流变学在聚合物研究中的应用

合集下载

高分子物理---第九章-聚合物的粘性流动

高分子物理---第九章-聚合物的粘性流动
长支化时, 相当长链分子 增多, 易缠结, 从而粘度 增加
(5) 熔体结构的影响
当分子量相同时, 当T在160~200℃时,η乳液PVC<η悬浮PVC 当T>200℃时, η乳液PVC≈η悬浮PVC 此时,乳液法PVC中颗粒已完全消失,因而
粘度差别不大。
影响熔体粘度的因素
9.1.6 高聚物流体流动中的弹性表现
②高聚物在模孔内流动时,由于切应力的作用,产生法 向应力效应,由法向应力差所产生的弹性形变在出口模 后回复,因而挤出物直径涨大。
三 、不稳定流动—熔体破裂(melt fracture)现象
所谓熔体破裂现象是高聚物熔体 在挤出时,如果剪切速度过大, 超过某一极限值时,从口模出来 的挤出物不再是平滑的,会出现 表面粗糙、起伏不平、螺旋皱纹、 挤出物扭曲甚至破碎等现象,也 称为不稳定流动。
实际中应避免不稳定流动。
四、 影响高聚物熔体弹性的因素 1.剪切速率:随剪切速率增大,熔体弹性效应增大。
* * 0 ei 0 (cos i sin ) 0 sin i20 cos i
* i0
i0
0
i
B
2.温度:温度↑,大分子松弛时间τ变短,高聚物熔体弹 性↓。
3.分子量及分子量分布
2F2B
表示改性情况
表示密度范围 1.ρ<0.922 2.=0.923~0.946
MFR=2
用途 Film
门尼粘度(Mooney Viscosity)
测定橡胶半成品或生胶的粘度大小的一种方法。门尼粘
度通常是在 100℃和一定的转子转速(2 r/min),测定
橡胶的阻力。
表示方法
ML
100 1+4
50
定为, 称牛顿极限粘度, 又类似牛顿流体行为。

高分子物理 聚合物流变学

高分子物理  聚合物流变学
小分子液体的流动:分子向 “孔穴” 相继跃迁
small molecule hole
高分子熔体的流动:链段向 “孔穴” 相继跃迁 Reptation 蛇行
13
Flow curve
a
Kn
第一牛顿区
0零切粘度
第二牛顿区
无穷切粘度,极限粘度
假塑性区
流动曲线斜率n<1 随切变速率增加,ηa值变小 加工成型时,聚合物流体所经受的 切变速处于该范围内(100-103 s-1)
PC聚碳酸酯
63.9 79.2 108.3-125
PVC-U硬聚氯乙烯
147-168
PVC-P增塑聚氯乙烯
210-315
PVAc聚醋酸乙烯酯
250
Cellulose纤维素醋酸酯
293.320
Temperature
温度
Activation energy
粘流活化能是描述材料粘-温依赖性的物理量,表示流动单元(即链段) 用于克服位垒,由原位置跃迁到附近“空穴”所需的最小能量
183℃/PS
242k 217k 179k 117k 48.5k
28
分子量的影响
log
从成型加工的角度
降低分子量可增加流动性,改善加工性 能,但会影响制品的力学强度和橡胶的 弹性
牛顿流动定律
: Melt viscosity
液体内部反抗流动 的内摩擦力
1Pa s = 10 poise (泊)
牛顿流体的粘度仅与流体分子的结构和温度有关,与切应力和切变速率无关
7
Types of Melt Flow
液体流动的类型
类型
曲线 公式 实例
Shear stress Shear stress Shear stress Shear stress Viscosity

聚合物流变学

聚合物流变学

6流变学方法在聚合物研究中的应用6.1 测量分子量及其分布的流变学方法分子量(MW)和分子量分布(MWD)在确定聚合物的物理性质时起了很重要的作用,因此得到聚合物的分子量和分子量分布对聚合物工业是必不可少的。

如果已知某种可测量的物理性质对分子量的依赖性,原则上就可以通过测量这种物理性质来确定分子量。

而且对分子量的依赖性越强,确定分子量的敏感度就越高。

通常所采用的确定聚合物分子量及其分布的方法有凝胶渗透色谱法(GPC)、光散射和本征粘度法等。

表6-1列出了几种常用方法对分子量的依赖性及敏感度(Mead 1994)。

虽然这些方法(如GPC)得到了广泛的应用,但是实验中样品的准备时间和测试时间使它们不适用于在线过程控制,而且要求所测试的聚合物能在室温下很容易地溶解于溶剂中,但是许多工业上大量应用的聚合物,如聚乙烯、聚丙烯和含氟聚合物(聚四氟乙烯)等,在室温下可能只能部分地溶解于普通的溶剂。

有时即使传统的方法可行,这些方法的灵敏度和精度都不高,特别是对于分子量分布有高分子量尾部的样品,而高分子量尾部对聚合物加工性能的表征有很大影响。

鉴于传统方法的不足,又由于聚合物的分子量及其分布与聚合物的粘弹性质有密切的关系,因此就有了利用聚合物粘弹性质来确定分子量分布的流变学方法。

与传统的方法相比,流变学方法可以作到快速测量,而且不需要溶剂来溶解聚合物,因而从理论上将对任何聚合物都适用。

流变学方法的另一个优点就是对高分子量尾部的灵敏度高。

表6-1 用分子量区别线性柔性聚合物的各种方法的分子量标度方法 对分子量的依赖性关系对分子量的敏感度关系其它GPC M1/2 M-1/2 排除体积对高分子量部分不敏感本征粘度 M0.6 M-0.4 流体体积法对高分子量部分不敏感光散射 M1M0 对高分子量部分敏感渗透压 M-1 M-2 对低分子量聚合物的数均分子量较准 零剪切粘度 M3.4 M2.4 适用于具有类似分布形状的体系可回复柔量 (M z/M w)~3.5 … 反映了分子量分布的分散性 对分子量绝对值不敏感分子量对聚合物粘度的影响取决于分子量的大小:当分子量小于缠结分子量eM时,零剪切粘度与分子量是一次方关系;当分子量大于缠结分子量时,零剪切粘度与分子量呈3.4次方关系。

polymer

polymer
• Low noise level 低噪音 • Unique Accessories 独一无二的附件
• Solids Clamps 固体扭转夹具
• SER-Tool 熔体拉伸工具 • UV-cell 紫外单元 • All other options available 其他可选项
6
HAAKE MARS + UTCE/PC
21
Application of HAAKE Rheometer in Polymer Characterization 哈克流变仪在聚合物表征中的应用
Above a critical concentration
lg h0
Mc h0 is proportional to M3.4
due to the entanglement of the polymer molecules Below Mc there is no entanglement, h0 is ―only‖ proportional to MW 由于聚合物的缠结,聚合物溶
h0 ~ MW3.4
h 0 ~ MW
液在临界浓度Mc之上时,零剪
切粘度与分子量的3.4次方成正 比 在临界浓度之下,零剪切粘度
只与分子量1次方成正比
14
Mc
lg MW
The Viscosity Curve…粘度曲线的意义
• Contains valuable information 包含具有重要价值的信息
Shear Stress t h0 Zero Shear Viscosity零剪切粘度
ge0
gr 0 G0
Equilibrium Deformation平衡形变
Retardation Retardation time 松弛时间 Complex Modulus 复合模量

聚合物流变学的研究

聚合物流变学的研究

聚合物流变学的研究近年来,随着聚合物材料的广泛应用,对聚合物流变学的研究也越来越受到科研工作者的关注。

聚合物流变学是研究聚合物在外力作用下的变形和流动行为,是材料学、化学、物理等多学科交叉的领域。

本文将从聚合物流变学的背景、研究现状、应用前景等方面进行探讨。

一、背景聚合物是一种由单体经过化学反应合成而成的高分子化合物,具有广泛的应用领域,如塑料、纤维、涂料、胶水、胶囊、织物、橡胶等,是生产生活中不可缺少的物质。

在这些领域中,聚合物的流变性质对其性能具有非常重要的影响。

因此,聚合物流变学的研究成为了解和控制聚合物流动和变形行为的重要途径。

二、研究现状(一)聚合物流变性质的研究方法聚合物流变学的研究方法主要是基于拉伸、剪切、转动、振动等各种力学变形形式进行的,根据变形形式可以分为静态流变学和动态流变学两种。

静态流变学研究聚合物在稳态下的变形和流动行为,主要研究聚合物的弹性模量、流变模量、粘度等;动态流变学研究聚合物在非稳态下的变形和流动行为,主要研究聚合物在各种力学变形形式下的复杂流动行为和动态力学响应。

(二)聚合物流变性质的机理研究聚合物流变学的机理研究是揭示聚合物流动和变形行为背后的物理和化学机制的重要途径。

常见的聚合物流变行为机理包括剪切破坏、链滑移、局部流动、多峰分布、错位和晶化等。

剪切破坏是聚合物在高剪切速率下发生内部断裂和破坏;链滑移是聚合物链之间发生滑动而引起聚合物流动;局部流动是聚合物在模量变化较小的情况下发生流动;多峰分布指聚合物分子量分布呈现多个峰;错位是聚合物链之间发生侧向错位导致聚合物形变;晶化是指聚合物分子在变形过程中发生晶体形态变化。

(三)应用前景聚合物流变学的研究对聚合物材料的品质控制、工艺改进以及新型材料开发等方面具有重要的意义。

特别是在制造业、医疗、环境保护、新能源等领域中,聚合物流变学研究的应用前景更为广泛。

例如,聚合物材料在制造业中的应用,需要对其流变性能进行深入的认识,以提高其产品质量和制造效率;在医疗领域,聚合物流变学可以帮助研发新型医用材料,具有巨大的市场潜力;在环境保护领域,聚合物涂料的应用需要对其流变性能进行研究,以提高其对环境的适应能力;在新能源领域,聚合物电解质在太阳能、燃料电池等领域的应用需要对其流变性能进行深入研究。

Rheological Behavior of Polymers

Rheological Behavior of Polymers

Rheological Behavior of Polymers 聚合物的流变行为在现代物理和化学研究中,聚合物是一个重要的研究对象。

随着人们对聚合物研究的深入,我们开始逐步了解聚合物的流变行为。

聚合物的流变行为影响着聚合物的力学性能和加工性能,因此深入研究聚合物的流变行为对于提高聚合物的性能具有重要作用。

一、聚合物的流变学聚合物的流变学主要研究塑料、橡胶等高分子物质在受力和流动时所表现出的物理性质。

由于聚合物分子量大,具有较高的柔韧性和可变性,因此其在受力和流动时表现出的特殊性质特别值得研究。

根据牛顿流体和非牛顿流体的不同,聚合物可分为牛顿性聚合物和非牛顿性聚合物。

牛顿性聚合物是指其流变特性符合牛顿流体的流动方式,即在外力作用下,聚合物会立即产生运动,并且所流出的液体质量与时间成正比。

而非牛顿性聚合物则会表现出各种不同的流变特性,如剪切稀释、屈服现象等不同的流动方式。

二、聚合物的流变特性聚合物的流变特性主要分为剪切性能和扭转性能。

剪切性能是指聚合物在剪切力下的应力-应变关系,而扭转性能则是指聚合物在扭转力下的应力-应变关系。

这两种性能对于聚合物的力学性能和加工性能都有着重要作用。

聚合物的剪切性能主要由剪切模量、剪切应力和剪切应变等参数来衡量。

剪切模量是指聚合物在受到外力作用下产生剪切变形的能力,剪切应力是指在剪切变形中聚合物受力的强度大小,剪切应变则是指聚合物在剪切变形中所产生的形变程度。

聚合物的扭转性能则是通过扭转模量、扭转应力和扭转应变等参数来衡量。

扭转模量是指聚合物在受到扭转力作用下所产生的变形能力,扭转应力是指在扭转变形中聚合物受力的强度大小,扭转应变则是指聚合物在扭转变形中所产生的形变程度。

三、聚合物流变行为的影响因素聚合物的流变行为在很大程度上受到诸多因素的影响。

这些因素主要包括聚合物分子量、聚合物分子结构、聚合物溶液中其他物质的浓度等。

其中,分子量是影响聚合物流变行为的最重要因素之一。

聚合物流变学研究意义

聚合物流变学研究意义

聚合物流变学研究意义聚合物流变学是研究聚合物在外力作用下的流变特性的学科。

聚合物是一类大分子化合物,具有高分子量、高分子链的柔韧性和长期的耐久性等特点。

聚合物在外力作用下会产生不同的变形和流动行为,而聚合物流变学正是研究这些变形和流动行为的学科。

聚合物流变学的研究意义主要体现在以下几个方面:1. 工程应用:聚合物流变学的研究可以为聚合物工程应用提供重要的理论基础。

比如,聚合物在塑料加工中的流动行为和变形特性对于塑料工程的设计和制造至关重要。

另外,在航空、汽车、电子等领域,聚合物的流变特性也对产品的性能和可靠性有着重要的影响。

2. 医学应用:聚合物在生物医学领域中有着广泛的应用,比如注射用聚合物、生物材料、组织工程等。

聚合物流变学的研究可以为这些应用提供重要的理论支持和技术指导。

3. 环境保护:聚合物在环境领域中也有着重要的应用,比如塑料袋、塑料瓶等。

聚合物流变学的研究可以为这些应用提供技术支持,使其更加环保和可持续。

聚合物流变学的研究主要涉及到以下几个方面:1. 本构关系:聚合物的流变特性与其分子结构有关,通过研究聚合物的分子结构和流变行为,可以建立聚合物的本构模型,从而预测其力学性能。

2. 流变行为:聚合物的流变行为包括弹性、塑性、粘弹性等,通过研究聚合物的流变行为,可以了解其在复杂工况下的行为规律,从而为工程应用提供理论指导。

3. 流变测试:聚合物的流变测试是研究聚合物流变行为的重要手段,包括剪切测试、拉伸测试、压缩测试等。

通过流变测试,可以获得聚合物的粘度、弹性模量、屈服点等流变参数,为聚合物工程应用提供重要的数据支持。

聚合物流变学的研究对于聚合物工程应用、生物医学、环境保护等领域都具有重要的意义。

在未来,随着聚合物材料的广泛应用,聚合物流变学的研究也将变得越来越重要。

聚合物挤出中的流变学

聚合物挤出中的流变学

聚合物挤出中的流变学——PPXCL 刘晓君1.0流变学流变学是研究材料变形和流动的科学。

希腊语中流变学被表示为"Panta Rei ",意思是:“所有物体的流动”。

事实上只要给予足够的时间,所有材料都能够流动。

有趣的是,挤出、注射成型和吹塑成型等过程中的聚合物材料的流动时间都在一个相同的数量级上。

在一个非常短的加工时间里,聚合物的表现象是固体,而从较长的加工过程来看,聚合物的行为则像是液体。

这种双重特性(液态-固态)称为粘弹性。

1.1粘度和融体流动指数粘度是最重要的流动特性,它表示流动的阻力,严格的说,是剪切的阻力。

假如将流体设想为一些运动的薄片,如图1.1,我们可以定义粘度为剪切应力和剪切速率的比值。

图1.1 简单的剪切流体γτνη===h A F //剪切速率剪切应力 (1.1) η : Pa *SF: 压力A: 面积ν: 速度h: 距离τ: Pa=(N/㎡)γ: S -1希腊字母τ (tau) 和 γ(gamma dot) 按惯例分别表示剪切压力和剪切速率, 流体在圆形管道或者两个金属平面间流动,剪切应力从中心轴的零到管壁最大值之间呈线性的改变;而剪切速率则呈非线性改变。

对两个金属平面之间的流体,速率剖面最大值在堆成平面,管壁处为零,如图1.2。

在SI 中,粘度的单位是Pa*S 。

在进入SI 之前,经常用Poise 作为粘度的单位(1 Pa ⋅s = 10 poise). 这里有一些其它有用的转换:1 Pa ⋅s = 1.45*10-4lb f s/in2 = 0.67197 lb m /s ft = 2.0886*10-2lb f s/ft 2水的粘度是10-3 Pa ⋅s 当最多的聚合体在挤出状态下融化可能会从102Pa ⋅s 到105Pa ⋅s 之间改变。

剪切应力的标准单位用Pa = (N/m 2) 或者 psi (英镑 (lb f ) /平方英寸) 表示,剪切速率单位为:s –1聚合物流体一个值得注意的特性就是他们的剪切变稀特性(也就是大家知道的假塑性)。

流变学

流变学

聚合物流变学的概念,研究内容和应用:聚合物流变学是研究聚合物材料(熔体和溶液)流动及变形规律的一门科学。

研究内容:结构流变学(微观流变学,分子流变学;加工流变学(宏观流变学);流变测量学(流变性能的表征和测量方法);流变行为与数学模式。

聚合物流变性特点:多样性,高弹性,时间依赖性。

非线性弹性的特点:弹性形变大,弹性模量小,T增大模量增大,快速拉伸T增大回缩减小简单实验的条件:材料是均匀的,各向同性,被施加的应力及发生的应变也是均匀和各向同性的,及应力,应变与做标及其方向无关。

应力张量:用一个数组来表示三个方向上的应力矢量,式中九个应力分量组成的数组即泊松比:材料在单行受拉或受压时横向正应变与轴向正应变的绝对值的比值剪切速率:流体的流动速度相对于圆流道半径的变化速率。

聚合物液体的奇异流变现象及原因。

高粘度与“剪切变稀”行为;Weissenberg效应;(爬竿现象)Barus效应;(挤出胀大现象)不稳定流动和熔体破裂现象;孔压误差和弯流压差Toms效应(湍流减阻现象):指在高速的管道湍流中加入少许高分子物质,如聚氧化乙烯( PEOX),聚丙烯酰胺(PAAm)等,则管道阻力将大为减少的现象。

高聚物长链柔性分子的拉伸特性,取向改变了管道内部的湍流结构.(高聚物加工中常加入橡胶来减少阻力)表观粘度:由于假塑性流体的粘度随γ′和σ而变化,所以人们用流动曲线上某一点的σ与γ′的比值,来表示在某一值时的粘度,这种粘度称为表观粘度,用ηa表示幂率定律:S=K”η^n 非牛顿指数 n>1 膨胀性非牛顿流体; n<1 假塑性流体; n=1 牛顿流触变性:在恒定温度下,材料受剪切作用后的表观粘度随时间连续下降,静止时粘度又随之恢复。

触变性材料必然是假塑性体,但假塑性体材料不一定是触变体。

形变梯度张量:设t1时刻物体内任一线元dX,在t2时刻占据的空间位置为dx,则定义t1、t2时刻间,物体内发生的形变梯度为F=Эx/ЭX.影响聚合物熔体弹性的因素:高聚物的弹性形变是由链段运动引起的,当τ很小时,形变的观察时间t>>τ,则形变以粘性流动为主,当τ很大时,形变的观察时间t<<τ,则形变以弹性流动为主,剪切速率剪切速率增大,熔体的弹性效应增大;但如果剪切速率太快,毛细管内的分子链来不及伸展,则出口膨胀不太明显.温度温度升高,高分子的松弛时间τ变小,故熔体弹性减小τ = τoe∆E/RT ,分子量及分子量分布分子量大,或分子量分布宽,熔体的弹性效应明显τ = η /G 分子量大,熔体粘度高,τ相应变大,弹性效应明显,分子量分布宽,松弛时间分布也宽,τ大,弹性效应明显,流道的几何形状流道中管径突然变化,会引起不同位置处流速及应力分布情况的不同,发生高弹湍流,毛细管越长,弹性形变有充分的时间松弛,出口膨胀较少,其它长支链支化程度增加,熔体弹性增大加入增塑剂,缩短松弛时间,减少高聚物熔体弹性线形粘性流动变形有哪些特点?1 变形的时间依赖性即流体的变形随时间不断发展2 流体变形的不可回复性3 有能量损失外力,对流体所做的功在流动中转化为热能而损失4 应力与应变速率成正比,粘度与应变速率无关线性弹性也成为能弹性和胡克弹性。

聚合物的流变学性质

聚合物的流变学性质

为何具有“剪切增稠”特性?
多分散体系; 高含量,高硬度微粒为分散相,分散介质在其间起润滑作用。
增大 ,粒子相互碰撞,导致润滑不足,流动阻力增加,粘度上升。
2
1
特征:τ较小不流动,呈现凝胶状态,只发生弹性变形;
该液体在静止时内部存有凝胶结构,当外加应力大于 τy时,凝胶崩溃,流动行为与牛顿流体相似。
05
提高熔体的流动性。
1.3 聚合物的流变学性质
温度及压力对聚合物熔体粘度的影响
——聚合物大分子的热运动有赖于温度。
与分子热运动有关的熔体流动必然与温度有关。
——在聚合物注射成型过程中,温度对熔体粘
度的影响与剪切速率同等重要。
温度升高——
大分子间的自由空间随之增大,分子间作用力
减小,分子运动变得容易,从而有利于大分子的
01
这时,大分子链段的运动相对减少,分子间的
02
相互作用力(范德华力)逐渐减弱,熔体内的自由
03
空间增加,从而导致相对运动加大,宏观上体现
04
为表观粘度相对降低。
05
——注射成型中,多数聚合物的表观粘度对熔
06
体内部的剪切速率具有敏感性,可以通过调整剪
07
切速率来控制聚合物的熔体粘度。
08
在注射成型中,聚合物熔体发生剪切稀化效应
率区域时,流体变形和流动所需的切应力随剪切
速率而变化,并呈指数规律增大;
流体的表观粘度也随剪切速率而变化,呈指数
规律减小。
假塑性液体的“剪切稀化”的原因:
聚合物具有大分子结构,当熔体进行假塑性流
动时,剪切速率的增大,使熔体所受的切应力加
大,从而导致聚合物大分子结构伸长、解缠和滑

流变学在聚合物研究中的应用

流变学在聚合物研究中的应用

流变学在聚合物研究中的应用概述高分子熔体的流变行为是由其长链分子的拓扑结构决定的。

当高分子主链上引入一定数量和长度的支链后,其粘弹性质与线形高分子会有明显不同。

长链支化聚合物剪切条件下会表现出与线形高分子类似的应变软化,但由于支链的限制将有更长的末端松弛时间 ,并在拉伸条件下表现出与线形高分子完全不同的应变硬化松弛过程。

支化对聚合物粘弹性质的影响,无论对工业界还是科学研究都是一个十分重要和基础的课题。

近年来的一系列研究表明:一方面通过引入相同或相似结构单元的长支链可以明显提高聚合物的熔体强度(这对于熔融纺丝、吹膜等熔体拉伸加工过程是十分有利的);另一方面也可以通过含有特征官能团支链的引入对聚合物进行改性,提高其光学、热学和力学性能。

目前,随着控制聚合反应和机理研究的进一步深入,人们已能够直接得到各种具有明确拓扑结构的支化聚合物 ,如梳形[1]、星形、 H形聚合物[2]等 ,这对支化聚合物流变学的深入研究与探索起了极大的推动作用。

与线形高分子不同 ,支化高分子熔体是热流变复杂的 ,其流变学特性主要表现在: (1)支化减小了高分子的流体力学体积 ,降低了零切粘度 ,支链松弛过程的加入使得整个高分子的末端松弛时间延长; (2)长链支化聚合物在拉伸过程中会表现出明显的应变硬化 ,并使得时 - 温叠加原理不再有效; (3)支化高分子的拓扑结构对其整个松弛过程有显著的影响 ,支化密度和支链长度存在临界值 ,超过此临界值 ,支链松弛过程将会清晰地反映在动态粘弹谱上; (4)支化聚合物流变行为的温度依赖性是复杂的 ,多数支化聚合物的流变行为比相应线形聚合物有更强的温度依赖性 ,但也有一些支化聚合物和其相应线形高分子具有同样的温度依赖性 ,如聚异丁烯。

本文简介流变学在不同聚合物研究中的应用,并对流变学的发展方向做了展望。

1、流变学在聚乙烯研究中的应用聚乙烯基本分为三大类,即低密度聚乙烯(LDPE)!高密度聚乙烯(HDPE)和线型低密度聚乙烯(LLDPE),三种聚乙烯分子结构见图如下明显可以看出三种聚乙烯具有不同的支化程度,研究支化结构对其性能造成的影响一直是研究者感兴趣的课题。

聚合物流体的流变性

聚合物流体的流变性

聚合物流体的流变性引言聚合物流体是由聚合物分子组成的流体,其独特的流变性质使其在许多工业和科学领域中得到广泛应用。

本文将介绍聚合物流体的流变学性质,包括流变学基本概念、聚合物流体流变学模型、流变学测试方法和聚合物流体的应用领域。

流变学基本概念流变学是研究流体在外力作用下的变形和流动规律的科学。

聚合物流体的流变学行为与传统液体有所不同,其主要特点是非牛顿性。

非牛顿流体指的是流体的粘度随应力变化而变化的流体。

聚合物流体的非牛顿性主要由聚合物链的长而柔软的特性所决定。

根据应力与应变速率之间的关系,可以将聚合物流体分为剪切稀化和剪切增稠流体。

聚合物流体流变学模型为了描述聚合物流体的流变学行为,研究人员发展了许多流变学模型。

其中最经典的模型之一是Maxwell模型,它将聚合物流体看作是由弹簧和阻尼器组成的串联结构。

除此之外,还有Oldroyd-B模型、Giesekus模型和白金布卢米斯模型等。

这些模型可以有效地描述聚合物流体的应力-应变关系,并能预测流体的流变学行为。

流变学测试方法为了研究聚合物流体的流变学特性,需要进行一系列的流变学测试。

常见的流变学测试包括剪切应力-剪切应变测试、动态剪切测试、扩展流动测试和振动测试等。

这些测试方法可以提供流体的粘度、弹性模量、流动极限等参数,从而深入了解聚合物流体的流变学性质。

聚合物流体的应用领域聚合物流体的流变学性质使其在许多应用领域中得到广泛应用。

在食品工业中,聚合物流体用作稳定剂、增稠剂和乳化剂等。

在化妆品工业中,聚合物流体则用于调整产品的黏度和流动性。

此外,聚合物流体还在油田开发、药物传输和生物医学工程中起着重要作用。

结论聚合物流体的流变学性质对其在各种应用领域中的表现起着至关重要的作用。

在了解聚合物流体的流变学行为之后,我们能够更好地设计和控制这些流体,以满足不同领域的需求。

未来,随着对聚合物流体流变学性质研究的不断深入,我们可以预见聚合物流体在更多领域中发挥更重要的作用。

完整课件-聚合物加工流变学

完整课件-聚合物加工流变学
湍流。高聚物熔体在成型条件下的雷诺准 数<<1,一般呈现层流状态。
2 聚合物熔体的基本流变性能
(2)稳定流动和不稳定流动 凡在输送通道中流动时,流体在任何部位的流
动状态保持恒定,不随时间而变化,一切影响流 体流动的因素都不随时间而改变,此种流动称为 稳定流动。
凡流体在输送通道中流动时,流动状态都随时 间而变化。影响流动的各种因素,有随时间而变 动的情况,此种流动称为不稳定流动。
• 16世纪至18世纪,流变学的发展较快。 • 19世纪,建立的泊肃叶方程,在流变学的
发展史上是一个很重要的标志。
1.2 流变学的发展历史
1.2 流变学的发展历史
• 1678年 胡克弹性定律 1687年 牛顿粘性定律 1928年 流变学概念的提出 1929年 流变学协会的成立 流变学杂志 1948年 第一届国际流变学会议 1950年以后 流变学领域研究迅速发展
课程内容
第1章:绪论 第2章 :聚合物熔体的基本流变性能
第3章:聚合物流动方程 第4章:流变学基础方程的初步应用 第5章:挤出机头设计
绪论
• 1.1 流变学的定义 • 1.2 流变学的发展历史 • 1.3 高聚物流变学的研究内容 • 1.4 高聚物流变学的研究意义 • 1.5 高聚物流变学在塑料加工中的应用
2 聚合物熔体的基本流变性能
(5)拉伸流动和剪切流动 • 按照流体内质点速度分布与流动方向关系,
可将高聚物加工时的熔体流动分为拉伸流 动和剪切流动两类。 • 剪切流动:质点速度仅沿着与流动方向垂 直的方向发生变化。如图2-1(a)。 • 拉伸流动:指点速度仅沿流动方向发生变 化,如图2-1(b)。
2 聚合物熔体的基本流变性能
(3)等温流动和非等温流动 • 等温流动是指流体各处温度保持不变情况下的

高分子物理第九章 聚合物的流变性

高分子物理第九章 聚合物的流变性

当分布加宽时,物料粘流温度( Tf )下降,流动性及加工行为改善。这是因 为此时分子链发生相对位移的温度范围变宽,尤其低分子量级分起内增塑作 用,使物料开始发生流动的温度跌落。
第九章 聚合物的流变性
高分子结构参数的影响
分子链的支化
短支化时,相当于自由体积 增大,流动空间增大,从而 粘度减小
长支化时,相当长链分子增 多,易缠结,从而粘度增加
第九章 聚合物的流变性
聚合物熔体的弹性效应 无管虹吸
无管虹吸现象也与高分子液体的弹性行为有关。液体的这种弹性 使之容易产生拉伸流动,拉伸液流的自由表面相当稳定,因而具 有良好的纺丝和成膜能力。 第九章 聚合物的流变性
不稳定流动和熔体破裂现象
第九章 聚合物的流变性
不稳定流动和熔体破裂现象
第九章 聚合物的流变性
(2)在温度远高于玻璃化温度和熔点时(T > Tg+100℃),高 分子熔体粘度与温度的依赖关系可用 Arrhenius 方程很好地描述:
0 T Ke RT
式中 0 (T ) 为温度T 时的零剪切粘度; K 为材料常数,R 为普适气体常数, E 称粘流活化能,单位为J· mol-1或kcal· mol-1。 第九章 聚合物的流变性
1. 在足够小的切变速率下,大子处于高度缠结的拟网状结构 , 流动阻力很大 ,此时缠结结构的破坏速度等于生成速度 ,故粘度 保持恒定最高值,表现为牛顿流体的流动行为
2. 当切变速率变大时 ,大分子在剪切作用下由于构象的变化而 解缠结并沿流动方向取向 , 此时缠结结构破坏速度大于生成速
度,故粘度逐渐变小,表现出假塑性流体的行为
可回复形变 粘性流动产生的形变
第九章 聚合物的流变性
聚合物熔体的弹性效应 动态粘度

聚合物流变学知识点总结

聚合物流变学知识点总结

聚合物流变学知识点总结一、聚合物的结构1. 聚合物的结构聚合物是由大量重复单体组成的高分子化合物,它的结构可以分为线性聚合物、支化聚合物和交联聚合物三种类型。

线性聚合物是由单一的链状分子组成,支化聚合物是具有分支结构的聚合物,而交联聚合物则是由互相交联的聚合物链构成的。

2. 聚合物的结构对流变性质的影响聚合物的分子结构对其流变性质有着重要的影响。

例如,线性聚合物的流变行为往往比较简单,而支化聚合物和交联聚合物因为其分子结构的复杂性而表现出更加复杂的流变行为。

3. 聚合物的分子量聚合物的分子量也是影响其流变性质的重要因素。

分子量越高,聚合物越倾向于呈现出固态的性质,例如高分子量的聚合物会表现出较高的粘度和内聚力。

4. 聚合物的形状聚合物的形状对其流变性质也有一定的影响。

例如,球形分子的聚合物在流动状态下会表现出不同于线性分子的流变行为。

二、聚合物的流变性质1. 聚合物的黏度聚合物的黏度是其在流动状态下对外部应变的抵抗力,是衡量聚合物流变性质的重要指标。

由于聚合物的复杂分子结构和内聚力,其黏度通常会随着应变速率的增加而增加,呈现出剪切稀化的特性。

2. 聚合物的弹性聚合物的弹性是指其在受力后能够恢复原状的能力。

在流变学中,弹性通常用弹性模量来描述,高分子链的可延展性和排列状态会影响聚合物的弹性模量。

3. 聚合物的流变型态聚合物在流变过程中可能会呈现出多种类型的流变行为,包括牛顿型流体、剪切稀化型流体、剪切增稠型流体等。

4. 聚合物的剪切稀化和剪切增稠在流变过程中,聚合物通常会表现出剪切稀化和剪切增稠的特性。

剪切稀化是指在剪切应力作用下,聚合物的黏度随着应变速率的增加而减小;而剪切增稠则是指聚合物的黏度随着应变速率的增加而增加。

三、流变学测试方法1. 平行板流变仪平行板流变仪是用于测定聚合物流变性质的常用实验仪器,它通过施加不同频率和幅值的应力来测量聚合物的黏度和弹性等性质。

2. 旋转流变仪旋转流变仪是另一种常用的流变学测试设备,它通过旋转圆盘或圆柱的方式来施加剪切应力,测量聚合物的流变性质。

聚合物挤出中的流变学

聚合物挤出中的流变学

聚合物挤出中的流变学——PPXCL 刘晓君1.0流变学流变学是研究材料变形和流动的科学。

希腊语中流变学被表示为"Panta Rei ",意思是:“所有物体的流动”。

事实上只要给予足够的时间,所有材料都能够流动。

有趣的是,挤出、注射成型和吹塑成型等过程中的聚合物材料的流动时间都在一个相同的数量级上。

在一个非常短的加工时间里,聚合物的表现象是固体,而从较长的加工过程来看,聚合物的行为则像是液体。

这种双重特性(液态-固态)称为粘弹性。

1.1粘度和融体流动指数粘度是最重要的流动特性,它表示流动的阻力,严格的说,是剪切的阻力。

假如将流体设想为一些运动的薄片,如图1.1,我们可以定义粘度为剪切应力和剪切速率的比值。

图1.1 简单的剪切流体γτνη===h A F //剪切速率剪切应力 (1.1) η : Pa *SF: 压力A: 面积ν: 速度h: 距离τ: Pa=(N/㎡)γ: S -1希腊字母τ (tau) 和 γ(gamma dot) 按惯例分别表示剪切压力和剪切速率, 流体在圆形管道或者两个金属平面间流动,剪切应力从中心轴的零到管壁最大值之间呈线性的改变;而剪切速率则呈非线性改变。

对两个金属平面之间的流体,速率剖面最大值在堆成平面,管壁处为零,如图1.2。

在SI 中,粘度的单位是Pa*S 。

在进入SI 之前,经常用Poise 作为粘度的单位(1 Pa ⋅s = 10 poise). 这里有一些其它有用的转换:1 Pa ⋅s = 1.45*10-4lb f s/in2 = 0.67197 lb m /s ft = 2.0886*10-2lb f s/ft 2水的粘度是10-3 Pa ⋅s 当最多的聚合体在挤出状态下融化可能会从102Pa ⋅s 到105Pa ⋅s 之间改变。

剪切应力的标准单位用Pa = (N/m 2) 或者 psi (英镑 (lb f ) /平方英寸) 表示,剪切速率单位为:s –1聚合物流体一个值得注意的特性就是他们的剪切变稀特性(也就是大家知道的假塑性)。

第4章聚合物流体的流变性

第4章聚合物流体的流变性

0
31
四.聚合物流体的特性及其表征
聚合物流体兼具黏性和弹性,导致其流体具有3个重要特性: (1)非牛顿剪切黏性 (2)拉伸黏性 (3)弹性
可以导出表征聚合物流体流变性的四个材料常数,用它们表征聚合 物流体的三个特性:
拉伸流动: 流体质点的运动速度仅沿着与流
动方向一致的方向发生变化。
剪切流动: 流体质点的运动速度仅沿着与流

↑至
cr时,流体呈切力变稀现象,
(第一牛顿区)
↓ (a)

(非牛顿区)
继续↑流体又表现为牛顿流动, 不变(∞)
(第二牛顿区)
由流动曲线可得到一些流变学量:
① 非牛顿流动指数n :表征流体偏离牛顿流动的程度
② 结构黏度指数△ :(对某些流体)表征流体结构化的
程度
d lga d1/ 2
102
③ 最大松弛时间 max: cr的倒数(量纲为时间,有时用它度
第三节 聚合物流体的弹性
一、聚合物流体弹性的表征
1. 聚合物流体弹性的表现 (1)液流的弹性回缩
(2)流体的蠕变松弛 同轴旋转圆筒黏度计中的可回复形变与流动 (3)孔口胀大效应[巴拉斯(Barus)效应]
孔口胀大效应
(4)威森堡效应(爬杆效应) (5)剩余压力现象 (6)孔道的虚构长度 (7)反循环效应
Lmax、纤维强伸度乘积 1/△η
△η ↓ , 可纺性↑ 成品质量↑
切力变稀流体的流动曲线
(四)有利于确定加工工艺条件
例:UHMW-PAN溶液

1.1
1.0
0.9
0.8
0.7
加工温度应超过100℃
0.6
0.5
0.4
20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流变学在聚合物研究中的应用概述高分子熔体的流变行为是由其长链分子的拓扑结构决定的。

当高分子主链上引入一定数量和长度的支链后,其粘弹性质与线形高分子会有明显不同。

长链支化聚合物剪切条件下会表现出与线形高分子类似的应变软化,但由于支链的限制将有更长的末端松弛时间 ,并在拉伸条件下表现出与线形高分子完全不同的应变硬化松弛过程。

支化对聚合物粘弹性质的影响,无论对工业界还是科学研究都是一个十分重要和基础的课题。

近年来的一系列研究表明:一方面通过引入相同或相似结构单元的长支链可以明显提高聚合物的熔体强度(这对于熔融纺丝、吹膜等熔体拉伸加工过程是十分有利的);另一方面也可以通过含有特征官能团支链的引入对聚合物进行改性,提高其光学、热学和力学性能。

目前,随着控制聚合反应和机理研究的进一步深入,人们已能够直接得到各种具有明确拓扑结构的支化聚合物 ,如梳形[1]、星形、 H形聚合物[2]等 ,这对支化聚合物流变学的深入研究与探索起了极大的推动作用。

与线形高分子不同 ,支化高分子熔体是热流变复杂的 ,其流变学特性主要表现在: (1)支化减小了高分子的流体力学体积 ,降低了零切粘度 ,支链松弛过程的加入使得整个高分子的末端松弛时间延长; (2)长链支化聚合物在拉伸过程中会表现出明显的应变硬化 ,并使得时 - 温叠加原理不再有效; (3)支化高分子的拓扑结构对其整个松弛过程有显著的影响 ,支化密度和支链长度存在临界值 ,超过此临界值 ,支链松弛过程将会清晰地反映在动态粘弹谱上; (4)支化聚合物流变行为的温度依赖性是复杂的 ,多数支化聚合物的流变行为比相应线形聚合物有更强的温度依赖性 ,但也有一些支化聚合物和其相应线形高分子具有同样的温度依赖性 ,如聚异丁烯。

本文简介流变学在不同聚合物研究中的应用,并对流变学的发展方向做了展望。

1、流变学在聚乙烯研究中的应用聚乙烯基本分为三大类,即低密度聚乙烯(LDPE)!高密度聚乙烯(HDPE)和线型低密度聚乙烯(LLDPE),三种聚乙烯分子结构见图如下明显可以看出三种聚乙烯具有不同的支化程度,研究支化结构对其性能造成的影响一直是研究者感兴趣的课题。

对聚乙烯的支链结构的研究,是对聚烯烃进行微观结构精细控制和分子剪裁的一项基础研究,分子链的支链结构是影响聚乙烯性能的重要因素之一,支链一般分为长支链和短支链,它们对共聚物的性能影响各不相同,大量无规分布的短支链的存在,破坏了聚乙烯分子链的规整性,使其难于结晶甚至不能结晶,从而也影响到共聚物材料的密度!软化点和硬度等性质,长支链的存在,对结晶性能无显著影响,但影响高分子的流动性能和加工性能,对力学性能也有很大影响,因此,聚乙烯支链的结构表征和测定在理论和实际应用上都具有重要意义。

张洁[3]研究了支化密度及支链长度不同的三种高密度聚乙烯的流变性能,研究表明(1)支化密度对粘度的影响大于支链长度对粘度的影响,温度越高对于支化密度高的产品来说,剪切变稀行为越显著(2)支链长度会影响结晶速度,支链长度增加,结晶速度加快,而支化密度对结晶速度影响不大,支化密度和支化链结构在一定范围内不会对高聚物的结晶形态造成影响"(3)支化密度和支链长度均会影响ESCR值,但是支链长度的影响更为显著"。

翟元明[4]等研究了丁烯共聚和己烯共聚两个系列的LLDPE样品的流变行为,研究表明相对分子质量、相对分子质量分布、长链支化和短链支化对LLDPE的动态流变行为都会产生不同程度的影响。

对丁烯共聚和己烯共聚LLDPE:(1)两个系列的LLDPE 样品所得到的动态交点Gx随着中均相对分子质量的增大,其对应的频率越低;(2)两个系列的复数粘度和重均相对分子质量的关系式不符合Raju 的经验方程;(3)一定含量的长支链可以加剧剪切变稀的程度,而动态粘度在聚合物重均相对分子质量相差不大的情况下,随着分子量分布的加宽而增大。

于茂赏[5]等人研究了线性双峰聚乙烯(LBPE)与低密度聚乙烯烯(LDPE)不同质量比例共混物熔体的流变行为,研究表明(1 ) L B PE/ LDPE共混物熔体的假塑性流动随LB PE 含量的增加向更高剪切应力或更高剪切速率方向移动。

当 L BP E含量达到 2 0 % 时,就可明显提高LDPE 的拉伸强度、屈服应力及断裂伸长率,而且膨胀比变化不大 ;当 L B P E 含量超过 4 0 % 后 ,力学性能改善不明显 ,但粘度增加很快。

当 L B P E 含量超过 7 0 %后 ,膨胀比明显下降。

( 2 ) 共混物的粘流活化能并不高,表观粘度的温度敏感性小 ,提高加工温度有利于降低熔体的流动阻力 ,但不能解决根本问题,还应考虑提高剪切速率以改善加工条件。

Ibnelwaleed A. Hussein[6]等人用流变仪研究了支化度和支链分布对m-LLDPE 和ZN-LLDPE 与LDPE共混物熔体的相容性。

研究表明:Z-N引发剂制备的LLDPE,本身就存在支链分布不均匀,出现相分离的可能;低支化度的LLDPE与LDPE相容性差,支化度增加,相容性提高;支链分布均匀程度对共混物相容性影响很大,m-LLDPE比ZN-LLDPE支链分布更均匀,所以前者与LDPE的相容性比后者要好;在共混物中,随LLDPE所占比例的增加,相容性提高。

Yang Chen[7]等人研究了LDPE/UHMWPE和LLDPE/UHMWPE共混合金的流变性能,得出了相应的Cole-Cole曲线、Han曲线和Van Gurp曲线,研究表明:LDPE/UHMWPE的共混合金熔体相容性良好;LLDPE/UHMWPE的共混合金熔体的相容性依赖于组成比例。

2、流变学在聚丙烯研究中的应用普通 PP 的链结构为线形 ,其相对分子质量分布相对较窄 ,导致其软化点与熔点较接近 ,熔程较短 ,这一缺点限制了其在工业上的进一步广泛应用。

在 PP分子链中存在少量的长支链结构可以显著改善其熔体性能 , 从而克服 PP在成型过程中出现的抗熔垂性能差、热成型制品壁厚不均、挤出发泡时泡孔塌陷等一系列问题。

因此近10 年来 ,LCBPP的制备及其结构和性能研究成为 PP改性研究的重要方向。

反应挤出法制备 LCBPP 具有操作简单、实施方便、特别适合工业化生产等优点。

为此 ,反应挤出法制备LCBPP被很多研究者所重视,但 LCBPP 的支化程度及性能受反应物的种类、含量和反应条件的影响。

聚合物的流变性能对 LCB 结构非常敏感 ,流变学方法是研究和表征聚合物 LCB 结构的有效手段。

同时 ,聚合物结构的改变会显著影响其热力学等性能。

苏峰华[8]等研究了长链支化聚丙烯(LCBPP)的流变行为,研究发现 ,过氧化引发剂/ PETA 改性的 PP ,其流变性能呈现如低频处储能模量增大、剪切变稀行为明显、损耗角随频率变化出现平台区、零剪切黏度增大等特点 ,证明改性 PP 存在长链支化结构 ,通过计算发现改性 PP的支化度较高。

Sugimoto[9, 10]研究了含有少量超高分子质量的聚乙烯的高熔体强度聚丙烯的剪切流变和拉伸流变行为。

尽管GPC和 DSC数据未能显示少量超高分子质量的聚乙烯的存在 ,但是透射电镜照片显示了聚乙烯畴的存在。

作者通过分级的方法舍去了聚乙烯的部分 ,然后将其余的部分混合并测试其剪切流变行为 ,仍旧发现了不同与线性聚丙烯的高弹性的特点。

因此 ,作者认为聚乙烯畴的存在不是影响聚丙烯流变性能的主要因素 ,溶解于聚丙烯的少量的高分子量的聚乙烯是导致高弹性和拉伸应变硬化的主要因素。

这种高熔体强度的聚丙烯的优点是没有复杂的自由基反应和未知结构的聚合物的生成。

如果作者能给出小角光散射的数据就更好了。

3、流变学在其他聚合物研究中的应用Miao Hu[11]等人研究了一系列高支化刷型聚合物(主链为聚降冰片烯,支链为聚乳酸,主链具有一系列不同的聚合度,支链具有一系列不同的分子量)线性流变行为,研究表明:此聚合物的动态模量主曲线氛围三个区域,链端区、支链区和末端区,三区之间出现两个平台,一个出现在支链区,与侧链松弛有关,另一个出现在末端区,与主链运动有关;侧链影响整个刷型高分子的松弛行为;虽然分子量很大,且支链很长,但没有现象表明该分子有缠结出现。

王十庆[12]等人对流变学的理论和实验均有很深入的研究和发展,他们的研究表明:缠结聚合物流体有三种主要屈服变形模式: (i) 初始形变, (ii) 大振幅震荡剪切, (iii) 阶跃应变. 缠结聚合物作为一种瞬态固体经不起持续增长的弹性变形, 而遭遇断裂. 缠结聚合物在快速的外部变形下, 最终从弹性(可逆)形变转为流动态(不可逆形变). 在这种屈服过程中, 缠结结构受非均匀破裂而发生随后的流动, 与教科书中的均匀变形假设不一致。

观测到阶跃大应变后的宏观运动是其中重大的发现之一。

实验证明由于链缠结产生的内聚力可以被瞬时大变形所产生的弹性应力破坏。

这种弹性屈服现象表明有必要把缠结聚合物看做一个多链系统,以管形理论为基础的单链平均场的描述似乎并不充分。

至少管形理论既不能预测弹性屈服, 也不能真实预知初始剪切时出现的剪切带。

展望支化聚合物的熔体流变行为是丰富且又复杂的 ,这使得人们对于它的认识和理解还有许多方面需要进一步完善和发展 ,概括起来 ,有如下几个方面:(1)进一步明确支化高分子拓扑结构对其流变松弛行为的影响 ,包括多臂星形、超支化结构的影响等 ,建立相应的分子松弛理论; (2)进一步明确不同种类支化高分子和不同拓扑结构支化高分子粘弹行为的温度依赖性;(3)研究用于接枝改性目的的、含有不同类型支链的支化聚合物的熔体流变行为 ,如含有刚性、半刚性支链的柔性链、含有极性支链和非极性主链高分子等;(4)反应接枝过程中的化学流变行为研究等。

参考文献[1] Yurasova T A, Mcleish T C B, Semenov A N. Stress Relaxation in Entangled Comb Polymer Melts[J]. Macromolecules. 1994, 27(24): 7205-7211.[2] Mcleish T C B, Allgaier J, Bick D K, et al. Dynamics of Entangled H-Polymers: Theory, Rheology, and Neutron-Scattering[J]. Macromolecules. 1999, 32(20): 6734-6758.[3] 张洁. 高密度聚乙烯结构与其流变性能及相关性能的研究[D]. 兰州大学, 2010.[4] 翟元明,杨伟,王宇,等. 分子结构对LLDPE动态流变行为的影响[J]. 高分子材料科学与工程. 2010(01): 88-91.[5] 于茂赏,闰明涛,高俊刚,等. 线性双峰聚乙烯/低密度聚乙烯共混物的流变行为与力学性能[J]. 中国塑料. 2002(02): 31-35.[6] Hussein I A, Williams M C. Rheological Study of the Influence of Branch Content on the Miscibility of Octene m-LLDPE and ZN-LLDPE in LDPE[J]. Polymer Engineering and Science. 2004, 44(4): 660-672.[7] Chen Y, Zou H, Liang M, et al. Rheological, thermal, and morphological properties of low-density polyethylene/ultra-high-molecular-weight polyethylene and linear low-density polyethylene/ultra-high-molecular-weight polyethylene blends[J]. Journal of Applied Polymer Science. 2013, 129(3): 945-953.[8] 苏峰华,黄汉雄,邹余敏. 长链支化聚丙烯的反应挤出制备及其流变和热力学性能研究[J]. 中国塑料. 2009(08): 31-34.[9] Sugimoto M, Masubuchi Y, Takimoto J, et al. Melt rheology of polypropylene containing small amounts of high molecular weight chain. I. Shear flow[J]. Journal of Polymer Science Part B: Polymer Physics. 2001, 39(21): 2692-2704.[10] Sugimoto M, Masubuchi Y, Takimoto J, et al. Melt Rheology of Polypropylene Containing Small Amounts of High-Molecular-Weight Chain. 2. Uniaxial and Biaxial Extensional Flow[J]. Macromolecules. 2001, 34(17): 6056-6063.[11] Hu M, Xia Y, Mckenna G B, et al. Linear Rheological Response of a Series of Densely Branched Brush Polymers[J]. Macromolecules. 2011, 44(17): 6935-6943.[12] 王十庆. 挑战与机遇:聚合物流变学在中国的前途[J]. 中国科学:化学. 2010(01): 16-21.Welcome !!! 欢迎您的下载,资料仅供参考!。

相关文档
最新文档