高等代数【北大版】6.5ppt课件

合集下载

《高等代数》PPT课件

《高等代数》PPT课件

命题5.1.2 对于任意向量和任意数a都有:
0=0, a0=0.
a()=(a) = a.
a=0a=0 或 =0.
2021/8/17
15
三. 约定
设V是数域F上的一个向量空间. 如果a是F中的一个数, 是V中的一个向量, 我们约定 a=a. 设1, 2,…, n,是V中的n个向量, 以它们为元素写成一个1n矩阵 (1, 2,…, n). 再设A是F上的一个nm阶矩阵. 则我们可以像普通矩 阵的乘法一样, 将(1, 2,…, n)和A相乘, 但是 (1, 2,…, n)A的结果 是一个以向量为元素的矩阵, 即:
3) 0+ = 4) 对任意 ,存在 ,使得 + = 0, 称为的负元素; 5) a( +) = a +a ; 6) (a+b) =a +b ; 7) a (b)=(ab) ;
8) 1 = .
2021/8/17
8
二、向量空间的定义
定义1 设V是一个非空集合,F是一个数域. 我们
把V中的元素用小写希腊字母, ,,…来表示,
2021/8/17
4
例2 在平面上建立直角坐标系后,把从原点出发的一切向
量组成的集合记为V2. 对V2中任意向量X和Y, 用平行四边形法则,有X+YV2. 对
任意实数k以及V2中任一向量X,有kXV2. 并且对任意的X, Y,
ZV2,a, bR,有
1) X+Y=Y+X;
2) (X+Y)+Z=X+(Y+Z);
高等代数课件
2021/8/17
1
第五章 向量空间
5.1 向量空间的定义 5.2 向量的线性相关性 5.3 基维数和坐标 5.4 子空间 5.5 向量空间的同构

高等代数【北大版】课件

高等代数【北大版】课件
线性规划问题
线性方程组是求解线性规划问题的常用工具 。
物理问题建模
在物理问题中,线性方程组可以用来描述各 种现象,如振动、波动等。
投入产出分析
通过线性方程组分析经济系统中各部门之间 的相互关系。
控制系统分析
在控制系统分析中,线性方程组用于描述系 统的动态行为。
PART 03
向量与矩阵
REPORTING
高等代数【北大版】 课件
REPORTING
• 绪论 • 线性方程组 • 向量与矩阵 • 多项式 • 特征值与特征向量 • 二次型与矩阵的相似对角化
目录
PART 01
绪论
REPORTING
高等代数的应用
在数学其他分支的应用
高等代数是数学的基础学科,为其他分支提供了理论基础,如几 何学、分析学等。
PART 04
多项式
REPORTING
一元多项式的定义与运算
总结词
一元多项式的定义、运算性质和运算方法。
详细描述
一元多项式是由整数系数和变量组成的数学对象,具有加法、减法、乘法和除法等运算性质和运算方法。一元多 项式可以表示为$a_0 + a_1x + a_2x^2 + ldots + a_nx^n$的形式,其中$a_0, a_1, ldots, a_n$是整数,$x$是 变量。
矩阵的相似对角化
总结词
矩阵的相似对角化是将矩阵转换为对角矩阵 的过程,有助于简化矩阵运算和分析。
详细描述
矩阵的相似对角化是通过一系列的线性变换 ,将一个矩阵转换为对角矩阵。对角矩阵是 一种特殊的矩阵,其非主对角线上的元素都 为零,主对角线上的元素为特征值。通过相 似对角化,可以简化矩阵运算,并更好地理 解矩阵的性质和特征。

高等代数课件北大三版 第六章 向量空间

高等代数课件北大三版 第六章 向量空间

惠州学院数学系
9
(a2) [f(x)+g(x)]+h(x)= f(x)+ [g(x) +h(x) ],
任给f(x),g(x),h(x) ? F[x].
(a3) 0向量就是零多项式. (a4) f(x)的负向量为(- f(x)). (m1) (ab) f(x)= a(bf(x)).
(m2) a [f(x)+g(x)]= a f(x)+ a g(x). (m3) (a ? b) f(x)= a f(x)+ b f(x).
加法和数乘两种,并且满足(教材P183):
1. A+B=B+A 2. (A+B)+C= A+( B+C) 3. O+A=A 4. A+(-A)=O
5. a(A+B)= aA+Ab 6. (a+b)B=a B +Bb 7. (ab)A=a(b)A 还有一个显而易见的: 8. 1A =A
惠州学院数学系
5
(m4) 1 ? f(x)= f(x).
注1:刚开始,步骤要完整.
惠州学院数学系
10
例5 C[a,b] 表示区间[a,b] 上连续实函数按照通常的加法 与数乘构成实数域 R的向量空间,称为函数空间 . 证明: 比照例3,给出完整步骤. 例6 (1)数域F是F上的向量空间. (2)R是Q上的向量
空间,R是否为C上的向量空间?
惠州学数学系
12
例8 在 R2 上定义加法和数乘:
(a, b) ? (c, d) ? (a ? c, b ? d ? ac) k (a,b) ? (ka, kb? k(k ? 1) a 2 )
2
证明 R2 关于给定运算构成R上的向量空间.

高等代数课件北大版第三章线性方程组

高等代数课件北大版第三章线性方程组

定义:将线性方程 组中的每一行进行 加减、倍乘等操作, 使得方程组简化
作用:将增广矩阵 化为阶梯形矩阵, 便于求解线性方程 组
步骤:对增广矩阵 进行初等行变换, 得到阶梯形矩阵
注意事项:变换过 程中需保持矩阵的 行列式不变,避免 出现错误结果
矩阵的逆法
定义:如果矩阵A存在逆矩阵,则称A为可逆矩阵 性质:可逆矩阵的行列式不为0 计算方法:通过行初等变换将矩阵变为单位矩阵,得到逆矩阵 应用:解线性方程组的重要工具之一
束优化问题等。
线性方程组在其他领域的应用
物理学中的应用:描述物理现象和规律,如牛顿第二定律、万有引力定律等。 经济学中的应用:分析经济问题,如供需关系、生产成本等。 计算机科学中的应用:解决优化问题、机器学习算法等。 统计学中的应用:处理数据分析和预测问题,如回归分析、主成分分析等。
线性方程组的扩展知识
添加标题
逆矩阵的计算方法:通过高斯消元法或拉普拉斯展开式等方法计算行列式|A|,然后通过|A|*|A^(1)|=1计算逆矩阵A^(-1)。
添加标题
逆矩阵的应用:在解线性方程组、求矩阵的秩、计算行列式、求向量空间的一组基等方面都有应用。
线性方程组的通解与特解的关系
通解与特解的定义
通解与特解的关系
通解与特解的求解方法
线性方程组在计算机科学中的应用
线性方程组在计算机图形学中 的应用:用于计算光照、纹理 映射和渲染等。

线性方程组在计算机视觉中的 应用:用于图像处理、特征提
取和目标检测等。
线性方程组在机器学习中的应 用:用于训练和优化模型,如 线性回归和逻辑回归。
线性方程组在人工智能领域的 应用:用于优化算法、求解约
通解与特解的应用
感谢您的耐心观看

高等代数课件(北大版)第六章线性空间§6.5

高等代数课件(北大版)第六章线性空间§6.5

例6
,2 , ,r V 设V为数域P上的线性空间, 1
令 W { k k k k P , i 1 , 2 , , r } 1 1 2 2 r r i
则W关于V的运算作成V的一个子空间.
, , , 即 的一切线性 1 2 r 组合所成集合.


2019/3/18
, W , k P , 其次, 3
( x y , x y , , x y , 0 ) W 则有 1 1 2 2 n 1 n 1 3
k ( k x , k x , , k x , 0 ) W 1 2 n 1 3
故,W3为V的一个子空间,且维W3 =n-1 ,
2019/3/18
数学与计算科学学院
2、线性子空间的判定
V 定理:设V为数域P上的线性空间,集合 W
(W ),若W对于V中两种运算封闭,即
W , k P ,有 kW
, W , 有 W ;
则W是V的一个子空间.
V ( W ) ,则 推论:V为数域P上的线性空间,W
, W ,, a b P , a b W . W是V的子空间
2019/3/18
数学与计算科学学院


证明:要证明W也为数域P上的线性空间, 即证W中的向量满足线性空间定义中的八条规则. 由于 WV ,规则1)、2)、5)、6)、7)、8) 是显然成立的.下证3)、4)成立.
2019/3/18
例4
n元齐次线性方程组
a a 1 1x 1 a 1 2x 2 1nx n 0 a a 2 1x 1 a 2 2x 2 2nx n 0 a x a x a x 0 sn n s1 1 s2 2

高等代数北大版线性空间

高等代数北大版线性空间

引 入 我们懂得,在数域P上旳n维线性空间V中取定一组基后,
V中每一种向量 有唯一拟定旳坐标 (a1,a2 , ,an ), 向量旳
坐标是P上旳n元数组,所以属于Pn.
这么一来,取定了V旳一组基 1, 2 , , n , 对于V中每一种 向量 ,令 在这组基下旳坐标 (a1,a2 , ,an ) 与 相应,就 得到V到Pn旳一种单射 : V P n , (a1,a2 , ,an )
2)证明:复数域C看成R上旳线性空间与W同构,
并写出一种同构映射.
2023/12/29§6.8 线性空间旳
及线性有关性,而且同构映射把子空间映成子空间.
2023/12/29§6.8 线性空间旳
3、两个同构映射旳乘积还是同构映射.
证:设 :V V , :V V 为线性空间旳同构
映射,则乘积 是 V到V 旳1-1相应. 任取 , V , k P, 有
第六章 线性空间
§1 集合·映射
§5 线性子空间
§2 线性空间旳定义 §6 子空间旳交与和
与简朴性质
§7 子空间旳直和
§3 维数·基与坐标
§8 线性空间旳同构
§4 基变换与坐标变换 小结与习题
2023/12/29
§6.8 线性空间旳同构
一、同构映射旳定义 二、同构旳有关结论
2023/12/29§6.8 线性空间旳
中分别取 k 0与k 1, 即得
0 0,
2)这是同构映射定义中条件ii)与iii)结合旳成果.
3)因为由 k11 k22 krr 0 可得 k1 (1 ) k2 (2 ) kr (r ) 0
反过来,由 k1 (1 ) k2 (2 ) kr (r ) 0 可得 (k11 k22 krr ) 0.

高等代数课件北大版第四章矩阵

高等代数课件北大版第四章矩阵

高等代数课件(北大版)第四章矩阵第一节:矩阵的概念及基本运算矩阵是现代数学的重要基础,是线性代数理论的核心概念之一。

在数学和应用领域有着重要的应用价值。

1.1 矩阵的定义定义1.1:矩阵是一个有规律的数表,其中的每一个数称为矩阵的一个元素,通常用一个大写字母表示。

例如:$$A=\begin{pmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\a_{31} & a_{32} & a_{33}\end{pmatrix}$$其中 $a_{ij}$ 称为矩阵 $A$ 的第 $i$ 行第 $j$ 列元素。

1.2 矩阵的基本运算1.2.1 矩阵的加法定义1.2:设 $A=(a_{ij})_{m \times n},B=(b_{ij})_{m \times n}$,则其和 $C=A+B$ 定义为矩阵 $C$ 的元素为 $c_{ij}=a_{ij}+b_{ij}$。

例如:$$A=\begin{pmatrix}1 &2 &3 \\4 &5 &6 \\7 & 8 & 9\end{pmatrix},B=\begin{pmatrix}-1 & -2 & -3 \\-4 & -5 & -6 \\-7 & -8 & -9\end{pmatrix},$$则 $C=A+B$ 得:$$C=\begin{pmatrix}0 & 0 & 0 \\0 & 0 & 0 \\0 & 0 & 0\end{pmatrix}$$1.2.2 矩阵的数乘定义1.3:设 $A=(a_{ij})_{m \times n}$,$k \in K$,则矩阵 $kA$ 定义为矩阵 $kA$ 的元素为 $ka_{ij}$。

高等代数课件PPT之第1章多项式

高等代数课件PPT之第1章多项式

2.多项式的运算 设f (x),g(x)为数域P上的一元多项式,不妨令
f ( x ) ai x i , g( x ) b j x j
n m i 0 j 0
加法: f (x)g(x) (ai bi ) x i , 当n m 乘法:f (x)g(x) anbm x n m (anbm1 an1bm ) x n m1 a0b0
其中r(x)=0或 (r(x))< ( g(x) ).
余式
称上式中的q(x) 为g(x) 除f (x)的商, r(x)为g(x) 除f (x)的余式.
(带余除法)定理证明
存在性 若f(x)=0 , 取q(x)=r(x) =0即可.以下设f (x)0. (f(x))=n,( g(x) )=m. 对 f (x) 的次数n作数学归纳法. 当n<m时,取q(x)=0, r(x) = f (x), 有 f (x) = q(x) g(x) + r(x) ,结论成立.
例1
a b 2 (a、b是有理数)的数 所有形如 Q( 2 ) . 构成一个数域
(ii)对四则运算封闭.事实上
解 (i) 0,1 Q( 2 );
, Q( 2 ),设 a b 2 , c d 2 , 有 (a c) (b d ) 2 Q( 2 ) (ac 2bd) (ad bc) 2 Q( 2 ) 设 a b 2 0,则a b 2 0且 c d 2 (c d 2)(a b 2) a b 2 (a b 2)(a b 2) ac 2bd ad bc 2 2 2 Q( 2) 2 2 a 2b a 2b
i 0
n m s0

高等代数 北大 课件

高等代数 北大 课件

拉普拉斯定理与因式分解
总结词
拉普拉斯定理的表述、应用和因式分解的方法。
详细描述
拉普拉斯定理是行列式计算中的重要定理,它提供了计算行列式的一种有效方法。因式分解是将多项式分解为若 干个因子的过程,是解决代数问题的重要手段之一。
CHAPTER 04
矩阵的分解与二次型
矩阵的分解
01
02
03
矩阵的三角分解
矩阵的乘法
矩阵的乘法满足结合律和分配律,但不一定满足 交换律。
பைடு நூலகம்
矩阵的逆与行列式
矩阵的逆
对于一个非奇异矩阵,存在一个逆矩阵,使得原矩阵 与逆矩阵相乘等于单位矩阵。
行列式的定义
行列式是一个由矩阵元素构成的数学量,可以用于描 述矩阵的某些性质。
行列式的性质
行列式具有一些重要的性质,如交换律、结合律、分 配律等。
将一个矩阵分解为一个下 三角矩阵和一个上三角矩 阵之积。
矩阵的QR分解
将一个矩阵分解为一个正 交矩阵和一个上三角矩阵 之积。
矩阵的奇异值分解
将一个矩阵分解为若干个 奇异值和若干个奇异向量 的组合。
二次型及其标准型
二次型的定义
一个多项式函数,可以表示为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n} sum_{ j=1}^{n} a_{ij} x_i x_j$,其中 $a_{ij}$是常数。
VS
二次型的标准型
通过线性变换,将一个二次型转化为其标 准形式,即一个平方项之和减去另一个平 方项之和。
正定二次型与正定矩阵
正定二次型的定义
对于一个二次型,如果对于所有 的非零向量$x$,都有$f(x) > 0$ ,则称该二次型为正定二次型。

高等代数课件(北大版)第六章-线性空间§6.6

高等代数课件(北大版)第六章-线性空间§6.6

bt 1
x1
bt
2
x2
btn xn 0
的解空间,则 W1 W2 就是齐次线性方程组③
2020/9/20§6.6 子空间的交与和
a11 x1 a12 x2 a1n xn 0
ab1s11
x1 x1
as2 x2 b12 x2
asn xn 0 b1n xn 0

bt 1
x1
bt
并不是R3的子空间. 因为它对R3的运算不封闭,如 (1,0,0), (0,1,0) V1 V2
但是 (1,0,0) (0,1,0) (1,1,0) V1 V2
2020/9/20§6.6 子空间的交与和
三、子空间的交与和的有关性质
1、设 V1,V2 ,W 为线性空间V的子空间
1)若 W V1,W V2 , 则 W V1 V2 . 2)若 V1 W ,V2 W , 则 V1 V2 W .
2020/9/20§6.6 子空间的交与和
注意:
V的两子空间的并集未必为V的子空间. 例如 V1 {(a,0,0) a R}, V2 {(0,b,0) b R}
皆为R3的子空间,但是它们的并集 V1 V2 {(a,0,0),(0,b,0) a,b R} {(a,b,0) a,b R 且a,b中至少有一是0}
第六章 线性空间
§1 集合·映射
§5 线性子空间
§2 线性空间的定义 §6 子空间的交与和
与简单性质
§7 子空间的直和
§3 维数·基与坐标
§8 线性空间的同构
§4 基变换与坐标变换 小结与习题
2020/9/20
§6.6 子空间的交与和
一、子空间的交 二、子空间的和 三、子空间交与和的有关性质

北大精品课件高等代数(上)

北大精品课件高等代数(上)

第一学期第一次课第一章 代数学的经典课题§1 若干准备知识1.1.1 代数系统的概念一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。

1.1.2 数域的定义定义(数域) 设K 是某些复数所组成的集合。

如果K 中至少包含两个不同的复数,且K 对复数的加、减、乘、除四则运算是封闭的,即对K 内任意两个数a 、b (a 可以等于b ),必有K b a b K ab K b a ∈≠∈∈±/0时,,且当,,则称K 为一个数域。

例1.1 典型的数域举例: 复数域C ;实数域R ;有理数域Q ;Gauss 数域:Q (i) = {b a +i |b a ,∈Q },其中i =1-。

命题 任意数域K 都包括有理数域Q 。

证明 设K 为任意一个数域。

由定义可知,存在一个元素0≠∈a K a ,且。

于是K aaK a a ∈=∈-=10,。

进而∈∀m Z 0>,K m ∈+⋯⋯++=111。

最后,∈∀n m ,Z 0>,K n m ∈,K nmn m ∈-=-0。

这就证明了Q ⊆K 。

证毕。

1.1.3 集合的运算,集合的映射(像与原像、单射、满射、双射)的概念定义(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ⋂;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ⋃;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \。

定义(集合的映射) 设A 、B 为集合。

如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为).(,:a f a B A f →如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像。

高等代数【北大版】课件

高等代数【北大版】课件

多项式的因式分解与根的性质
总结词
多项式的因式分解、根的性质和求解方 法
VS
详细描述
多项式的因式分解是将多项式表示为若干 个线性因子乘积的过程。通过因式分解, 可以更好地理解多项式的结构,简化计算 和证明。此外,多项式的根是指满足多项 式等于0的数。根的性质包括根的和与积、 重根的性质等。求解多项式的根的方法有 多种,如求根公式、因式分解法等。
性方
02
线性方程组的解法
高斯消元法 通过行变换将增广矩阵化为阶梯形矩 阵,从而求解线性方程组。
选主元高斯消元法
选择主元以避免出现除数为0的情况, 提高算法的稳定性。
追赶法
适用于系数矩阵为三对角线矩阵的情 况,通过逐步消去法求解。
迭代法
通过迭代逐步逼近方程组的解,常用 的方法有雅可比迭代法和SOR方法。
向量空间的子空间与基底
总结词
子空间与基底
详细描述
子空间是向量空间的一个非空子集,它也满足向量空间的定义和性质。基底是 向量空间中一个线性独立的集合,它可以用来表示向量空间中的任意元素。基 底中的向量个数称为向量空间的维数。
ቤተ መጻሕፍቲ ባይዱ
向量空间的维数与基底的关系
总结词
维数与基底的关系
详细描述
向量空间的维数与基底密切相关。一个向量空间的维数等于其基底的向量个数。 如果一个向量空间有n个基底,则它的维数为n。同时,如果一个向量空间有有限 个基底,则它的维数是有限的。
行列式
06
行列式的定义与性质
总结词
行列式的定义和性质是高等代数中的 基础概念,包括代数余子式、余子式、 转置行列式等。
详细描述
行列式是由n阶方阵的n!项组成的代数 式,按照一定规则排列,具有一些重 要的性质,如交换律、结合律、代数 余子式等。这些性质在后续章节中有 着广泛的应用。

高等代数北大版ppt课件

高等代数北大版ppt课件

A1( )
A1( ) 中的全部元素都是可以被 bs ( ) 除尽的, 因为它们都是 Bs ( ) 中元素的组合.
如果 A1( ) 0 ,则对于A1( ) 可以重复上述过程,
进而把矩阵化成
16
d1( ) 0 L 0
0 0
d2 ( )
0
L
,
M 0
M 0
A2( )
其中 d1( ) 与 d2( ) 都是首1多项式( d1( ) 与 bs ( )
注: ① 全部初等矩阵有三类:
1
O
1
0L 1
i行
P(i, j)
M
1L 0
j行
1
O 1
4
1
O
1
p(i(c))
c
i行
1
O 1
1
O
1 L ()
i行
p(i, j(( )))
O
1
j行
O 1
5
② 初等矩阵皆可逆. p(i, j)1 p(i, j)
p(i(c))1
p(i
(
1 c
))
p(i, j(( )))1 p(i, j(( )))
L
L
aij ( ) a1 j ( ) ( )
L
L L
A1( )
矩阵 A1( )的第一行中,有一个元素:
aij ( ) (1 ( ))a1 j ( )
不能被左上角元素 a11( ) 除尽,转为情形 ii) .
证毕.
12
2.(定理2)任意一个非零的 s n的 一矩阵 A( )
都等价于下列形式的矩阵
除尽,这种情况的证明i)与类似.
iii) A( )的第一行与第一列中的元素都可以被 a11( )

高等代数ppt课件北大版第一章多项式.ppt

高等代数ppt课件北大版第一章多项式.ppt

q1( x) c1 p1( x), c1 0 (1)两边消去 q1( x), 即得
p2( x) ps ( x) c11q2( x) qt ( x)
由归纳假设有 s 1 t 1, s t.
§1.5 2024/9/27 因式分解定理
数学与计算科学学院
2. 标准分解式: 对 f ( x) P[x], f ( x) 1,
实际上,对于一般的情形普通可行的分解多项 式的方法是不存在的.而且在有理数域上,多项 式的可约性的判定都是非常复杂的.
§1.5 2024/9/27 因式分解定理
数学与计算科学学院
2 设对次数低于n的多项式结论成立.
下证 f ( x) n 的情形.
若 f ( x)是不可约多项式. 结论显然成立.
若 f ( x)不是不可约多项式,则存在 f1( x), f2( x),
且 ( fi ( x)) n, i 1,2 使 f ( x) f1( x) f2( x)
由归纳假设 f1( x), f2( x)皆可分解成不可约多项式的积.
例如,若 f ( x), g( x)的标准分解式分别为
f
(
x
)
ap1r1
(
x)
p r2 2
(
x
)
g(
x
)
bp1l1
(
x)
p l2 2
(
x)
psrs ( x), ri 0 psls ( x), li 0
则有
f ( x), g( x) p11 ( x) p22 ( x) pss ( x),
i min ri ,li , i 1,2, , s
f ( x) 总可表成
f
(
x)
cp1r1

高等代数课件(北大三版)--第二章--多项式

高等代数课件(北大三版)--第二章--多项式
2.2.3 多项式旳带余除法定理
2.2.4 系数所在范围对整除性旳影响
二、教学目旳
1.掌握一元多项式整除旳概念及其性质。
2.熟练利用带余除法。
三、要点、难点
多项式旳整除概念,带余除法定理
2.2.1 多项式旳整除概念
设F是一种数域. F [x]是F上一元多项式环.
2.2.2 多项式整除性旳某些基本性质
证 设f (x) = g (x) 那么它们有完全相同旳项, 因而对R旳任何c都有f (c) = g (c)这就是说, f (x) 和g (x)所拟定旳函数相等.反过来设f (x) 和g (x)所拟定旳函数相等.令 u (x) = f (x) – g (x)那么对R旳任何c都有u (c) = f (c) – g (c) = 0这就是说, R中旳每一种数都是多项式u (x)旳根. 但R有无穷多种数, 所以u (x)有无穷多种根.根据定理2.6.3只有零多项式才有这个性质.所以有 u (x) = f (x) – g (x) = 0 , f (x) = g (x) .
f (c)与它相应. 于是就得到R到R旳一种映射. 这个映射是由多项式f (x)所拟定旳,叫做R上一种多项式函数.
综合除法
由此得出
表中旳加号一般略去不写.
例1
用x + 3除
作综合除法:
所以商式是
而余式是

假如f (x)是零次多项式,那么f (x)是R中一种不等于零旳数, 所以没有根. 所以定理对于n = 0成立.于是我们能够对n作数学归纳法来证明这一定理.设c∈R是f (x)旳一种根.那么 f (x) = (x – c) g (x)这里g (x) ∈R [x]是一种n – 1次多项式.假如d∈R是f (x)另一种根, d≠c那么 0 = f (d) = (d – c) g (d)因为d – c≠0 , 所以g (d) = 0. 因为g (x)旳次数是 n – 1 ,由归纳法假设, g (x)在R内至多有n – 1个不同旳根.所以f (x)在R中至多有n个不同旳根.

高等代数【北大版】6.5

高等代数【北大版】6.5

二,一类重要的子空间 ——生成子空间 ——生成子空间
为数域P上的线性空间 α 定义:V为数域 上的线性空间, 1 ,α 2 , ,α r ∈ V, 为数域 上的线性空间, 则子空间
W = {k1α1 + k2α 2 + + krα r ki ∈ P , i = 1,2, , r }
称为V的由 生成的子空间, 称为 的由 α1 ,α 2 , ,α r 生成的子空间, 记作 L(α1 ,α 2 , ,α r ) . 生成元. 称 α1 ,α 2 , ,α r 为 L(α1 ,α 2 , ,α r ) 的一组 生成元
n
由它的一组基生成. 即 Pn 由它的一组基生成 类似地, 类似地,还有
事实上, 事实上,任一有限 维线性空间都可由 它的一组基生成. 它的一组基生成
P[ x ]n = L(1, x , x 2 , , x n1 ) = a0 + a1 x + + an1 x n1 a0 , a1 , , an1 ∈ P
§6.5 线性子空间
例1
为数域P上的线性空间 设V为数域 上的线性空间,只含零向量的 为数域 上的线性空间,
的一个线性子空间, 子集合 W = {0} 是V的一个线性子空间,称之为 的 的一个线性子空间 称之为V的 零子空间.线性空间V本身也是 的一个子空间. 零子空间.线性空间 本身也是V的一个子空间. 本身也是 的一个子空间 平凡子空间, 这两个子空间有时称为平凡子空间 这两个子空间有时称为平凡子空间,而其它的 子空间称为非平凡子空间 非平凡子空间. 子空间称为非平凡子空间. 例2 为所有实函数所成集合构成的线性空间, 设V为所有实函数所成集合构成的线性空间, 为所有实函数所成集合构成的线性空间

高等代数课件(北大版)第二章-行列式§2

高等代数课件(北大版)第二章-行列式§2

方法二
(2) 1 2 n (n 1) (n 2)
n(n 1) n(n 1) n2
2
2
当 k 为偶数时为偶排列,
21
当 k 为奇数时为奇排列.
§2.2 2024/10/5 排列
数学与计算科学学院
四 、对换
定义 把一个排列中某两个数的位置互换, 而
其余的数不动, 得到另一个排列, 这一变换 称为一个对换. 将相邻两个元素对调,叫做相邻对换.
数学与计算科学学院
注:
① 排列 123 n 称为标准排列,其逆序数为0.
② 排列 j1 j2 jn 的逆序数常记为 ( j1 j2 jn ).
③ ( j1 j2 jn ) j1 后面比 j1小的数的个数 方法一
j2 后面比 j2 小的数的个数
jn1 后面比 jn1 小的数的个数.
或 ( j1 j2 jn ) j2 前面比 j2大的数的个数 方法二
§2.2 2024/10/5 排列
数学与计算科学学院
推论
所有 n 级排列中,奇、偶排列各半, 均为 n! 个. 2
证明 设在全部 n 阶排列中,有 s 个奇排列, t 个
偶排列,下证.s t
将 s 个奇排列的前两个数对换,则这 s 个奇排列
全变成偶排列,并且它们彼此不同, s t.
同理,将 t 个偶排列的前两个数对换,则这 t 个
(1) n(n 1) 321 (2) (2n)1(2n 1)2(2n 2)3 (n 1)n
§2.2 2024/10/5 排列
数学与计算科学学院
答案:
方法一
(1) (n 1) (n 2) 2 1 n(n 1)
2 当 n 4k, 4k 1 时为偶排列;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

W3 {( x1, x2,L , xn1,0) xi P, i 1,2,L , n 1}
若为Pn的子空间,求出其维数与一组基.
解:W1 、W3是Pn的子空间, W2不是Pn的子空间.
事实上,W1 是n元齐次线性方程组
x1 x2 L xn 0

的解空间. 所以,维W1 =n-1,①的一个基础解系
(W ),若W对于V中两种运算封闭,即
, W , 有 W ; W ,k P, 有 k W
则W是V的一个子空间.
推论:V为数域P上的线性空间,W V (W ), 则
W是V的子空间 , W ,a,b P,a b W .
§6.5 线性子空间
4
证明:要证明W也为数域P上的线性空间,
即证W中的向量满足线性空间定义中的八条规则.
由于W V,规则1)、2)、5)、6)、7)、8)
是显然成立的.下证3)、4)成立.
∵ W ,∴ W . 且对 W,由数乘运算 封闭,有 (1) W,即W中元素的负元素就是
它在V中的负元素,4)成立.
由加法封闭,有 0 ( )W ,即W中的零元
组合所成集合.
§6.5 线性子空间
11
二、一类重要的子空间 ——生成子空间
定义:V为数域P上的线性空间,1,2,L ,r V,
则子空间
W {k11 k22 L krr ki P,i 1,2,L ,r}
称为V的由 1,2 ,L ,r 生成的子空间, 记作 L(1,2 ,L ,r ) . 称 1,2 ,L ,r 为 L(1,2 ,L ,r )的一组 生成元.
它的一组基生成.
类似地,还有
P[ x]n L(1, x, x2,L , xn1)
a0 a1 x L an1xn1 a0 ,a1,L ,an1 P
§6.5 线性子空间
13
有关结论
1、设W为n维线性空间V的任一子空间,1,2 ,L ,r
是W的一组基,则有 W L(1,2 ,L ,r ) 2、(定理3)
第六章 线性空间
§1 集合·映射
§5 线性子空间
§2 线性空间的定义 §6 子空间的交与和
与简单性质
§7 子空间的直和
§3 维数·基与坐标
§8 线性空间的同构
§4 基变换与坐标变换 小结与习题
1
§6.5 线性子空间
一、线性子空间 二、生成子空间
§6.5 线性子空间
2
一、线性子空间
1、线性子空间的定义
§6.5 线性子空间
12
例7 在Pn 中,
i
(0,L
, 0,1, 0L i
, 0),
i 1,2,L ,n
为Pn的一组基, (a1,a2,L ,an ) Pn
有 a11 a2 2 L an n
故有 Pn L(1,2,L ,n )
事实上,任一有限 维线性空间都可由
即 Pn 由它的一组基生成.
i
(0,L
, 0,1, 0L i
, 0),
i 1,2,L , n 1
就是W3的一组基.
§6.5 线性子空间
10
例6 设V为数域P上的线性空间,1,2 ,L ,r V
令W {k11 k22 L krr ki P,i 1,2,L ,r}
则W关于V的运算作成V的一个子空间.
即1,2 ,L ,r 的一切Fra bibliotek性就是V中的零元, 3)成立.
§6.5 线性子空间
5
例1 设V为数域P上的线性空间,只含零向量的
子集合 W {0} 是V的一个线性子空间,称之为V的
零子空间.线性空间V本身也是V的一个子空间. 这两个子空间有时称为平凡子空间,而其它的
子空间称为非平凡子空间.
例2 设V为所有实函数所成集合构成的线性空间, 则R[x]为V的一个子空间.
量乘法构成的线性空间是 n维向量空间Pn的一个子
空间,称W为方程组(*)的解空间.
注 ① (*)的解空间W的维数=n-秩(A),A (aij )sn ;
② (*)的一个基础解系就是解空间W的一组基.
§6.5 线性子空间
7
例5 判断Pn的下列子集合哪些是子空间: W1 {( x1, x2 ,L , xn ) x1 x2 L xn 0, xi P} W2 {( x1, x2 ,L , xn ) x1 x2 L xn 1, xi P}
例3 P[x]n是P[x]的的线性子空间.
§6.5 线性子空间
6
例4 n元齐次线性方程组
a11 x1 a12 x2 L a1n xn 0
a21 x1 LL
as1 x1
a22 x2 L LLLL as2 x2 L
a2n xn LLLL asn xn
0 0
(*)
的全部解向量所成集合W对于通常的向量加法和数
其次, , W3 ,k P, 设 ( x1, x2 ,L , xn1,0), ( y1, y2 ,L , yn1,0)
则有 ( x1 y1, x2 y2 ,L , xn1 yn1,0) W3
k (kx1, kx2 ,L , kxn1,0) W3
故,W3为V的一个子空间,且维W3 =n-1 ,
设V是数域P上的线性空间,集合 W V (W ) 若W对于V中的两种运算也构成数域P上的线性空间,
则称W为V的一个线性子空间,简称为子空间.
注:① 线性子空间也是数域P上一线性空间,它也 有基与维数的概念.
② 任一线性子空间的维数不能超过整个空间的 维数.
§6.5 线性子空间
3
2、线性子空间的判定 定理:设V为数域P上的线性空间,集合 W V
但是 ( x1 y1 ) ( x2 y2 ) L ( xn yn )
( x1 x2 L xn ) ( y1 y2 L yn ) 1 1 2
W2 , 故W2不是Pn的子空间.
§6.5 线性子空间
9
下证W3是Pn的子空间. 首先 0 (0,0,L ,0) W3, W3
§6.5 线性子空间
8
1 (1,1,0,L ,0), 2 (1,0, 1,0,L ,0), L L ,
n1 (1,0,L ,0, 1) 就是W1 的一组基.
而在 W2中任取两个向量 , ,设
( x1, x2 ,L , xn ), ( y1, y2 ,L , yn ) 则 ( x1 y1, x2 y2 ,L , xn yn )
相关文档
最新文档