数字电路设计实例
数字电子电路课程设计-74系列数字抢答器
数字抢答器一、摘要:数字抢答器由主体电路与扩展电路组成。
优先编码电路、锁存器、译码电路将参赛队的输入信号在数码管上显示,抢答器电路和主持人复位键组成主体电路。
通过定时电路将秒脉冲产生的信号在显示器上输出实现计时功能和计分电路,共同构成扩展电路。
利用面包板经过排版、布线、调试等工作后数字抢答器成形。
关键字:抢答器倒计时电路计分器二、设计要求1、接通电源后,主持人将开关拨到“清除”状态,抢答器处于禁止状态,编号显示器灭灯,定时器显示设定时间。
2、主持人将开关置于“开始”状态,宣布“开始”抢答器工作,定时器倒计时,扬声器给出声响提示。
3、选手在定时时间内抢答时,抢答器完成:优先判断、编号锁存、编号显示、扬声器提示。
4、当一轮抢答之后,定时器停止、禁止二次抢答、定时器显示剩余时间。
如果再次抢答必须由主持人再次操作“清除”和“开始”状态开关。
5、设计一个计分器,实现选手得分,由主持人控制加减,设置清除功能。
三、功能介绍1、基本功能(1)设计一个智力竞赛抢答器,可同时供8名选手或8个代表队参赛,他们的选号分别是0、1、2、3、4、5、6、7,各用一个抢答按钮,按钮的编号对应分别是S0、S1、S2、S3、S4、S5、S6、S7.(2)给节目主持人设置一个控制开关,用来控制系统的清零(编号显示数码管灭灯)和抢答器的开始。
(3)抢答器具有数据锁存和显示的功能。
抢答开始后,若有选手按动抢答按钮,编号立即锁存,并在LED数码管上显示出选手的编号,同时扬声器给出音响提示。
此外,要封锁输入电路,禁止其他选手抢答。
优先抢答选手的编号一直保持主持人将系统清零为止。
2、扩展功能(4)抢答器具有定时抢答的功能,且一次抢答的时间可以由主持人设定(如30秒)。
当节目支持人启动“开始”键后,要求定时器立即减计时,并用显示器显示,同时扬声器发出短暂的声响。
(5)参加选手在设定的时间内抢答,抢答有效,定时器停止工作,显示器上显示选手的编号和抢答时刻的时间,并保持到主持人将系统清零为止。
数字电路课程设计(密码锁)
数字电路课程设计设计报告课题名称:密码锁设计成员1:设计成员2:设计成员3:密码锁一、目录1、设计项目综述 (2)2、设计方案及分析 (3)2.1设计方案 (3)2.2设计分析 (4)2.3方案优缺点 (4)3、电路原理分析 (5)3.1模块1:八进制优先编码器74ls148 (5)3.2模块2:4位双稳锁存器74LS75 (6)3.3模块3:4位数字比较器74LS85 (8)3.4模块4:可预置bcd计数器74LS160 (9)3.5 总图 (14)4、总结 (16)4.1设计中遇到的问题及解决方法 (17)4.2设计方案中需要改进的地方 (17)4.3这次设计中的收获和教训 (17)二、设计项目综述:1、可以预置1位十进制数密码,并保存密码。
2、开锁时,输入正确密码,按开锁键,锁打开。
3、当输入密码时,数码管显示相应的输入数字。
密码输入错误时计数一次,当输入错误密码连续达到四次,拒绝再输入密码。
需用复位键将其还原才能再次输入。
4、输入密码时,数码管8显示密码的数值。
拒绝输入密码时,只显示0。
按开锁键时,数码管5显示密码输入错误的次数;当错误次数连续少于4次以下时,则当输入密码正确时数码管5清“0”。
5、开锁指示灯亮表示锁已经打开。
三、设计方案及分析1、设计方案根据以上密码锁的设计任务,我们拟定的方案可以简略的如以下框图所示:2、方案分析(1)密码输入:由于要求通过每按一个输入键时直接显示为对应的十进制数密码,所以需要将二进制数转换为对应的十进制数。
根据前面这个要求,我们有两个选择74ls147和74ls148。
74ls147与74ls148比较,74ls148比74ls147多一个功能端。
使用74ls148可以实现输入四次错误自动锁定。
虽74ls148总的输入键只有8个,使用两块74ls148,并他们通过级联可以解决0~9输入。
当多过输入端同时出现时,只对其中优先权最高的一个进行编码,这个编码就是我们要的对应的十进制数。
数字电路位移器设计
数字电路位移器设计数字电路中的位移器是一种重要的逻辑电路元件,用于将输入的二进制数据在特定条件下进行位移操作。
位移器可以实现向左或向右的位移,用于数据的移动、扩展和压缩等操作。
本文将介绍常见的数字电路位移器的设计原理和实现方法。
一、什么是数字电路位移器数字电路位移器是一种逻辑电路元件,它能够将输入数据的位进行移位的操作。
位移器通常包含多个触发器和逻辑门,根据触发器的状态和输入控制信号,实现输入数据的位移。
位移器按照位移的方向可分为左移位移器和右移位移器。
左移位移器将输入数据每位向左移动一位,最高位丢失,最低位填充0;右移位移器将输入数据每位向右移动一位,最低位丢失,最高位根据不同的位移器类型填充。
二、常见的1. 移位寄存器移位寄存器是一种常见的数字电路位移器,它由多个触发器组成,可以实现多位的位移操作。
常见的移位寄存器包括平行输入移位寄存器和串行输入移位寄存器。
平行输入移位寄存器可以同时接受多位输入数据,并通过控制信号将数据进行位移。
其原理是将输入的数据依次存储在各个触发器中,然后根据控制信号进行位移操作。
平行输入移位寄存器的位移操作速度较快,但需要较多的触发器。
串行输入移位寄存器只能接受一位输入数据,通过串行输入方式逐位输入。
它的位移操作是通过控制信号和移位寄存器内部逻辑电路实现的。
串行输入移位寄存器的位移操作速度相对较慢,但只需要一个触发器和少量的逻辑门。
2. 移位寄存器的应用移位寄存器在数字电路中具有广泛的应用。
以下是一些常见的应用场景:- 数据移动:位移器可以用于将数据按照一定的规律进行移动,实现数据的跳跃和扩展。
- 数据压缩:通过位移器的位移操作,可以将数据进行压缩,减少数据存储空间和数据传输带宽的占用。
- 数据通路控制:位移器可以用于数据通路中的分时控制和时序控制,实现数据的有效传输和处理。
三、数字电路位移器的设计实例以下是一个简单的数字电路位移器设计实例,用于对4位输入数据进行右移操作。
数字电路设计实例
数字电路设计实例一、引言数字电路是由逻辑门和触发器等基本元件组成的电路,用于处理和存储数字信号。
数字电路设计实例是指通过使用逻辑门等元件,根据特定的需求设计和构建数字电路的过程。
本文将以几个实际的数字电路设计实例为例,介绍数字电路设计的基本思路和方法。
二、二进制加法器二进制加法器是数字电路设计中常见的一个实例。
其作用是将两个二进制数相加,并输出其和。
二进制加法器可以采用半加器和全加器等逻辑门组成。
在设计二进制加法器时,首先需要确定输入和输出的位数,然后根据二进制加法的规则,逐位进行运算。
最后,将各位的运算结果通过逻辑门连接起来,得到最终的输出。
三、多路选择器多路选择器是另一个常见的数字电路设计实例。
其作用是根据控制信号选择多个输入信号中的一个,并将其输出。
多路选择器可以采用多个与门和或门等逻辑门组成。
在设计多路选择器时,首先需要确定输入信号的个数和控制信号的位数,然后根据控制信号的值选择对应的输入信号,并将其输出。
四、时序电路时序电路是数字电路设计中的一类特殊电路,用于处理时序信号。
时序电路可以实现计数器、状态机等功能。
在设计时序电路时,需要确定时钟信号的频率和计数范围等参数。
然后,根据具体的功能需求,选择合适的触发器和逻辑门等元件进行设计和构建。
五、模数转换器模数转换器是数字电路设计中的另一个重要实例。
其作用是将模拟信号转换为数字信号。
模数转换器可以采用比较器和计数器等元件组成。
在设计模数转换器时,需要确定输入信号的范围和分辨率等参数。
然后,通过比较输入信号与参考电压的大小,将其转换为相应的数字信号。
六、总结数字电路设计实例是数字电路学习中的重要内容。
通过实际的设计过程,可以加深对数字电路原理和设计方法的理解。
本文介绍了二进制加法器、多路选择器、时序电路和模数转换器等几个常见的数字电路设计实例。
希望读者通过阅读本文,能够对数字电路设计有一个初步的了解,并在实际的设计中能够灵活运用所学知识。
vivado设计实例
vivado设计实例Vivado设计实例一、时钟分频器设计实例时钟分频器在数字电路设计中起到非常重要的作用,它可以将一个高频时钟信号分频为任意低频时钟信号。
在Vivado中,实现一个时钟分频器非常简单。
首先,我们需要创建一个新的工程,并添加时钟分频器的IP核。
然后,在IP核配置界面中,设置分频比和时钟输入输出端口。
最后,生成Bitstream文件并下载到目标FPGA芯片中即可。
二、状态机设计实例状态机是一种常见的电路设计模块,它根据输入信号的变化来改变其内部状态和输出信号。
在Vivado中,实现一个状态机可以通过HDL语言(如Verilog或VHDL)编写代码来实现。
首先,我们需要创建一个新的工程,并添加设计文件。
然后,在设计文件中编写状态机的逻辑代码,并将其综合为门级电路。
最后,生成Bitstream 文件并下载到目标FPGA芯片中即可。
三、数字信号处理设计实例数字信号处理(DSP)在通信、音频、视频等领域有着广泛的应用。
在Vivado中,实现一个简单的数字信号处理模块可以通过使用FIR滤波器来实现。
首先,我们需要创建一个新的工程,并添加FIR滤波器的IP核。
然后,在IP核配置界面中,设置滤波器的参数和输入输出端口。
最后,生成Bitstream文件并下载到目标FPGA芯片中即可。
四、图像处理设计实例图像处理在计算机视觉、图像识别等领域有着广泛的应用。
在Vivado中,实现一个简单的图像处理模块可以通过使用图像卷积来实现。
首先,我们需要创建一个新的工程,并添加图像卷积的IP核。
然后,在IP核配置界面中,设置卷积核的参数和输入输出端口。
最后,生成Bitstream文件并下载到目标FPGA芯片中即可。
五、高级通信接口设计实例高级通信接口(如PCIe、Ethernet等)在计算机系统中起到连接和传输数据的重要作用。
在Vivado中,实现一个高级通信接口可以通过使用相应的IP核来实现。
首先,我们需要创建一个新的工程,并添加所需的IP核。
数字电路课程设计-数字式定时开关设计
数字电路课程设计-数字式定时开关设计本设计旨在设计一个数字式定时开关,即可设置时间后自动控制开关的开/关状态。
该设计采用120V AC电源。
整个系统的核心是AT89C51微控制器。
在控制电路中,用户可以设置开关的启动时间和关闭时间。
在此设计中,我们使用了倒计时计数器,可以使开关在设定时间到达时自动关闭或打开。
以下是数字电路课程设计-数字式定时开关设计的详细说明:材料清单:1. AT89C51微控制器2. 16位数码管显示模块3. 蜂鸣器4. LED灯5. 继电器6. 按钮开关7. 电源电线8. 杜邦线9. 电阻和电容电路设计:图-1:数字式定时开关电路图如上图所示,整个电路由AT89C51微控制器,计数器,16位数码管,继电器,蜂鸣器,LED灯和按钮开关组成。
整个电路的供电电压为120V AC。
MCU输入为120V交流电源电压,为保证MCU安全,采用了稳流二极管电路降压至5V,在MCU和计数器外部电路中采用了电阻器和电容器滤波处理。
在该电路中,16位数码管用于显示倒数计时器的时间。
数码管显示模块使用计时寄存器来设置显示时间和更改时间。
倒计时计数器由74LS192芯片实现。
继电器用于控制电源的开关。
按键用于启动和停止计数器以触发继电器开关的动作。
操作:1. 设置时间:按下时间设置按钮,数码管显示时间设置,你可以更改时间,包括小时和分钟,用按键切换需要更改的位。
设置完成后,按时间设置按钮再次退出时间设置模式。
2. 开始计时:按下开始/停止按钮,计时器开始倒计时,同时继电器也开始工作。
3. 关闭计时器:当计时器到达指定时间后,它将停止计数并触发继电器打开/关闭开关。
此时,LED灯将发出信号。
总结:数字式定时开关是一种非常实用的电路设计,它可以自动打开/关闭设备,而无需实时操作。
此设计通过采用AT89C51微控制器和倒计时计数器等组件,实现了大量自动控制电路的功能。
设计过程中,需要注意安全问题,保证电路稳定运行,同时合理设计各个模块,并进行联合测试验收。
数电设计实验——数字显示电路
数字电子技术实验——数字显示电路一、设计任务与要求1.数字显示电路操作面板:左侧有16个按键,标号为0到15的数字,面板右侧有2个共阳极7段显示器;2.设计要求:按下小于10的按键后,右侧低位7段显示器显示数字,左侧高位7段显示器显示0;当按下大于9的按键后,右侧低位7段显示器显示个位数字,左侧7段显示十位数字1.若同时按下几个按键,优先级别的顺序是15到0。
二、总体电路设计1.原理框图2. 整体设计电路图3.电路整体分析本次电路大体可分为三部分:开关及编码部分、译码部分和数码管显示部分。
整体思想是由左侧的16个开关控制信号的输入。
信号输入后由编码器编码输出,再进入与非门和加法器进行逻辑运算。
之后进入译码器进行译码,译码输出后的信号输入数码管输出数字。
各部分电路具体的功能实现将在下面讲解。
4. 元件清单按键开关×168—3线优先编码器74LS148×24输入与非门×2四位二进制加法器×1显示译码器74LS47×2共阳极数码管×2导线等若干三、单元电路分析1. 开关及编码部分本部分负责电路的开关信号的输入和编码。
其中,16个按键开关分别对应的0至15的数字。
由于所选用的74LS148编码器是低电平输入,所以我们将开关的初始状态连接高电平,改变状态连接低电平,开关公共端输出到编码器的输入端。
由于我们要输入十六个数字,而一片74LS148只有8个输入端,故而选用两片级联的方式,即:将高位片的级联端EO 与低位片的EI相连。
这样开关信号的15至8依次进入高位片的D7至D0;开关信号的7至0依次进入低位片的D7至D0。
由此实现16个信号的输入并且优先级别顺序是15到0。
2.译码部分本部分的功能是通过与非门和加法器的逻辑运算,把编码器输出信号变成适合译码器的输入信号。
所需完成的变换主要有三:编码器输出的信号是低电平有效,故需要把输出信号变成其反码。
数字电路课程设计样本
数字电路课程设计一、概述任务:通过解决一两个实际问题,巩固和加深在课程教学中所学到知识和实验技能,基本掌握惯用电子电路普通设计办法,提高电子电路设计和实验能力,为此后从事生产和科研工作打下一定基本。
为毕业设计和此后从事电子技术方面工作打下基本。
设计环节:依照题目拟定性能指标,电路预设计,实验,修改设计。
衡量设计原则:工作稳定可靠,能达到所规定性能指标,并留有恰当裕量;电路简朴、成本低;功耗低;所采用元器件品种少、体积小并且货源充分;便于生产、测试和维修。
二、惯用电子电路普通设计办法惯用电子电路普通设计办法是:选取总体方案,设计单元电路,选取元器件,计算参数,审图,实验(涉及修改测试性能),画出总体电路图。
1.总体方案选取设计电路第一步就是选取总体方案。
所谓总体方案是依照所提出任务、规定和性能指标,用品有一定功能若干单元电路构成一种整体,来实现各项功能,满足设计题目提出规定和技术指标。
由于符合规定总体方案往往不止一种,应当针对任务、规定和条件,查阅关于资料,以广开思路,提出若干不同方案,然后仔细分析每个方案可行性和优缺陷,加以比较,从中取优。
在选取过程中,惯用框图表达各种方案基本原理。
框图普通不必画得太详细,只要阐明基本原理就可以了,但有些核心某些一定要画清晰,必要潮流需画出详细电路来加以分析。
2.单元电路设计在拟定了总体方案、画出详细框图之后,便可进行单元电路设计。
(1)依照设计规定和已选定总体方案原理框图,拟定对各单元电路设计规定,必要时应详细拟定重要单元电路性能指标,应注意各单元电路互相配合,要尽量少用或不用电平转换之类接口电路,以简化电路构造、减少成本。
(2)拟定出单元电Array路规定后,应全面检查以遍,的确无误后方可按一定顺序分别设计各个单元电路。
(3)选取单元电路构造形式。
普通状况下,应查阅关于资料,以丰富知识、开阔眼界,从而找到合用电路。
如果的确找不到性能指标完全满足规定电路时,也可选用与设计规定比较接近电路,然后调节电路参数。
md_0100电路实例
md_0100电路实例md_0100电路是一种常用于数字电路中的逻辑门电路,也被称为四输入与门。
它具有四个输入端(A、B、C、D)和一个输出端(Y),其输出信号为四个输入信号的与运算结果。
在本文中,我们将详细介绍md_0100电路的工作原理和应用。
让我们来了解一下md_0100电路的工作原理。
md_0100电路中的四个输入端(A、B、C、D)通过导线与逻辑门内部的电路连接。
当输入信号都为高电平(1)时,输出端(Y)才会输出高电平(1),否则输出低电平(0)。
这意味着只有当四个输入信号同时满足高电平条件时,输出端才会输出高电平信号。
md_0100电路的应用非常广泛。
它常用于数字电路中的逻辑运算,如编码器、解码器、多路选择器等。
例如,在一个多路选择器中,md_0100电路可以用来判断选择信号的有效性,从而选择正确的输入端作为输出信号。
此外,md_0100电路还可以用于数据加密和解密等领域,确保数据的安全性和准确性。
在实际应用中,md_0100电路的设计和制造需要考虑多个因素。
首先是电路的输入和输出电平,一般为标准的逻辑电平(0V和5V)或差分信号。
其次是电路的功耗和面积,尽量减小功耗和电路占用的面积,以提高整个系统的性能和效率。
此外,还需要考虑电路的可靠性和稳定性,以及对温度和电压等外部环境的适应能力。
在设计md_0100电路时,需要根据具体的需求确定输入和输出信号的逻辑关系。
例如,在一个编码器中,输入信号可能是不同的传感器信号,而输出信号则是将传感器信号转换为对应的编码信号。
因此,在设计过程中需要明确输入和输出信号的含义和逻辑关系,以确保电路的正确工作。
在实际应用中,md_0100电路还需要与其他电路和设备进行连接和配合。
例如,在一个数字系统中,md_0100电路可能需要与存储器、处理器和输入输出设备等进行数据的交互和传输。
因此,在设计和使用md_0100电路时,需要考虑与其他电路和设备的兼容性和接口问题,以确保整个系统的正常运行。
数字电路实验报告-组合逻辑电路的设计:一位全加器
Si
Ci
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
1
1
0
0
1
1
1
1
1
1
描述
一位全加器的表达式如下:
Si=Ai⊕Bi⊕Ci-1
实验仪器
1.电子技术综合实验箱
2.芯片74LS86、74LS08、74LS32
实验内容及步骤
各芯片的管脚图如下图所示:
一位全加器逻辑电路图如下所示:
1.按上图连线
电学实验报告模板
电学虚拟仿真实验室
实验名称
组合逻辑电路的设计:一位全加器
实验目的
1.学习组合逻辑电路的设计方法
2.掌握组合逻辑电路的调试方法
实验原理
真值表
一位全加器的真值表如下图,其中Ai为被加数,Bi为加数,相邻低位来的进位数为Ci-1,输出本位和为Si。向相邻高位进位数为Ci
输入
输出
Ci-1
Ai
2.测试其逻辑功能,并记录数据
实验结果及分析
实验数据:
Ci-1
Ai
Bi
Si
Ci
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
0
1
1
0
1
10010 Nhomakorabea1
0
1
0
1
数字电路课程设计(5篇)
数字电路课程设计(5篇)第一篇:数字电路课程设计数字电路课程设计要求:1.结合所学知识设计一简单实用电路(建议选多功能数字钟),并在实验室里完成实物电路的连接调试。
2.每人独立完成一篇课程论文,论文至少2000字,可手写,也可打印(打印稿的格式另附)。
3.要求写出设计背景,理论基础,设计思路,设计过程,调试过程,仿真过程(可选),最终电路等。
4.总结所设计电路的优点,缺点,改进方向。
5.严禁抄袭,所有雷同论文均以0分计。
6.选多功能数字钟的同学在数字电路实验室完成实验。
选其它题目的同学所需软硬件资源请自行解决。
第二篇:数字电路课程设计一、设计报告书的要求: 1.封面2.课程设计任务书(题目,设计要求,技术指标等)3.前言(发展现状、课程设计的意义、设计课题的作用等方面)。
3.目录4.课题设计(⑴ 写出你考虑该问题的基本设计思路,画出一个实现电路功能的大致框图。
⑵ 画出框图中的各部分电路,对各部分电路的工作原理应作出说明。
⑶ 画出整个设计电路的原理电路图,并简要地说明电路的工作原理。
⑷ 用protel画原理电路图。
(5)用Multisim或者Proteus画仿真图。
5.总图。
6.课题小结(设计的心得和调试的结果)。
7.参考文献。
二、评分依据:①设计思路,②单元电路正确与否,③整体电路是否完整,④电路原理说明是否基本正确,⑤报告是否清晰,⑥答辩过程中回答问题是否基本正确。
三、题目选择:(三人一组,自由组合)(设计要求,技术指标自己选择)1、基于DC4011水箱水位自动控制器的设计与实现水箱水位自动控制器,电路采用CD4011四与非门作为处理芯片。
要求能够实现如下功能:水箱中的水位低于预定的水位时,自动启动水泵抽水;而当水箱中的水位达到预定的高水位时,使水泵停止抽水,始终保持水箱中有一定的水,既不会干,也不会溢,非常的实用而且方便。
2、基于CD4011声控、光控延时开关的设计与实现要求电路以CD4011作为中心元件,结合外围电路,实现以下功能:在白天或光线较亮时,节电开关呈关闭状态,灯不亮;夜间或光线较暗时,节电开关呈预备工作状态,当有人经过该开关附近时,脚步声、说话声、拍手声等都能开启节电开关。
中职中专电子技术专业微型课数字电路设计实例
中职中专电子技术专业微型课数字电路设计实例数字电路设计是中职中专电子技术专业的重要课程内容之一。
在这门课程中,学生将学习到数字电路设计的基本原理和方法,并通过实例进行实践操作。
本文将以一个数字电路设计实例为例,详细介绍实例的设计过程和注意事项。
一、实例背景介绍我们的实例是设计一个4位全加器电路。
全加器是数字电路中常用的一个组合逻辑电路,用于实现加法运算。
该电路具有3个输入端(A、B、Cin)和2个输出端(S、Cout),其中A和B是要相加的两个位数,Cin是进位输入,S是和的位数,Cout是进位输出。
二、实例设计过程1. 确定逻辑功能在设计之前,我们需要明确全加器的逻辑功能。
根据全加器的真值表,我们可以得到以下逻辑关系:S = A ⊕ B ⊕ CinCout = (A ∧ B) ∨ (Cin ∧ (A ⊕ B))2. 划分模块为了方便设计和调试,我们可以将全加器电路划分为多个子模块。
在这个实例中,我们可以划分为三个子模块:半加器模块、全加器模块和4位全加器模块。
3. 设计子模块对于半加器模块,我们可以根据输入和输出的关系,用逻辑门来实现。
半加器的真值表如下:A B S Cout0 0 0 00 1 1 01 0 1 01 1 0 1根据真值表,我们可以得到半加器模块的逻辑关系:S = A ⊕ BCout = A ∧ B对于全加器模块,我们可以根据半加器模块的逻辑关系和输入输出关系,用逻辑门来实现。
全加器的真值表如下:A B Cin S Cout0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1根据真值表,我们可以得到全加器模块的逻辑关系:S = A ⊕ B ⊕ CinCout = (A ∧ B) ∨ (Cin ∧ (A ⊕ B))对于4位全加器模块,我们可以将多个全加器模块连接起来,形成一个级联的电路。
数字电路课程设计实验报告
数字电路课程设计设计报告学院:计算机与信息学院姓名:学号:班级:通信班指导老师:许良凤吴从中设计题目一:智力竞赛电子抢答器1.设计任务与要求(1)通道数8个,每路设置一个抢答按钮, 供抢答者使用。
(2)电路具有第一抢答信号的鉴别和锁存功能。
在主持人将系统复位并发出抢答指令后,若参赛者按抢答开关, 则该组指示灯亮, 显示电路显示出抢答者的组别, 同时扬声器发出“滴嘟”的双音, 音响持续2~3 s。
(3)电路应具备自锁功能, 一旦有人事先抢答, 其他开关不起作用。
2. 方案设计与论证总体框图:74LS148他各组按键封锁,使其不起作用。
回答完问题后,由主持人将所有按键回复,重新开始下一轮抢答。
因此要完成抢答器的逻辑功能,该电路至少应包括输入开关,数字显示,判别组控制以及组号锁存等部分。
当主持人控制开关处于“清除”位置时,输出端全部为低电平,于是74LS48的BI非为低电平,显示器灭灯;74LS148的选通输入端ST非为低电平,74LS148处于工作状态,此时锁存电路不工作。
当主持人开关拨到“开始”位置时,优先编码电路和锁存电路同时处于工作状态,即抢答器处于等待工作状态,等待输入端输入信号,当有选手将按钮按下时,经74LS48译码后,显示器上显示出选手编号。
此外,CTR为高电平,使74LS148的ST非端为高电平,74LS148处于禁止工作状态,锁存其他按钮的输入。
当按下的按钮松开后,74LS148的非为高电平,但由于CTR维持高电平不变,所以74LS148仍处于禁止工作状态,其他按钮的输入信号不会被接受。
这就保证了抢答者的优先性以及抢答电路的准确性。
当优先抢答者回答完问题后,由主持人操作控制开关S,使抢答电路复位,以便进行下一轮抢答。
功能模块:(1)输入电路:输入电路由锁存器74LS373和按键组成(2)锁存器控制电路:锁存器控制电路由相关的门电路组成(3)数码显示电路:优先编码器74LS148进行编码,编成的二进制代码再送到BCD码七段译码驱动器74LS247,最后送到共阳极的七段数码管,显示相应的数字。
数字电路综合实验-自动售货机
数字电路综合实验报告之简易自动售货机班级:姓名:班内序号:学号:日期:目录一、任务要求................................................................................ 错误!未定义书签。
二、系统设计 (4)1.结构框图 (4)2流程图 (5)三、波形分析及波形仿真 (6)⒈主程序 (8)⒉分频模块 (13)⒊防抖模块................................................................................................................ 错误!未定义书签。
⒋点阵模块................................................................................................................ 错误!未定义书签。
⒌译码模块................................................................................................................ 错误!未定义书签。
⒍中心模块................................................................................................................ 错误!未定义书签。
五、功能说明及资源利用情况 ....................................................... 错误!未定义书签。
1.功能说明.................................................................................................................... 错误!未定义书签。
数字电路课程设计实例
3 数字显示频率计
R26
22K
3 数字显示频率计:
⑴、CD40110:集计数、译码、锁存、驱动于一体的集成电路; CPU为加法输入端,CPD为减法输入端,QCO为进位输出端, QBO为借位 输出端, 本电路使用CPU输入端,第10个脉冲输入时,QCO输出的进位脉 冲送到高位计数器的CPU输入端; R端为清零端(高电平有效)
目
录
课程设计简介
1、防盗报警器 2、电子密码锁 3、智力竞赛抡答器 4、数字秒表 5、三色跑灯 6 、四路彩灯显示电路 7 、数字测频仪 8、电子电路的安装、调试与故障分析处理 9、关于元器件明细表(例) 10、关于课程设计说明书 11、参考资料 12、
任务:设计、组装并调试一个简单的电子电路装置。
关上门时,k1闭合接低电平,k2断开接高电平,不报警; 门被打开时,k1断开,电容充电,延时一段时间,变为 高电平,报警。延时时间t≈RC。k2一旦闭合就为低电平, 报警器马上报警。 K1、k2可用导线代替。
2 电子密码锁:
510Ω
1、平时,各触发器的Q端均为0,D0为1; 2、按正确密码(本例密码设为1479)按键,必须先按S1→Q0=1, 且使D1=1;再按
S4→Q1=1,且使D2=1;再按S7 →Q2=1,且使D3=1;再按S9→Q3=1,使锁控 电路工作,打开电磁门锁(本例用发光二极管LED显示,则发光二极管亮)。 同时门G1输入为0, G1输出为1→经R6、C2延迟后,各触发器R端为1→各触发 器复位为0。 3、按下密码错误时(一旦按下S0、S2、S3等) →各触发器R端为1,立即复位。 4、将S1、S4、S7、S9更换为其它按键,即更换了开锁密码。 问:按下密码错误时,如何报警?
Q1的输出即为IC2a的控制信号, 当Q1为高电平时, 被测信号可以通过IC2a、 IC2c 进入IC6(CD40110)的CPU端 ,进行计数,于是, 在1 秒内累计的计数脉冲个数即为 被测信号的频率;
数字逻辑电路设计题目
课题一交通灯控制逻辑电路设计一、概况为了确保十字路口的车辆顺利、畅通地通过,往往都采用自动控制的交通信号灯来进行指挥。
其中红灯(R)亮表示该条道路禁止通行;黄灯(Y)亮表示停车;绿灯(G)亮表示允许通行。
1.1 交通灯控制器系统框图二、设计任务和要求设计一个十字路口交通信号灯控制器,其要求如下:1.满足如图1.2顺序工作流程。
图中设南北方向的红、黄、绿灯分别为NSR、NSY、NSG,东西方向的红、黄、绿灯分别为EWR、EWY、EWG。
它们的工作方式,有些必须是并行进行的,即南北方向绿灯亮,东西方向红灯亮;南北方向黄灯亮,东西方向红灯亮;南北方向红灯亮,东西方向绿灯亮;南北方向红灯亮,东西方向黄灯亮。
t为时间单位图1.2 交通灯顺序工作流程图2. 应满足两个方向的工作时序:即东西方向亮红灯时间应等于南北方向亮黄、绿灯时间之和,南北方向亮红灯时间应等于东西方向亮黄、绿灯时间之和。
时序工作流程图见图3.3所示。
图3.3中,假设每个单位时间为3秒,则南北、东西方向绿、黄、红灯亮时间分别为15秒、3秒、18秒,一次循环为36秒。
其中红灯亮的时间为绿灯、黄灯亮的时间之和,黄灯是间歇闪耀。
146789101112503254603tNSG图1.3 交通灯时序工作流程图3. 十字路口要有数字显示,作为时间提示,以便人们更直观地把握时间。
具体为:当某方向绿灯亮时,置显示器为某值,然后以每秒减1计数方式工作,直至减到数为“0”,十字路口红、绿等交换,一次工作循环结束,而进入下一步某方向的工作循环。
例如:当南北方向从红灯转换成绿灯时,置南北方向数字显示为18,并使数显计数器开始减“1”计数,当减到绿灯灭而黄灯亮(闪耀)时,数显得值应为3,当减到“0”时,此时黄灯灭,而南北方向的红灯亮;同时,使得东西方向的绿灯亮,并置东西方向的数显为18。
4. 可以手动调整和自动控制,夜间为黄灯闪耀。
5. 在完成上述任务后,可以对电路进行以下几方面的电路改进或扩展。
(整理)数字电路课程设计实例---24秒计时器
1 计数器概述1.1篮球竞赛24秒计时器功能数字电子技术在社会生活中发挥着越来越重要的作用,在生活中有着各种各样的应用。
因此课程设计是数字电子技术学习中非常重要的一个环节,它将学生的理论知识和实践能力统一起来,为以后的工作做好准备。
在篮球比赛中,规定了球员的持球时间不能超过24秒,否则就犯规了。
本课程设计的“篮球竞赛24秒计时器”可用于篮球比赛中,用于对球员持球时间24秒限制。
一旦球员的持球时间超过了24秒,它就自动报警从而判定此球员的犯规。
本课程设计是脉冲数字电路的简单应用,设计了篮球竞赛24秒计时器。
此计时器功能齐全,有显示24秒倒计时的功能,同时系统设置外部操作开关,控制计时器的直接清零、启动、暂停、连续功能。
而在直接清零时,数码管显示器灭灯,计时器为24秒递减计时其计时间间隔为1秒,计时器递减计时到零时,数码管显示器不灭灯,同时发出光电报警信号。
1.2设计任务及要求1.2.1 基本要求(1)显示24秒计时功能。
(2)设置外部操作开关控制计时器直接清零、启动、暂停/连续功能。
(3)在直接清零时,要求数码显示器灭灯。
(4)计时器为24秒递减计时器,其计时间隔为1秒。
(5)递减计时到零时,显示器不能灭灯,同时发出光电报警信号。
(6)秒脉冲由555多谐振荡器给出。
1.2.2设计任务及目标(1)根据原理图分析各单元电路的功能;(2)熟悉电路中所用到的各集成块的管脚及其功能;(3)进行电路的装接、调试、直到电路能达到规定的设计要求;(4)写出完整、详细的课程设计报告1.2.3 主要参考器件555 晶体定时器74 LS74双D触发器74LS47译码器74192双时钟十进制计数器2 电路设计原理与单元模块2.1设计原理24秒计时器的总体参考方案框图如图2.1所示。
它包括秒脉冲发生器、计数器、译码显示电路、报警电路和辅助时序控制电路等五个模块组成。
其中计数器和控制电路是系统的主要模块。
计数器完成24秒计时功能.而控制电路完成计数器的直接清零、启动计数、暂停/连续计数;译码显示电路的显示与灭灯、定时时间到启动报警等功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验测试
• 仿真测试 使用PROTEUS系统 画出电路图,按要求顺序接通 开关,观察并记录显示结果。
• 利用实际器件组装电路,按要 求顺序接通开关,观察并记录 显示结果。
记录表格
序号 0 1 2 3 4 5 6 7
开关C 断 断 断 通 通 通 通 断
开关B 断 断 通 通 通 断 断 通
开关A 断 通 通 通 断 断 通 断
右转
减速
开关 S1 S0 00 01 10 11
左灯尾 D0 D1 D2 灭 001 010 100 灭
CP CP CP
右尾灯 D3 D4 D5 灭 灭
100 010 001CP CP CPຫໍສະໝຸດ *与表1对比转弯移位方式不同
实现方案1
• 用计数器和译码电路实现
时钟
三态 计数 电路
译
指
码
示
电
灯
路
左转向
移码
号PL,置数“00” • 减计数到“00”由借位信号经7432译码
产生置数信号PL,置数“23”
74LS192引脚
74LS192状态转换图
电路仿真
• 采用PROTEUS软件 1. 加载器件 2. 连接电路 3. 设置时钟 4. 运行仿真 5. 记录显示状态
0-23加计数电路
个位
十位
0-23减计数电路
汽车尾灯控制电路
题目设计要求(设计参考P225) 设计一个汽车尾灯控制电路,实现在正
常行驶和停车时指示灯全灭,在左转弯和 右转弯时以动态流水灯形式指示转弯和转 弯的方向,在汽车刹车时使所以尾灯闪烁, 提醒后边的车辆防止追尾事故发生。
信号分析要求
输入控制信号:左转向信号 右转向信号 电路指示灯分两组:左灯3个 右灯3个 电路工作分四种状态: 1 前进(包括停车): 左右灯全灭 2 左转向:左灯左移 3 右转向:右灯右移 4 刹 车:左右灯均闪烁
指示灯驱动表1
运行 状态 前进 左传
开关 S1 S0 00 01
右转 1 0
减速 1 1
左灯尾 D0 D1 D2 灭 001 011 111 110 100 000 灭
CP CP CP
右尾灯 D3 D4 D5 灭 灭
100 110 111 011 001 000 CP CP CP
指示灯驱动表2
运行 状态 前进 左传
右转向
电路
译 码 电 路
指 示 灯
实现方案2
• 用双向移位寄存器实现
时钟
向左 移位 电路
驱 动 电 路
指 示 灯
左转向 右转向
移码 电路
向右 移位 电路
驱 动 电 路
指 示 灯
方案和器件选择
• 方案1的实现参考教材217页 • 方案2用双向移位寄存器77LS194和与非
门实现。
• 指示灯驱动选择驱动表1 • 指示灯采用LED发光二极管实现,工作
设计步骤
• 逻辑抽象
a 确定输入输出变量数和状态数,b 确定逻辑状 态的含义并编号,c 按题意列出状态转换图。
• 状态简化 将等价状态合并得到最简状态图 • 选择器件 选择出器件类型和控制信号 • 画出逻辑电路 • 测试电路功能
状态流程
• 加计数状态流程 • 00 -01 -02-03-04-05-06-07-08
实现方法1
• 由74LS138和或非门实现 Y=ABC+ABC+ABC+ABC
• Y=ABC+ABC+ABC+ABC • 由74LS138实现三变量的逻辑与运算,得
到ABC ABC ABC 和ABC • 由或非门实现逻辑或运算,由于74LS138
输出负逻辑信号,可以用74LS20与非门 实现。
74LS138
74LS20
Y=A*B*C*D
实现电路1
实现方法2
组合电路的逻辑化简 Y=ABC+ABC+ABC+ABC Y=(A+A)BC+AB(C+C)=BC+AB
此公式形式最简但,电路不是最简 进一步化简: Y=BC*AB=(B+C)*AB=ABB*ABC 此表达式全部有与非门实现,达到电路最简
实现电路2
电路原理2
4 左转弯右转弯的实现:
利用194的S1 S2控制左移和右移的特性分别 实现左转弯和右转弯控制。
a 左转弯信号控制左移电路实现左转弯。
b 右转弯信号控制右移电路实现右转弯。
5 三状态流水效果的实现:
194是四位移位寄存器,左移电路采用Q1 Q2 Q3三个信号输出,将Q1反相输入到左移 信号输入端SL。在时钟的作用下实现状态 转换。
DAC0832结构
DAC0832的传输特性
数控放大器
电路原理电路
实验报告
1. 画出设计的原理电路图。 2. 定量画出输出的电压波形,写出输出电
压与输入数值的表达式。 3. 说明台阶的幅度与参考电压的关系 4. 说明台阶数量与计数器的关系。 5. 说明如果想输出三角波电路如何改进。
实验五、综合设计实验
电路原理3
右移电路采用Q0 Q1 Q2三个信号输出, 将Q2反相输入到右移信号输入端SR。 指示灯的实际移位方向取决于灯的实际 排列顺序。
6 刹车闪烁的实现 当刹车是左右六个灯全部闪烁,利用194 的置数功能实现,当S0 S1都为高电平时, 在时钟的上升沿将ABCD 置入Q0 Q1 Q2 Q3
电路原理4
的指示灯,驱动电路应如何考虑。
转向控制信号在刹车时正好都为高电平, 由于置数是在时钟的上升沿完成,所以 必须相邻的两个上升沿对应的ABCD有不 同的逻辑状态。
实现方法1:将时钟2分频作为ABCD信号。 用触发器实现。
实现方法2:将时钟信号倍频作为194的实 际时钟,原时钟信号作为ABCD输入信号, 用异或门实现。
电路图1
电路图2
2 由转弯信号作为LED的驱动电源控制完 成左右转弯选择。
3 电路的LED驱动输出低电平有效。 4 当转弯信号都为低时指示灯全灭。
采用驱动表2的电路
实验报告
• 写出设计要求和选择的方案 • 画出设计电路,标出器件名称、引
脚名称和编号。 • 描述电路原理。 • 自行设计表格记录测试结果。 • 思考题:如果要使用12伏较大功率
数字电路实验要求
1、组合电路实验 2、时序电路实验 3、555应用实验 4、D/A转换器实验 5、综合设计实验
实验一、组合电路实验
实验设计要求:
1、某设备有三个开关ABC要求必须按ABC的 顺序接通。否则发出报警信号。
2、写出设计步骤并画出所设计的电路图。 3、安装并调试电路的逻辑功能。 4、观察电路中的竞争冒险现象并采取措施消除。 提示:设开关闭合为1,断开为0。则顺序导通 过程为:000 100 110 111 否则报警
组合电路设计
设计步骤:
1、将实际问题简化成数字逻辑问题。设开关接 通为“1”,断开为“0”,则顺序导通过程为: 000 100 110 111 否则报警。 2、写出逻辑表达式,Y=000+100+110+111 3、逻辑化简变成与非关系。 4、画出逻辑表达式的电路图。 5、安装并调试电路的逻辑功能。表格自己设计
个位
十位
电路连接实验
• 按电路接线,检查无误接通电源 (5V)
• 接入1Hz的时钟脉冲,观察并记 录显示器的结果。
• 与设计要求比较。
实验报告
1 实验目的 2 写出器件的主要性能和电路设计
中使用的特性 3 画出设计电路 4 列出实验结果并与设计要求比较 5 实验总结
实验三、555应用实验
1、设计多谐振荡器电路,要求输出信号频 率1000Hz(参考P228 )
电路图3
电路3说明
• 利用一个移位寄存器和两个与非门实现 1 左右电路由转弯信号通过与非门选择完 成。 2 移位方向由转弯信号控制,SL=/Q1 SR=/Q2 3 LED驱动输出信号低电平有效。 4 刹车闪烁由移位寄存器置数实现,左右 电路同时被选中。
电路图4
电路4说明
1 原理与图3相同,省略了左右选择电路, 使电路大大简化。
-09-10-11-12-13-14-15-16- 17-18-19-20-21-22-23-00 • 减计数状态流程 • 23-22-21-20-19-18-17-16-15 -14-13-12-11-10-09-08-07- 06-05-04-03-02-01-00-23
器件选择与电路设计
• 选择两片74LS192分为高位和地位。 • 高位计数0 - 2 三个状态 • 低位有0-9 • 采用置数法实现,选择192的PL控制端 • 加计数到“23”经7400译码产生置数信
指示灯
实验报告
1 实验目的。 2 写出化简过程。 3 画出设计电路。 4 列出实验结果并与设计要求比较。 5 实验总结。
实验二、时序电路
实验设计要求:参考P225设计课题, 设计 M=24的加计数器和减计数器。
1、加计数:00-01--23
2、减计数:23-22--00
3、画出设计电路原理图。 4、安装并调试电路的逻辑功能。
2、设计一个单稳态电路,输出脉宽0.5S。
3、两电路组合实现一个触发报警电路,每 触发一次输出1000Hz的脉冲持续0.5秒.
4、画出电路原理图,标出引脚名和引脚号。
5、安装电路,测量输出信号的频率和占空 比(高电平占周期的比例)。
555的封装
555内部结构
多谐振荡电路1
多谐电路计算方法
多谐振荡电路2
电流较小,可以用数字电路的输出直接 驱动
74LS194引脚
74LS194真值表
电路原理1
1 采用两片74LS194分别组成左灯控制电路 和右灯控制电路。