。

投掷两次骰子,求以下事件的概率:A) 第一次投掷得到的数字大于3。

B) 第二次投掷得到的数字小于4。

C) 两次投掷得到的数字之和为7。

# 答案2A) 第一次投掷得到大于3的数字的概率是3/6,因为1, 2, 3的数字小于4,而骰子有6个面。

B) 第二次投掷得到小于4的数字的概率也是3/6,因为1, 2, 3的数字小于4。

C) 两次投掷得到的数字之和为7的组合有:(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)。

每一对组合出现的概率是1/36(因为每个数字出现的概率是1/6,且投掷两次是独立的)。

所以,两次投掷和为7的概率是6 * (1/36) = 1/6。

# 练习题3一个班级有30个学生,其中15个男生和15个女生。

随机选择5个学生组成一个小组。

求以下事件的概率:A) 小组中至少有3个男生。

B) 小组中恰好有3个男生。

# 答案3A) 至少有3个男生的小组可以是3个男生和2个女生,4个男生和1个女生,或者5个男生。

我们可以使用组合数学来计算这些概率。

- 3个男生和2个女生的组合数是 C(15,3) * C(15,2)。

小学数学概率练习题

小学数学概率练习题

小学数学概率练习题题目一:概率基础1. 掷一个骰子,问出现偶数的概率是多少?2. 一袋中有5个红球、3个蓝球和2个黄球,从中任意取出一个球,问取出红球的概率是多少?3. 一张扑克牌从52张牌中随机抽取一张,问抽到一张黑桃的概率是多少?题目二:事件概率计算1. 班级有30个男生和20个女生,从中随机抽取一名学生,问抽到女生的概率是多少?2. 有三个红色球和两个蓝色球,从中任意取出两个球,问取出两个红色球的概率是多少?3. 一副扑克牌中去掉所有的黑桃,剩下的牌共有39张,从中抽取一张牌,问抽到一张红桃的概率是多少?题目三:条件概率1. 一袋中有5个红球、3个蓝球和2个黄球,从中任意取出一个球,已知取出的球是红球,问这个球原本是黄球的概率是多少?2. 一盒中有10个苹果,其中3个是有虫子的,从中任意取出一个苹果,已知取出的苹果有虫子,问这个苹果原本是好的概率是多少?3. 有两个袋子,一个袋子中有3个红球和2个蓝球,另一个袋子中有4个红球和1个蓝球,先随机选择一个袋子,再从袋子中随机取出一个球,已知取出的球是红球,问这个球来自第一个袋子的概率是多少?题目四:互斥事件概率1. 掷两个骰子,问至少一个骰子出现1点的概率是多少?2. 有一副扑克牌,从中抽取一张牌,问抽到红桃或红心的概率是多少?3. 某班级有20名男生和30名女生,从班级中随机选择一名学生,问选择到男生或高年级学生的概率是多少?题目五:独立事件概率1. 一副扑克牌中任选两张牌,问两张牌都是红色的概率是多少?2. 一袋中有4个红球和5个蓝球,从中随机取出一个球,不放回,再从中取出一个球,问两次取出的球都是红球的概率是多少?3. 有两个盒子,一个盒子中有4个红球和2个蓝球,另一个盒子中有3个红球和3个蓝球,分别从两个盒子中随机取出一个球,问两次取出的球颜色相同的概率是多少?这些题目涵盖了概率基础知识、事件概率计算、条件概率、互斥事件概率和独立事件概率等内容。

概率的练习题

概率的练习题

概率的练习题概率的练习题概率是数学中的一个重要分支,它研究的是事件发生的可能性。

在现实生活中,我们经常会遇到各种各样的概率问题,比如抛硬币、掷骰子、抽卡等等。

解决这些问题需要一定的数学知识和技巧,下面我们来看几个概率的练习题。

练习题一:抛硬币假设有一枚公平的硬币,抛掷一次,求出正面朝上的概率。

解答:由于硬币是公平的,正反面朝上的概率是相等的,所以正面朝上的概率为1/2。

练习题二:掷骰子现有一个六面骰子,掷一次,求出点数为偶数的概率。

解答:骰子有六个面,分别是1、2、3、4、5、6。

其中2、4、6为偶数,所以点数为偶数的概率为3/6,即1/2。

练习题三:抽卡某款手机游戏中,有一张稀有卡牌,抽取一次,求出抽到稀有卡牌的概率。

解答:假设游戏中共有100张卡牌,其中只有1张是稀有卡牌。

所以抽到稀有卡牌的概率为1/100。

练习题四:概率的加法定理现有一个装有5个红球和3个蓝球的袋子,从中随机抽取一个球,求出抽到红球或蓝球的概率。

解答:袋子中共有8个球,其中5个红球和3个蓝球。

抽到红球或蓝球的概率可以通过概率的加法定理计算,即红球的概率加上蓝球的概率。

红球的概率为5/8,蓝球的概率为3/8,所以抽到红球或蓝球的概率为5/8 + 3/8 = 8/8 = 1。

练习题五:概率的乘法定理某次考试有选择题和填空题两部分,选择题有5道,填空题有3道。

小明随机回答这些题目,求出他全部回答正确的概率。

解答:选择题每道题有4个选项,小明全部回答正确的概率为(1/4)^5,填空题每道题有10个选项,小明全部回答正确的概率为(1/10)^3。

根据概率的乘法定理,小明全部回答正确的概率为(1/4)^5 * (1/10)^3。

以上是几个概率的练习题,通过解答这些题目可以加深对概率的理解。

在实际生活中,概率问题无处不在,掌握概率的计算方法对我们做出正确的决策和判断非常重要。

希望通过这些练习题的学习,大家能够更好地理解和运用概率知识。

概率统计练习题

概率统计练习题

概率统计练习题一、选择题1. 某事件A的概率为0.3,事件B的概率为0.5,且事件A和B互斥,那么事件A和B至少有一个发生的概率是多少?A. 0.2B. 0.5C. 0.8D. 0.32. 某工厂生产的产品中,有5%的产品是次品。

如果随机抽取100件产品,那么至少有5件次品的概率是多少?A. 0.95B. 0.99C. 0.05D. 0.013. 抛一枚均匀硬币两次,求出现至少一次正面的概率。

A. 0.25B. 0.5C. 0.75D. 1.04. 某机器发生故障的概率为0.01,如果该机器连续工作10天,那么至少发生一次故障的概率是多少?A. 0.01B. 0.1C. 0.62D. 0.995. 某次考试的及格率为70%,如果一个班级有30名学生,那么这个班级至少有20名学生及格的概率是多少?A. 0.95B. 0.5C. 0.05D. 0.01二、填空题6. 假设一个随机变量X服从二项分布,参数为n=10,p=0.4,那么P(X=3)的值是____________。

7. 某地区居民的平均寿命为75岁,标准差为10岁。

根据正态分布的性质,该地区寿命超过85岁的居民占总人口的百分比大约是____________。

8. 假设随机变量Y服从泊松分布,参数为λ=5,那么P(Y=3)的值是____________。

9. 某工厂生产的产品中,次品率是0.03。

如果随机抽取100件产品,那么恰好有3件次品的概率是____________。

10. 某公司有100名员工,其中60%是男性。

如果随机选取10名员工,那么至少有7名男性的概率是____________。

三、简答题11. 请简述什么是大数定律,并给出一个实际生活中的例子。

12. 请解释什么是中心极限定理,并说明为什么它在统计学中非常重要。

13. 描述什么是条件概率,并给出一个条件概率的计算例子。

14. 解释什么是统计推断,并简述其在数据分析中的作用。

15. 什么是假设检验?请简述其基本步骤。

概率计算练习题

概率计算练习题

概率计算练习题一、基础练习题1. 某班级共有50名学生,其中35人会弹钢琴,25人会拉小提琴,15人既会弹钢琴也会拉小提琴。

现从该班级中随机选择一名学生,求该学生既不会弹钢琴也不会拉小提琴的概率。

2. 有一批产品,其中20%是次品。

从中随机抽取3个产品,求恰好有一个是次品的概率。

3. 一批产品中有30%的次品。

从中随机抽取5个产品,求至少有一个是次品的概率。

4. 一批产品中40%的产品是甲品质,30%是乙品质,30%是丙品质。

甲品质产品被使用后有4%的概率出现故障,乙品质产品故障的概率为7%,丙品质产品故障的概率为15%。

现从该批产品中随机选择一件,求其出现故障的概率。

5. 一批产品中有20%的次品。

从中抽取10个产品,求抽出的产品中次品数大于等于2的概率。

二、进阶练习题1. 某班级共有80名学生,其中40人学习钢琴,30人学习小提琴,20人学习吉他。

已知学习钢琴和学习小提琴的学生共有15人,学习小提琴和学习吉他的学生共有10人,学习钢琴和学习吉他的学生共有5人,共有3人同时学习钢琴、小提琴和吉他。

现从该班级中随机选择一名学生,求该学生学习吉他的概率。

2. 一批产品中有30%的次品,已知次品中有20%是甲类次品,60%是乙类次品,20%是丙类次品。

从该批产品中随机抽取一件,若抽到的是次品,请依次求此产品为甲类次品、乙类次品、丙类次品的概率。

3. 一家快餐店的产品销售情况统计如下:25%的顾客购买汉堡,30%的顾客购买薯条,40%的顾客购买汽水。

已知购买汉堡和薯条的顾客占总顾客数的20%,购买薯条和汽水的顾客占总顾客数的15%,购买汉堡和汽水的顾客占总顾客数的10%,同时购买汉堡、薯条和汽水的顾客占总顾客数的5%。

现在从该快餐店中随机选择一位顾客,求该顾客购买汽水的概率。

4. 一篮子中有红、蓝、绿三种颜色的球,比例为5:4:1。

从篮子中随机抽取5个球,求抽取的球中至少有两个是红球的概率。

5. 某城市每天发生车辆事故的概率为0.03。

概率经典练习题精心整理

概率经典练习题精心整理

概率经典练习题精心整理1. 事件概率的计算- 问题:有一个装有6个红球和4个蓝球的盒子,从盒子中随机抽取一个球,求抽出的球是红色的概率。

- 解答:红球的个数为6,总球数为10,所以红色概率为6/10,即3/5。

2. 条件概率的计算- 问题:某地的天气预报表明,如果今天是晴天,明天下雨的概率为0.2;如果今天是雨天,明天下雨的概率为0.6。

已知今天是晴天的情况下,明天下雨的概率是多少?- 解答:根据条件概率公式P(A|B) = P(A∩B) / P(B),今天是晴天(A),明天下雨(B),则 P(下雨|晴天) = P(下雨∩晴天) / P(晴天)。

已知 P(下雨∩晴天) = P(晴天) * P(下雨|晴天) = (1/2) * 0.2 =1/10,P(晴天) = 1/2,所以 P(下雨|晴天) = (1/10) / (1/2) = 1/5。

3. 互斥事件的概率计算- 问题:某班级有50个学生,其中30个喜欢音乐,20个喜欢运动,有10个既喜欢音乐又喜欢运动。

随机选取一个学生,求该学生既不喜欢音乐也不喜欢运动的概率。

- 解答:根据互斥事件的概率计算公式P(A∪B) = P(A) + P(B),既不喜欢音乐也不喜欢运动的事件为学生总数减去喜欢音乐和喜欢运动的学生数,即 50 - 30 - 20 + 10 = 10。

所以该学生既不喜欢音乐也不喜欢运动的概率为 10/50 = 1/5。

4. 独立事件的概率计算- 问题:一副扑克牌中,从中抽取2张牌,求第一张是红心的概率并放回,然后再抽取1张牌,求第三张是红心的概率。

- 解答:第一张是红心的概率为 26/52 = 1/2,因为放回了,所以每次抽取红心的概率都是 26/52 = 1/2。

第三张也是红心的概率为26/52 = 1/2,因为前后两次抽取是独立事件。

以上是我为您整理的一些概率经典练习题,希望对您有帮助!。

概率学练习题

概率学练习题

概率学练习题简介:概率学是研究随机现象及其规律的数学分支。

它广泛应用于各个领域,包括统计、金融、工程、医学等。

本文将给出一些概率学的练习题,以帮助读者巩固对概率的理解。

一、基础概率题1. 一枚均匀硬币抛掷两次,求出现两个正面的概率。

2. 一个箱子中有6个红球和4个蓝球,从箱子中随机取出两个球,求两球颜色相同的概率。

3. 一张扑克牌从标准52张扑克牌中随机抽取,求抽出的牌是红心的概率。

二、条件概率题1. 一箱装有10个手机,其中有3个瑕疵品。

从箱子中连续抽取两个手机,且第一个手机是瑕疵品的概率是多少?2. 一批零件共有100个,其中有80个合格品。

从中随机抽取10个进行检验,求抽出的10个零件中恰好有9个或10个合格品的概率。

3. 甲、乙两辆车同时在同一条公路上行驶。

已知甲车的故障率为0.05,乙车的故障率为0.03。

如果突然听到有车发出故障声,求是甲车发出声音的概率。

三、排列组合与概率题1. 从1~10这10个数字中随机取出3个数字,求它们的乘积是偶数的概率。

2. 一组有5个数的集合,从中随机选择3个数,求这3个数的和是奇数的概率。

3. 有5个人随机排成一列,求两个特定人物(不一定相邻)站在一起的概率。

四、概率分布题1. 一枚公平骰子抛掷3次,求出现至少一次6点的概率。

2. 设某产品的寿命服从参数为λ=2的指数分布,求该产品寿命小于5的概率。

3. 某电子设备的寿命(以年为单位)服从正态分布N(10,2)。

求该电子设备寿命在区间 [8, 12] 内的概率。

结论:通过以上的练习题,读者应该巩固了对概率学的基础知识和应用能力。

概率学是一门重要的数学分支,它的应用范围广泛,对于理解随机现象和规律具有重要意义。

在实际应用中,我们需要熟练掌握概率的计算方法,并能够将其运用到相关领域的问题中。

希望通过本文的练习题,读者能够对概率学有更深入的理解,并能够在实际应用中灵活运用。

(完整版)概率练习题(含答案)

(完整版)概率练习题(含答案)

概率练习题(含答案)1 解答题有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出:(1)试验的基本事件;(2)事件“出现点数之和大于3”;(3)事件“出现点数相等”.答案(1)这个试验的基本事件为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)(2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)(3)事件“出现点数相等”包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4)2 单选题“概率”的英文单词是“Probability”,如果在组成该单词的所有字母中任意取出一个字母,则取到字母“b”的概率是1. A.2. B.3. C.4. D.1答案C解析分析:先数出单词的所有字母数,再让字母“b”的个数除以所有字母的总个数即为所求的概率.解答:“Probability”中共11个字母,其中共2个“b”,任意取出一个字母,有11种情况可能出现,取到字母“b”的可能性有两种,故其概率是;故选C.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3 解答题一只口袋内装有大小相同的5只球,其中3只白球,2只黑球.现从口袋中每次任取一球,每次取出不放回,连续取两次.问:(1)取出的两只球都是白球的概率是多少?(2)取出的两只球至少有一个白球的概率是多少?答案(1)取出的两只球都是白球的概率为3/10;(2)以取出的两只球中至少有一个白球的概率为9/10。

小学数学概率练习题

小学数学概率练习题

小学数学概率练习题
一、选择题
1. 下列事件中,属于互斥事件的是:
A. 两个骰子同时掷出的点数之和为奇数
B. 从扑克牌中抽到红桃
C. 抛一枚硬币,正面向上
D. 掷一个骰子,掷出的点数为2
2. 某班级有30人,其中有15人喜欢篮球,12人喜欢足球,3人既喜欢篮球又喜欢足球,那么既不喜欢篮球也不喜欢足球的人数是:
A. 0
B. 3
C. 9
D. 15
二、填空题
1. 设事件A发生的概率为1/3,事件B发生的概率为1/4,且事件A 和事件B的联合事件发生的概率为1/6,那么事件A和事件B的交叉事件发生的概率为______。

2. 一袋中有红、蓝、黄三种颜色的球,红球4个,蓝球3个,黄球2个。

从中任取两个球,不放回去,求两球的颜色都相同的概率为
______。

三、解答题
1. 假设甲、乙、丙三个人依次从1、2、3号球中任取一个,求他们依次取到的号码之和为偶数的概率。

2. 一筐中有6个红球,4个蓝球,3个黄球。

从中逐次取球,不放回。

若先取到红球,再取到蓝球,问概率是多少?
题目答案:
一、选择题
1. A
2. C
二、填空题
1. 1/12
2. 2/9
三、解答题
1. 概率为1/2
2. 概率为2/39
注意:以上只是示例题目和解答,实际题目和答案可能有所不同,仅供参考。

概率的练习题

概率的练习题

概率的练习题一、选择题1. 某事件的概率P(A)为0.4,那么P(A的补集)等于多少?A. 0.6B. 0.5C. 0.4D. 12. 抛一枚均匀的硬币,正面朝上的概率是多少?A. 0.5B. 0.75C. 0.25D. 13. 一个袋子里有5个红球和3个蓝球,随机取出一个球,是红球的概率是多少?A. 0.6B. 0.5C. 0.4D. 0.34. 如果事件A和事件B是互斥的,并且P(A)=0.3,P(B)=0.2,那么P(A或B)等于多少?A. 0.5B. 0.4C. 0.3D. 0.25. 某次考试,一个学生通过的概率是0.7,不通过的概率是多少?A. 0.3B. 0.7C. 0.6D. 0.5二、填空题6. 如果一个事件的概率是0.8,那么它的对立事件的概率是________。

7. 某次抽奖活动中,共有1000张奖券,其中10张是一等奖,那么抽到一等奖的概率是________。

8. 一个骰子有6个面,每个面出现的概率是________。

9. 如果事件A和事件B是相互独立的,P(A)=0.4,P(B)=0.6,那么P(A和B同时发生)等于________。

10. 某次实验中,事件A发生的概率是0.2,事件B发生的概率是0.3,且P(A和B同时发生)=0.1,那么P(A或B)等于________。

三、计算题11. 一个盒子里有3个白球和2个黑球,从中随机取出2个球。

求以下概率:(1) 取出的2个球都是白球的概率。

(2) 取出的2个球中至少有一个是黑球的概率。

12. 某工厂生产的产品中有5%是次品。

如果随机抽取10件产品,求以下概率:(1) 没有次品的概率。

(2) 恰好有1件次品的概率。

13. 假设有3个独立事件A、B、C,它们发生的概率分别是P(A)=0.3,P(B)=0.5,P(C)=0.7。

求以下概率:(1) 事件A和事件B同时发生的概率。

(2) 事件A发生,而事件B和事件C不发生的概率。

概率练习题含答案

概率练习题含答案

第一章 随机事件及其概率 练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。

(B ) (2)事件的对立与互不相容是等价的。

(B ) (3)若()0,P A = 则A =∅。

(B )(4)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B )(5)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (6)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P {}1=3两个女孩。

(B ) (7)若P(A)P(B)≤,则⊂A B 。

(B )(8)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。

(B )(9)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A )2. 选择题(1)设A, B 两事件满足P(AB)=0,则CA. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C )A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB)(3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D) A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A ) A. P(A ∪B)=P(A) B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B )A.()a c c + B . 1a c +-C. a b c +-D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D )A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

初中概率练习题及答案

初中概率练习题及答案

初中概率练习题及答案一、选择题(每题2分,共10分)1. 一个袋子里有10个红球和5个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 1/3B. 2/3C. 3/5D. 5/152. 掷一枚均匀的硬币,连续掷两次,出现两次正面朝上的概率是多少?A. 1/4B. 1/2C. 1/8D. 1/163. 有5个学生参加数学竞赛,其中3个是男生,2个是女生。

随机选2名学生,选到至少1名女生的概率是多少?A. 1/5B. 2/5C. 3/5D. 4/5二、填空题(每题2分,共10分)4. 一个班级有30名学生,其中15名男生和15名女生。

如果随机选一名学生作为班长,那么选到男生的概率是________。

5. 一个骰子有6个面,每个面出现的概率相同。

掷一次骰子,得到偶数点数的概率是________。

6. 一个盒子里有3个白球和2个黑球,随机抽取2个球,抽到一个白球和一个黑球的概率是________。

三、计算题(每题5分,共15分)7. 一个袋子里有3个红球和2个绿球,如果随机抽取2个球,求抽到一个红球和一个绿球的概率。

8. 一个班级有40名学生,其中有20名男生和20名女生。

如果随机选3名学生参加学校的活动,求至少有1名男生的概率。

四、解答题(每题10分,共20分)9. 一个袋子里有7个白球和3个黑球。

如果随机抽取3个球,求抽到至少2个白球的概率。

10. 一个班级有50名学生,其中25名男生和25名女生。

如果随机选5名学生组成一个小组,求这个小组中恰好有3名男生的概率。

答案:1. C2. C3. C4. 15/30 = 1/25. 3/6 = 1/26. (3C1 * 2C1) / 5C2 = 6/10 = 3/57. (3C1 * 2C1) / 5C2 = 6/10 = 3/58. 1 - (20C3 / 40C3) = 1 - (1190 / 3838) ≈ 0.6979. (7C2 * 3C1 + 7C3) / 10C3 = (21 + 35) / 120 = 56/120 = 7/1510. (25C3 * 25C2) / 50C5 = 2300 / 2118760 ≈ 0.108。

完整版概率练习题含答案

完整版概率练习题含答案

概率练习题(含答案)1 解答题有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y表示第2颗正四面体玩具出现的点数.试写出:(1)试验的基本事件;(2)事件“出现点数之和大于3”;(3)事件“出现点数相等”.答案(1)这个试验的基本事件为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)(2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)(3)事件“出现点数相等”包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4)2 单选题“概率”的英文单词是“Probability”,如果在组成该单词的所有字母中任意取出一个字母,则取到字母“b”的概率是1.A.B. 2.C. 3.D. 4.1答案C解析分析:先数出单词的所有字母数,再让字母“b”的个数除以所有字母的总个数即为所求的概率.解答:“Probability”中共11个字母,其中共2个“b”,任意取出一个字母,有11种情况可能出现,取到字母“b”的可能性有两种,故其概率是;.故选C出现A点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件)=.Am种结果,那么事件的概率P(A3 解答题一只口袋内装有大小相同的5只球,其中3只白球,2只黑球.现从口袋中每次任取一球,每次取出不放回,连续取两次.问:(1)取出的两只球都是白球的概率是多少?(2)取出的两只球至少有一个白球的概率是多少?答案(1)取出的两只球都是白球的概率为3/10;(2)以取出的两只球中至少有一个白球的概率为9/10。

概率练习题

概率练习题

概率练习题一、选择题(每题2分,共20分)1. 一个骰子掷出偶数的概率是:A. 1/3B. 1/2C. 2/3D. 3/42. 某事件A发生的概率为0.4,那么事件A的对立事件的概率为:A. 0.6B. 0.4C. 0.2D. 0.83. 以下哪个是随机事件的例子:A. 明天是晴天B. 地球绕太阳转C. 2加2等于4D. 太阳从西边升起4. 某次考试,学生通过的概率为0.8,那么至少有1名学生通过的概率为:A. 0.2B. 1-0.8C. 1D. 0.85. 抛掷一枚硬币,正面朝上和反面朝上的概率相等,这个事件服从:A. 正态分布B. 二项分布C. 泊松分布D. 均匀分布二、填空题(每题2分,共20分)6. 假设一个袋子里有5个红球和3个蓝球,随机取出一个球,取到红球的概率是________。

7. 如果事件B发生的概率是0.3,且事件A和B互斥,那么事件A和B同时不发生的概率是________。

8. 一个随机变量X服从二项分布B(n, p),其中n=10,p=0.6,那么P(X=5)等于________。

9. 假设某次抽奖活动中奖的概率为0.01,那么进行100次抽奖,至少中奖一次的概率大约是________。

10. 已知事件A和事件B是相互独立的,事件A发生的概率为0.7,事件B发生的概率为0.5,那么事件A和B同时发生的概率是________。

三、计算题(每题15分,共30分)11. 假设有10个独立事件,每个事件发生的概率都是0.2,求至少有3个事件发生的概率。

12. 假设一个随机变量X服从正态分布N(μ, σ²),其中μ=50,σ²=25,求X大于55的概率。

四、简答题(每题15分,共30分)13. 解释什么是条件概率,并给出一个生活中的例子。

14. 什么是大数定律?请简述其意义,并给出一个可能的应用场景。

五、论述题(共20分)15. 论述随机抽样和系统抽样的区别,并讨论在何种情况下使用随机抽样或系统抽样更为合适。

概率的练习题

概率的练习题

概率的练习题概率是数学中的一个分支,用于研究事件发生的可能性。

在现实生活中,我们经常遇到需要计算概率的情况,这些情况往往涉及到随机事件的发生。

本文将通过一些练习题来帮助读者加深对概率的理解和应用。

练习题一:抛硬币假设有一枚均匀的硬币,抛掷结果只有两种可能:正面或反面。

现在,我们进行一系列的抛硬币实验,请回答以下问题:1. 抛掷一次硬币,正反面出现的概率各是多少?2. 抛掷两次硬币,正正面出现的概率是多少?3. 抛掷三次硬币,至少出现一次正面的概率是多少?4. 抛掷四次硬币,正面出现次数等于反面出现次数的概率是多少?练习题二:扑克牌扑克牌是一种常见的玩具牌类游戏,在游戏中常常需要计算牌的概率。

请回答以下问题:1. 从一副标准的扑克牌(52张牌,不包括大小王)中,抽一张牌,这张牌是黑桃的概率是多少?2. 从一副标准的扑克牌中,抽取两张牌,其中至少一张是红心的概率是多少?3. 从一副标准的扑克牌中,连续抽取三张牌,三张牌的花色全部相同的概率是多少?4. 从一副标准的扑克牌中,连续抽取五张牌,其中四张牌的点数相同,剩下一张点数不同的概率是多少?练习题三:篮球比赛在一场篮球比赛中,队伍A和队伍B进行对抗。

现在,根据两队的历史表现和球场状态,我们假设队伍A和队伍B获胜的概率分别为0.6和0.4。

请回答以下问题:1. 队伍A连胜两场的概率是多少?2. 队伍A和队伍B轮流获胜,直到其中一队获得三次胜利的概率是多少?3. 如果比赛进行到平局,需要额外进行两场比赛来分胜负。

在这种情况下,队伍A获胜的概率是多少?4. 比赛进行到第四场时,队伍A已经连续获胜三场。

在这种情况下,队伍A连续获胜四场的概率是多少?以上是关于概率的一些练习题,通过解答这些问题,读者可以巩固对概率的理解,并将其应用于实际问题中。

概率的计算可以帮助我们预测事件的发生可能性,对决策和分析具有重要意义。

希望读者通过这些练习题,能够更加熟练地运用概率的概念和方法。

(含答案)《概率》真题

(含答案)《概率》真题
8.某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为 ,中将可以获得2分;方案乙的中奖率为 ,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为 ,求 的概率;
A.0.72;0.9 B.0.9;0.72 C.0.9;0.9 D.0.72;0.72
8.小球 在右图所示的通道由上到下随机地滑动,最后在下底面的某个出口落出,则一次投放小球,从“出口 ”落出的概率为()
A. B. C. D.
二、填空题
9.若公共汽车门的高度是按照保证成年男子与车门顶部碰头的概率在2.28%以下设计的,如果某地成年男子的身高 (单位:㎝),则该地公共汽车门的高度应设计为________cm
解: =0.3413 =0.5-0.3413=0.1587.
3.设 ,则 等于( )
A.1.6B.3.2C.6.4D.12.8
4.如果随机变量ξ~N(1,4),则P(ξ>3)、D( ξ)等于( )
A.0.1587;2B.0.1587;1C.0.0228;2 D.0.0228;1
5.已知在6个电子元件中,有2个次品,4个合格品,每次任取一个测试,测试完后不再放回,直到两个次品都找到为止,则经过4次测试恰好将2个次品全部找出的概率( )
(Ⅱ)解:由(Ⅰ)可知,获得1等奖或2等奖的概率为 + = .由题意得η~(3, )
则P(η=2)= ( )2(1- )= .
14.某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:

概率四年级练习题

概率四年级练习题

概率四年级练习题1. 硬币抛掷问题小明有一枚硬币,他将硬币抛掷5次。

假设硬币是均匀的,请回答以下问题:a) 小明连续抛掷5次,正面朝上的概率是多少?解析:每次抛掷硬币,正面朝上和反面朝上的概率都是1/2。

由于连续抛掷5次,每次抛掷是独立的,所以正面朝上的概率和反面朝上的概率都是1/2。

因此,小明连续抛掷5次,正面朝上的概率是1/2。

b) 小明连续抛掷5次,至少有3次是正面朝上的概率是多少?解析:为了计算至少有3次是正面朝上的概率,我们可以计算小明连续抛掷5次,正面朝上的次数为3、4或者5的概率,然后相加。

正面朝上3次的概率:C(5, 3) * (1/2)^3 * (1/2)^2 = 10/32 = 5/16正面朝上4次的概率:C(5, 4) * (1/2)^4 * (1/2)^1 = 5/32正面朝上5次的概率:C(5, 5) * (1/2)^5 * (1/2)^0 = 1/32因此,小明连续抛掷5次,至少有3次是正面朝上的概率是 (5/16) + (5/32) + (1/32) = 11/32。

2. 扑克牌问题小红从一副标准扑克牌(52张)中随机抽取1张牌。

查找以下问题的答案:a) 小红抽到黑桃 A 的概率是多少?解析:标准扑克牌中共有4张黑桃 A,所以小红抽到黑桃 A 的概率是 4/52 = 1/13。

b) 小红抽到红色(红桃或者方块)的概率是多少?解析:标准扑克牌中红桃和方块各有13张,所以小红抽到红色的概率是 (13+13)/52 = 26/52 = 1/2。

c) 小红抽到数值为 7 的概率是多少?解析:标准扑克牌中每个花色都有一个数值为 7 的牌,所以小红抽到数值为 7 的概率是 4/52 = 1/13。

3. 骰子问题小华有一个六面骰子,他将骰子投掷3次。

假设骰子是均匀的,请回答以下问题:a) 小华投掷3次,至少有一次点数为3的概率是多少?解析:为了计算至少有一次点数为3的概率,我们可以计算小华投掷3次,没有一次点数为3的概率,然后用1减去这个概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高2011级高二(下)概率练习题
一、选择题:
1、从12个体同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是( )
A 、3个都是正品
B 、至少有1个是次品
C 、3个都是次品
D 、至少有1个是正品
2、设A ,B 为两个事件,且P(A)=0.3,则当( )时一定有P(B)=0.7.
A 、A 与
B 互斥B 、A 与B 对立
C 、A ⊆B
D 、A 不包含B
3、运动会中,某年级A ,B ,C 三个方阵按一定次序通过主席台,若先后顺序是随机排定的,则B 先于A ,C 通过的概率为( )
A 、61
B 、31
C 、21
D 、3
2 4、点A 是半径为1的圆上的定点,P 是圆周上任一点,则弦长PA1的概率是( ) A 、
31B 、32C 、61D 、21 5、从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则ba 的概率是( )
A 、54
B 、53
C 、52
D 、5
1 6、在一个袋子中装有分别标有数字1,2,3,4,5的五个小球(这些小球除去标注数字外完全相同)。

现从中随机取出2个球,则取出的小球标注的数字之和为3或6的概率是( )
A 、103
B 、51
C 、101
D 、12
1 7、一只蚂蚁在边长分别为3,4,5的三角形区域内随机爬行,则其恰在离三个顶点的距离都大于1的地方的概率为( )
A 、12π
B 、3-1π
C 、6-1π
D 、12
-1π 8、在正三棱锥S-ABC 内任取一点P ,使得的概率是( ) A 、
87B 、43C 、21D 、41 9、一个袋中装有2个红球和2个白球,现从袋中取出1球,放回袋后再取出一球,则取出的两个球同色的概率是( )
A 、21
B 、31
C 、41
D 、5
2 10、将一枚骰子抛掷两次,若先后出现的点数分别为b,c ,则方程有实根的概率为( )
A 、3619
B 、21
C 、95
D 、36
17 二、填空题:
11、在区间[]2,1-
上随机取一个数x ,则[]1,0∈x 的概率为 12、从边长1的正方形的中心和顶点这五点中,随机(等可能)取点,则该点。

相关文档
最新文档