新湘教版九年级下册数学全册教案.pdf

合集下载

湘教版数学九年级下期全册教案

湘教版数学九年级下期全册教案

第1章 二次函数1.1 二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围. 【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系. 【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识. 【教学重点】二次函数的概念. 【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m 2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x 2+100x,(0<x<50);电脑价格y (元)与平均降价率x 的关系式是y=6000x 2-12000x+6000,(0<x<1).它们有什么共同点?一般形式是y=ax 2+bx+c(a,b,c 为常数,a ≠0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有. 二、思考探究,获取新知 二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax 2+bx+c(a,b,c 是常数,a ≠0)的函数,叫做二次函数,其中x 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出. 三、典例精析,掌握新知例1 指出下列函数中哪些是二次函数.(1)y=(x-3)2-x 2 ;(2)y=2x(x-1);(3)y=32x-1;(4)y=22x;(5)y=5-x 2+x.【分析】先化为一般形式,右边为整式,依照定义分析. 解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路: 1.将函数化为一般形式. 2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0. 例2 讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围. 例3 已知函数y=(m 2-m)x 2+mx+(m+1)(m 是常数),当m 为何值时: (1)函数是一次函数; (2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.解:(1)由200m m m ⎧-=⎨≠⎩ 得010m m ⎩=≠⎧⎨或 , ∴m=1.即当m=1时,函数y=(m 2-m)x 2+mx+(m+1)是一次函数. (2)由m 2-m ≠0得m ≠0且m ≠1,∴当m ≠0且m ≠1时,函数y=(m 2-m)x 2+mx+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是( )A. 2123y x x =+- B.y=3x 3+2x 2 C.y=(x-2)2-x 3D.21y =2.二次函数y=2x(x-1)的一次项系数是( ) A.1 B.-1 C.2 D.-23.若函数232(3)1k k y k x kx -+=-++ 是二次函数,则k 的值为( ) A.0 B.0或3 C.3 D.不确定4.若y=(a+2)x 2-3x+2是二次函数,则a 的取值范围是 .5.已知二次函数y=1-3x+5x 2,则二次项系数a= ,一次项系数b= ,常数项c= .6.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式 ,它 (填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为x 的圆(圆心与正方形的中心重合),剩余部分的面积为y.(1)求y 关于x 的函数关系式; (2)试求自变量x 的取值范围; (3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位).5.5,-3,16.21122y x x =- 是【答案】1.D 2.D 3.A 4.a ≠-2 7.(1)y=25-πx 2=-πx 2+25. (2)0<x ≤52.(3)当x=2时,y=-4π+25≈-4³3.14+25=12.44≈12.4. 即剩余部分的面积约为12.4.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导. 五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.教材P 4第1~3题.2.完成同步练习册中本课时的练习.本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.1.2 二次函数的图象与性质第1课时 二次函数y=ax 2(a >0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a >0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a >0)的图象和性质解决简单的实际问题. 【过程与方法】经历探索二次函数y=ax 2(a >0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯. 【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax 2(a >0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性. 【教学重点】1.会画y=ax 2(a >0)的图象. 2.理解,掌握图象的性质. 【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2 如何用描点法画一个函数图象呢? 【教学说明】 ①略;②列表、描点、连线. 二、思考探究,获取新知探究1 画二次函数y=ax 2(a >0)的图象. 画二次函数y=ax 2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x 2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y 轴对称的特征. ③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势. 如图(1)就是y=x 2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形. 如图(2)就是漏掉点(0,0)的y=x 2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x 2图象的错误画法.探究2 y=ax 2(a >0)图象的性质在同一坐标系中,画出y=x 2, 212y x ,y=2x 2的图象.【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数y=ax2(a >0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y 随x 的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.y=ax 2(a >0)图象的性质 1.图象开口向上.2.对称轴是y 轴,顶点是坐标原点,函数有最低点.3.当x >0时,y 随x 的增大而增大,简称右升;当x <0时,y 随x 的增大而减小,简称左降. 三、典例精析,掌握新知 例 已知函数24(2)k k y k x +-=+是关于x 的二次函数. (1)求k 的值.(2)k 为何值时,抛物线有最低点,最低点是什么?在此前提下,当x 在哪个范围内取值时,y 随x 的增大而增大?【分析】此题是考查二次函数y=ax 2的定义、图象与性质的,由二次函数定义列出关于k 的方程,进而求出k 的值,然后根据k+2>0,求出k 的取值范围,最后由y 随x 的增大而增大,求出x 的取值范围.解:(1)由已知得22042k k k +≠+-=⎧⎨⎩ ,解得k=2或k=-3.所以当k=2或k=-3时,函数24(2)k k y k x +-=+是关于x 的二次函数. (2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.由(1)知k=2,最低点是(0,0),当x ≥0时,y 随x 的增大而增大. 四、运用新知,深化理解1.(广东广州中考)下列函数中,当x >0时,y 值随x 值增大而减小的是( )A.y=x 2B.y=x-1C. 34y x =D.y=1x2.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y=x 2的图象上,则( ) A.y 1<y 2<y 3 B.y 1<y 3<y 2 C.y 3<y 2<y 1 D.y 2<y 1<y 33.抛物线y=13x 2的开口向 ,顶点坐标为 ,对称轴为 ,当x=-2时,y= ;当y=3时,x= ,当x ≤0时,y 随x 的增大而 ;当x >0时,y 随x 的增大而 .4.如图,抛物线y=ax 2上的点B ,C 与x 轴上的点A (-5,0),D (3,0)构成平行四边形ABCD ,BC 与y 轴交于点E (0,6),求常数a 的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.A 3.上,(0,0),y 轴, 43,±3,减小,增大4.解:依题意得:BC=AD=8,BC ∥x 轴,且抛物线y=ax 2上的点B ,C 关于y 轴对称,又∵BC 与y 轴交于点E (0,6),∴B 点为(-4,6),C 点为(4,6),将(4,6)代入y=ax 2得:a=38.五、师生互动,课堂小结1.师生共同回顾二次函数y=ax 2(a >0)图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.1.教材P 7第1、2题.2.完成同步练习册中本课时的练习.本节课是从学生画y=x 2的图象,从而掌握二次函数y=ax 2(a >0)图象的画法,再由图象观察、探究二次函数y=ax 2(a >0)的性质,培养学生动手、动脑、探究归纳问题的能力.第2课时 二次函数y=ax 2(a <0)的图象与性质【知识与技能】1.会用描点法画函数y=ax 2(a <0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax 2(a <0)的图象与性质解决简单的实际问题. 【过程与方法】经历探索二次函数y=ax 2(a <0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯. 【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax 2(a ≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性. 【教学重点】①会画y=ax 2(a<0)的图象;②理解、掌握图象的性质. 【教学难点】二次函数图象的性质及其探究过程和方法的体会.一、情境导入,初步认识1.在坐标系中画出y=12 x 2的图象,结合y=12x 2的图象,谈谈二次函数y=ax 2(a >0)的图象具有哪些性质?2.你能画出y=-12x 2的图象吗?二、思考探究,获取新知探究1 画y=ax 2(a <0)的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y=-12x 2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,y=12 x 2与y=-12x 2有何关系?归纳:y=12 x 2与y=-12x 2二者图象形状完全相同,只是开口方向不同,两图象关于y 轴对称.(教师引导学生从理论上进行证明这一结论)探究2 二次函数y=ax 2(a <0)性质问:你能结合y=-12x 2的图象,归纳出y=ax 2(a <0)图象的性质吗?【教学说明】教师提示应从开口方向,对称轴,顶点位置,y 随x 的增大时的变化情况几个方面归纳,教师整理,强调y=ax 2(a<0)图象的性质.1.开口向下.2.对称轴是y 轴,顶点是坐标原点,函数有最高点.3.当x >0时,y 随x 的增大而减小,简称右降,当x <0时,y 随x 的增大而增大,简称左升.探究3 二次函数y=ax 2(a ≠0)的图象及性质 学生回答:【教学点评】一般地,抛物线y=ax 2的对称轴是 ,顶点是 ,当a >0时抛物线的开口向 ,顶点是抛物线的最 点,a 越大,抛物线开口越 ;当a <0时,抛物线的开口向 ,顶点是抛物线的最 点,a 越大,抛物线开口越 ,总之,|a|越大,抛物线开口越 .答案:y 轴,(0,0),上,低,小,下,高,大,小 三、典例精析,掌握新知 例1 填空:①函数2的图象是 ,顶点坐标是 ,对称轴是 ,开口方向是 .②函数y=x 2,y=12x 2和y=-2x 2的图象如图所示,请指出三条抛物线的解析式.解:①抛物线,(0,0),y 轴,向上;②根据抛物线y=ax 2中,a的值的作用来判断,上面最外面的抛物线为y=12x 2,中间为y=x 2,在x 轴下方的为y=-2x 2.【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax 2中,当a >0时,开口向上;当a <0时,开口向下,|a|越大,开口越小.例2 已知抛物线y=ax 2经过点(1,-1),求y=-4时x 的值.【分析】把点(1,-1)的坐标代入y=ax 2,求得a 的值,得到二次函数的表达式,再把y=-4代入已求得的表达式中,即可求得x 的值.解:∵点(1,-1)在抛物线y=ax 2上,-1=a ²12,∴a=-1,∴抛物线为y=-x 2.当y=-4时,有-4=-x 2,∴x=±2.【教学说明】在求y=ax 2的解析式时,往往只须一个条件代入即可求出a 值. 四、运用新知,深化理解1.下列关于抛物线y=x 2和y=-x 2的说法,错误的是( ) A.抛物线y=x 2和y=-x 2有共同的顶点和对称轴 B.抛物线y=x 2和y=-x 2关于x 轴对称 C.抛物线y=x 2和y=-x 2的开口方向相反D.点(-2,4)在抛物线y=x 2上,也在抛物线y=-x 2上2.二次函数y=ax 2与一次函数y=-ax(a ≠0)在同一坐标系中的图象大致是( )3.二次函数226(1)m m y m x +-=-,当x <0时,y 随x 的增大而减小,则m= . 4.已知点A (-1,y 1),B(1,y 2),C(a,y 3)都在函数y=x 2的图象上,且a >1,则y 1,y 2,y 3中最大的是 .5.已知函数y=ax 2经过点(1,2).①求a 的值;②当x <0时,y 的值随x 值的增大而变化的情况. 【教学说明】学生自主完成,加深对新知的理解和掌握,当学生疑惑时,教师及时指导. 【答案】1.D 2.B 3.2 4.y 35.①a=2 ②当x <0时,y 随x 的增大而减小 五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑?在学生回答的基础上,教师点评:(1)y=ax 2(a<0)图象的性质;(2)y=ax2(a≠0)关系式的确定方法.1.教材P10第1~2题.2.完成同步练习册中本课时的练习.本节课仍然是从学生画图象,结合上节课y=ax2(a>0)的图象和性质,从而得出y=ax2(a<0)的图象和性质,进而得出y=ax2(a≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时二次函数y=a(x-h)2的图象与性质【知识与技能】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数y=a(x-h)2的图象的作法和性质的过程,进一步领会数形结合的思想.【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握y=a(x-h)2的图象及性质.【教学难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识1.在同一坐标系中画出y=12x2与y=12(x-1)2的图象,完成下表.2.二次函数y=12(x-1)2的图象与y=12x2的图象有什么关系?3.对于二次函数12(x-1)2,当x取何值时,y的值随x值的增大而增大?当x取何值时,y的值随x值的增大而减小?二、思考探究,获取新知归纳二次函数y=a(x-h)2的图象与性质并完成下表.三、典例精析,掌握新知 例1 教材P 12例3.【教学说明】二次函数y=ax 2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”. 例如y=ax 2向左平移1个单位得到y=a(x+1)2,y=ax 2向右平移2个单位得到y=a(x-2)2的图象.例2 已知直线y=x+1与x 轴交于点A ,抛物线y=-2x 2平移后的顶点与点A 重合.①水平移后的抛物线l 的解析式;②若点B (x 1,y 1),C(x 2,y 2)在抛物线l 上,且-12<x 1<x 2,试比较y 1,y 2的大小.解:①∵y=x+1,∴令y=0,则x=-1,∴A (-1,0),即抛物线l 的顶点坐标为(-1,0),又∵抛物线l是由抛物线y=-2x 2平移得到的,∴抛物线l 的解析式为y=-2(x+1)2.②由①可知,抛物线l 的对称轴为x=-1,∵a=-2<0,∴当x >-1时,y 随x 的增大而减小,又-12<x 1<x 2,∴y 1>y 2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点. 四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是( ) A.-1 B.1 C.0 D.没有最小值2.抛物线y=-3(x+1)2不经过的象限是( )A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=kx中,当x >0时,y 随x 的增大而增大,则二次函数y=k(x-1)2的图象大致是( )4.(1)抛物线y=13x 2向 平移 个单位得抛物线y=13(x+1)2;(2)抛物线 向右平移2个单位得抛物线y=-2(x-2)2.5.(广东广州中考)已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大?当x取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1.C 2.A 3.B 4.(1)左,1 (2)y=-2x25.解:(1)y=-13(x+2)2 (2)略(3)当x<-2时,y随x增大而增大;当x=-2时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.1.教材P12第1、2题.2.完成同步练习册中本课时的练习.通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h决定向左右平移;从中领会数形结合的数学思想.第4课时二次函数y=a(x-h)2+k的图象与性质【知识与技能】1.会用描点法画二次函数y=a(x-h)2+k的图象.掌握y=a(x-h)2+k的图象和性质.2.掌握y=a(x-h)2+k与y=ax2的图象的位置关系.3.理解y=a(x-h)2+k,y=a(x-h)2,y=ax2+k及y=ax2的图象之间的平移转化.【过程与方法】经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣.【教学重点】二次函数y=a(x-h)2+k的图象与性质.【教学难点】由二次函数y=a(x-h)2+k的图象的轴对称性列表、描点、连线.一、情境导入,初步认识复习回顾:同学们回顾一下:①y=ax2,y=a(x-h)2,(a≠0)的图象的开口方向、对称轴、顶点坐标,y随x的增减性分别是什么?②如何由y=ax2(a≠0)的图象平移得到y=a(x-h)2的图象?③猜想二次函数y=a(x-h)2+k的图象开口方向、对称轴、顶点坐标及y随x的增减性如何?二、思考探究,获取新知探究1 y=a(x-h)2+k的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:①y=-12(x+1)2-1图象的开口方向、对称轴、顶点坐标及y随x的增减性如何?②将抛物线y=-12x2向左平移1个单位,再向下平移1个单位得抛物线y=-12(x+1)2-1.2.同学们讨论回答:①一般地,当h>0,k>0时,把抛物线y=ax2向右平移h个单位,再向上平移k个单位得抛物线y=a(x-h)2+k;平移的方向和距离由h,k的值来决定.②抛物线y=a(x-h)2+k的开口方向、对称轴、顶点坐标及y随x的增减性如何?探究2二次函数y=a(x-h)2+k的应用【教学说明】二次函数y=a(x-h)2+k的图象是,对称轴是,顶点坐标是,当a>0时,开口向,当a <0时,开口向.答案:抛物线,直线x=h,(h,k),上,下三、典例精析,掌握新知例1 已知抛物线y=a(x-h)2+k,将它沿x轴向右平移3个单位后,又沿y轴向下平移2个单位,得到抛物线的解析式为y=-3(x+1)2-4,求原抛物线的解析式.【分析】平移过程中,前后抛物线的形状,大小不变,所以a=-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线y=-3(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=-3(x+4)2-2.【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.例2 如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向目标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C?并说明理由.【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.解:该火球能点燃目标.如图,以OB所在直线为x轴,OA所在直线为y轴建立直角坐标系,则点(12,20)为抛物线顶点,设解析式为y=a(x-12)2+20,∵点(0,2)在图象上,∴144a+20=2,∴a=-18,∴y=-18(x-12)2+20.当x=20时,y=-18³(20-12)2+20=12,即抛物线过点(20,12),∴该火球能点燃目标.【教学说明】二次函数y=a(x-h)2+k的应用关键是构造出二次函数模型.四、运用新知,深化理解1.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向上平移4个单位2.抛物线y=x2-4与x轴交于B,C两点,顶点为A,则△ABC的周长为()3.函数y=ax2-a与y=ax-a(a≠0)在同一坐标系中的图象可能是()4.二次函数y=-2x2+6的图象的对称轴是,顶点坐标是,当x 时,y随x的增大而增大.5.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a= ,c= .6.把抛物线y=(x-1)2沿y轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.【答案】1.B 2.B 3.C 4.y轴,(0,6),<0 5.3,2 6.y=(x-1)2-4五、师生互动,课堂小结1.这节课你学到了什么,还有哪些疑惑?2.在学生回答的基础上,教师点评:①二次函数y=a(x-h)2+k的图象与性质;②如何由抛物线y=ax2平移得到抛物线y=a(x-h)2+k.【教学说明】教师应引导学生自主小结,加深理解掌握y=ax2与y=a(x-h)2+k二者图象的位置关系.第1~3题.1.教材P152.完成同步练习册中本课时的练习.掌握函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.第5课时二次函数y=ax2+bx+c的图象与性质【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质. 【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x 2+6x-1的图象.4.抛物线y=-2x 2如何平移得到y=-2x 2+6x-1的图象.5.二次函数y=-2x 2+6x-1的y 随x 的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax 2+bx+c 与y=a(x-h)2+k 的转化过程.二、思考探究,获取新知探究1 如何画y=ax 2+bx+c 图象,你可以归纳为哪几步? 学生回答、教师点评: 一般分为三步:1.先用配方法求出y=ax 2+bx+c 的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax 2+bx+c 图象的性质有哪些?你能试着归纳吗? 学生回答,教师点评:抛物线y=ax 2+bx+c=224()24b ac b a x a a -++ ,对称轴为x=-2b a ,顶点坐标为(-2b a ,244ac b a-),当a >0时,若x >-2b a ,y 随x 增大而增大,若x <-2b a ,y 随x 的增大而减小;当a <0时,若x >-2ba,y 随x 的增大而减小,若x<-2ba,y 随x 的增大而增大. 探究3 二次函数y=ax 2+bx+c 在什么情况下有最大值,什么情况下有最小值,如何确定? 学生回答,教师点评: 三、典例精析,掌握新知例1 将下列二次函数写成顶点式y=a(x-h)2+k 的形式,并写出其开口方向,顶点坐标,对称轴.①y=14x 2-3x+21 ②y=-3x 2-18x-22解:①y=14x 2-3x+21= 14(x 2-12x)+21 =14(x 2-12x+36-36)+21 =14(x-6)2+12. ∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6. ②y=-3x 2-18x-22=-3(x 2+6x)-22=-3(x 2+6x+9-9)-22=-3(x+3)2+5. ∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.【教学说明】第②小题注意h 值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2 用总长为60m 的篱笆围成的矩形场地,矩形面积S 随矩形一边长l 的变化而变化,l 是多少时,场地的面积S 最大?①S 与l 有何函数关系?②举一例说明S 随l 的变化而变化? ③怎样求S 的最大值呢? 解:S=l (30-l )=- l 2+30l (0<l <30)=-( l2-30l)=-( l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225)【教学说明】二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.四、运用新知,深化理解1.(北京中考)抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.(贵州贵阳中考)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(1,0),且与y轴相交于负半轴.(1)给出四个结论:①a>0;②0;④a+b+c=0.(2)给出四个结论:①abc<0;④a>1.【教学说明】通过练习,的图象和性质.【答案】1.A 2.B 3.(1)五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)用配方法求二次y=ax2+bx+c的顶点坐标、对称轴;(2)由y=ax2+bx+c的图象判断与a,b,c有关代数式的值的正负;(3)实际问题中自变量取值范围及函数最值.1.教材P15第1~3题.2.完成同步练习册中本课时的练习.y=ax2+bx+c的图象和性质可以看作是y=ax2,y=a(x-h)2+k,y=a(x-h)2+k的图象和性质的归纳与综合,让学生初步体会由简单到复杂,由特殊到一般的认识规律.*1.3 不共线三点确定二次函数的表达式【知识与技能】1.掌握用待定系数法列方程组求二次函数解析式.2.由已知条件的特点,灵活选择二次函数的三种形式,合适地设置函数解析式,可使计算过程简便. 【过程与方法】通过例题讲解使学生初步掌握,用待定系数法求二次函数的解析式.【情感态度】通过本节教学,激发学生探究问题,解决问题的能力.。

新湘教版九年级下册数学全册教案

新湘教版九年级下册数学全册教案

第1章二次函数1.1 二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(0<x<50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-12000x+6000,(0<x<1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.三、典例精析,掌握新知例1 指出下列函数中哪些是二次函数.(1)y=(x-3)2-x 2 ;(2)y=2x(x-1);(3)y=32x-1;(4)y=22x;(5)y=5-x 2+x. 【分析】先化为一般形式,右边为整式,依照定义分析.解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路:1.将函数化为一般形式.2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0.例2 讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围.例3 已知函数y=(m 2-m)x 2+mx+(m+1)(m 是常数),当m 为何值时:(1)函数是一次函数;(2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.解:(1)由200m m m ⎧-=⎨≠⎩ 得010m m ⎩=≠⎧⎨或 , ∴m=1.即当m=1时,函数y=(m 2-m)x 2+mx+(m+1)是一次函数. (2)由m 2-m ≠0得m ≠0且m ≠1,∴当m ≠0且m ≠1时,函数y=(m 2-m)x 2+mx+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是( )A. 2123y x x =+- B.y=3x 3+2x 2 C.y=(x-2)2-x 3 D.212y x =- 2.二次函数y=2x(x-1)的一次项系数是( )A.1B.-1C.2D.-23.若函数232(3)1k k y k x kx -+=-++ 是二次函数,则k 的值为( )A.0B.0或3C.3D.不确定4.若y=(a+2)x 2-3x+2是二次函数,则a 的取值范围是 .5.已知二次函数y=1-3x+5x 2,则二次项系数a= ,一次项系数b= ,常数项c= .6.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式 ,它 (填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为x 的圆(圆心与正方形的中心重合),剩余部分的面积为y.(1)求y 关于x 的函数关系式;(2)试求自变量x 的取值范围;(3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位).【答案】1.D 2.D 3.A 4.a ≠-2 5.5,-3,1 6.21122y x x =- 是 7.(1)y=25-πx 2=-πx 2+25.(2)0<x ≤52.(3)当x=2时,y=-4π+25≈-4×3.14+25=12.44≈12.4.即剩余部分的面积约为12.4.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.教材P 4第1~3题.2.完成同步练习册中本课时的练习.1.2 二次函数的图象与性质第1课时二次函数y=ax2(a>0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y 轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x 2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0,0)的y=x 2的图象的错误画法. 误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x 2图象的错误画法.探究2 y=ax 2(a >0)图象的性质在同一坐标系中,画出y=x 2, 212y x =,y=2x 2的图象. 【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数y=ax2(a >0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y 随x 的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.y=ax 2(a >0)图象的性质1.图象开口向上.2.对称轴是y 轴,顶点是坐标原点,函数有最低点.3.当x >0时,y 随x 的增大而增大,简称右升;当x <0时,y 随x 的增大而减小,简称左降.三、典例精析,掌握新知例 已知函数24(2)kk y k x +-=+是关于x 的二次函数.(1)求k 的值.(2)k 为何值时,抛物线有最低点,最低点是什么?在此前提下,当x 在哪个范围内取值时,y 随x 的增大而增大?【分析】此题是考查二次函数y=ax 2的定义、图象与性质的,由二次函数定义列出关于k 的方程,进而求出k 的值,然后根据k+2>0,求出k 的取值范围,最后由y 随x 的增大而增大,求出x 的取值范围.解:(1)由已知得22042k k k +≠+-=⎧⎨⎩ ,解得k=2或k=-3. 所以当k=2或k=-3时,函数24(2)k k y k x +-=+是关于x 的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.由(1)知k=2,最低点是(0,0),当x ≥0时,y 随x 的增大而增大.四、运用新知,深化理解1.(广东广州中考)下列函数中,当x >0时,y 值随x 值增大而减小的是( )A.y=x 2B.y=x-1C. 34y x =D.y=1x2.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y=x 2的图象上,则( )A.y 1<y 2<y 3B.y 1<y 3<y 2C.y 3<y 2<y 1D.y 2<y 1<y 33.抛物线y=13x 2的开口向 ,顶点坐标为 ,对称轴为 ,当x=-2时,y= ;当y=3时,x= ,当x ≤0时,y 随x 的增大而 ;当x >0时,y 随x 的增大而 .4.如图,抛物线y=ax 2上的点B ,C 与x 轴上的点A (-5,0),D (3,0)构成平行四边形ABCD ,BC 与y 轴交于点E (0,6),求常数a 的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.A 3.上,(0,0),y 轴, 43,±3,减小,增大 4.解:依题意得:BC=AD=8,BC ∥x 轴,且抛物线y=ax 2上的点B ,C 关于y 轴对称,又∵BC 与y 轴交于点E (0,6),∴B 点为(-4,6),C 点为(4,6),将(4,6)代入y=ax 2得:a=38. 五、师生互动,课堂小结1.师生共同回顾二次函数y=ax 2(a >0)图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.1.教材P 7第1、2题.2.完成同步练习册中本课时的练习. 第2课时 二次函数y=ax 2(a <0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.一、情境导入,初步认识1.在坐标系中画出y=12x2的图象,结合y=12x2的图象,谈谈二次函数y=ax2(a>0)的图象具有哪些性质?2.你能画出y=-12x2的图象吗?二、思考探究,获取新知探究1画y=ax2(a<0)的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y=-12x2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,y=12x2与y=-12x2有何关系?归纳:y=12x2与y=-12x2二者图象形状完全相同,只是开口方向不同,两图象关于y轴对称.(教师引导学生从理论上进行证明这一结论)x2的图象,归纳出y=ax2(a<0)图象的性质吗?探究2二次函数y=ax2(a<0)性质问:你能结合y=-12【教学说明】教师提示应从开口方向,对称轴,顶点位置,y随x的增大时的变化情况几个方面归纳,教师整理,强调y=ax2(a<0)图象的性质.1.开口向下.2.对称轴是y轴,顶点是坐标原点,函数有最高点.3.当x>0时,y随x的增大而减小,简称右降,当x<0时,y随x的增大而增大,简称左升.探究3二次函数y=ax2(a≠0)的图象及性质学生回答:【教学点评】一般地,抛物线y=ax2的对称轴是,顶点是,当a>0时抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越;当a<0时,抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越,总之,|a|越大,抛物线开口越 .答案:y轴,(0,0),上,低,小,下,高,大,小三、典例精析,掌握新知例1 填空:①函数y=(-2x)2的图象是,顶点坐标是,对称轴是,开口方向是 .②函数y=x2,y=1x2和y=-2x2的图象如图所示,2请指出三条抛物线的解析式.解:①抛物线,(0,0),y轴,向上;②根据抛物线y=ax2中,a的值的作用来判断,上面最外面的抛物线为y=1x2,中间为y=x2,在x轴下2方的为y=-2x2.【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax2中,当a>0时,开口向上;当a<0时,开口向下,|a|越大,开口越小.例2 已知抛物线y=ax2经过点(1,-1),求y=-4时x的值.【分析】把点(1,-1)的坐标代入y=ax 2,求得a 的值,得到二次函数的表达式,再把y=-4代入已求得的表达式中,即可求得x 的值.解:∵点(1,-1)在抛物线y=ax 2上,-1=a ·12,∴a=-1,∴抛物线为y=-x 2.当y=-4时,有-4=-x 2,∴x=±2.【教学说明】在求y=ax 2的解析式时,往往只须一个条件代入即可求出a 值.四、运用新知,深化理解1.下列关于抛物线y=x 2和y=-x 2的说法,错误的是( ) A.抛物线y=x 2和y=-x 2有共同的顶点和对称轴B.抛物线y=x 2和y=-x 2关于x 轴对称C.抛物线y=x 2和y=-x 2的开口方向相反D.点(-2,4)在抛物线y=x 2上,也在抛物线y=-x 2上2.二次函数y=ax 2与一次函数y=-ax(a ≠0)在同一坐标系中的图象大致是( )3.二次函数226(1)m m y m x +-=-,当x <0时,y 随x 的增大而减小,则m= .4.已知点A (-1,y 1),B(1,y 2),C(a,y 3)都在函数y=x 2的图象上,且a >1,则y 1,y 2,y 3中最大的是 .5.已知函数y=ax 2经过点(1,2).①求a 的值;②当x <0时,y 的值随x 值的增大而变化的情况. 【教学说明】学生自主完成,加深对新知的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.B 3.2 4.y 35.①a=2 ②当x <0时,y 随x 的增大而减小五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑?在学生回答的基础上,教师点评:(1)y=ax 2(a<0)图象的性质;(2)y=ax 2(a ≠0)关系式的确定方法. 1.教材P 10第1~2题.2.完成同步练习册中本课时的练习.第3课时 二次函数y=a(x-h)2的图象与性质【知识与技能】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数y=a(x-h)2的图象的作法和性质的过程,进一步领会数形结合的思想.【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握y=a(x-h)2的图象及性质.【教学难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识1.在同一坐标系中画出y=12x2与y=12(x-1)2的图象,完成下表.2.二次函数y=12(x-1)2的图象与y=12x2的图象有什么关系?3.对于二次函数12(x-1)2,当x取何值时,y的值随x值的增大而增大?当x取何值时,y的值随x值的增大而减小?二、思考探究,获取新知归纳二次函数y=a(x-h)2的图象与性质并完成下表.三、典例精析,掌握新知例1 教材P12例3.【教学说明】二次函数y=ax2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”. 例如y=ax2向左平移1个单位得到y=a(x+1)2,y=ax2向右平移2个单位得到y=a(x-2)2的图象.例2 已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.①水平移后的抛物线l 的解析式;②若点B(x1,y1),C(x2,y2)在抛物线l上,且-12<x1<x2,试比较y1,y2的大小.解:①∵y=x+1,∴令y=0,则x=-1,∴A(-1,0),即抛物线l的顶点坐标为(-1,0),又∵抛物线l是由抛物线y=-2x2平移得到的,∴抛物线l的解析式为y=-2(x+1)2.②由①可知,抛物线l的对称轴为x=-1,∵a=-2<0,∴当x>-1时,y随x的增大而减小,又-12<x1<x2,∴y1>y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是()A.-1B.1C.0D.没有最小值2.抛物线y=-3(x+1)2不经过的象限是()A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是()4.(1)抛物线y=13x2向平移个单位得抛物线y=13(x+1)2;(2)抛物线向右平移2个单位得抛物线y=-2(x-2)2.5.(广东广州中考)已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大?当x取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1.C 2.A 3.B 4.(1)左,1 (2)y=-2x25.解:(1)y=-13(x+2)2 (2)略(3)当x<-2时,y随x增大而增大;当x=-2时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.1.教材P12第1、2题.2.完成同步练习册中本课时的练习.第4课时二次函数y=a(x-h)2+k的图象与性质【知识与技能】1.会用描点法画二次函数y=a(x-h)2+k的图象.掌握y=a(x-h)2+k的图象和性质.2.掌握y=a(x-h)2+k与y=ax2的图象的位置关系.3.理解y=a(x-h)2+k,y=a(x-h)2,y=ax2+k及y=ax2的图象之间的平移转化.【过程与方法】经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣.【教学重点】二次函数y=a(x-h)2+k的图象与性质.【教学难点】由二次函数y=a(x-h)2+k的图象的轴对称性列表、描点、连线.一、情境导入,初步认识复习回顾:同学们回顾一下:①y=ax2,y=a(x-h)2,(a≠0)的图象的开口方向、对称轴、顶点坐标,y随x的增减性分别是什么?②如何由y=ax2(a≠0)的图象平移得到y=a(x-h)2的图象?③猜想二次函数y=a(x-h)2+k的图象开口方向、对称轴、顶点坐标及y随x的增减性如何?二、思考探究,获取新知探究1 y=a(x-h)2+k的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:①y=-1(x+1)2-1图象的开口方向、对称轴、顶点坐标及y随x的增减性如何?2②将抛物线y=-1x2向左平移1个单位,再向下平移1个单位得抛物线2y=-12(x+1)2-1.2.同学们讨论回答:①一般地,当h>0,k>0时,把抛物线y=ax2向右平移h个单位,再向上平移k个单位得抛物线y=a(x-h)2+k;平移的方向和距离由h,k的值来决定.②抛物线y=a(x-h)2+k的开口方向、对称轴、顶点坐标及y随x的增减性如何?探究2二次函数y=a(x-h)2+k的应用【教学说明】二次函数y=a(x-h)2+k的图象是,对称轴是,顶点坐标是,当a>0时,开口向,当a<0时,开口向.答案:抛物线,直线x=h,(h,k),上,下三、典例精析,掌握新知例1 已知抛物线y=a(x-h)2+k,将它沿x轴向右平移3个单位后,又沿y轴向下平移2个单位,得到抛物线的解析式为y=-3(x+1)2-4,求原抛物线的解析式.【分析】平移过程中,前后抛物线的形状,大小不变,所以a=-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线y=-3(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=-3(x+4)2-2.【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.例2 如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向目标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C?并说明理由.【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.解:该火球能点燃目标.如图,以OB所在直线为x轴,OA所在直线为y轴建立直角坐标系,则点(12,20)为抛物线顶点,设解析式为y=a(x-12)2+20,∵点(0,2)在图象上,∴144a+20=2,∴a=-18,∴y=-18(x-12)2+20.当x=20时,y=-18×(20-12)2+20=12,即抛物线过点(20,12),∴该火球能点燃目标.【教学说明】二次函数y=a(x-h)2+k的应用关键是构造出二次函数模型.四、运用新知,深化理解1.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向上平移4个单位2.抛物线y=x2-4与x轴交于B,C两点,顶点为A,则△ABC的周长为()A.45B.45+4C.12D.25+43.函数y=ax2-a与y=ax-a(a≠0)在同一坐标系中的图象可能是()4.二次函数y=-2x2+6的图象的对称轴是,顶点坐标是,当x 时,y随x 的增大而增大.5.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a= ,c= .6.把抛物线y=(x-1)2沿y轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.【答案】1.B 2.B 3.C 4.y轴,(0,6),<0 5.3,2 6.y=(x-1)2-4五、师生互动,课堂小结1.这节课你学到了什么,还有哪些疑惑?2.在学生回答的基础上,教师点评:①二次函数y=a(x-h)2+k的图象与性质;②如何由抛物线y=ax2平移得到抛物线y=a(x-h)2+k.【教学说明】教师应引导学生自主小结,加深理解掌握y=ax2与y=a(x-h)2+k二者图象的位置关系.1.教材P15第1~3题.2.完成同步练习册中本课时的练习.第5课时二次函数y=ax2+bx+c的图象与性质【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a ≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质. 【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x2+6x-1的图象.4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.5.二次函数y=-2x2+6x-1的y随x的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.二、思考探究,获取新知探究1 如何画y=ax 2+bx+c 图象,你可以归纳为哪几步? 学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax 2+bx+c 的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax 2+bx+c 图象的性质有哪些?你能试着归纳吗?学生回答,教师点评:抛物线y=ax 2+bx+c=224()24b ac b a x a a -++ ,对称轴为x=-2b a ,顶点坐标为(-2b a ,244ac b a -),当a >0时,若x >-2b a ,y 随x 增大而增大,若x <-2b a ,y 随x 的增大而减小;当a <0时,若x >-2b a,y 随x 的增大而减小,若x<-2b a ,y 随x 的增大而增大. 探究3 二次函数y=ax 2+bx+c 在什么情况下有最大值,什么情况下有最小值,如何确定?学生回答,教师点评:三、典例精析,掌握新知例1 将下列二次函数写成顶点式y=a(x-h)2+k 的形式,并写出其开口方向,顶点坐标,对称轴. ①y=14x 2-3x+21 ②y=-3x 2-18x-22 解:①y=14x 2-3x+21 =14(x 2-12x)+21 =14(x 2-12x+36-36)+21 =14(x-6)2+12. ∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.②y=-3x 2-18x-22=-3(x 2+6x)-22=-3(x 2+6x+9-9)-22=-3(x+3)2+5.∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.【教学说明】第②小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2 用总长为60m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?①S与l有何函数关系?②举一例说明S随l的变化而变化?③怎样求S的最大值呢?解:S=l (30-l)=- l2+30l (0<l<30)=-( l2-30l)=-( l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225)【教学说明】二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.四、运用新知,深化理解1.(北京中考)抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.(贵州贵阳中考)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确结论的序号是 .(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序号是 .【教学说明】通过练习,巩固掌握y=ax2+bx+c的图象和性质.【答案】1.A 2.B 3.(1)①④ (2)②③④五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)用配方法求二次y=ax2+bx+c的顶点坐标、对称轴;(2)由y=ax2+bx+c的图象判断与a,b,c有关代数式的值的正负;(3)实际问题中自变量取值范围及函数最值.1.教材P15第1~3题.2.完成同步练习册中本课时的练习.*1.3 不共线三点确定二次函数的表达式【知识与技能】1.掌握用待定系数法列方程组求二次函数解析式.2.由已知条件的特点,灵活选择二次函数的三种形式,合适地设置函数解析式,可使计算过程简便. 【过程与方法】通过例题讲解使学生初步掌握,用待定系数法求二次函数的解析式.【情感态度】通过本节教学,激发学生探究问题,解决问题的能力.【教学重点】用待定系数法求二次函数的解析式.【教学难点】灵活选择合适的表达式设法.一、情境导入,初步认识1.同学们想一想,已知一次函数图象上两个点的坐标,如何用待定系数法求它的解析式?学生回答:2.已知二次函数图象上有两个点的坐标,能求出其解析式吗?三个点的坐标呢?二、思考探究,获取新知探究1已知三点求二次函数解析式讲解:教材P21例1,例2.【教学说明】让学生通过例题讲解归纳出已知三点坐标求二次函数解析式的方法.探究2用顶点式求二次函数解析式.例3 已知二次函数的顶点为A(1,-4)且过B(3,0),求二次函数解析式.【分析】已知抛物线的顶点,设二次函数的解析式为y=a(x-h)2+k.解:∵抛物线顶点为A(1,-4),∴设抛物线解析式为y=a(x-1)2-4,∵点B(3,0)在图象上,∴0=4a-4,∴a=1,∴y=(x-1)2-4,即y=x2-2x-3.【教学说明】已知顶点坐标,设顶点式比较方便,另外已知函数的最(大或小)值即为顶点纵坐标,对称轴与顶点横坐标一致.探究3用交点式求二次函数解析式例4(甘肃白银中考) 已知一抛物线与x轴交于点A(-2,0),B(1,0),且经过点C(2,8).求二次函数解析式.【分析】由于抛物线与x轴的两个交点为A(-2,0),B(1,0),可设解析式为交点式:y=a(x-x1)(x-x2).解:A(-2,0),B(1,0)在x轴上,设二次函数解析式为y=a(x+2)(x-1).又∵图象过点C(2,8),∴8=a(2+2)(2-1),∴a=2,∴y=2(x+2)(x-1)=2x2+2x-4.【教学说明】因为已知点为抛物线与x轴的交点,解析式可设为交点式,再把第三点代入可得一元一次方程,较一般式所得的三元一次方程简单.三、运用新知,深化理解1.若二次函数y=-x2+mx-2的最大值为94,则m的值为()A.17B.1C.±17D.±1。

湘教版数学九年级下册全册教案(2021年春修订)

湘教版数学九年级下册全册教案(2021年春修订)

湘教版数学九年级下册全册教案设计2021-1-24第1章二次函数1.1 二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识. 【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(0<x<50);电脑价格y (元)与平均降价率x的关系式是y=6000x2-12000x+6000,(0<x<1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c 是常数,a ≠0)的函数,叫做二次函数,其中x 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.三、典例精析,掌握新知例1 指出下列函数中哪些是二次函数.(1)y=(x-3)2-x 2 ;(2)y=2x(x-1);(3)y=32x-1;(4)y=22x;(5)y=5-x 2+x. 【分析】先化为一般形式,右边为整式,依照定义分析.解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路:1.将函数化为一般形式.2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0.例2 讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围.例3 已知函数y=(m 2-m)x 2+mx+(m+1)(m 是常数),当m 为何值时:(1)函数是一次函数;(2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.解:(1)由200m m m ⎧-=⎨≠⎩得010m m ⎩=≠⎧⎨或 , ∴m=1.即当m=1时,函数y=(m 2-m)x 2+mx+(m+1)是一次函数.(2)由m 2-m ≠0得m ≠0且m ≠1,∴当m ≠0且m ≠1时,函数y=(m 2-m)x 2+mx+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是( )A. 2123y x x =+-B.y=3x 3+2x 2C.y=(x-2)2-x 3D.212y x =- 2.二次函数y=2x(x-1)的一次项系数是( )A.1B.-1C.2D.-23.若函数232(3)1k k y k x kx -+=-++ 是二次函数,则k 的值为( )A.0B.0或3C.3D.不确定4.若y=(a+2)x 2-3x+2是二次函数,则a 的取值范围是 .5.已知二次函数y=1-3x+5x 2,则二次项系数a= ,一次项系数b= ,常数项c= .6.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式 ,它 (填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为x 的圆(圆心与正方形的中心重合),剩余部分的面积为y.(1)求y 关于x 的函数关系式;(2)试求自变量x 的取值范围;(3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位).【答案】1.D 2.D 3.A 4.a ≠-2 5.5,-3,1 6.21122y x x =- 是 7.(1)y=25-πx 2=-πx 2+25.(2)0<x ≤52.(3)当x=2时,y=-4π+25≈-4×3.14+25=12.44≈12.4.即剩余部分的面积约为12.4.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.第1~3题.1.教材P42.完成同步练习册中本课时的练习.本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.*1.3 不共线三点确定二次函数的表达式【知识与技能】1.掌握用待定系数法列方程组求二次函数解析式.2.由已知条件的特点,灵活选择二次函数的三种形式,合适地设置函数解析式,可使计算过程简便.【过程与方法】通过例题讲解使学生初步掌握,用待定系数法求二次函数的解析式.【情感态度】通过本节教学,激发学生探究问题,解决问题的能力.【教学重点】用待定系数法求二次函数的解析式.【教学难点】灵活选择合适的表达式设法.一、情境导入,初步认识1.同学们想一想,已知一次函数图象上两个点的坐标,如何用待定系数法求它的解析式?学生回答:2.已知二次函数图象上有两个点的坐标,能求出其解析式吗?三个点的坐标呢?二、思考探究,获取新知例1,例2.探究1已知三点求二次函数解析式讲解:教材P21【教学说明】让学生通过例题讲解归纳出已知三点坐标求二次函数解析式的方法.探究2用顶点式求二次函数解析式.例3 已知二次函数的顶点为A(1,-4)且过B(3,0),求二次函数解析式.【分析】已知抛物线的顶点,设二次函数的解析式为y=a(x-h)2+k.解:∵抛物线顶点为A(1,-4),∴设抛物线解析式为y=a(x-1)2-4,∵点B (3,0)在图象上,∴0=4a-4,∴a=1,∴y=(x-1)2-4,即y=x2-2x-3.【教学说明】已知顶点坐标,设顶点式比较方便,另外已知函数的最(大或小)值即为顶点纵坐标,对称轴与顶点横坐标一致.探究3用交点式求二次函数解析式例4(甘肃白银中考) 已知一抛物线与x轴交于点A(-2,0),B(1,0),且经过点C(2,8).求二次函数解析式.【分析】由于抛物线与x轴的两个交点为A(-2,0),B(1,0),可设解析式为交点式:y=a(x-x1)(x-x2).解:A(-2,0),B(1,0)在x轴上,设二次函数解析式为y=a(x+2)(x-1).又∵图象过点C(2,8),∴8=a(2+2)(2-1),∴a=2,∴y=2(x+2)(x-1)=2x2+2x-4.【教学说明】因为已知点为抛物线与x轴的交点,解析式可设为交点式,再把第三点代入可得一元一次方程,较一般式所得的三元一次方程简单.三、运用新知,深化理解1.若二次函数y=-x2+mx-2的最大值为94,则m的值为()A.17B.1C.±17D.±12.二次函数y=ax2+bx+c的图象大致如图所示,下列判断错误的是()A.a<0B.b>0C.c>0D.ab>03.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P (3,0),则a-b+c的值为()A.0B.-1C.1D.24.如图是二次函数y=ax2+3x+a2-1的图象,a的值是 .5.已知二次函数的图象经过点(0,3),(-3,0),(2,-5),且与x轴交于A、B两点.(1)试确定此二次函数的解析式;(2)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,试说明理由.【教学说明】通过练习巩固加深对新知的理解,并适当对题目作简单的提示.第3题根据二次函数图象的对称性得知图象与x轴的另一交点坐标为(-1,0),将此点代入解析式,即可求出a-b+c的值.第4题可根据图象经过原点求出a的值,再考虑开口方向.【答案】1.C 2.D 3.A 4.-15.解:(1)设二次函数的解析式为y=ax2+bx+c.∵二次函数的图象经过点(0,3),(-3,0),(2,-5).∴c=3.∴9a-3b+3=0,4a+2b+3=-5.解得a=-1,b=-2.∴二次函数的解析式为y=-x2-2x+3.(2)∵当x=-2时,y=-(-2)2-2×(-2)+3=3,∴点P(-2,3)在这个二次函数的图象上.令-x2-2x+3=0,∴x1=-3,x2=1.∴与x轴的交点为(-3,0),(1,0),∴AB=4.即S△PAB=12×4×3=6.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:3.求二次函数解析式的三种表达式的形式.(1)已知三点坐标,设二次函数解析式为y=ax2+bx+c.(2)已知顶点坐标:设二次函数解析式为y=a(x-h)2+k.(3)已知抛物线与x轴两交点坐标为(x1,0),(x2,0)可设二次函数解析式为y=a(x-x1)(x-x2).1.教材P23第1~3题.2.完成同步练习册中本课时的练习.用待定系数法求二次函数的表达式有三种基本方法,解题时可根据不同的条件灵活选用.本节内容是二次函数中的重点也是中考考点之一,同学们要通过练习,熟练掌握.1.4 二次函数与一元二次方程的联系【知识与技能】1.掌握二次函数图象与x轴的交点横坐标与一元二次方程两根的关系.2.理解二次函数图象与x轴的交点的个数与一元二次方程根的个数的关系.3.会用二次函数图象求一元二次方程的近似根.4.能用二次函数与一元二次方程的关系解决综合问题.【过程与方法】经历探索二次函数与一元二次方程的关系的过程,体会二次函数与方程之间的联系,进一步体会数形结合的思想.【情感态度】通过自主学习,小组合作,探索出二次函数与一元二次方程的关系,感受数学的严谨性,激发热爱数学的情感.【教学重点】①理解二次函数与一元二次方程的联系.②求一元二次方程的近似根.【教学难点】一元二次方程与二次函数的综合应用.一、情境导入,初步认识1.一元二次方程ax2+bx+c=0的实数根,就是二次函数y=ax2+bx+c当 y=0 时,自变量x的值,它是二次函数的图象与x轴交点的横坐标 .2.抛物线y=ax2+bx+c与x轴交点个数与一元二次方程ax2+bx+c=0根的判别式的关系:当b2-4ac<0时,抛物线与x轴无交点;当b2-4ac=0时,抛物线与x轴有一个交点;当b2-4ac>0时,抛物线与x轴有两个交点.学生回答,教师点评二、思考探究,获取新知探究1求抛物线y=ax2+bx+c与x轴的交点例1 求抛物线y=x2-2x-3与x轴交点的横坐标.【分析】抛物线y=x2-2x-3与x轴相交时,交点的纵坐标y=0,转化为求方程x2-2x-3=0的根.解:因为方程x2-2x-3=0的两个根是x1=3,x2=-1,所以抛物线y=x2-2x-3与x轴交点的横坐标分别是3或-1.【教学说明】求抛物线与x轴的交点坐标,首先令y=0,把二次函数转化为一元二次方程,求交点的横坐标就是求此方程的根.探究2抛物线与x轴交点的个数与一元二次方程的根的个数之间的关系思考:(1)你能说出函数y=ax2+bx+c(a≠0)的图象与x轴交点个数的情况吗?猜想交点个数和方程ax2+bx+c=0(a≠0)的根的个数有何关系?(2)一元二次方程ax2+bx+c=0(a≠0)的根的个数由什么来判断?【教学说明】探究3 利用函数图象求一元二次方程的近似根提出问题:同学们可以估算下一元二次方程x2-2x-2=0的两根是什么?学生回答:【教学点评】-1<x1<0,2<x2<3.探究4 一元二次方程与相应二次函数的综合应用讲解教材P26例2【教学说明】已知二次函数y=ax2+bx+c(a≠0)的某一个函数值y=M,求对应的自变量的值时,需要解一元二次方程ax2+bx+c=M,这样将二次函数的知识和前面学的一元二次方程就紧密联系起来了.三、运用新知,深化理解1.(广东中山中考)已知抛物线y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有两个同号的实数根D.没有实数根2.若一元二次方程x2-mx+n=0无实根,则抛物线y=-x2+mx-n图象位于()A.x轴上方B.第一、二、三象限C.x轴下方D.第二、三、四象限3.(x-1)(x-2)=m(m>0)的两根为α,β,则α,β的范围为()A.α<1,β>2B.α<1<β<2C.1<α<2<βD.α<1,β>24.二次函数y=ax2+bx+c与x轴的交点坐标为(1,0),(3,0),则方程ax2+bx+c=0的解为 .5.(湖北武汉中考)已知二次函数y=x2-(m+1)x+m的图象交x轴于A(x1,0),B(x2,0)两点,交y轴的正半轴于点C,且x21+x22=10.(1)求此二次函数的解析式;(2)是否存在过点D(0,-52)的直线与抛物线交于点M、N,与x轴交于点E,使得点M、N关于点E对称?若存在,求出直线MN的解析式;若不存在,请说明理由.学生解答:【答案】1.D 2.C 3.D 4.x1=1,x2=35.解:(1)y=x2-4x+3 (2)存在 y=x-5 2【教学说明】一元二次方程的根的情况和二次函数与x轴的交点个数之间的关系是相互的,根据根的情况可以判断交点个数,反之也成立.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上,教师点评:①求二次函数自变量的值与一元二次方程根的关系;②抛物线与x轴交点个数与一元二次方程根的个数的关系.③用函数图象求“一元二次方程的近似根”;④二次函数问题可转化为对应一元二次方程根与系数关系问题.第1~3题.1.教材P282.完成同步练习册中本课时的练习.通过本节课的学习,让学生用函数的观点解方程和用方程的知识求函数,取某一特值时,把对应的自变量的值都联系起来了,这样对二次函数的综合应用就方便得多了,从中让学生体会到各知识之间是相互联系的这一最简单的数学道理.1.5 二次函数的应用第1课时二次函数的应用(1)【知识与技能】能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能利用二次函数的知识解决实际问题.【过程与方法】经历运用二次函数解决实际问题的探究过程,进一步体验运用数学方法描述变量之间的依赖关系,体会二次函数是解决实际问题的重要模型,提高运用数学知识解决实际问题的能力.【情感态度】1.体验函数是有效的描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具.2.敢于面对在解决实际问题时碰到的困难,积累运用知识解决问题的成功经验.【教学重点】用抛物线的知识解决拱桥类问题.【教学难点】将实际问题转化为抛物线的知识来解决.一、情境导入,初步认识页的内容,完成下面各题.预习P29动脑筋中“拱顶离水面的高度变化情况”,你准备采取什么1.要求出教材P29办法?图1-18,你猜测是什么样的函数呢?2.根据教材P293.怎样建立直角坐标系比较简便呢?试着画一画它的草图看看!4.根据图象你能求出函数的解析式吗?试一试!二、思考探究,获取新知探究 直观图象的建模应用例1某工厂的大门是一抛物线形水泥建筑物, 大门的地面宽度为8m ,两侧距地面3m 高处各有一盏壁灯,两壁灯之间的水平距离是6m,如图所示,则厂门的高(水泥建筑物厚度不计,精确到0.1m)约为( )A.6.9mB.7.0mC.7.1mD.6.8m【分析】因为大门是抛物线形,所以建立二次函数模型来解决问题. 先建立平面直角坐标系,如图,设大门地面宽度为AB,两壁灯之间的水平距离为CD,则B,D 坐标分别为(4,0),(3,3),设抛物线解析式为y=ax2+h.把(3,3),(4,0)代入解析式求得h ≈6.9.故选A.答案:A【教学说明】根据直观图象建立恰当的直角坐标系和解析式.例2 小红家门前有一座抛物线形拱桥,如图,当水面在l 时,拱顶离水面2m,水面宽4m,水面下降1m 时,水面宽度增加多少?【分析】拱桥类问题一般是转化为二次函数的知识来解决.解:由题意建立如图的直角坐标系,2∵抛物线经过点A (2,-2),∴-2=4a,∴a=-12,即抛物线的解析式为y=-12x 2, 当水面下降1m 时,点B 的纵坐标为-3. 将y=-3代入二次函数解析式,得y=-12x 2, 得-3=-12x 2→x 2=6→x=±6,∴此时水面宽度为2|x|=26m. 即水面下降1m 时,水面宽度增加了(26-4)m.【教学说明】用二次函数知识解决拱桥类的实际问题一定要建立适当的直角坐标系;抛物线的解析式假设恰当会给解决问题带来方便.三、运用新知,深化理解1.某溶洞是抛物线形,它的截面如图所示.现测得水面宽AB=1.6m,溶洞顶点O 到水面的距离为2.4m,在图中直角坐标系内,溶洞所在抛物线的函数关系式是( ) A.y=154x 2 B.y=154x 2+125C.y=-154x 2 D.y=-154x 2+125 2.某公园草坪的防护栏是由100段形状相同的抛物线形组成的,为了牢固起见,每段护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A.50mB.100mC.160mD.200m第2题图 第3题图 3.如图,济南建邦大桥有一段抛物线形的拱梁,抛物线的表达式为y=ax 2+bx,小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需 秒.4.(浙江金华中考)如图,足球场上守门员在O 处踢出一高球,球从离地面1米处飞出(A 在y 轴上),运动员乙在距O 点6米的B处发现球在自己的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)足球第一次落地点C 距守门员是多少米?(取≈5)(3)运动员乙要抢到第二个落点D ,他应再向前跑多少米?【教学说明】学生自觉完成上述习题,加深对新知的理解,并适当加以分析,提示如第4题,由图象的类型及已知条件,设其解析式为y=a(x-6)2+4,过点A(0,1),可求出a;(2)令y=0可求出x的值,x<0舍去;(3)令y=0,求出C点坐标(,0),设抛物线CND为y=-112(x-k)2+2,代入C点坐标可求出k值(k>).再令y=0可求出C、D的坐标,进而求出BD. 【答案】1.C 2.C 3.364.解:(1)y=-112(x-6)2+4(2)令y=0,可求C点到守门员约13米.(3)向前约跑17米.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评.3.建立二次实际问题的一般步骤:(1)根据题意建立适当的平面直角坐标系.(2)把已知条件转化为点的坐标.(3)合理设出函数解析式.(4)利用待定系数法求出函数解析式.(5)根据求得的解析式进一步分析,判断并进行有关的计算.1.教材P31第1、2题.2.完成同步练习册中本课时的练习.本节课主要是利用二次函数解决生活中的实际问题,其主要思路是建立适当的直角坐标系,使求出的二次函数模型更简捷,解决问题更方便,让学生学会运用所学知识解决实际问题,体验应用知识的成就感,激发他们学习的兴趣.第2课时二次函数的应用(2)【知识与技能】1.经历探索实际问题中两个变量的过程,使学生理解用抛物线知识解决最值问题的思路.2.初步学会运用抛物线知识分析和解决实际问题.【过程与方法】经历优化问题的探究过程,认识数学与人类生活的密切联系及对人类历史发展的作用,发展我们运用数学知识解决实际问题的能力.【情感态度】体会数学与人类社会的密切联系,了解数学的价值,增加对数学的理解和学好数学的信心.【教学重点】能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值.【教学难点】二次函数最值在实际中生活中的应用,激发学生的学习兴趣.一、情境导入,初步认识问题1同学们完成下列问题:已知y=x2-2x-3①x= 时,y有最值,其值为;②当-1≤x≤4时,y最小值为,y最大值为 .答案:①1,小,-4;②-4,5【教学说明】解决上述问题既是对前面所学知识的巩固,又是本节课解决优化最值问题的理论依据.二、思考探究,获取新知教学点1最大面积问题阅读教材P动脑筋,回答下列问题.301.若设窗框的宽为x m,则窗框的高为 m,x的取值范围是 .2.窗框的透光面积S与x之间的关系式是什么?3.如何由关系式求出最大面积?答案:1.832x-0<x<832.S=-32x2+4x,0<x<833.Smax =83m2.例1如图,从一张矩形纸片较短的边上找一点E,过E点剪下两个正方形,它们的边长分别是AE,DE,要使剪下的两个正方形的面积和最小,点E应选在何处?为什么?解:设矩形纸较短边长为a,设DE=x,则AE=a-x,那么两个正方形的面积和:y=x2+(a-x)2=2x2-2ax+a2当x=-21222aa-=⨯时,y最小值=2×(12a)2-2a×12a+a2=12a2即点E选在矩形纸较短边的中点时,剪下的两个正方形的面积和最小.【教学说明】此题要充分利用几何关系建立二次函数模型,再利用二次函数性质求解.教学点2 最大利润问题例2 讲解教材P31例题【教学说明】通过例题讲解使学生初步认识到要解决实际问题中的最值,首先要找出最值问题的二次函数关系式,利用二次函数的性质为理论依据来解决问题.例3某商店将每件进价8元的某种商品按每件10元出售,一天可售出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大?【分析】找出进价,售价,销售,总利润之间的关系,建立二次函数,再求最大值.列表分析如下:关系式:每件利润=售价-进价,总利润=每件利润×销量.解:设降价x元,总利润为y元,由题意得y=(10-x-8)(100+100x)=-100x2+100x+200=-100(x-0.5)2+225.当x=0.5时,总利润最大为225元.∴当商品的售价降低0.5元时,销售利润最大.三、运用新知,深化理解1.如图,点C是线段AB上的一个支点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是( )A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大C.当C为AB的三点分点时,S最小D.当C是AB的三等分点时,S最大第1题图第2题图2.如图,某水渠的横断面是等腰梯形,底角为120°,两腰与下底的和为4cm,当水渠深x为时,横断面面积最大,最大面积是 .3.某经销店为某工厂代销一种建筑材料,当每吨售价为260元时,月销售量为45吨,该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出1吨建筑材料共需支付厂家及其他费用100元,设每吨材料售价为x (元),该经销店的月利润为y(元).①当每吨售价是240元时,计算此时的月销售量;②求出y 与x 的函数关系式(不要求写出x 的取值范围);③该经销店要获得最大月利润,售价应定为每吨多少元?④小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.【答案】1.A 2.5 cm, 5cm 2 3.解:①45+26024010- ×7.5=60(吨). ②y=(x-100)(45+26010x -×7.5). 化简,得y=-34x 2+315x-24 000. ③y=-34x 2+315x-24 000=-34(x-210)2+9 075. 此经销店要获得最大月利润,材料的售价应定为每吨210元.④我认为,小静说得不对.理由:当月利润最大时,x 为210元,每月销售额W=x(45+26010x -×7.5=-34 (x-160)2+19 200.当x 为160元时,月销售额W 最大.∴当x 为210元时,月销售额W 不是最大的.∴小静说得不对.【教学说明】1.先列出函数的解析式,再根据其增减性确定最值.2.要分清利润,销售量与售价的关系;分清最大利润与最大销售额之间的区别.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:能根据实际问题建立二次函数的关系式并确定自变量取值范围,并能求出实际问题的最值.1.教材P 31第1、2题.2.完成同步练习册中本课时的练习.本节课主要是用二次函数理论知识解决最大面积问题和最大利润问题,通过对此问题的探究解决,使学生认识到数学知识和生活实际的紧密联系,提高学习数学的积极性.章末复习【知识与技能】掌握本章重要知识,能灵活运用二次函数的图象与性质解决实际问题. 【过程与方法】通过梳理本章知识,回顾解决问题中所涉及的数形结合思想,转化化归思想的过程,加深对本章知识的理解.【情感态度】在运用本章知识解决具体问题过程中,进一步体会数学与生活的密切联系,激发学习兴趣.【教学重点】回顾本章知识点,构建知识体系.【教学难点】利用二次函数的相关知识解决具体问题.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识结构框图,使学生系统了解本章知识及它们之间的关系,教学时,边回顾边建立结构框图.二、释疑解惑,加深理解1.由于y=ax2+bx+c配方后可得y=224()24b ac ba xa a-++ ,所以y=ax2+bx+c的图象总可由y=ax2平移得到.2.对于现实生活中的许多问题,可以通过建立二次函数模型来解决.3.利用二次函数解法实际问题时,自变量的取值范围要结合具体问题来确定.三、典例精析,复习新知例1下列函数中,是二次函数的是( )A.y=8x2+1B.y=x2+1xC.y=(x-2)(x+2)-x2D.y=ax2【解析】选A.选项A符合二次函数的一般形式,是二次函数,正确;选项B 不是整式形式,错误;选项C不含二次项,错误;选项D,二次项系数a=0时,不是二次函数,错误.例2 抛物线y=-(x-1)2是由抛物线y=-(x+3)2向平移个单位得到的;平移后的抛物线对称轴是,顶点坐标是,当x= 时,函数y有最值,其值是 .【解析】本题因为a=-1<0,所以抛物线开口向下,函数有最大值;掌握“左加右减”的平移规律时,关键是把握平移方向.答案:右 4 直线x=1 (1,0) 1 大 0例3如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随着x的增大而增大.正确的说法有 .(请写出所有正确说法的序号)【解析】∵抛物线开口向上,即a>0;与y轴的交点在x轴下方,即c<0,∴ac<0,①正确;由函数图象与x轴的交点坐标(-1,0),(3,0),可得方程ax2+bx+c=0的根为x1=-1,x2=3,②正确;由函数图象与x=1的交点位于x轴下方,即a+b+c<0,③错误;由函数图象可得抛物线的对称轴为x=1,当x>1时,y随着x的增大而增大,故正确的说法有①②④.例4 如图,利用一面墙(墙长为15m)和30m长的篱笆来围矩形场地,若设垂直墙的一边长为x(m),围成的矩形场地的面积为y(m2).(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)怎样围成一个面积为112m2的矩形场地?。

新湘教版九年级下册数学全册教案

新湘教版九年级下册数学全册教案

第1章二次函数二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.(【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(0<x<50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-12000x+6000,(0<x<1).它们有什么共同点一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢有.二、思考探究,获取新知二次函数的概念及一般形式·在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.三、典例精析,掌握新知例1 指出下列函数中哪些是二次函数.(1)y=(x-3)2-x 2 ;(2)y=2x(x-1);(3)y=32x-1;(4)y=22x;(5)y=5-x 2+x. 【分析】先化为一般形式,右边为整式,依照定义分析.解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路:1.将函数化为一般形式.】2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0.例2 讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围.例3 已知函数y=(m 2-m)x 2+mx+(m+1)(m 是常数),当m 为何值时:(1)函数是一次函数;(2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.解:(1)由200m m m ⎧-=⎨≠⎩得010m m ⎩=≠⎧⎨或 , ∴m=1.即当m=1时,函数y=(m 2-m)x 2+mx+(m+1)是一次函数.^(2)由m 2-m ≠0得m ≠0且m ≠1,∴当m ≠0且m ≠1时,函数y=(m 2-m)x 2+mx+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是( )A. 2123y x x =+- =3x 3+2 C=(x-2)2-x 3 D.212y x =- 2.二次函数y=2x(x-1)的一次项系数是( )B.-1C.23.若函数232(3)1k k y k x kx -+=-++ 是二次函数,则k 的值为( )或3 C.3 D.不确定、4.若y=(a+2)x 2-3x+2是二次函数,则a 的取值范围是 .5.已知二次函数y=1-3x+5x 2,则二次项系数a= ,一次项系数b= ,常数项c= .6.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式 ,它 (填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为x 的圆(圆心与正方形的中心重合),剩余部分的面积为y.(1)求y 关于x 的函数关系式;(2)试求自变量x 的取值范围;(3)求当圆的半径为2时,剩余部分的面积(π取,结果精确到十分位).【答案】 ≠-2 ,-3,1 6.21122y x x =- 是 7.(1)y=25-πx 2=-πx 2+25.(2)0<x ≤52.`(3)当x=2时,y=-4π+25≈-4×+25=≈.即剩余部分的面积约为.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.教材P4第1~3题.2.完成同步练习册中本课时的练习.【本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.":二次函数的图象与性质第1课时二次函数y=ax2(a>0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.~【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么二次函数图象是什么形状呢】问题2如何用描点法画一个函数图象呢【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1画二次函数y=ax2(a>0)的图象.画二次函数y=ax 2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x 2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y 轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x 2的图象的错误画法.:误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0,0)的y=x 2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x 2图象的错误画法.探究2 y=ax 2(a >0)图象的性质在同一坐标系中,画出y=x 2, 212y x,y=2x 2的图象.【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数y=ax2(a >0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y 随x 的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.y=ax 2(a >0)图象的性质1.图象开口向上.&2.对称轴是y 轴,顶点是坐标原点,函数有最低点.3.当x >0时,y 随x 的增大而增大,简称右升;当x <0时,y 随x 的增大而减小,简称左降.三、典例精析,掌握新知例 已知函数24(2)kk y k x +-=+是关于x 的二次函数.(1)求k 的值.(2)k 为何值时,抛物线有最低点,最低点是什么在此前提下,当x 在哪个范围内取值时,y 随x 的增大而增大【分析】此题是考查二次函数y=ax 2的定义、图象与性质的,由二次函数定义列出关于k 的方程,进而求出k 的值,然后根据k+2>0,求出k 的取值范围,最后由y 随x 的增大而增大,求出x 的取值范围. 解:(1)由已知得22042k k k +≠+-=⎧⎨⎩ ,解得k=2或k=-3. 所以当k=2或k=-3时,函数24(2)k k y k x +-=+是关于x 的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.:由(1)知k=2,最低点是(0,0),当x ≥0时,y 随x 的增大而增大.四、运用新知,深化理解1.(广东广州中考)下列函数中,当x >0时,y 值随x 值增大而减小的是( )=x 2 =x-1 C. 34y x = =1x 2.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y=x 2的图象上,则( )<y 2<y 3 <y 3<2 C <y 2<y 1 <y 1<y 33.抛物线y=13x 2的开口向 ,顶点坐标为 ,对称轴为 ,当x=-2时,y= ;当y=3时,x= ,当x ≤0时,y 随x 的增大而 ;当x >0时,y 随x 的增大而 .4.如图,抛物线y=ax 2上的点B ,C 与x 轴上的点A (-5,0),D (3,0)构成平行四边形ABCD ,BC 与y 轴交于点E (0,6),求常数a 的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.【答案】 3.上,(0,0),y 轴,43,±3,减小,增大 "4.解:依题意得:BC=AD=8,BC∥x轴,且抛物线y=ax2上的点B,C关于y 轴对称,又∵BC与y轴交于点E(0,6),∴B点为(-4,6),C点为(4,6),将(4,6)代入y=ax2得:a=3 8 .五、师生互动,课堂小结1.师生共同回顾二次函数y=ax2(a>0)图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问请与同伴交流.1.教材P7第1、2题.2.完成同步练习册中本课时的练习.本节课是从学生画y=x2的图象,从而掌握二次函数y=ax2(a>0)图象的画法,再由图象观察、探究二次函数y=ax2(a>0)的性质,培养学生动手、动脑、探究归纳问题的能力."第2课时二次函数y=ax2(a<0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.一、情境导入,初步认识#1.在坐标系中画出y=12x2的图象,结合y=12x2的图象,谈谈二次函数y=ax2(a>0)的图象具有哪些性质2.你能画出y=-12x2的图象吗二、思考探究,获取新知探究1画y=ax2(a<0)的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y=-12x2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,y=12x2与y=-12x2有何关系归纳:y=12x2与y=-12x2二者图象形状完全相同,只是开口方向不同,两图象关于y轴对称.(教师引导学生从理论上进行证明这一结论)探究2二次函数y=ax2(a<0)性质问:你能结合y=-12x2的图象,归纳出y=ax2(a<0)图象的性质吗【教学说明】教师提示应从开口方向,对称轴,顶点位置,y随x的增大时的变化情况几个方面归纳,教师整理,强调y=ax2(a<0)图象的性质.1.开口向下.}2.对称轴是y轴,顶点是坐标原点,函数有最高点.3.当x>0时,y随x的增大而减小,简称右降,当x<0时,y随x的增大而增大,简称左升.探究3二次函数y=ax2(a≠0)的图象及性质学生回答:【教学点评】一般地,抛物线y=ax2的对称轴是,顶点是,当a>0时抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越;当a<0时,抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越,总之,|a|越大,抛物线开口越.答案:y轴,(0,0),上,低,小,下,高,大,小三、典例精析,掌握新知例1 填空:①函数y=(-2x)2的图象是,顶点坐标是,对称轴是,开口方向是.②函数y=x2,y=12x2和y=-2x2的图象如图所示,—请指出三条抛物线的解析式.解:①抛物线,(0,0),y轴,向上;②根据抛物线y=ax2中,a的值的作用来判断,上面最外面的抛物线为y=12x2,中间为y=x2,在x轴下方的为y=-2x2.【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax2中,当a>0时,开口向上;当a<0时,开口向下,|a|越大,开口越小.例2 已知抛物线y=ax2经过点(1,-1),求y=-4时x的值.【分析】把点(1,-1)的坐标代入y=ax2,求得a的值,得到二次函数的表达式,再把y=-4代入已求得的表达式中,即可求得x的值.解:∵点(1,-1)在抛物线y=ax2上,-1=a·12,∴a=-1,∴抛物线为y=-x2.当y=-4时,有-4=-x 2,∴x=±2.【教学说明】在求y=ax 2的解析式时,往往只须一个条件代入即可求出a 值.四、运用新知,深化理解1.下列关于抛物线y=x 2和y=-x 2的说法,错误的是( ) %A.抛物线y=x 2和y=-x 2有共同的顶点和对称轴B.抛物线y=x 2和y=-x 2关于x 轴对称C.抛物线y=x 2和y=-x 2的开口方向相反D.点(-2,4)在抛物线y=x 2上,也在抛物线y=-x 2上2.二次函数y=ax 2与一次函数y=-ax(a ≠0)在同一坐标系中的图象大致是( )3.二次函数226(1)m m y m x +-=-,当x <0时,y 随x 的增大而减小,则m= . 4.已知点A (-1,y 1),B(1,y 2),C(a,y 3)都在函数y=x 2的图象上,且a >1,则y 1,y 2,y 3中最大的是 .5.已知函数y=ax 2经过点(1,2).①求a 的值;②当x <0时,y 的值随x 值的增大而变化的情况.【教学说明】学生自主完成,加深对新知的理解和掌握,当学生疑惑时,教师及时指导. ¥【答案】5.①a=2 ②当x <0时,y 随x 的增大而减小 五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑在学生回答的基础上,教师点评:(1)y=ax 2(a<0)图象的性质;(2)y=ax 2(a ≠0)关系式的确定方法.1.教材P10第1~2题.2.完成同步练习册中本课时的练习.本节课仍然是从学生画图象,结合上节课y=ax2(a>0)的图象和性质,从而得出y=ax2(a<0)的图象和性质,进而得出y=ax2(a≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.【第3课时二次函数y=a(x-h)2的图象与性质【知识与技能】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2的图象的关系,理解a,h 对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】$经历探索二次函数y=a(x-h)2的图象的作法和性质的过程,进一步领会数形结合的思想.【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握y=a(x-h)2的图象及性质.【教学难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识…1.在同一坐标系中画出y=12x2与y=12(x-1)2的图象,完成下表.2.二次函数y=12(x-1)2的图象与y=12x2的图象有什么关系3.对于二次函数12(x-1)2,当x取何值时,y的值随x值的增大而增大当x取何值时,y的值随x值的增大而减小二、思考探究,获取新知归纳二次函数y=a(x-h)2的图象与性质并完成下表.三、典例精析,掌握新知例1 教材P12例3.【教学说明】二次函数y=ax2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”. 例如y=ax2向左平移1个单位得到y=a(x+1)2,y=ax2向右平移2个单位得到y=a(x-2)2的图象.…例2 已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.①水平移后的抛物线l的解析式;②若点B(x1,y1),C(x2,y2)在抛物线l上,且-1 2<x1<x2,试比较y1,y2的大小.解:①∵y=x+1,∴令y=0,则x=-1,∴A(-1,0),即抛物线l的顶点坐标为(-1,0),又∵抛物线l是由抛物线y=-2x2平移得到的,∴抛物线l的解析式为y=-2(x+1)2.②由①可知,抛物线l的对称轴为x=-1,∵a=-2<0,∴当x>-1时,y随x的增大而减小,又-12<x1<x2,∴y1>y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是().1 C D.没有最小值2.抛物线y=-3(x+1)2不经过的象限是()A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是(){4.(1)抛物线y=13x2向平移个单位得抛物线y=13(x+1)2;(2)抛物线向右平移2个单位得抛物线y=-2(x-2)2.5.(广东广州中考)已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大当x取何值时,函数有最大值(或最小值)【教学说明】学生自主完成,教师巡视解疑.【答案】 4.(1)左,1 (2)y=-2x25.解:(1)y=-13(x+2)2(2)略(3)当x<-2时,y随x增大而增大;当x=-2时,y有最大值0.*五、师生互动,课堂小结1.这节课你学到了什么还有哪些疑惑2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.1.教材P12第1、2题.2.完成同步练习册中本课时的练习.通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h决定向左右平移;从中领会数形结合的数学思想.)第4课时二次函数y=a(x-h)2+k的图象与性质【知识与技能】1.会用描点法画二次函数y=a(x-h)2+k的图象.掌握y=a(x-h)2+k的图象和性质.2.掌握y=a(x-h)2+k与y=ax2的图象的位置关系.3.理解y=a(x-h)2+k,y=a(x-h)2,y=ax2+k及y=ax2的图象之间的平移转化.【过程与方法】经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.【情感态度】1.在小组活动中进一步体会合作与交流的重要性.(2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣.【教学重点】二次函数y=a(x-h)2+k的图象与性质.【教学难点】由二次函数y=a(x-h)2+k的图象的轴对称性列表、描点、连线.一、情境导入,初步认识复习回顾:同学们回顾一下:①y=ax2,y=a(x-h)2,(a≠0)的图象的开口方向、对称轴、顶点坐标,y随x的增减性分别是什么②如何由y=ax2(a≠0)的图象平移得到y=a(x-h)2的图象!③猜想二次函数y=a(x-h)2+k的图象开口方向、对称轴、顶点坐标及y随x 的增减性如何二、思考探究,获取新知探究1y=a(x-h)2+k的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:①y=-12(x+1)2-1图象的开口方向、对称轴、顶点坐标及y随x的增减性如何②将抛物线y=-12x2向左平移1个单位,再向下平移1个单位得抛物线y=-12(x+1)2-1.2.同学们讨论回答:①一般地,当h>0,k>0时,把抛物线y=ax2向右平移h个单位,再向上平移k个单位得抛物线y=a(x-h)2+k;平移的方向和距离由h,k的值来决定.②抛物线y=a(x-h)2+k的开口方向、对称轴、顶点坐标及y随x的增减性如何;探究2二次函数y=a(x-h)2+k的应用【教学说明】二次函数y=a(x-h)2+k的图象是,对称轴是,顶点坐标是,当a >0时,开口向,当a<0时,开口向.答案:抛物线,直线x=h,(h,k),上,下三、典例精析,掌握新知例1 已知抛物线y=a(x-h)2+k,将它沿x轴向右平移3个单位后,又沿y轴向下平移2个单位,得到抛物线的解析式为y=-3(x+1)2-4,求原抛物线的解析式.【分析】平移过程中,前后抛物线的形状,大小不变,所以a=-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线y=-3(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=-3(x+4)2-2.【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.例2 如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向目标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C并说明理由.【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.!解:该火球能点燃目标.如图,以OB所在直线为x轴,OA所在直线为y轴建立直角坐标系,则点(12,20)为抛物线顶点,设解析式为y=a(x-12)2+20,∵点(0,2)在图象上,∴144a+20=2,∴a=-18,∴y=-18(x-12)2+20.当x=20时,y=-18×(20-12)2+20=12,即抛物线过点(20,12),∴该火球能点燃目标.【教学说明】二次函数y=a(x-h)2+k的应用关键是构造出二次函数模型.四、运用新知,深化理解1.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向上平移4个单位2.抛物线y=x2-4与x轴交于B,C两点,顶点为A,则△ABC的周长为()55+4 C.12 5+4|3.函数y=ax2-a与y=ax-a(a≠0)在同一坐标系中的图象可能是()4.二次函数y=-2x2+6的图象的对称轴是,顶点坐标是,当x 时,y随x的增大而增大.5.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a= ,c= .6.把抛物线y=(x-1)2沿y轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.【答案】轴,(0,6),<0 ,2 =(x-1)2-4五、师生互动,课堂小结1.这节课你学到了什么,还有哪些疑惑2.在学生回答的基础上,教师点评:①二次函数y=a(x-h)2+k的图象与性质;②如何由抛物线y=ax2平移得到抛物线y=a(x-h)2+k.)【教学说明】教师应引导学生自主小结,加深理解掌握y=ax2与y=a(x-h)2+k 二者图象的位置关系.1.教材P15第1~3题.2.完成同步练习册中本课时的练习.掌握函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.*第5课时二次函数y=ax2+bx+c的图象与性质【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x 的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.【情感态度】:进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.}3.画y=-2x2+6x-1的图象.4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.5.二次函数y=-2x2+6x-1的y随x的增减性如何【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c 与y=a(x-h)2+k的转化过程.二、思考探究,获取新知探究1如何画y=ax2+bx+c图象,你可以归纳为哪几步学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.&3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax2+bx+c图象的性质有哪些你能试着归纳吗学生回答,教师点评:抛物线y=ax 2+bx+c=224()24b ac b a x a a -++ ,对称轴为x=-2b a,顶点坐标为(-2b a ,244ac b a -),当a >0时,若x >-2b a ,y 随x 增大而增大,若x <-2b a,y 随x 的增大而减小;当a <0时,若x >-2b a ,y 随x 的增大而减小,若x<-2b a,y 随x 的增大而增大. 探究3 二次函数y=ax 2+bx+c 在什么情况下有最大值,什么情况下有最小值,如何确定学生回答,教师点评:三、典例精析,掌握新知例1 将下列二次函数写成顶点式y=a(x-h)2+k 的形式,并写出其开口方向,顶点坐标,对称轴. ①y=14x 2-3x+21 ②y=-3x 2-18x-22 解:①y=14x 2-3x+21 =14(x 2-12x)+21 =14(x 2-12x+36-36)+21 =14(x-6)2+12. ∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.②y=-3x 2-18x-22=-3(x 2+6x)-22=-3(x 2+6x+9-9)-22=-3(x+3)2+5.∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.【教学说明】第②小题注意h 值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2 用总长为60m 的篱笆围成的矩形场地,矩形面积S 随矩形一边长l 的变化而变化,l 是多少时,场地的面积S 最大①S与l有何函数关系②举一例说明S随l的变化而变化。

新湘教版九年级下册数学全册教案课程

新湘教版九年级下册数学全册教案课程

第1章二次函数1.1 二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(0<x<50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-12000x+6000,(0<x<1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c 是常数,a ≠0)的函数,叫做二次函数,其中x 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.三、典例精析,掌握新知例1 指出下列函数中哪些是二次函数.(1)y=(x-3)2-x 2 ;(2)y=2x(x-1);(3)y=32x-1;(4)y=22x ;(5)y=5-x 2+x. 【分析】先化为一般形式,右边为整式,依照定义分析. 解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路: 1.将函数化为一般形式. 2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0. 例2 讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围. 例3 已知函数y=(m 2-m)x 2+mx+(m+1)(m 是常数),当m 为何值时: (1)函数是一次函数; (2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.解:(1)由200m m m ⎧-=⎨≠⎩ 得010m m ⎩=≠⎧⎨或 ,∴m=1.即当m=1时,函数y=(m 2-m)x 2+mx+(m+1)是一次函数. (2)由m 2-m ≠0得m ≠0且m ≠1,∴当m ≠0且m ≠1时,函数y=(m 2-m)x 2+mx+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是( ) A. 2123y x x =+- B.y=3x 3+2x 2 C.y=(x-2)2-x 3D.212y x =- 2.二次函数y=2x(x-1)的一次项系数是( ) A.1 B.-1 C.2 D.-2 3.若函数232(3)1kk y k x kx -+=-++ 是二次函数,则k 的值为( )A.0B.0或3C.3D.不确定4.若y=(a+2)x 2-3x+2是二次函数,则a 的取值范围是 . 5.已知二次函数y=1-3x+5x 2,则二次项系数a= ,一次项系数b= ,常数项c= .6.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式 ,它 (填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为x 的圆(圆心与正方形的中心重合),剩余部分的面积为y.(1)求y 关于x 的函数关系式; (2)试求自变量x 的取值范围;(3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位). 【答案】1.D 2.D 3.A 4.a ≠-2 5.5,-3,1 6.21122y x x =- 是 7.(1)y=25-πx 2=-πx 2+25. (2)0<x ≤52.(3)当x=2时,y=-4π+25≈-4×3.14+25=12.44≈12.4. 即剩余部分的面积约为12.4.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.教材P第1~3题.42.完成同步练习册中本课时的练习.本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.1.2 二次函数的图象与性质第1课时二次函数y=ax2(a>0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2 如何用描点法画一个函数图象呢? 【教学说明】 ①略;②列表、描点、连线. 二、思考探究,获取新知探究1 画二次函数y=ax 2(a >0)的图象. 画二次函数y=ax 2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x 2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y 轴对称的特征. ③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x 2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形. 如图(2)就是漏掉点(0,0)的y=x 2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x 2图象的错误画法.探究2 y=ax 2(a >0)图象的性质在同一坐标系中,画出y=x 2, 212y x ,y=2x 2的图象.【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数y=ax2(a >0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y 随x 的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.y=ax 2(a >0)图象的性质 1.图象开口向上.2.对称轴是y 轴,顶点是坐标原点,函数有最低点.3.当x >0时,y 随x 的增大而增大,简称右升;当x <0时,y 随x 的增大而减小,简称左降.三、典例精析,掌握新知 例 已知函数24(2)k k y k x +-=+是关于x 的二次函数.(1)求k 的值.(2)k 为何值时,抛物线有最低点,最低点是什么?在此前提下,当x 在哪个范围内取值时,y 随x 的增大而增大?【分析】此题是考查二次函数y=ax 2的定义、图象与性质的,由二次函数定义列出关于k 的方程,进而求出k 的值,然后根据k+2>0,求出k 的取值范围,最后由y 随x 的增大而增大,求出x 的取值范围.解:(1)由已知得22042k k k +≠+-=⎧⎨⎩,解得k=2或k=-3. 所以当k=2或k=-3时,函数24(2)kk y k x +-=+是关于x 的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.由(1)知k=2,最低点是(0,0),当x ≥0时,y 随x 的增大而增大. 四、运用新知,深化理解1.(广东广州中考)下列函数中,当x >0时,y 值随x 值增大而减小的是( )A.y=x 2B.y=x-1C. 34y x =D.y=1x2.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y=x 2的图象上,则( ) A.y 1<y 2<y 3 B.y 1<y 3<y 2 C.y 3<y 2<y 1 D.y 2<y 1<y 33.抛物线y=13x 2的开口向 ,顶点坐标为 ,对称轴为 ,当x=-2时,y= ;当y=3时,x= ,当x ≤0时,y随x的增大而;当x>0时,y随x的增大而 .4.如图,抛物线y=ax2上的点B,C与x轴上的点A(-5,0),D(3,0)构成平行四边形ABCD,BC与y轴交于点E(0,6),求常数a的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.,±3,减小,增大【答案】1.D 2.A 3.上,(0,0),y轴,434.解:依题意得:BC=AD=8,BC∥x轴,且抛物线y=ax2上的点B,C关于y轴对称,又∵BC与y轴交于点E(0,6),∴B点为(-4,6),C点为(4,6),.将(4,6)代入y=ax2得:a=38五、师生互动,课堂小结1.师生共同回顾二次函数y=ax2(a>0)图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.1.教材P第1、2题.72.完成同步练习册中本课时的练习.本节课是从学生画y=x2的图象,从而掌握二次函数y=ax2(a>0)图象的画法,再由图象观察、探究二次函数y=ax2(a>0)的性质,培养学生动手、动脑、探究归纳问题的能力.第2课时二次函数y=ax2(a<0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.一、情境导入,初步认识1.在坐标系中画出y=12x2的图象,结合y=12x2的图象,谈谈二次函数y=ax2(a>0)的图象具有哪些性质?2.你能画出y=-12x2的图象吗?二、思考探究,获取新知探究1画y=ax2(a<0)的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y=-12x2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,y=12 x2与y=-12x2有何关系?归纳:y=12x2与y=-12x2二者图象形状完全相同,只是开口方向不同,两图象关于y轴对称.(教师引导学生从理论上进行证明这一结论)探究2二次函数y=ax2(a<0)性质问:你能结合y=-12x2的图象,归纳出y=ax2(a<0)图象的性质吗?【教学说明】教师提示应从开口方向,对称轴,顶点位置,y随x的增大时的变化情况几个方面归纳,教师整理,强调y=ax2(a<0)图象的性质.1.开口向下.2.对称轴是y轴,顶点是坐标原点,函数有最高点.3.当x>0时,y随x的增大而减小,简称右降,当x<0时,y随x的增大而增大,简称左升.探究3二次函数y=ax2(a≠0)的图象及性质学生回答:【教学点评】一般地,抛物线y=ax2的对称轴是,顶点是,当a>0时抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越;当a<0时,抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越,总之,|a|越大,抛物线开口越 .答案:y轴,(0,0),上,低,小,下,高,大,小三、典例精析,掌握新知例1 填空:①函数2的图象是,顶点坐标是,对称轴是,开口方向是 .②函数y=x2,y=12x2和y=-2x2请指出三条抛物线的解析式.解:①抛物线,(0,0),y轴,向上;②根据抛物线y=ax2中,a的值的作用来判断,上面最外面的抛物线为y=12x2,中间为y=x2,在x轴下方的为y=-2x2.【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax2中,当a>0时,开口向上;当a<0时,开口向下,|a|越大,开口越小.例2 已知抛物线y=ax2经过点(1,-1),求y=-4时x的值.【分析】把点(1,-1)的坐标代入y=ax2,求得a的值,得到二次函数的表达式,再把y=-4代入已求得的表达式中,即可求得x的值.解:∵点(1,-1)在抛物线y=ax2上,-1=a·12,∴a=-1,∴抛物线为y=-x2.当y=-4时,有-4=-x 2,∴x=±2.【教学说明】在求y=ax 2的解析式时,往往只须一个条件代入即可求出a 值.四、运用新知,深化理解1.下列关于抛物线y=x 2和y=-x 2的说法,错误的是( ) A.抛物线y=x 2和y=-x 2有共同的顶点和对称轴 B.抛物线y=x 2和y=-x 2关于x 轴对称 C.抛物线y=x 2和y=-x 2的开口方向相反D.点(-2,4)在抛物线y=x 2上,也在抛物线y=-x 2上2.二次函数y=ax 2与一次函数y=-ax(a ≠0)在同一坐标系中的图象大致是( )3.二次函数226(1)m m y m x +-=-,当x <0时,y 随x 的增大而减小,则m= . 4.已知点A (-1,y 1),B(1,y 2),C(a,y 3)都在函数y=x 2的图象上,且a >1,则y 1,y 2,y 3中最大的是 .5.已知函数y=ax 2经过点(1,2).①求a 的值;②当x <0时,y 的值随x 值的增大而变化的情况.【教学说明】学生自主完成,加深对新知的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.B 3.2 4.y 35.①a=2 ②当x <0时,y 随x 的增大而减小 五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑?在学生回答的基础上,教师点评:(1)y=ax 2(a<0)图象的性质;(2)y=ax 2(a ≠0)关系式的确定方法.1.教材P 10第1~2题.2.完成同步练习册中本课时的练习.本节课仍然是从学生画图象,结合上节课y=ax 2(a >0)的图象和性质,从而得出y=ax 2(a <0)的图象和性质,进而得出y=ax 2(a ≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时二次函数y=a(x-h)2的图象与性质【知识与技能】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2的图象的关系,理解a,h 对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数y=a(x-h)2的图象的作法和性质的过程,进一步领会数形结合的思想.【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握y=a(x-h)2的图象及性质.【教学难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识1.在同一坐标系中画出y=12x2与y=12(x-1)2的图象,完成下表.2.二次函数y=12(x-1)2的图象与y=12x2的图象有什么关系?3.对于二次函数12(x-1)2,当x取何值时,y的值随x值的增大而增大?当x取何值时,y的值随x值的增大而减小?二、思考探究,获取新知归纳二次函数y=a(x-h)2的图象与性质并完成下表.三、典例精析,掌握新知例1 教材P12例3.【教学说明】二次函数y=ax2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”. 例如y=ax2向左平移1个单位得到y=a(x+1)2,y=ax2向右平移2个单位得到y=a(x-2)2的图象.例2 已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.①水平移后的抛物线l的解析式;②若点B(x1,y1),C(x2,y2)在抛物线l上,且-1 2<x1<x2,试比较y1,y2的大小.解:①∵y=x+1,∴令y=0,则x=-1,∴A(-1,0),即抛物线l的顶点坐标为(-1,0),又∵抛物线l是由抛物线y=-2x2平移得到的,∴抛物线l的解析式为y=-2(x+1)2.②由①可知,抛物线l的对称轴为x=-1,∵a=-2<0,∴当x>-1时,y随x的增大而减小,又-12<x1<x2,∴y1>y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是()A.-1B.1C.0D.没有最小值2.抛物线y=-3(x+1)2不经过的象限是()A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是()4.(1)抛物线y=13x2向平移个单位得抛物线y=13(x+1)2;(2)抛物线向右平移2个单位得抛物线y=-2(x-2)2.5.(广东广州中考)已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大?当x取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1.C 2.A 3.B 4.(1)左,1 (2)y=-2x2(x+2)2 (2)略(3)当x<-2时,y随x增大而增大;当x=-25.解:(1)y=-13时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.第1、2题.1.教材P122.完成同步练习册中本课时的练习.通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h决定向左右平移;从中领会数形结合的数学思想.第4课时二次函数y=a(x-h)2+k的图象与性质【知识与技能】1.会用描点法画二次函数y=a(x-h)2+k的图象.掌握y=a(x-h)2+k的图象和性质.2.掌握y=a(x-h)2+k与y=ax2的图象的位置关系.3.理解y=a(x-h)2+k,y=a(x-h)2,y=ax2+k及y=ax2的图象之间的平移转化. 【过程与方法】经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣.【教学重点】二次函数y=a(x-h)2+k的图象与性质.【教学难点】由二次函数y=a(x-h)2+k的图象的轴对称性列表、描点、连线.一、情境导入,初步认识复习回顾:同学们回顾一下:①y=ax2,y=a(x-h)2,(a≠0)的图象的开口方向、对称轴、顶点坐标,y随x 的增减性分别是什么?②如何由y=ax2(a≠0)的图象平移得到y=a(x-h)2的图象?③猜想二次函数y=a(x-h)2+k的图象开口方向、对称轴、顶点坐标及y随x 的增减性如何?二、思考探究,获取新知探究1 y=a(x-h)2+k的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:①y=-12(x+1)2-1图象的开口方向、对称轴、顶点坐标及y随x的增减性如何?②将抛物线y=-12x2向左平移1个单位,再向下平移1个单位得抛物线y=-12(x+1)2-1.2.同学们讨论回答:①一般地,当h>0,k>0时,把抛物线y=ax2向右平移h个单位,再向上平移k个单位得抛物线y=a(x-h)2+k;平移的方向和距离由h,k的值来决定.②抛物线y=a(x-h)2+k的开口方向、对称轴、顶点坐标及y随x的增减性如何?探究2二次函数y=a(x-h)2+k的应用【教学说明】二次函数y=a(x-h)2+k的图象是,对称轴是,顶点坐标是,当a >0时,开口向,当a<0时,开口向.答案:抛物线,直线x=h,(h,k),上,下三、典例精析,掌握新知例1 已知抛物线y=a(x-h)2+k,将它沿x轴向右平移3个单位后,又沿y轴向下平移2个单位,得到抛物线的解析式为y=-3(x+1)2-4,求原抛物线的解析式.【分析】平移过程中,前后抛物线的形状,大小不变,所以a=-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线y=-3(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=-3(x+4)2-2.【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.例2 如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向目标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C?并说明理由.【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.解:该火球能点燃目标.如图,以OB所在直线为x轴,OA所在直线为y轴建立直角坐标系,则点(12,20)为抛物线顶点,设解析式为y=a(x-12)2+20,∵点(0,2)在图象上,∴144a+20=2,∴a=-18 ,∴y=-18(x-12)2+20.当x=20时,y=-18×(20-12)2+20=12,即抛物线过点(20,12),∴该火球能点燃目标.【教学说明】二次函数y=a(x-h)2+k的应用关键是构造出二次函数模型.四、运用新知,深化理解1.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向上平移4个单位2.抛物线y=x2-4与x轴交于B,C两点,顶点为A,则△ABC的周长为()A.43.函数y=ax2-a与y=ax-a(a≠0)在同一坐标系中的图象可能是()4.二次函数y=-2x2+6的图象的对称轴是,顶点坐标是,当x 时,y随x的增大而增大.5.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a= ,c= .6.把抛物线y=(x-1)2沿y轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.【答案】1.B 2.B 3.C 4.y轴,(0,6),<0 5.3,2 6.y=(x-1)2-4五、师生互动,课堂小结1.这节课你学到了什么,还有哪些疑惑?2.在学生回答的基础上,教师点评:①二次函数y=a(x-h)2+k的图象与性质;②如何由抛物线y=ax2平移得到抛物线y=a(x-h)2+k.【教学说明】教师应引导学生自主小结,加深理解掌握y=ax2与y=a(x-h)2+k 二者图象的位置关系.第1~3题.1.教材P152.完成同步练习册中本课时的练习.掌握函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.第5课时二次函数y=ax2+bx+c的图象与性质【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想. 【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x2+6x-1的图象.4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.5.二次函数y=-2x2+6x-1的y随x的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c 与y=a(x-h)2+k的转化过程.二、思考探究,获取新知探究1如何画y=ax2+bx+c图象,你可以归纳为哪几步?学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax 2+bx+c 的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax 2+bx+c 图象的性质有哪些?你能试着归纳吗? 学生回答,教师点评:抛物线y=ax 2+bx+c=224()24b ac b a x a a -++ ,对称轴为x=-2ba,顶点坐标为(-2b a ,244ac b a -),当a >0时,若x >-2b a ,y 随x 增大而增大,若x <-2ba,y 随x的增大而减小;当a <0时,若x >-2b a ,y 随x 的增大而减小,若x<-2ba,y 随x 的增大而增大.探究3 二次函数y=ax 2+bx+c 在什么情况下有最大值,什么情况下有最小值,如何确定?学生回答,教师点评: 三、典例精析,掌握新知例1 将下列二次函数写成顶点式y=a(x-h)2+k 的形式,并写出其开口方向,顶点坐标,对称轴.①y=14x 2-3x+21 ②y=-3x 2-18x-22 解:①y=14x 2-3x+21= 14(x 2-12x)+21 =14(x 2-12x+36-36)+21 =14(x-6)2+12.∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6. ②y=-3x 2-18x-22=-3(x 2+6x)-22=-3(x 2+6x+9-9)-22=-3(x+3)2+5. ∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.【教学说明】第②小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2 用总长为60m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?①S与l有何函数关系?②举一例说明S随l的变化而变化?③怎样求S的最大值呢?解:S=l (30-l)=- l2+30l (0<l<30)=-( l2-30l)=-( l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225)【教学说明】二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.四、运用新知,深化理解1.(北京中考)抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.(贵州贵阳中考)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确结论的序号是 .(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序号是 .【教学说明】通过练习,巩固掌握y=ax2+bx+c的图象和性质.【答案】1.A 2.B 3.(1)①④ (2)②③④五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)用配方法求二次y=ax2+bx+c的顶点坐标、对称轴;(2)由y=ax2+bx+c的图象判断与a,b,c有关代数式的值的正负;(3)实际问题中自变量取值范围及函数最值.1.教材P第1~3题.152.完成同步练习册中本课时的练习.y=ax2+bx+c的图象和性质可以看作是y=ax2,y=a(x-h)2+k,y=a(x-h)2+k的图象和性质的归纳与综合,让学生初步体会由简单到复杂,由特殊到一般的认识规律.*1.3 不共线三点确定二次函数的表达式【知识与技能】1.掌握用待定系数法列方程组求二次函数解析式.2.由已知条件的特点,灵活选择二次函数的三种形式,合适地设置函数解析式,可使计算过程简便.【过程与方法】通过例题讲解使学生初步掌握,用待定系数法求二次函数的解析式.【情感态度】通过本节教学,激发学生探究问题,解决问题的能力.【教学重点】用待定系数法求二次函数的解析式.【教学难点】。

新湘教版九年级下册数学全册教案

新湘教版九年级下册数学全册教案

第1章二次函数1.1 二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(0<x<50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-12000x+6000,(0<x<1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.三、典例精析,掌握新知例1 指出下列函数中哪些是二次函数.(1)y=(x-3)2-x 2 ;(2)y=2x(x-1);(3)y=32x-1;(4)y=22x;(5)y=5-x 2+x. 【分析】先化为一般形式,右边为整式,依照定义分析. 解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路: 1.将函数化为一般形式. 2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0. 例2 讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围. 例3 已知函数y=(m 2-m)x 2+mx+(m+1)(m 是常数),当m 为何值时: (1)函数是一次函数; (2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.解:(1)由200m m m ⎧-=⎨≠⎩ 得010m m ⎩=≠⎧⎨或 ,∴m=1.即当m=1时,函数y=(m 2-m)x 2+mx+(m+1)是一次函数. (2)由m 2-m ≠0得m ≠0且m ≠1,∴当m ≠0且m ≠1时,函数y=(m 2-m)x 2+mx+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是( ) A. 2123y x x =+- B.y=3x 3+2x 2 C.y=(x-2)2-x 3D.21y = 2.二次函数y=2x(x-1)的一次项系数是( ) A.1 B.-1 C.2 D.-2 3.若函数232(3)1k k y k xkx -+=-++ 是二次函数,则k 的值为( )A.0B.0或3C.3D.不确定4.若y=(a+2)x 2-3x+2是二次函数,则a 的取值范围是 .5.已知二次函数y=1-3x+5x 2,则二次项系数a= ,一次项系数b= ,常数项c= . 6.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式 ,它 (填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为x 的圆(圆心与正方形的中心重合),剩余部分的面积为y.(1)求y 关于x 的函数关系式; (2)试求自变量x 的取值范围;(3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位). 【答案】1.D 2.D 3.A 4.a ≠-2 5.5,-3,1 6.21122y x x =- 是 7.(1)y=25-πx 2=-πx 2+25. (2)0<x ≤52.(3)当x=2时,y=-4π+25≈-4×3.14+25=12.44≈12.4. 即剩余部分的面积约为12.4.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导. 五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳. 1.教材P 4第1~3题.2.完成同步练习册中本课时的练习.本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.1.2 二次函数的图象与性质第1课时 二次函数y=ax 2(a >0)的图象与性质 【知识与技能】1.会用描点法画函数y=ax2(a >0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a >0)的图象和性质解决简单的实际问题. 【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0,0)的y=x2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x2图象的错误画法.探究2 y=ax 2(a >0)图象的性质在同一坐标系中,画出y=x 2, 212y x =,y=2x 2的图象. 【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数y=ax2(a >0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y 随x 的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.y=ax 2(a >0)图象的性质 1.图象开口向上.2.对称轴是y 轴,顶点是坐标原点,函数有最低点.3.当x >0时,y 随x 的增大而增大,简称右升;当x <0时,y 随x 的增大而减小,简称左降. 三、典例精析,掌握新知 例 已知函数24(2)k k y k x+-=+是关于x 的二次函数.(1)求k 的值.(2)k 为何值时,抛物线有最低点,最低点是什么?在此前提下,当x 在哪个范围内取值时,y 随x 的增大而增大?【分析】此题是考查二次函数y=ax 2的定义、图象与性质的,由二次函数定义列出关于k 的方程,进而求出k 的值,然后根据k+2>0,求出k 的取值范围,最后由y 随x 的增大而增大,求出x 的取值范围.解:(1)由已知得22042k k k +≠+-=⎧⎨⎩ ,解得k=2或k=-3. 所以当k=2或k=-3时,函数24(2)k k y k x+-=+是关于x 的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.由(1)知k=2,最低点是(0,0),当x ≥0时,y 随x 的增大而增大. 四、运用新知,深化理解1.(广东广州中考)下列函数中,当x >0时,y 值随x 值增大而减小的是( ) A.y=x 2B.y=x-1C. 34y x =D.y=1x2.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y=x 2的图象上,则( ) A.y 1<y 2<y 3 B.y 1<y 3<y 2 C.y 3<y 2<y 1 D.y 2<y 1<y 33.抛物线y=13x2的开口向,顶点坐标为,对称轴为,当x=-2时,y= ;当y=3时,x= ,当x≤0时,y随x的增大而;当x>0时,y随x的增大而 .4.如图,抛物线y=ax2上的点B,C与x轴上的点A(-5,0),D(3,0)构成平行四边形ABCD,BC 与y轴交于点E(0,6),求常数a的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.A 3.上,(0,0),y轴,43,±3,减小,增大4.解:依题意得:BC=AD=8,BC∥x轴,且抛物线y=ax2上的点B,C关于y轴对称,又∵BC与y轴交于点E(0,6),∴B点为(-4,6),C点为(4,6),将(4,6)代入y=ax2得:a=38.五、师生互动,课堂小结1.师生共同回顾二次函数y=ax2(a>0)图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.1.教材P7第1、2题.2.完成同步练习册中本课时的练习.本节课是从学生画y=x2的图象,从而掌握二次函数y=ax2(a>0)图象的画法,再由图象观察、探究二次函数y=ax2(a>0)的性质,培养学生动手、动脑、探究归纳问题的能力.第2课时二次函数y=ax2(a<0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.一、情境导入,初步认识1.在坐标系中画出y=12x2的图象,结合y=12x2的图象,谈谈二次函数y=ax2(a>0)的图象具有哪些性质?2.你能画出y=-12x2的图象吗?二、思考探究,获取新知探究1画y=ax2(a<0)的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y=-1 2x2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,y=12x2与y=-12x2有何关系?归纳:y=12x2与y=-12x2二者图象形状完全相同,只是开口方向不同,两图象关于y轴对称.(教师引导学生从理论上进行证明这一结论)探究2二次函数y=ax2(a<0)性质问:你能结合y=-12x2的图象,归纳出y=ax2(a<0)图象的性质吗?【教学说明】教师提示应从开口方向,对称轴,顶点位置,y随x的增大时的变化情况几个方面归纳,教师整理,强调y=ax2(a<0)图象的性质.1.开口向下.2.对称轴是y轴,顶点是坐标原点,函数有最高点.3.当x>0时,y随x的增大而减小,简称右降,当x<0时,y随x的增大而增大,简称左升.探究3二次函数y=ax2(a≠0)的图象及性质学生回答:【教学点评】一般地,抛物线y=ax2的对称轴是,顶点是,当a>0时抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越;当a<0时,抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越,总之,|a|越大,抛物线开口越 .答案:y轴,(0,0),上,低,小,下,高,大,小三、典例精析,掌握新知例1 填空:①函数x)2的图象是 ,顶点坐标是是 ,开口方向是 .②函数y=x 2,y=12x 2和y=-2x 2的图象如图所示, 请指出三条抛物线的解析式.解:①抛物线,(0,0),y 轴,向上;②根据抛物线y=ax 2中,a 的值的作用来判断,上面最外面的抛物线为y=2x 2,中间为y=x 2,在x 轴下方的为y=-2x 2.【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax 2中,当a >0时,开口向上;当a <0时,开口向下,|a|越大,开口越小.例2 已知抛物线y=ax 2经过点(1,-1),求y=-4时x 的值.【分析】把点(1,-1)的坐标代入y=ax 2,求得a 的值,得到二次函数的表达式,再把y=-4代入已求得的表达式中,即可求得x 的值.解:∵点(1,-1)在抛物线y=ax 2上,-1=a ·12,∴a=-1,∴抛物线为y=-x 2.当y=-4时,有-4=-x 2,∴x=±2.【教学说明】在求y=ax 2的解析式时,往往只须一个条件代入即可求出a 值. 四、运用新知,深化理解1.下列关于抛物线y=x 2和y=-x 2的说法,错误的是( ) A.抛物线y=x 2和y=-x 2有共同的顶点和对称轴 B.抛物线y=x 2和y=-x 2关于x 轴对称 C.抛物线y=x 2和y=-x 2的开口方向相反D.点(-2,4)在抛物线y=x 2上,也在抛物线y=-x 2上2.二次函数y=ax 2与一次函数y=-ax(a ≠0)在同一坐标系中的图象大致是( ) 3.二次函数226(1)m m y m x+-=-,当x <0时,y 随x 的增大而减小,则m= .4.已知点A (-1,y 1),B(1,y 2),C(a,y 3)都在函数y=x 2的图象上,且a >1,则y 1,y 2,y 3中最大的是 .5.已知函数y=ax 2经过点(1,2).①求a 的值;②当x <0时,y 的值随x 值的增大而变化的情况. 【教学说明】学生自主完成,加深对新知的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.B 3.2 4.y35.①a=2 ②当x<0时,y随x的增大而减小五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑?在学生回答的基础上,教师点评:(1)y=ax2(a<0)图象的性质;(2)y=ax2(a≠0)关系式的确定方法.1.教材P10第1~2题.2.完成同步练习册中本课时的练习.本节课仍然是从学生画图象,结合上节课y=ax2(a>0)的图象和性质,从而得出y=ax2(a<0)的图象和性质,进而得出y=ax2(a≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时二次函数y=a(x-h)2的图象与性质【知识与技能】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数y=a(x-h)2的图象的作法和性质的过程,进一步领会数形结合的思想.【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握y=a(x-h)2的图象及性质.【教学难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识1.在同一坐标系中画出y=12x2与y=12(x-1)2的图象,完成下表.2.二次函数y=12(x-1)2的图象与y=12x2的图象有什么关系?3.对于二次函数12(x-1)2,当x取何值时,y的值随x值的增大而增大?当x取何值时,y的值随x值的增大而减小?二、思考探究,获取新知归纳二次函数y=a(x-h)2的图象与性质并完成下表.三、典例精析,掌握新知例1 教材P12例3.【教学说明】二次函数y=ax2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”. 例如y=ax2向左平移1个单位得到y=a(x+1)2,y=ax2向右平移2个单位得到y=a(x-2)2的图象.例2 已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.①水平移后的抛物线l的解析式;②若点B(x1,y1),C(x2,y2)在抛物线l上,且-12<x1<x2,试比较y1,y2的大小.解:①∵y=x+1,∴令y=0,则x=-1,∴A(-1,0),即抛物线l的顶点坐标为(-1,0),又∵抛物线l 是由抛物线y=-2x2平移得到的,∴抛物线l的解析式为y=-2(x+1)2.②由①可知,抛物线l的对称轴为x=-1,∵a=-2<0,∴当x>-1时,y随x的增大而减小,又-12<x1<x2,∴y1>y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是()A.-1B.1C.0D.没有最小值2.抛物线y=-3(x+1)2不经过的象限是()A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是()4.(1)抛物线y=13x2向平移个单位得抛物线y=13(x+1)2;(2)抛物线向右平移2个单位得抛物线y=-2(x-2)2.5.(广东广州中考)已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大?当x取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1.C 2.A 3.B 4.(1)左,1 (2)y=-2x25.解:(1)y=-13(x+2)2 (2)略(3)当x<-2时,y随x增大而增大;当x=-2时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.1.教材P12第1、2题.2.完成同步练习册中本课时的练习.通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h 对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h决定向左右平移;从中领会数形结合的数学思想.第4课时二次函数y=a(x-h)2+k的图象与性质【知识与技能】1.会用描点法画二次函数y=a(x-h)2+k的图象.掌握y=a(x-h)2+k的图象和性质.2.掌握y=a(x-h)2+k与y=ax2的图象的位置关系.3.理解y=a(x-h)2+k,y=a(x-h)2,y=ax2+k及y=ax2的图象之间的平移转化.【过程与方法】经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣.【教学重点】二次函数y=a(x-h)2+k的图象与性质.【教学难点】由二次函数y=a(x-h)2+k的图象的轴对称性列表、描点、连线.一、情境导入,初步认识复习回顾:同学们回顾一下:①y=ax2,y=a(x-h)2,(a≠0)的图象的开口方向、对称轴、顶点坐标,y随x的增减性分别是什么?②如何由y=ax2(a≠0)的图象平移得到y=a(x-h)2的图象?③猜想二次函数y=a(x-h)2+k的图象开口方向、对称轴、顶点坐标及y随x的增减性如何?二、思考探究,获取新知探究1 y=a(x-h)2+k的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:①y=-12(x+1)2-1图象的开口方向、对称轴、顶点坐标及y随x的增减性如何?②将抛物线y=-12x2向左平移1个单位,再向下平移1个单位得抛物线y=-12(x+1)2-1.2.同学们讨论回答:①一般地,当h>0,k>0时,把抛物线y=ax2向右平移h个单位,再向上平移k个单位得抛物线y=a(x-h)2+k;平移的方向和距离由h,k的值来决定.②抛物线y=a(x-h)2+k的开口方向、对称轴、顶点坐标及y随x的增减性如何?探究2二次函数y=a(x-h)2+k的应用【教学说明】二次函数y=a(x-h)2+k的图象是,对称轴是,顶点坐标是,当a>0时,开口向,当a <0时,开口向.答案:抛物线,直线x=h,(h,k),上,下三、典例精析,掌握新知例1 已知抛物线y=a(x-h)2+k,将它沿x轴向右平移3个单位后,又沿y轴向下平移2个单位,得到抛物线的解析式为y=-3(x+1)2-4,求原抛物线的解析式.【分析】平移过程中,前后抛物线的形状,大小不变,所以a=-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线y=-3(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=-3(x+4)2-2.【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.例2 如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向目标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C?并说明理由.【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.解:该火球能点燃目标.如图,以OB所在直线为x轴,OA所在直线为y轴建立直角坐标系,则点(12,20)为抛物线顶点,设解析式为y=a(x-12)2+20,∵点(0,2)在图象上,∴144a+20=2,∴a=-18,∴y=-18(x-12)2+20.当x=20时,y=-18×(20-12)2+20=12,即抛物线过点(20,12),∴该火球能点燃目标.【教学说明】二次函数y=a(x-h)2+k的应用关键是构造出二次函数模型.四、运用新知,深化理解1.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向上平移4个单位2.抛物线y=x2-4与x轴交于B,C两点,顶点为A,则△ABC的周长为()3.函数y=ax2-a与y=ax-a(a≠0)在同一坐标系中的图象可能是()4.二次函数y=-2x2+6的图象的对称轴是,顶点坐标是,当x 时,y 随x的增大而增大.5.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a= ,c= .6.把抛物线y=(x-1)2沿y轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.【答案】1.B 2.B 3.C 4.y轴,(0,6),<0 5.3,2 6.y=(x-1)2-4五、师生互动,课堂小结1.这节课你学到了什么,还有哪些疑惑?2.在学生回答的基础上,教师点评:①二次函数y=a(x-h)2+k的图象与性质;②如何由抛物线y=ax2平移得到抛物线y=a(x-h)2+k.【教学说明】教师应引导学生自主小结,加深理解掌握y=ax2与y=a(x-h)2+k二者图象的位置关系.1.教材P15第1~3题.2.完成同步练习册中本课时的练习.掌握函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.第5课时二次函数y=ax2+bx+c的图象与性质【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质. 【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x2+6x-1的图象.4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.5.二次函数y=-2x2+6x-1的y随x的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.二、思考探究,获取新知探究1 如何画y=ax 2+bx+c 图象,你可以归纳为哪几步?学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax 2+bx+c 的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax 2+bx+c 图象的性质有哪些?你能试着归纳吗?学生回答,教师点评: 抛物线y=ax 2+bx+c=224()24b ac b a x a a -++ ,对称轴为x=-2b a ,顶点坐标为(-2b a ,244ac b a -),当a >0时,若x >-2b a ,y 随x 增大而增大,若x <-2b a,y 随x 的增大而减小;当a <0时,若x >-2b a ,y 随x 的增大而减小,若x<-2b a ,y 随x 的增大而增大. 探究3 二次函数y=ax 2+bx+c 在什么情况下有最大值,什么情况下有最小值,如何确定?学生回答,教师点评:三、典例精析,掌握新知例1 将下列二次函数写成顶点式y=a(x-h)2+k 的形式,并写出其开口方向,顶点坐标,对称轴. ①y=14x 2-3x+21 ②y=-3x 2-18x-22 解:①y=14x 2-3x+21 = 14(x 2-12x)+21 =14(x 2-12x+36-36)+21 =14(x-6)2+12. ∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.②y=-3x 2-18x-22=-3(x 2+6x)-22=-3(x 2+6x+9-9)-22=-3(x+3)2+5.∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.【教学说明】第②小题注意h 值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2 用总长为60m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?①S与l有何函数关系?②举一例说明S随l的变化而变化?③怎样求S的最大值呢?解:S=l (30-l)=- l2+30l (0<l<30)=-( l2-30l)=-( l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225)【教学说明】二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.四、运用新知,深化理解1.(北京中考)抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.(贵州贵阳中考)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确结论的序号是 .(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序号是 .【教学说明】通过练习,巩固掌握y=ax2+bx+c的图象和性质.【答案】1.A 2.B 3.(1)①④ (2)②③④五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)用配方法求二次y=ax2+bx+c的顶点坐标、对称轴;(2)由y=ax2+bx+c的图象判断与a,b,c有关代数式的值的正负;(3)实际问题中自变量取值范围及函数最值.1.教材P15第1~3题.2.完成同步练习册中本课时的练习.y=ax2+bx+c的图象和性质可以看作是y=ax2,y=a(x-h)2+k,y=a(x-h)2+k的图象和性质的归纳与综合,让学生初步体会由简单到复杂,由特殊到一般的认识规律.*1.3 不共线三点确定二次函数的表达式【知识与技能】1.掌握用待定系数法列方程组求二次函数解析式.2.由已知条件的特点,灵活选择二次函数的三种形式,合适地设置函数解析式,可使计算过程简便. 【过程与方法】通过例题讲解使学生初步掌握,用待定系数法求二次函数的解析式.【情感态度】通过本节教学,激发学生探究问题,解决问题的能力.【教学重点】用待定系数法求二次函数的解析式.【教学难点】灵活选择合适的表达式设法.一、情境导入,初步认识1.同学们想一想,已知一次函数图象上两个点的坐标,如何用待定系数法求它的解析式?学生回答:2.已知二次函数图象上有两个点的坐标,能求出其解析式吗?三个点的坐标呢?二、思考探究,获取新知探究1已知三点求二次函数解析式讲解:教材P21例1,例2.【教学说明】让学生通过例题讲解归纳出已知三点坐标求二次函数解析式的方法.。

新湘教版九年级下册数学全册教案

新湘教版九年级下册数学全册教案

第1章二次函数1.1二次函数V教学目际【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围. 【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程•A A r 2 λ(l)y=(χ-3)2-χ2 : (2)y=2x (X-I) ; (3)y二3‘xT; (4)y二二;(5) y二5-x'+x.【分析】先化为一般形式,右边为整式,依照定义分析.解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为一-次函数的思路:1.将函数化为一般形式.2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0.例2讲解教材P3例题.【教学说明】山实际问题确定二次函数关系式时,要注意自变量的取值范围.例3已知函数y=(m2-m)x⅛x+(m+l) (In是常数),当m为何值时:(1)函数是一次函数;(2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式•IKn I f nr C Zn ”" = 0或1解:⑴由{一〃Z = O得<,[in≠0[ tn≠OAm-I.即当In=I 时,函数y= (m3~m)x2+mx+ (m+l)是一次函数.(2)由m2-m≠0 得mH O 且InH 1,∙°∙当InHO 且mH 1 时,函数y二(m2-m) x2+mx+ (m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是( )A. y =———! ---B. y=3x3+2x*C. y二(χ-2) 2-χ2D. y = ∖- Vlx2x~ +2x-32.二次函数y二2x(χ-l)的一次项系数是( )A. 1B.-lC. 2D. -23.若函数y =伙-3)√-3A+2+A X+1是二次函数,则k的值为( )A. OB. O或3C. 3D.不确定4.若y=(a÷2)x2-3x÷2是二次函数,则a的取值范围是 ______________ .5.已知二次函数y=l-3x+5x3,则二次项系数a= , 一次项系数b= ,常数项6.某校九(1)班共有X名学生,在毕业典礼上每两名同学都握一次手,共握手y次,试写出y与X之间的函数关系式_______________ ,它_______ (填"是”或"不是”)二次函数.7•如图,在边长为5的正方形中,挖去一个半径为X的圆(圆心与正方形的中心重合),剩余部分的面积为y・(1)求y关于X的函数关系式;(2)试求自变量X的取值范围;(3)求当圆的半径为2时,剩余部分的面积(兀取3. 14,结果精确到十分位)・【答案】1・D 2. D 3. A 4. a≠-2 5. 5, -3, 1 6. y = -χ1 2^-χ是2 27.(1) y=25- ∏ x2=~ π x2+25.(2)0<x≤52.1 •教材匕第「3题.2.完成同步练习册中本课时的练习.敦学反思■亠【知识与技能】1•会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>O)的图象和性质解决简单的实际问题•【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=a√(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】(3)当X二2 时,y=-4 π +25Q-4 X 3. 14+25=12. 44^=12. 4.即剩余部分的面积约为12. 4.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1-2二次函数的图象与性质第1课时二次函数y=ax2(a>0)的图象与性质二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1画二次函数y=ax2(a>0)的图象•画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按"列表、描点、连线”的步骤画图y二丘的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x'的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0, 0)的y=x2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2, 4), (2, 4)停住的y=x'图象的错误画法.探究2 y=ax2(a>0)图象的性质在同一坐标系中,画出y=x',丄√,y=2√的图象•2【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数y=ax2(a>0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y随X的增大时的变化情况等儿个方面让学生归纳,教师整理讲评、强调.y=ax2(a>0)图象的性质1.图象开口向上.2.对称轴是y轴,顶点是坐标原点,函数有最低点•3.当x>0时,y随X的增大而增大,简称右升;当XVO时,y随X的增大而减小,简称左降.三、典例精析,掌握新知例已知函数y =伙+ 2)√+A-4是关于X的二次函数.⑴求k的值.(2)k为何值时,抛物线有最低点,最低点是什么?在此前提下,当X在哪个范围内取值时,y随X 的增大而增大?【分析】此题是考查二次函数y=ax:的定义、图象与性质的,由二次函数定义列出关于k 的方程,进而求出k的值,然后根据k÷2>0,求出k的取值范围,最后山y随X的增大而增大,求出X的取值范围.解:⑴由已知得[/+2H° ,解得心2或2-3・k∏4 = 2所以当k=2或k=-3时,函数y =伙+ 2)√+w是关于X的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k÷2>0.由(1)知22,最低点是(0,0),当XMo时,y随X的增大而增大.四、运用新知,深化理解1.(广东广州中考)下列函数中,当x>0时,y值随X值增大而减小的是( )C 3 1A.y二x'B. y=χ-lC. y = —x D・ y二―4 X2.已知点(-l,y1), (2,yJ, (-3, y3)都在函数y二x'的图象上,则( )A. y1<y2<y3B. yι<y3<y2C. y3<y2<y1D. y2<y1<y33.抛物线V=-X2的开口向,顶点坐标为,对称轴为,3 ----------- --------------------- -------------------当X二-2时,y二_______ ;当y二3时,X= ________ ,当XWO时,y随X的增大而____________ :当XAo时,y随X的增大而 ____________ .4.如图,抛物线y=ax2上的点B, C与X轴上的点A (-5, 0) , D (3, 0)构成平行四边形ABCD, BC 与y轴交于点E (0, 6),求常数a的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.4【答案】1・D 2. A 3. ±, (0, 0),y轴,±3,减小,增大34•解:依题意得:BC=AD=8, BC〃x轴,且抛物线y=d上的点B, C关于y轴对称,乂T BC 与y 轴交于点E (0, 6) , ∙∙∙ B 点为(-4, 6) , C 点为(4, 6),将(4, 6)代入y=aX= 得:a=-.8五、师生互动,课堂小结1.师生共同回顾二次函数y=a√(a>0)图象的画法及其性质•2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.宀谍后作业1.教材P;第1、2题.2.完成同步练习册中本课时的练习.J敎字反思本节课是从学生画y=x'的图象,从而掌握二次函数y=ax2(a>0)图象的画法,再山图象观察、探究二次函数y=a√(a>0)的性质,培养学生动手、动脑、探究归纳问题的能力.第2课时二次函数y=ax2(a<0)的图象与性质J教学目际【知识与技能】1•会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题•【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=a√(a≠0)图象和性质的真正理解, 从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a<O)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会・一、情境导入,初步认识1.在坐标系中画出y二丄X’的图象,结合Y=-X2的图象,谈谈二次函数y=a√(a>O)的图象2 2具有哪些性质?2.你能画出y二-丄X'的图象吗?2二、思考探究,获取新知探究1画y=a√(a<O)的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y二-丄x'的图象•2【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学•问:从所画出的图象进行观察,y二丄丘与y二-丄丘有何关系?2 2归纳:y=- x:与y二-丄x'二者图象形状完全相同,只是开口方向不同,两图象关于y轴对2 2称.(教师引导学生从理论上进行证明这一结论)探究2二次函数y=ax2(a<O)性质问:你能结合y二-丄x'的图象,归纳出y=ax2(a<0)图2象的性质吗?【教学说明】教师提示应从开口方向,对称轴,顶点位置,y随X的增大时的变化情况儿个方面归纳,教师整理,强调y=a√(a<O)图象的性质.1.开口向下.2.对称轴是y轴,顶点是坐标原点,函数有最高点.3.当x>0时,y随X的增大而减小,简称右降,当x<0时,y随X的增大而增大,简称左升.探究3二次函数y=a√(a≠0)的图象及性质学生回答:【教学点评】一般地,抛物线y=ax'的对称轴是____________ ,顶点是____________ ,当a>0时抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越___________ ;当d<o时,抛物线的开口向________________ ,顶点是抛物线的最点,a越大,抛物线开口越______________ ,总之,3越大,抛物线开口越_________________ .答案:y轴,(0, 0),上,低,小,下,高,大,‘ Il K I /三、典例精析,掌握新知比丿例1填空:①函数y=(-√2x)2的图象是______________ —<yt∖—* __________ ,对称轴是___________ ,开口方向是______________ . 111②函数y=x2, y=-x=和y=-2√的图象如图所示,2请指出三条抛物线的解析式.解:①抛物线,(O, 0) , y轴,向上;②根据抛物线ywx'中,a的值的作用来判断,上面最外面的抛物线为y=-x2f中间为2 y-x:,在X轴下方的为y二-2x1【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线ywx' 中,当a>0时,开口向上;当a<0时,开口向下,&越大,开口越小.例2已知抛物线y=ax2经过点(1, -1),求y二-4时X的值.【分析】把点(1,-1)的坐标代入y=d,求得a的值,得到二次函数的表达式,再把y二- 4代入已求得的表达式中,即可求得X的值.解:・・•点(1, -1)在抛物线y=aχ2上,-l=a∙f, Λa=-1, Λ抛物线为y=-χ2.当y二-4 时,有-4=-x:,Λx=±2.【教学说明】在求ywx'的解析式时,往往只须一个条件代入即可求出a值.四、运用新知,深化理解1•下列关于抛物线y二丘和y=-χ2的说法,错误的是( )A.抛物线y二丘和y二-丘有共同的顶点和对称轴B.抛物线y=x'和y-x'关于X轴对称C.抛物线y=x'和y二-x'的开口方向相反D.点(-2, 4)在抛物线y二十上,也在抛物线y二-X'上2.二次函数y二ax'与一次函数y=-ax(a≠0)在同一坐标系中的图象大致是( )3.二次函数y =伽-I)K+'"Y,当x<0时,y随X的增大而减小,则nr _____________ .4.已知点A (-1, yι),B(l,y2),C(a, y»)都在函数y=x'的图象上,且a>l, J!∣J y1, y2, y3中最大的是______ .5.已知函数y=ax2经过点(1,2).①求a的值;②当XVo时,y的值随X值的增大而变化的情况.【教学说明】学生自主完成,加深对新知的理解和掌握,当学生疑惑时,教师及时指导•【答案】1.D 2. B 3.2 4. y35.①a二2②当x<0时,y随X的增大而减小五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑?在学生回答的基础上,教师点评:(1) y=ax2(a<0) 图象的性质;(2) y=ax2(a≠0)关系式的确定方法.T‘谍后作业1•教材PK)第「2题.2.完成同步练习册中本课时的练习.本节课仍然是从学生画图象,结合上节课y=ax2(a>0)的图象和性质,从而得出y=ax2(a<0) 的图象和性质,进而得出y=ax2(a≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时二次函数y=a(x∙h)2的图象与性质J教学目际【知识与技能】1•能够画出y=a(x-h)3的图象,并能够理解它与ywx'的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出y=a(χ-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数y=a(χ-h)3的图象的作法和性质的过程,进一步领会数形结合的思想. 【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握y=a(χ-h)2的图象及性质.【教学难点】理解y=a(χ-h)2与y=dx'图象之间的位置关系,理解a, h对二次函数图象的影响.「敎学i≡呈一、情境导入,初步认识1.在同一坐标系中画出y二丄十与y二丄(χ-D2的图象,完成下表.2 22.二次函数y二丄(x-l),的图象与y=iχ2的图象有什么关系?2 23.对于二次函数丄(χ-D2,当X取何值时,y的值随X值的增大而增大?当X取何值时,y2的值随X值的增大而减小?二、思考探究,获取新知归纳二次函数y=a(χ-h)2的图象与性质并完成下表.三、典例精析,掌握新知例1教材P=例3.【教学说明】二次函数y=a X=与yw(x-h)'是有关系的,即左、右平移时“左加右减”.例如y=aX=向左平移1个单位得到y=a(x+l)c, y=ax2向右平移2个单位得到y=a(χ-2)c的图象.例2已知直线y二x+1与X轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.①水平移后的抛物线1的解析式;②若点B (x1,y1),C(x2,y2)在抛物线Z±,且-丄<x1<x2,试比较2的大小.解:①∙∙∙y=x+l,・・・令y二0,则x=-l, AA (-1,0),即抛物线/的顶点坐标为(-1, 0) , XV 抛物线/是由抛物线y=-2x3平移得到的,・•・抛物线/的解析式为y二-2(x+l)l②由①可知,抛物线/的对称轴为x=-l, Va=-2<0,・•・当X>-1时,y随X的增大而减小,乂一丄<x i<x2, Λy1>y2.2【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1•二次函数y=15(X-I) =的最小值是( )A.-1B. 1C.0D.没有最小值2.抛物线y二-3(x+l)'不经过的象限是( )A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=£中,当x>0时,y随X的增大而增大,则二次函数y=k(χ-l)2的图象大致是(4. (1)抛物线y=iχ3向___________ 平移 _______ 个单位得抛物线y=∣ (x+l)c;(2)抛物线 ________ 向右平移2个单位得抛物线y二-2 (x-2)15.(广东广州中考)已知抛物线y=a(χ-h)2的对称轴为X二-2,且过点(1, -3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当X取何值时,y随X的增大而增大?当X取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1∙ C 2. A 3. B 4. (1)左,1 (2)y 二-2x'5•解:(l)y二-1(x+2)' (2)略(3)当XV-2时,y随X增大而增大;当X二-2时,y有3最大值0.五.师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(l)y=a(χ-h)2的图象与性质;(2) y=a(χ-h)2与y=ax= 的图象的关系.严谍后作业1.教材P】2第1、2题.2.完成同步练习册中本课时的练习.” h M通过本节学习使学生认识到y=a(χ-h)2的图象是山y=ax2的图象左右平移得到的,初步认识到3,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,I a l决定抛物线开口的大小,h决定向左右平移;从中领会数形结合的数学思想.第4课时二次函数y=a(x∙hF+k的图象与性质敎学目际【知识与技能】1.会用描点法画二次函数y=a(x-h)⅛的图象.掌握y=a(χ-h)⅛的图象和性质.2.掌握y=a(χ-h)⅛与ywx'的图象的位置关系.3.理解y=d (χ-h) :+k, y=a (χ-h) y=ax2+k及y=ax2的图象之间的平移转化.【过程与方法】经历探索二次函数y=a(χ-h)⅛的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣. 【教学重点】二次函数y=a(χ-h):+k的图象与性质.【教学难点】由二次函数y=a(χ-h)⅛的图象的轴对称性列表、描点、连线.T敎学目程一、情境导入,初步认识复习回顾:同学们回顾一下:®y=ax:, y=a(χ-h)2, (a≠0)的图象的开口方向、对称轴、顶点坐标,y随X的增减性分别是什么?②如何由y=ax3(a≠0)的图象平移得到y=a(χ-h):的图象?③猜想二次函数y=a(χ-h)⅛的图象开口方向、对称轴、顶点坐标及y随X的增减性如何?二、思考探究,获取新知探究1 y-a (χ-h) :+k的图象和性质1•山老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:φy=-l (χ+l)=-l图象的开口方向、对称轴、顶点坐标及y随X的增减性如何?2②将抛物线y=--X=向左平移1个单位,再向下平移1个单位得抛物线2y二一一(x+l)2-l.22.同学们讨论回答:①一般地,当h>O,k>0时,把抛物线y=dx'向右平移h个单位,再向上平移k个单位得抛物线y=a(χ-h)⅛;平移的方向和距离由h, k的值来决定.②抛物线y=a(χ-h)⅛的开口方向、对称轴、顶点坐标及y随X的增减性如何?探究2二次函数y=a(χ-h)⅛的应用【教学说明】二次函数y=a(χ-h)⅛的图象是,对称轴是,顶点坐标是,当a>0时,开口向,当a<0时,开口向.答案:抛物线,直线x=h, (h,k),上,下三、典例精析,掌握新知例1已知抛物线y=a(χ-h)⅛,将它沿X轴向右平移3个单位后,乂沿y轴向下平移2个单位,得到抛物线的解析式为y=-3(x+l)3-4,求原抛物线的解析式.【分析】平移过程中,前后抛物线的形状,大小不变,所以a二-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线y=-3(x+l)3-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4, -2).故原抛物线的解析式为尸-3 (x+4)「2.【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.例2如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向LJ标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C?并说明理由.【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.解:该火球能点燃IJ标.如图,以OB所在直线为X轴,OA所在直线为y轴建立直角坐标系,则点(12, 20)为抛物线顶点,设解析式为y=a(χ-12)2+20, V点(0, 2)在图象上,二144a+20=2, Aa=-I ,∙'∙y二-】(xT2)'+20.当x=20 时,y二-丄× (20-12)2+20=12,即抛物线过点8 8 8(20,12),・・・该火球能点燃目标.【教学说明】二次函数y=a(χ-h)⅛的应用关键是构造出二次函数模型.四、运用新知,深化理解1.若抛物线y=-7(x+4)2-l平移得到y二-7贰则必须( )2・抛物线y 二丘-4与X 轴交于B,C 两点,顶点为A,则AABC 的周长为( )A. 4√5B.4√5+4C. 12D. 2√5+43•函数y=ax 3 4-a 与y 二aχp(aHO)在同一坐标系中的图象可能是()4•二次函数y=-2x 2+6的图象的对称轴是 ___________ ,顶点坐标是 ____________ ,当X时,y 随X 的增大而增大.5.已知函数y=ax 2+c 的图象与函数y=-3x 2-2的图象关于X 轴对称,贝IJ a= ________ , C= ________ .6. 把抛物线y=(χ-D 2沿y 轴向上或向下平移,所得抛物线经过Q (3, 0),求平移后抛物 线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑. 【答案】1.B 2. B 3. C 4. y 轴,(0, 6) , <0 5.3,2 6. y=(χ-l)2-4五、师生互动,课堂小结1•这节课你学到了什么,还有哪些疑惑?2. 在学生回答的基础上,教师点评:①二次函数y=a(χ-h)⅛的图象与性质;②如何山抛 物线y=d £平移得到抛物线y=a(χ-h)⅛.【教学说明】教师应引导学生自主小结,加深理解掌握与y=a(χ-h)⅛二者图象的 位置关系.3 教材庶第「3题.4 完成同步练习册中本课时的练习. 爭教学反思掌握函数y=ax 2, y=a(χ-h)2, y=a(χ-h)2+k 图象的变化关系,从而体会山简单到复杂的认识规 律.A •先向左平移4个单位, B. 先向右平移4个单位, C. 先向左平移1个单位,D •先向右平移1个单位, 再向下平移1个单位 再向上平移1个单位 再向下平移4个单位再向上平移4个单位第5课时二次函数y=ax5 6 7 8 9 10+bx+c的图象与性质.:;教字目际【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=aX=+bx÷c的顶点坐标、开口方向、对称轴、y随X的增减性.3.能通过配方求出二次函数y=ax2+bx÷c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax⅛x÷c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a ≠ 0)对称轴和顶点坐标公式的必要性.2.在学习y=ax⅛x÷c(a≠O)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2÷bx+c的图象并能说出图象的性质. 【教学难点】能利用二次函数y=ax‰÷c(a≠O)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c (a≠0)的图象.【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx÷c与y=a(x- h)⅛的转化过程.二、思考探究,获取新知探究1如何画y=ax3+bx÷c图象,你可以归纳为哪儿步?V孕学i≡呈一、情境导入,初步认识请同学们完成下列问题.6 把二次函数y=-2√+6χ-l化成y二a(χ-h)'+k的形式.7 写出二次函数y=-2√+6χ-l的开口方向,对称轴及顶点坐标.8 画y二-2x'+6XT 的图象.9 抛物线y=-2X=如何平移得到y=-2x2÷6χ-l的图象•10 二次函数y二-2x'+6χ-l的y随X的增减性如何?学生回答、教师点评:一般分为三步:1.先用配方法求出y=aX=+bx+c的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2二次函数y=a√+bx+c图象的性质有哪些?你能试着归纳吗?学生回答,教师点评:抛物线y=a X=÷bx+c= t∕(x + ―)2 + ,对称轴为X=-—,顶点坐标为(-A,皱二工),Ia 4a 2a 2a 4a'p∣ a>O时,若x>-匕,y随X增大而增大,若x<~— , y随X的增大而减小;O时,Ia Ia若x>-A, y随X的增大而减小,若x<-A, y随X的增大而增大.Ia Ia探究3二次函数y=a√+bx+c在什么情况下有最大值,什么情况下有最小值,如何确定?学生回答,教师点评:三、典例精析,掌握新知例1将下列二次函数写成顶点式y=a(χ-h)⅛的形式,并写出其开口方向,顶点坐标,对称轴.①y=-X2-3X+21 ② y 二-3x rz T8x - 224解:①y二丄x=3x+214=-(X-12x)+214 二丄(√-12x+36-36)÷214 二丄(χ-6)-+12.4・•・此抛物线的开口向上,顶点坐标为(6, 12),对称轴是x=6.②y 二-3x'-18χ-22 二-3 (√+6x) -22=-3 (x2+6x+9-9) -22=-3 (x+3) ¾. •••此抛物线的开口向下,顶点坐标为(-3, 5),对称轴是X二-3・【教学说明】第②小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2用总长为60In的篱笆围成的矩形场地,矩形面积S随矩形一边长/的变化而变化,/是多少时,场地的面积S最大?①S与/有何函数关系?②举一例说明S随/的变化而变化?③怎样求S的最大值呢?解:S二/ (3(H)=-∕2+30∕ (0<∕<30)=-(/:-30/)=-(∕-15)3+22O画岀此函数的图象,如图.Λ∕=15时,场地的面积S最大(S的最大值为225)【教学说明】二次函数在儿何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.四.运用新知,深化理解1.(北京中考)抛物线y=x3-6x÷5的顶点坐彳ZPd 6A. (3, -4)B. (3,4)C. (-3, -4)D. / ; \2.(贵州贵阳中考)已知二次函数y=ax‰^√ J如图所示,当-5≤x≤0⅛,下列说法正确的是( ) r--√5∣ \A.有最小值5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数y=ax2+bx+c的图象开口向上, y轴相交于负半轴.(1)给岀四个结论:①a>0;②b>0;③c>0:④ ____________________________________ a+b+c=O.其中正确结论的序号是・(2)给出四个结论:Φabc V 0;②2a+b>0;③a+c二1;④&>1・其中正确结论的序号是 _____________ ・【教学说明】通过练习,巩固掌握y=ax2+bx÷c的图象和性质.【答案】1・A 2. B 3. (1)®@五、师生互动,课堂小结1•这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)用配方法求二次y=ax2+bx+c的顶点坐标、对称轴;(2)由y=a X=+bx÷c的图象判断与a, b, C有关代数式的值的正负;(3)实际问题中自变量取值范围及函数最值.'淨课后作业1•教材匕5第「3题.2.完成同步练习册中本课时的练习.y=ax2+bx+c的图象和性质可以看作是y=ax2, y=a(χ-h)⅛, y=a(χ-h)2+k的图象和性质的归纳与综合,让学生初步体会山简单到复杂,山特殊到一般的认识规律.*1-3不共线三点确定二次函数的表达式J豹字目际【知识与技能】1.掌握用待定系数法列方程组求二次函数解析式.2.Ill已知条件的特点,灵活选择二次函数的三种形式,合适地设置函数解析式,可使讣算过程简便.【过程与方法】通过例题讲解使学生初步掌握,用待定系数法求二次函数的解析式.【情感态度】通过本节教学,激发学生探究问题,解决问题的能力.【教学重点】用待定系数法求二次函数的解析式.【教学难点】灵活选择合适的表达式设法.V敎学i≡呈一、情境导入,初步认识1•同学们想一想,已知一次函数图象上两个点的坐标,如何用待定系数法求它的解析式?学生回答:2.已知二次函数图象上有两个点的坐标,能求出其解析式吗?三个点的坐标呢?二、思考探究,获取新知探究1已知三点求二次函数解析式讲解:教材P/列1,例2.【教学说明】让学生通过例题讲解归纳出已知三点坐标求二次函数解析式的方法.。

新湘教版九年级下册数学全册教案[1]

新湘教版九年级下册数学全册教案[1]

(直打版)新湘教版九年级下册数学全册教案(word版可编辑修改)(直打版)新湘教版九年级下册数学全册教案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)新湘教版九年级下册数学全册教案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)新湘教版九年级下册数学全册教案(word版可编辑修改)的全部内容。

(直打版)新湘教版九年级下册数学全册教案(word版可编辑修改)第1章二次函数1。

1 二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式。

2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系。

【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.【教学重点】二次函数的概念。

【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程。

一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=—2x2+100x,(0<x<50);电脑价格y(元)与平均降价率x的关系式是y=6000x2—12000x+6000,(0〈x〈1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数。

2。

对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax 2+bx+c (a, b ,c 是常数,a ≠0)的函数,叫做二次函数,其中x 是自变量,a,b ,c 分别是函数解析式的二次项系数、一次项系数和常数项。

湘教版九年级数学下册教案全册

湘教版九年级数学下册教案全册

湘教版九年级数学下册教案1.1 二次函数1.掌握二次函数的概念,能识别一个函数是不是二次函数;(重点)2.能根据实际情况建立二次函数模型,并确定自变量的取值范围.(难点)一、情境导入已知长方形窗户的周长为6米,窗户面积为y(平方米),窗户宽为x(米),你能写出y与x之间的函数关系式吗?它是什么函数呢?二、合作探究探究点一:二次函数的相关概念【类型一】二次函数的识别下列函数哪些是二次函数?(1)y=2-x2; (2)y=1x2-1;(3)y=2x(1+4x); (4)y=x2-(1+x)2.解析:(1)是二次函数;(2)是分式而不是整式,不符合二次函数的定义,故y=1x2-1不是二次函数;(3)把y=2x(1+4x)化简为y=8x2+2x,显然是二次函数;(4)y=x2-(1+x)2化简后变为y=-2x-1,它不是二次函数而是一个一次函数.解:二次函数有(1)和(3).方法总结:判定一个函数是否是二次函数常有三个标准:①所表示的函数关系式为整式;②所表示的函数关系式有唯一的自变量;③所含自变量的关系式中自变量最高次数为2,且函数关系式中二次项系数不等于0.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】根据二次函数的定义求待定字母的值如果函数y=(k+2)xk2-2是y关于x的二次函数,则k的值为多少?解析:紧扣二次函数定义求解,注意易错点为忽视k+2≠0.解:根据题意知⎩⎪⎨⎪⎧k 2-2=2,k +2≠0,解得⎩⎪⎨⎪⎧k =±2,k ≠-2,∴k =2.方法总结:紧扣定义中的两个特征:①二次项系数不为零;②自变量最高次数为2. 变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型三】 与二次函数系数有关的计算已知一个二次函数,当x =0时,y =0;当x =2时,y =12;当x =-1时,y =18.求这个二次函数中各项系数的和.解析:解:设二次函数的表达式为y =ax 2+bx +c (a ≠0).把x =0,y =0;x =2,y =12;x =-1,y =18分别代入函数表达式,得⎩⎪⎨⎪⎧c =0,4a +2b +c =12,a -b +c =18,解得⎩⎪⎨⎪⎧a =18,b =0,c =0.所以这个二次函数的表达式为y =18x 2.所以a +b +c =18+0+0=18,即这个二次函数中各项系数的和为18. 方法总结:涉及有关二次函数表达式的问题,所设的表达式一般是二次函数表达式的一般形式y =ax 2+bx +c (a ≠0).解决这类问题要根据x ,y 的对应值,列出关于字母a ,b ,c 的方程(组),然后解方程(组),即可求得a ,b ,c 的值.探究点二:建立简单的二次函数模型一个正方形的边长是12cm ,若从中挖去一个长为2x cm ,宽为(x +1)cm 的小长方形.剩余部分的面积为y cm 2.(1)写出y 与x 之间的函数关系式,并指出y 是x 的什么函数? (2)当x 的值为2或4时,相应的剩余部分的面积是多少?解析:几何图形的面积一般需要画图分析,相关线段必须先用x 的代数式表示出来.如图所示.解:(1)y =122-2x (x +1),又∵2x ≤12,∴0<x ≤6,即y =-2x 2-2x +144(0<x ≤6),∴y 是x 的二次函数;(2)当x =2时,y =-2×22-2×2+144=132,当x =4时,y =-2×42-2×4+144=104,∴当x =2或4时,相应的剩余部分的面积分别为132cm 2或104cm 2.方法总结:二次函数是刻画现实世界变量之间关系的一种常见的数学模型.许多实际问题都可以通过分析题目中变量之间的关系,建立二次函数模型来解决.变式训练:见《学练优》本课时练习“课后巩固提升”第8题 三、板书设计本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.1.2 二次函数的图象与性质第1课时 二次函数y =ax 2(a >0)的图象与性质1.会用描点法画二次函数y =ax 2(a >0)的图象,理解抛物线的概念;(重点)2.掌握形如y =ax 2(a >0)的二次函数的图象和性质,并会应用其解决问题.(重点)一、情境导入自由落体公式h =12gt 2(g 为常量),h 与t 之间是什么关系呢?它是什么函数?它的图象是什么形状呢?二、合作探究探究点一:二次函数y =ax 2(a >0)的图象已知y =(k +2)xk 2+k 是二次函数. (1)求k 的值;(2)画出函数的图象.解析:根据二次函数的定义,自变量x 的最高次数为2,且二次项系数不为0,这样能确定k 的值,从而确定表达式,画出图象.解:(1)∵y =(k +2)xk 2+k 为二次函数,∴⎩⎪⎨⎪⎧k 2+k =2,k +2≠0,解得k =1;(2)当k =1时,函数的表达式为y =3x 2,用描点法画出函数的图象.列表:x -1 -12 0 12 1 … y =3x 2334343…描点:(-1,3),(-12,34),(0,0),(12,34),(1,3).连线:用光滑的曲线按x 的从小到大的顺序连接各点,图象如图所示.方法总结:列表时先取原点(0,0),然后在原点两侧对称地取四个点,由于函数y =ax 2(a ≠0)图象关于y 轴对称的两个点的横坐标互为相反数,纵坐标相等,所以先计算y 轴右侧的两个点的纵坐标,左侧对应写出即可.变式训练:见《学练优》本课时练习“课后巩固提升”第7题探究点二:二次函数y =ax 2(a >0)的性质已知点(-3,y 1),(1,y 2),(2,y 3)都在函数y =x 2的图象上,则y 1、y 2、y 3的大小关系是________.解析:方法一:把x =-3,1,2分别代入y =x 2中,得y 1=9,y 2=1,y 3=2,则y 1>y 3>y 2;方法二:如图,作出函数y =x 2的图象,把各点依次在函数图象上标出.由图象可知y 1>y 3>y 2;方法三:∵该图象的对称轴为y 轴,a >0,∴在对称轴的右边,y 随x 的增大而增大,而点(-3,y 1)关于y 轴的对称点为(3,y 3).又∵3>2>1,∴y 1>y 3>y 2.方法总结:比较二次函数中函数值的大小有三种方法:①直接把自变量的值代入解析式中,求出对应函数值进行比较;②图象法;③根据函数的增减性进行比较,但当要比较的几个点在对称轴的两侧时,可根据抛物线的对称轴找出某个点的对称点,转化到同侧后,然后利用性质进行比较.变式训练:见《学练优》本课时练习“课后巩固提升”第2题 探究点三:二次函数y =ax 2(a >0)的图象与性质的简单应用已知函数y =(m +2)xm 2+m -4是关于x 的二次函数. (1)求满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点,这时当x 为何值时,y 随x 的增大而增大?解析:由二次函数的定义知:m 2+m -4=2且m +2≠0;抛物线有最低点,则抛物线开口向上,即m +2>0.解:(1)由题意得⎩⎪⎨⎪⎧m 2+m -4=2,m +2≠0,解得⎩⎪⎨⎪⎧m =2或m =-3,m ≠-2,∴当m =2或m =-3时,原函数为二次函数;(2)若抛物线有最低点,则抛物线开口向上,∴m +2>0,即m >-2,∴取m =2.∴这个最低点为抛物线的顶点,其坐标为(0,0).当x >0时,y 随x 的增大而增大.方法总结:二次函数必须满足自变量的最高次数是2且二次项的系数不为0;函数有最低点即开口向上.变式训练:见《学练优》本课时练习“课堂达标训练”第9题 三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y =ax 2(a >0)的图象与性质,培养学生动手、动脑、探究归纳问题的能力.第2课时 二次函数y =ax 2(a <0)的图象与性质1.会用描点法画二次函数y =ax 2(a <0)的图象;(重点)2.掌握形如y =ax 2(a <0)的二次函数的图象和性质,并会应用其解决问题.(重点)一、情境导入上节课我们学习了a >0时二次函数y =ax 2的图象和性质,那么当a <0时,二次函数y =ax 2的图象和性质又会有怎样的变化呢?二、合作探究探究点一:二次函数y =ax 2(a <0)的图象 【类型一】 二次函数y =ax 2(a <0)的图象在直角坐标系内,作出函数y =-12x 2的图象.解析:作函数的图象采用描点法,即“列表、描点、连线”三个步骤. 解:列表:x 0 1 2 … y =-12x 2-12-2…描点和连线:画出图象在y 轴右边的部分,利用对称性,画出图象在y 轴左边的部分,如图.方法总结:(1)列表应以0为中心,选取x >0的几个点求出对应的y 值;(2)描点要准;(3)画出y 轴右边的部分,利用对称性,可画出y 轴左边的部分,连线要用平滑的曲线,不能是折线.【类型二】 同一坐标系中两种不同图象的判断当ab >0时,抛物线y =ax 2与直线y =ax +b 在同一直角坐标系中的图象大致是( )解析:根据a、b的符号来确定.当a>0时,抛物线y=ax2的开口向上.∵ab>0,∴b>0.∴直线y=ax+b过第一、二、三象限;当a<0时,抛物线y=ax2的开口向下.∵ab>0,∴b<0.∴直线y=ax+b过第二、三、四象限.故选D.方法总结:本例综合考查了一次函数y=ax+b和二次函数y=ax2的图象和性质.因为在同一问题中相同字母的取值是相同的,所以应从各选项中两个函数图象所反映的a的符号是否一致入手进行分析.变式训练:见《学练优》本课时练习“课后巩固提升”第3题探究点二:二次函数y=ax2(a<0)的性质【类型一】二次函数y=ax2(a<0)的性质(2015·山西模拟)抛物线y=-4x2不具有的性质是()A.开口向上B.对称轴是y轴C.在对称轴的左侧,y随x的增大而增大D.最高点是原点解析:此题应从二次函数的基本形式入手,它符合y=ax2的基本形式,根据它的性质,进行解答.因为a=-4<0,所以图象开口向下,顶点坐标为(0,0),对称轴是y轴,最高点是原点.在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.故选A.方法总结:抛物线y=ax2(a<0)的开口向下,顶点坐标为(0,0),对称轴为y轴.当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小.当x=0时,图象有最高点,y 有最大值0.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】二次函数y=ax2的开口方向、大小与系数a的关系如图,四个二次函数图象中,分别对应:①y=ax2;②y=bx2;③y=cx2;④y=dx2,则a、b、c、d的大小关系为()A.a>b>c>dB.a>b>d>cC.b>a>c>dD .b >a >d >c 答案:A方法总结:抛物线y =ax 2的开口大小由|a |确定,|a |越大,抛物线的开口越小;|a |越小,抛物线的开口越大.变式训练:见《学练优》本课时练习“课堂达标训练”第7题 探究点三:二次函数y =ax 2的图象与几何图形的综合应用已知二次函数y =ax 2(a ≠0)与直线y =2x -3相交于点A (1,b ),求: (1)a ,b 的值;(2)函数y =ax 2的图象的顶点M 的坐标及直线与抛物线的另一个交点B 的坐标; (3)△AMB 的面积.解析:直线与二次函数y =ax 2的图象交点坐标可利用方程求解,而求△AMB 的面积,一般应画出草图进行解答.解:(1)∵点A (1,b )是直线y =2x -3与二次函数y =ax 2的图象的交点,∴点A 的坐标满足二次函数和直线的关系式,∴⎩⎪⎨⎪⎧b =a ×12,b =2×1-3,∴⎩⎪⎨⎪⎧a =-1,b =-1; (2)由(1)知二次函数为y =-x 2,顶点M (即坐标原点)的坐标为(0,0). 由-x 2=2x -3,解得x 1=1,x 2=-3, ∴y 1=-1,y 2=-9,∴直线与二次函数的另一个交点B 的坐标为(-3,-9);(3)如图所示,作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C 、D ,根据点的坐标的意义,可知MD =3,MC =1,CD =1+3=4,BD =9,AC =1,∴S △AMB =S 梯形ABDC -S △ACM -S △BDM =12×(1+9)×4-12×1×1-12×3×9=6.方法总结:解答此类题目,最好画出草图,利用数形结合,解答相关问题. 变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计本节课仍然是从学生画图象着手,结合上节课y =ax 2(a >0)的图象和性质,从而得出y =ax 2(a <0)的图象和性质,进而得出y =ax 2(a ≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时 二次函数y =a (x -h )2的图象与性质1.会用描点法画出y =a (x -h )2的图象;2.掌握形如y =a (x -h )2的二次函数图象的性质,并会应用;(重点) 3.理解二次函数y =a (x -h )2与y =ax 2之间的联系.(难点)一、情境导入涵洞是指在公路工程建设中,为了使公路顺利通过水渠不妨碍交通,修筑于路面以下的排水孔道(过水通道),通过这种结构可以让水从公路的下面流过.如图建立直角坐标系,你能得到函数图象解析式吗?二、合作探究探究点一:二次函数y =a (x -h )2的图象与性质 【类型一】 y =a (x -h )2的顶点坐标已知抛物线y =a (x -h )2(a ≠0)的顶点坐标是(-2,0),且图象经过点(-4,2),求a ,h 的值.解:∵抛物线y =a (x -h )2(a ≠0)的顶点坐标为(-2,0),∴h =-2.又∵抛物线y =a (x +2)2经过点(-4,2),∴a (-4+2)2=2.∴a =12.方法总结:二次函数y =a (x -h )2的顶点坐标为(h ,0). 变式训练:见《学练优》本课时练习“课堂达标训练”第2题 【类型二】 二次函数y =a (x -h )2图象的形状顶点为(-2,0),开口方向、形状与函数y =-12x 2的图象相同的抛物线的解析式为( )A .y =12(x -2)2B .y =12(x +2)2C .y =-12(x +2)2D .y =-12(x -2)2解析:因为抛物线的顶点在x 轴上,所以可设该抛物线的解析式为y =a (x -h )2(a ≠0),而二次函数y =a (x -h )2(a ≠0)与y =-12x 2的图象相同,所以a =-12,而抛物线的顶点为(-2,0),所以h =-2,把a =-12,h =-2代入y =a (x -h )2得y =-12(x +2)2.故选C.方法总结:决定抛物线形状的是二次项的系数,二次项系数相同的抛物线的形状完全相同.变式训练:见《学练优》本课时练习“课后巩固提升”第1题【类型三】 二次函数y =a (x -h )2的增减性及最值对于二次函数y =9(x -1)2,下列结论正确的是( ) A .y 随x 的增大而增大B .当x >0时,y 随x 的增大而增大C .当x =-1时,y 有最小值0D .当x >1时,y 随x 的增大而增大解析:因为a =9>0,所以抛物线开口向上,且h =1,顶点坐标为(1,0),所以当x >1时,y 随x 的增大而增大.故选D.变式训练:见《学练优》本课时练习“课堂达标训练”第3题 探究点二:二次函数y =a (x -h )2图象的平移 【类型一】 利用平移确定y =a (x -h )2的解析式抛物线y =ax 2向右平移3个单位后经过点(-1,4),求a 的值和平移后的函数关系式.解析:y =ax 2向右平移3个单位后的关系式可表示为y =a (x -3)2,把点(-1,4)的坐标代入即可求得a 的值.解:二次函数y =ax 2的图象向右平移3个单位后的二次函数关系式可表示为y =a (x -3)2,把x =-1,y =4代入,得4=a (-1-3)2,a =14,∴平移后二次函数关系式为y =14(x -3)2.方法总结:根据抛物线左右平移的规律,向右平移3个单位后,a 不变,括号内应“减去3”;若向左平移3个单位,括号内应“加上3”,即“左加右减”.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型二】 确定y =a (x -h )2与y =ax 2的关系向左或向右平移函数y =-12x 2的图象,能使得到的新的图象过点(-9,-8)吗?若能,请求出平移的方向和距离;若不能,请说明理由.解:能,理由如下:设平移后的函数为y =-12(x -h )2, 将x =-9,y =-8代入得-8=-12(-9-h )2, 所以h =-5或h =-13,所以平移后的函数为y =-12(x +5)2或y =-12(x +13)2. 即抛物线的顶点坐标为(-5,0)或(-13,0),所以应向左平移5或13个单位.变式训练:见《学练优》本课时练习“课后巩固提升”第6题探究点三:二次函数y =a (x -h )2与几何图形的综合把函数y =12x 2的图象向右平移4个单位后,其顶点为C ,并与直线y =x 分别相交于A 、B 两点(点A 在点B 的左边),求△ABC 的面积.解析:利用二次函数平移规律先确定平移后的抛物线解析式,确定C 点坐标,再解由所得到的二次函数解析式与y =x 组成的方程组,确定A 、B 两点坐标,最后求△ABC 的面积.解:平移后的函数为y =12(x -4)2,顶点C 的坐标为(4,0),OC =4. 解方程组⎩⎪⎨⎪⎧y =12(x -4)2,y =x ,得⎩⎪⎨⎪⎧x =2,y =2,或⎩⎪⎨⎪⎧x =8,y =8. ∵点A 在点B 的左边,∴A (2,2),B (8,8),∴S △ABC =S △OBC -S △OAC =12×4×8-12×4×2=12.方法总结:两个函数交点的横、纵坐标与两个解析式组成的方程组的解是一致的. 变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计通过本节学习使学生认识到y =a (x -h )2的图象是由y =ax 2的图象左右平移得到的,初步认识到a ,h 对y =a (x -h )2位置的影响,a 的符号决定抛物线方向,|a |决定抛物线开口的大小,h 决定向左、向右平移,从中领会数形结合的数学思想.第4课时 二次函数y =a (x -h )2+k 的图象与性质1.会用描点法画出y =a (x -h )2+k 的图象;2.掌握形如y =a (x -h )2+k 的二次函数的图象与性质,并会应用;(重点)3.理解二次函数y =a (x -h )2+k 与y =ax 2之间的联系.(难点)一、情境导入前面我们是如何研究二次函数y =ax 2、y =a (x -h )2的图象与性质的?如何画出y =12(x -2)2+1的图象?二、合作探究探究点一:二次函数y =a (x -h )2+k 的图象与性质【类型一】 二次函数y =a (x -h )2+k 的图象已知y =12(x -3)2-2的部分图象如图所示,抛物线与x 轴交点的一个坐标是(1,0),则另一个交点的坐标是________.解析:由抛物线的对称性知,对称轴为x =3,一个交点坐标是(1,0),则另一个交点坐标是(5,0).解:(5,0)变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】 二次函数y =a (x -h )2+k 的性质试说明抛物线y =2(x -1)2与y =2(x -1)2+5的关系.解析:对抛物线的分析应从开口方向,顶点坐标,对称轴,增减性,及最大(小)值几个方面分析.解:相同点:(1)它们的形状相同,开口方向相同;(2)它们的对称轴相同,都是x =1.当x <1时都是左降,当x >1时都是右升;(3)它们都有最小值.不同点:(1)顶点坐标不同.y =2(x -1)2的顶点坐标是(1,0),y =2(x -1)2+5的顶点坐标是(1,5);(2)y =2(x -1)2的最小值是0,y =2(x -1)2+5的最小值是5.方法总结:对于y =a (x -h )2+k 类抛物线,a 决定开口方向;|a |决定开口大小;h 决定对称轴;k 决定最大(小)值的数值.变式训练:见《学练优》本课时练习“课堂达标训练”第5题探究点二:二次函数y =a (x -h )2+k 的图象的平移将抛物线y =13x 2向右平移2个单位,再向下平移1个单位,所得的抛物线是( )A .y =13(x -2)2-1B .y =13(x -2)2+1 C .y =13(x +2)2+1 D .y =13(x +2)2-1 解析:由“上加下减”的平移规律可知,将抛物线y =13x 2向下平移1个单位所得抛物线的解析式为y =13x 2-1;由“左加右减”的平移规律可知,将抛物线y =13x 2-1向右平移2个单位所得抛物线的解析式为y =13(x -2)2-1.故选A. 变式训练:见《学练优》本课时练习“课堂达标训练”第6题探究点三:二次函数y =a (x -h )2+k 的图象与几何图形的综合如图所示,在平面直角坐标系xOy 中,抛物线y =x 2向左平移1个单位,再向下平移4个单位,得到抛物线y =(x -h )2+k .所得抛物线与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D .(1)求h ,k 的值;(2)判断△ACD 的形状,并说明理由.解析:(1)按照图象平移规律“左加右减,上加下减”可得到平移后的二次函数的解析式;(2)分别过点D 作x 轴和y 轴的垂线段DE ,DF ,再利用勾股定理,可说明△ACD 是直角三角形.解:(1)∵将抛物线y =x 2向左平移1个单位,再向下平移4个单位,得到抛物线y =(x +1)2-4,∴h =-1,k =-4;(2)△ACD 为直角三角形.理由如下:由(1)得y =(x +1)2-4.当y =0时,(x +1)2-4=0,x =-3或x =1,∴A (-3,0),B (1,0).当x =0时,y =(x +1)2-4=(0+1)2-4=-3,∴C 点坐标为(0,-3).顶点坐标为D (-1,-4).作出抛物线的对称轴x =-1交x 轴于点E ,过D 作DF ⊥y 轴于点F ,如图所示.在Rt △AED 中,AD 2=22+42=20;在Rt △AOC 中,AC 2=32+32=18;在Rt △CFD 中,CD 2=12+12=2.∵AC 2+CD 2=AD 2,∴△ACD 是直角三角形.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计通过本节学习使学生掌握二次函数y =ax 2,y =a (x -h )2,y =a (x -h )2+k 图象的变化关系,从而体会由简单到复杂的认识规律.第5课时 二次函数y =ax 2+bx +c 的图象与性质1.会用描点法画二次函数y =ax 2+bx +c 的图象;2.会用配方法或公式法求二次函数y =ax 2+bx +c 的顶点坐标与对称轴,并掌握其性质;(重点)3.二次函数性质的综合应用.(难点)一、情境导入火箭被竖直向上发射时,它的高度h (m)与时间t (s)的关系可以用h =-5t 2+150t +10表示.经过多长时间火箭达到它的最高点?二、合作探究探究点一:化二次函数y =ax 2+bx +c 为y =a (x -h )2+k 的形式把抛物线y =x 2+bx +c 的图象向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式为y =x 2-3x +5,则( )A .b =3,c =7B .b =6,c =3C .b =-9,c =-5D .b =-9,c =21解析:y =x 2-3x +5化为顶点式为y =(x -32)2+114.将y =(x -32)2+114向左平移3个单位长度,再向上平移2个单位长度,即为y =x 2+bx +c .则y =x 2+bx +c =(x +32)2+194,化简后得y =x 2+3x +7,即b =3,c =7.故选A.方法总结:二次函数由一般式化为顶点式,平移时遵循“左正右负,上正下负”,逆向推理则相反.变式训练:见《学练优》本课时练习“课后巩固提升”第4题探究点二:二次函数y=ax2+bx+c的图象与性质【类型一】二次函数与一次函数图象的综合在同一直角坐标系中,函数y=mx+m和函数y=mx2+2x+2(m是常数,且m≠0)的图象可能是()解析:A、B中由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x=-b2a=-22m=-1m>0,则对称轴应在y轴右侧,故A、B选项错误;C中由函数y=mx+m的图象可知m>0,即函数y=mx2+2x+2开口方向朝上,对称轴为x=-b2a=-22m=-1m<0,则对称轴应在y轴左侧,故C选项错误;D中由函数y=mx+m的图象可知m<0,即函数y=mx2+2x+2开口方向朝下,对称轴为x=-b2a=-22m=-1m>0,则对称轴应在y轴右侧,与图象相符,故D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数y=ax2+bx+c的有关性质:开口方向、对称轴、顶点坐标等.【类型二】二次函数y=ax2+bx+c的性质若点A(2,y1),B(-3,y2),C(-1,y3)三点在抛物线y=x2-4x-m的图象上,则y1、y2、y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2解析:∵二次函数y=x2-4x-m中a=1>0,∴开口向上,对称轴为x=-b2a=2.∵A(2,y1)中x=2,∴y1最小.又∵B(-3,y2),C(-1,y3)都在对称轴的左侧,而在对称轴的左侧,y随x的增大而减小,故y2>y3.∴y2>y3>y1.故选C.方法总结:当二次项系数a>0时,在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大;a<0时,在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.变式训练:见《学练优》本课时练习“课后巩固提升”第3题【类型三】二次函数图象的位置与各项系数符号的关系已知抛物线y=ax2+bx+c(a≠0)经过点(-1,0),且顶点在第一象限.有下列四个结论:①a<0;②a+b+c>0;③-b2a>0;④abc>0.其中正确的结论是________.解析:由抛物线的开口方向向下可推出a<0,抛物线与y轴的正半轴相交,可得出c >0,对称轴在y轴的右侧,a,b异号,b>0,∴abc<0;∵对称轴在y轴右侧,对称轴为-b 2a >0;由图象可知:当x =1时,y >0,∴a +b +c >0.∴①②③④都正确. 方法总结:二次函数y =ax 2+bx +c (a ≠0),a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定.变式训练:见《学练优》本课时练习“课后巩固提升”第5题【类型四】 二次函数y =ax 2+bx +c 的最值已知二次函数y =ax 2+4x +a -1的最小值为2,则a 的值为( )A .3B .-1C .4D .4或-1解析:∵二次函数y =ax 2+4x +a -1有最小值2,∴a >0,y 最小值=4ac -b 24a=4a (a -1)-424a=2,整理,得a 2-3a -4=0,解得a =-1或4.∵a >0,∴a =4.故选C. 方法总结:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课后巩固提升”第1题探究点三:二次函数y =ax 2+bx +c 的图象与几何图形的综合应用如图,已知二次函数y =-12x 2+bx +c 的图象经过A (2,0)、B (0,-6)两点. (1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.解:(1)把A (2,0)、B (0,-6)代入y =-12x 2+bx +c 得⎩⎪⎨⎪⎧-2+2b +c =0,c =-6,解得⎩⎪⎨⎪⎧b =4,c =-6. ∴这个二次函数的解析式为y =-12x 2+4x -6; (2)∵该抛物线对称轴为直线x =-42×(-12)=4, ∴点C 的坐标为(4,0),∴AC =OC -OA =4-2=2,∴S △ABC =12×AC ×OB =12×2×6=6. 变式训练:见《学练优》本课时练习“课堂达标训练”第9题三、板书设计本节课所学的二次函数y =ax 2+bx +c 的图象和性质可以看作是y =ax 2,y =a (x -h )2,y =a (x -h )2+k 的图象和性质的归纳与综合,让学生初步体会由简单到复杂,由特殊到一般的认识规律.*1.3 不共线三点确定二次函数的表达式1.通过对用待定系数法求二次函数解析式的探究,掌握求二次函数解析式的方法;(重点)2.会根据不同的条件,利用待定系数法求二次函数的解析式,在实际应用中体会二次函数作为一种数学模型的作用.(难点)一、情境导入某广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的抛物线水柱最大高度为3米,此时喷水水平距离为12米.你能写出如图所示的平面直角坐标系中抛物线水柱的解析式吗?二、合作探究探究点一:不共线三点确定二次函数的表达式【类型一】 用一般式确定二次函数解析式已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1).求这个二次函数的解析式.解析:由于题目给出的是抛物线上任意三点,可设一般式y =ax 2+bx +c (a ≠0). 解:设这个二次函数的解析式为y =ax 2+bx +c (a ≠0).依题意得⎩⎪⎨⎪⎧a -b +c =-5,c =-4,a +b +c =1,解得⎩⎪⎨⎪⎧a =2,b =3,c =-4.∴这个二次函数的解析式为y=2x2+3x-4.方法总结:当题目给出函数图象上的任意三个点时,设一般式y=ax2+bx+c,转化成一个三元一次方程组,以求得a,b,c的值.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】用顶点式确定二次函数解析式已知二次函数的图象顶点坐标是(-2,3),且过点(-1,5),求这个二次函数的解析式.解:设二次函数解析式为y=a(x-h)2+k,∵图象顶点是(-2,3),∴h=-2,k=3,依题意得5=a(-1+2)2+3,解得a=2.∴二次函数的解析式为y=2(x+2)2+3=2x2+8x+11.方法总结:若已知抛物线的顶点或对称轴、极值,则设y=a(x-h)2+k.顶点坐标为(h,k),对称轴为x=h,最值为当x=h时,y最值=k.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型三】用交点式确定二次函数解析式已知抛物线与x轴相交于点A(-1,0),B(1,0),且过点M(0,1),求此函数的解析式.解析:由于已知图象与x轴的两个交点,所以可设y=a(x-x1)(x-x2)求解.解:因为点A(-1,0),B(1,0)是图象与x轴的交点,所以设二次函数的解析式为y=a(x+1)(x-1).又因为抛物线过点M(0,1),所以1=a(0+1)(0-1),解得a=-1,所以所求抛物线的解析式为y=-(x+1)(x-1),即y=-x2+1.方法总结:此题也可设y=a(x-h)2+k,因为与x轴交于(-1,0),(1,0),故对称轴为y轴.变式训练:见《学练优》本课时练习“课堂达标训练”第6题探究点二:二次函数解析式的综合运用如图,抛物线y=x2+bx+c过点A(-4,-3),与y轴交于点B,对称轴是x=-3,请解答下列问题:(1)求抛物线的解析式;(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.解析:(1)把点A (-4,-3)代入y =x 2+bx +c 得16-4b +c =-3,根据对称轴是x =-3,求出b =6,即可得出答案;(2)根据CD ∥x 轴,得出点C 与点D 关于x =-3对称,根据点C 在对称轴左侧,且CD =8,求出点C 的横坐标和纵坐标,再根据点B 的坐标为(0,5),求出△BCD 中CD 边上的高,即可求出△BCD 的面积.解:(1)把点A (-4,-3)代入y =x 2+bx +c 得16-4b +c =-3,c -4b =-19.∵对称轴是x =-3,∴-b 2=-3,∴b =6,∴c =5,∴抛物线的解析式是y =x 2+6x +5; (2)∵CD ∥x 轴,∴点C 与点D 关于x =-3对称.∵点C 在对称轴左侧,且CD =8,∴点C 的横坐标为-7,∴点C 的纵坐标为(-7)2+6×(-7)+5=12.∵点B 的坐标为(0,5),∴△BCD 中CD 边上的高为12-5=7,∴△BCD 的面积=12×8×7=28. 方法总结:此题考查了待定系数法求二次函数的解析式,以及利用解析式分析二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计教学过程中,强调用待定系数法求二次函数解析式时,要根据题目所给条件,合理设出其形式,然后求解,这样可以简化计算.1.4 二次函数与一元二次方程的联系1.通过探索,理解二次函数与一元二次方程之间的联系,会用二次函数图象求一元二次方程的近似解;(重点)。

湘教版九年级数学下册教案(全册)

湘教版九年级数学下册教案(全册)
最新湘教版九年级数学下册教案 (全册 )
九年级数学下册教案(全册)
教学计划
一、课程目标 (一)、本学段课程目标 知识技能 1.体验从具体情境中抽象出数学符号的过程,理解有理数、实数、代数式、方 程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量 关系和变化规律,掌握用代数式、方程、不等式、函数进行表述的方法。 2.探索并掌握相交线、平行线、三角形、四边形和圆的基本性质与判定,掌握 基本的证明方法和基本的作图技能; 探索并理解平面图形的平移、 旋转、轴对称; 认识投影与视图; 3.体验数据收集、处理、分析和推断过程,理解抽样方法,体验用样本估计总 体的过程;进一步认识随机现象,能计算一些简单事件的概率。 数学思考 1.通过用代数式、方程、不等式、函数等表述数量关系的过程,体会模型的思 想,建立符号意识;在研究图形性质和运动、确定物体位置等过程中,进一步发 展空间观念;经历借助图形思考问题的过程,初步建立几何直观。 2.了解利用数据可以进行统计推断,发展建立数据分析观念;感受随机现象的 特点。 3.体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,在多种形 式的数学活动中,发展合情推理与演绎推理的能力。 4.能独立思考,体会数学的基本思想和思维方式。 问题解决 1.初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数 学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。 2.经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法 的多样性,掌握分析问题和解决问题的一些基本方法。 3.在与他人合作和交流过程中,能较好地理解他人的思考方法和结论。 4.能针对他人所提的问题进行反思,初步形成评价与反思的意识。 情感态度 1.积极参与数学活动,对数学有好奇心和求知欲。

湘教版初中数学九年级下册全册全套教案

湘教版初中数学九年级下册全册全套教案

课题:1.1反比例函数教学目标:1.理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别其中的反比例函数.2. 能根据实际问题中的条件确定反比例函数的关系式.3. 能判断一个给定函数是否为反比例函数.通过探索现实生活中数量间的反比例关系,体会和认识反比例函数是刻画现实世界中特定数量关系的一种数学模型;进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.教学重点:反比例函数的概念教学难点:反比例函数的概念,学生理解时有一定的难度。

教学过程:知识回顾:什么是函数?一次函数?正比例函数?一、创设情景探究问题情境1:当路程一定时,速度与时间成什么关系?(vt=s)当一个长方形面积一定时,长与宽成什么关系?[说明]这个情境是学生熟悉的例子,当中的关系式学生都列得出来,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。

(小学知识)这一情境为后面学习反比例函数概念作铺垫。

1汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:随着速度的变化,全程所用时间发生怎样的变化?v(km/h) 60 80 90 100 120t(h)(3)速度v是时间t的函数吗?为什么?[说明](1)引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s=vt,指导学生用这个关系式的变式来完成问题(1).(2)引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引导学生用语言描述.3)结合函数的概念,特别强调唯一性,引导讨论问题(3).情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;(3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化;(4)实数m与n的积为-200,m随n的变化而变化.2(1)这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?(2)它们有一些什么特征?(3)你能归纳出反比例函数的概念吗?一般地,如果两个变量y与x的关系可以表示成y=kx(k为常数,k≠0)的形式,那么称y是x的反比例函数,其中x是自变量,y是因变量,y是x的函数,k是比例系数. (有的书上写成y=kx-1的形式.)反比例函数的自变量x的取值范围是所有非零实数(不等于0的一切实数)(为什么?),但在实际问题中,还要根据具体情况来进一步确定该反比例函数的自变量的取值范围。

湘教版数学九年级下册全册教案(2021年春修订)

湘教版数学九年级下册全册教案(2021年春修订)

湘教版数学九年级下册全册教案设计2021-1-24第1章二次函数1.1 二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识. 【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(0<x<50);电脑价格y (元)与平均降价率x的关系式是y=6000x2-12000x+6000,(0<x<1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c 是常数,a ≠0)的函数,叫做二次函数,其中x 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.三、典例精析,掌握新知例1 指出下列函数中哪些是二次函数.(1)y=(x-3)2-x 2 ;(2)y=2x(x-1);(3)y=32x-1;(4)y=22x;(5)y=5-x 2+x. 【分析】先化为一般形式,右边为整式,依照定义分析.解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路:1.将函数化为一般形式.2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0.例2 讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围.例3 已知函数y=(m 2-m)x 2+mx+(m+1)(m 是常数),当m 为何值时:(1)函数是一次函数;(2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.解:(1)由200m m m ⎧-=⎨≠⎩得010m m ⎩=≠⎧⎨或 , ∴m=1.即当m=1时,函数y=(m 2-m)x 2+mx+(m+1)是一次函数.(2)由m 2-m ≠0得m ≠0且m ≠1,∴当m ≠0且m ≠1时,函数y=(m 2-m)x 2+mx+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是( )A. 2123y x x =+-B.y=3x 3+2x 2C.y=(x-2)2-x 3D.212y x =- 2.二次函数y=2x(x-1)的一次项系数是( )A.1B.-1C.2D.-23.若函数232(3)1k k y k x kx -+=-++ 是二次函数,则k 的值为( )A.0B.0或3C.3D.不确定4.若y=(a+2)x 2-3x+2是二次函数,则a 的取值范围是 .5.已知二次函数y=1-3x+5x 2,则二次项系数a= ,一次项系数b= ,常数项c= .6.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式 ,它 (填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为x 的圆(圆心与正方形的中心重合),剩余部分的面积为y.(1)求y 关于x 的函数关系式;(2)试求自变量x 的取值范围;(3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位).【答案】1.D 2.D 3.A 4.a ≠-2 5.5,-3,1 6.21122y x x =- 是 7.(1)y=25-πx 2=-πx 2+25.(2)0<x ≤52.(3)当x=2时,y=-4π+25≈-4×3.14+25=12.44≈12.4.即剩余部分的面积约为12.4.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.第1~3题.1.教材P42.完成同步练习册中本课时的练习.本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.*1.3 不共线三点确定二次函数的表达式【知识与技能】1.掌握用待定系数法列方程组求二次函数解析式.2.由已知条件的特点,灵活选择二次函数的三种形式,合适地设置函数解析式,可使计算过程简便.【过程与方法】通过例题讲解使学生初步掌握,用待定系数法求二次函数的解析式.【情感态度】通过本节教学,激发学生探究问题,解决问题的能力.【教学重点】用待定系数法求二次函数的解析式.【教学难点】灵活选择合适的表达式设法.一、情境导入,初步认识1.同学们想一想,已知一次函数图象上两个点的坐标,如何用待定系数法求它的解析式?学生回答:2.已知二次函数图象上有两个点的坐标,能求出其解析式吗?三个点的坐标呢?二、思考探究,获取新知例1,例2.探究1已知三点求二次函数解析式讲解:教材P21【教学说明】让学生通过例题讲解归纳出已知三点坐标求二次函数解析式的方法.探究2用顶点式求二次函数解析式.例3 已知二次函数的顶点为A(1,-4)且过B(3,0),求二次函数解析式.【分析】已知抛物线的顶点,设二次函数的解析式为y=a(x-h)2+k.解:∵抛物线顶点为A(1,-4),∴设抛物线解析式为y=a(x-1)2-4,∵点B (3,0)在图象上,∴0=4a-4,∴a=1,∴y=(x-1)2-4,即y=x2-2x-3.【教学说明】已知顶点坐标,设顶点式比较方便,另外已知函数的最(大或小)值即为顶点纵坐标,对称轴与顶点横坐标一致.探究3用交点式求二次函数解析式例4(甘肃白银中考) 已知一抛物线与x轴交于点A(-2,0),B(1,0),且经过点C(2,8).求二次函数解析式.【分析】由于抛物线与x轴的两个交点为A(-2,0),B(1,0),可设解析式为交点式:y=a(x-x1)(x-x2).解:A(-2,0),B(1,0)在x轴上,设二次函数解析式为y=a(x+2)(x-1).又∵图象过点C(2,8),∴8=a(2+2)(2-1),∴a=2,∴y=2(x+2)(x-1)=2x2+2x-4.【教学说明】因为已知点为抛物线与x轴的交点,解析式可设为交点式,再把第三点代入可得一元一次方程,较一般式所得的三元一次方程简单.三、运用新知,深化理解1.若二次函数y=-x2+mx-2的最大值为94,则m的值为()A.17B.1C.±17D.±12.二次函数y=ax2+bx+c的图象大致如图所示,下列判断错误的是()A.a<0B.b>0C.c>0D.ab>03.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P (3,0),则a-b+c的值为()A.0B.-1C.1D.24.如图是二次函数y=ax2+3x+a2-1的图象,a的值是 .5.已知二次函数的图象经过点(0,3),(-3,0),(2,-5),且与x轴交于A、B两点.(1)试确定此二次函数的解析式;(2)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,试说明理由.【教学说明】通过练习巩固加深对新知的理解,并适当对题目作简单的提示.第3题根据二次函数图象的对称性得知图象与x轴的另一交点坐标为(-1,0),将此点代入解析式,即可求出a-b+c的值.第4题可根据图象经过原点求出a的值,再考虑开口方向.【答案】1.C 2.D 3.A 4.-15.解:(1)设二次函数的解析式为y=ax2+bx+c.∵二次函数的图象经过点(0,3),(-3,0),(2,-5).∴c=3.∴9a-3b+3=0,4a+2b+3=-5.解得a=-1,b=-2.∴二次函数的解析式为y=-x2-2x+3.(2)∵当x=-2时,y=-(-2)2-2×(-2)+3=3,∴点P(-2,3)在这个二次函数的图象上.令-x2-2x+3=0,∴x1=-3,x2=1.∴与x轴的交点为(-3,0),(1,0),∴AB=4.即S△PAB=12×4×3=6.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:3.求二次函数解析式的三种表达式的形式.(1)已知三点坐标,设二次函数解析式为y=ax2+bx+c.(2)已知顶点坐标:设二次函数解析式为y=a(x-h)2+k.(3)已知抛物线与x轴两交点坐标为(x1,0),(x2,0)可设二次函数解析式为y=a(x-x1)(x-x2).1.教材P23第1~3题.2.完成同步练习册中本课时的练习.用待定系数法求二次函数的表达式有三种基本方法,解题时可根据不同的条件灵活选用.本节内容是二次函数中的重点也是中考考点之一,同学们要通过练习,熟练掌握.1.4 二次函数与一元二次方程的联系【知识与技能】1.掌握二次函数图象与x轴的交点横坐标与一元二次方程两根的关系.2.理解二次函数图象与x轴的交点的个数与一元二次方程根的个数的关系.3.会用二次函数图象求一元二次方程的近似根.4.能用二次函数与一元二次方程的关系解决综合问题.【过程与方法】经历探索二次函数与一元二次方程的关系的过程,体会二次函数与方程之间的联系,进一步体会数形结合的思想.【情感态度】通过自主学习,小组合作,探索出二次函数与一元二次方程的关系,感受数学的严谨性,激发热爱数学的情感.【教学重点】①理解二次函数与一元二次方程的联系.②求一元二次方程的近似根.【教学难点】一元二次方程与二次函数的综合应用.一、情境导入,初步认识1.一元二次方程ax2+bx+c=0的实数根,就是二次函数y=ax2+bx+c当 y=0 时,自变量x的值,它是二次函数的图象与x轴交点的横坐标 .2.抛物线y=ax2+bx+c与x轴交点个数与一元二次方程ax2+bx+c=0根的判别式的关系:当b2-4ac<0时,抛物线与x轴无交点;当b2-4ac=0时,抛物线与x轴有一个交点;当b2-4ac>0时,抛物线与x轴有两个交点.学生回答,教师点评二、思考探究,获取新知探究1求抛物线y=ax2+bx+c与x轴的交点例1 求抛物线y=x2-2x-3与x轴交点的横坐标.【分析】抛物线y=x2-2x-3与x轴相交时,交点的纵坐标y=0,转化为求方程x2-2x-3=0的根.解:因为方程x2-2x-3=0的两个根是x1=3,x2=-1,所以抛物线y=x2-2x-3与x轴交点的横坐标分别是3或-1.【教学说明】求抛物线与x轴的交点坐标,首先令y=0,把二次函数转化为一元二次方程,求交点的横坐标就是求此方程的根.探究2抛物线与x轴交点的个数与一元二次方程的根的个数之间的关系思考:(1)你能说出函数y=ax2+bx+c(a≠0)的图象与x轴交点个数的情况吗?猜想交点个数和方程ax2+bx+c=0(a≠0)的根的个数有何关系?(2)一元二次方程ax2+bx+c=0(a≠0)的根的个数由什么来判断?【教学说明】探究3 利用函数图象求一元二次方程的近似根提出问题:同学们可以估算下一元二次方程x2-2x-2=0的两根是什么?学生回答:【教学点评】-1<x1<0,2<x2<3.探究4 一元二次方程与相应二次函数的综合应用讲解教材P26例2【教学说明】已知二次函数y=ax2+bx+c(a≠0)的某一个函数值y=M,求对应的自变量的值时,需要解一元二次方程ax2+bx+c=M,这样将二次函数的知识和前面学的一元二次方程就紧密联系起来了.三、运用新知,深化理解1.(广东中山中考)已知抛物线y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有两个同号的实数根D.没有实数根2.若一元二次方程x2-mx+n=0无实根,则抛物线y=-x2+mx-n图象位于()A.x轴上方B.第一、二、三象限C.x轴下方D.第二、三、四象限3.(x-1)(x-2)=m(m>0)的两根为α,β,则α,β的范围为()A.α<1,β>2B.α<1<β<2C.1<α<2<βD.α<1,β>24.二次函数y=ax2+bx+c与x轴的交点坐标为(1,0),(3,0),则方程ax2+bx+c=0的解为 .5.(湖北武汉中考)已知二次函数y=x2-(m+1)x+m的图象交x轴于A(x1,0),B(x2,0)两点,交y轴的正半轴于点C,且x21+x22=10.(1)求此二次函数的解析式;(2)是否存在过点D(0,-52)的直线与抛物线交于点M、N,与x轴交于点E,使得点M、N关于点E对称?若存在,求出直线MN的解析式;若不存在,请说明理由.学生解答:【答案】1.D 2.C 3.D 4.x1=1,x2=35.解:(1)y=x2-4x+3 (2)存在 y=x-5 2【教学说明】一元二次方程的根的情况和二次函数与x轴的交点个数之间的关系是相互的,根据根的情况可以判断交点个数,反之也成立.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答基础上,教师点评:①求二次函数自变量的值与一元二次方程根的关系;②抛物线与x轴交点个数与一元二次方程根的个数的关系.③用函数图象求“一元二次方程的近似根”;④二次函数问题可转化为对应一元二次方程根与系数关系问题.第1~3题.1.教材P282.完成同步练习册中本课时的练习.通过本节课的学习,让学生用函数的观点解方程和用方程的知识求函数,取某一特值时,把对应的自变量的值都联系起来了,这样对二次函数的综合应用就方便得多了,从中让学生体会到各知识之间是相互联系的这一最简单的数学道理.1.5 二次函数的应用第1课时二次函数的应用(1)【知识与技能】能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能利用二次函数的知识解决实际问题.【过程与方法】经历运用二次函数解决实际问题的探究过程,进一步体验运用数学方法描述变量之间的依赖关系,体会二次函数是解决实际问题的重要模型,提高运用数学知识解决实际问题的能力.【情感态度】1.体验函数是有效的描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具.2.敢于面对在解决实际问题时碰到的困难,积累运用知识解决问题的成功经验.【教学重点】用抛物线的知识解决拱桥类问题.【教学难点】将实际问题转化为抛物线的知识来解决.一、情境导入,初步认识页的内容,完成下面各题.预习P29动脑筋中“拱顶离水面的高度变化情况”,你准备采取什么1.要求出教材P29办法?图1-18,你猜测是什么样的函数呢?2.根据教材P293.怎样建立直角坐标系比较简便呢?试着画一画它的草图看看!4.根据图象你能求出函数的解析式吗?试一试!二、思考探究,获取新知探究 直观图象的建模应用例1某工厂的大门是一抛物线形水泥建筑物, 大门的地面宽度为8m ,两侧距地面3m 高处各有一盏壁灯,两壁灯之间的水平距离是6m,如图所示,则厂门的高(水泥建筑物厚度不计,精确到0.1m)约为( )A.6.9mB.7.0mC.7.1mD.6.8m【分析】因为大门是抛物线形,所以建立二次函数模型来解决问题. 先建立平面直角坐标系,如图,设大门地面宽度为AB,两壁灯之间的水平距离为CD,则B,D 坐标分别为(4,0),(3,3),设抛物线解析式为y=ax2+h.把(3,3),(4,0)代入解析式求得h ≈6.9.故选A.答案:A【教学说明】根据直观图象建立恰当的直角坐标系和解析式.例2 小红家门前有一座抛物线形拱桥,如图,当水面在l 时,拱顶离水面2m,水面宽4m,水面下降1m 时,水面宽度增加多少?【分析】拱桥类问题一般是转化为二次函数的知识来解决.解:由题意建立如图的直角坐标系,2∵抛物线经过点A (2,-2),∴-2=4a,∴a=-12,即抛物线的解析式为y=-12x 2, 当水面下降1m 时,点B 的纵坐标为-3. 将y=-3代入二次函数解析式,得y=-12x 2, 得-3=-12x 2→x 2=6→x=±6,∴此时水面宽度为2|x|=26m. 即水面下降1m 时,水面宽度增加了(26-4)m.【教学说明】用二次函数知识解决拱桥类的实际问题一定要建立适当的直角坐标系;抛物线的解析式假设恰当会给解决问题带来方便.三、运用新知,深化理解1.某溶洞是抛物线形,它的截面如图所示.现测得水面宽AB=1.6m,溶洞顶点O 到水面的距离为2.4m,在图中直角坐标系内,溶洞所在抛物线的函数关系式是( ) A.y=154x 2 B.y=154x 2+125C.y=-154x 2 D.y=-154x 2+125 2.某公园草坪的防护栏是由100段形状相同的抛物线形组成的,为了牢固起见,每段护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A.50mB.100mC.160mD.200m第2题图 第3题图 3.如图,济南建邦大桥有一段抛物线形的拱梁,抛物线的表达式为y=ax 2+bx,小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需 秒.4.(浙江金华中考)如图,足球场上守门员在O 处踢出一高球,球从离地面1米处飞出(A 在y 轴上),运动员乙在距O 点6米的B处发现球在自己的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)足球第一次落地点C 距守门员是多少米?(取≈5)(3)运动员乙要抢到第二个落点D ,他应再向前跑多少米?【教学说明】学生自觉完成上述习题,加深对新知的理解,并适当加以分析,提示如第4题,由图象的类型及已知条件,设其解析式为y=a(x-6)2+4,过点A(0,1),可求出a;(2)令y=0可求出x的值,x<0舍去;(3)令y=0,求出C点坐标(,0),设抛物线CND为y=-112(x-k)2+2,代入C点坐标可求出k值(k>).再令y=0可求出C、D的坐标,进而求出BD. 【答案】1.C 2.C 3.364.解:(1)y=-112(x-6)2+4(2)令y=0,可求C点到守门员约13米.(3)向前约跑17米.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评.3.建立二次实际问题的一般步骤:(1)根据题意建立适当的平面直角坐标系.(2)把已知条件转化为点的坐标.(3)合理设出函数解析式.(4)利用待定系数法求出函数解析式.(5)根据求得的解析式进一步分析,判断并进行有关的计算.1.教材P31第1、2题.2.完成同步练习册中本课时的练习.本节课主要是利用二次函数解决生活中的实际问题,其主要思路是建立适当的直角坐标系,使求出的二次函数模型更简捷,解决问题更方便,让学生学会运用所学知识解决实际问题,体验应用知识的成就感,激发他们学习的兴趣.第2课时二次函数的应用(2)【知识与技能】1.经历探索实际问题中两个变量的过程,使学生理解用抛物线知识解决最值问题的思路.2.初步学会运用抛物线知识分析和解决实际问题.【过程与方法】经历优化问题的探究过程,认识数学与人类生活的密切联系及对人类历史发展的作用,发展我们运用数学知识解决实际问题的能力.【情感态度】体会数学与人类社会的密切联系,了解数学的价值,增加对数学的理解和学好数学的信心.【教学重点】能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值.【教学难点】二次函数最值在实际中生活中的应用,激发学生的学习兴趣.一、情境导入,初步认识问题1同学们完成下列问题:已知y=x2-2x-3①x= 时,y有最值,其值为;②当-1≤x≤4时,y最小值为,y最大值为 .答案:①1,小,-4;②-4,5【教学说明】解决上述问题既是对前面所学知识的巩固,又是本节课解决优化最值问题的理论依据.二、思考探究,获取新知教学点1最大面积问题阅读教材P动脑筋,回答下列问题.301.若设窗框的宽为x m,则窗框的高为 m,x的取值范围是 .2.窗框的透光面积S与x之间的关系式是什么?3.如何由关系式求出最大面积?答案:1.832x-0<x<832.S=-32x2+4x,0<x<833.Smax =83m2.例1如图,从一张矩形纸片较短的边上找一点E,过E点剪下两个正方形,它们的边长分别是AE,DE,要使剪下的两个正方形的面积和最小,点E应选在何处?为什么?解:设矩形纸较短边长为a,设DE=x,则AE=a-x,那么两个正方形的面积和:y=x2+(a-x)2=2x2-2ax+a2当x=-21222aa-=⨯时,y最小值=2×(12a)2-2a×12a+a2=12a2即点E选在矩形纸较短边的中点时,剪下的两个正方形的面积和最小.【教学说明】此题要充分利用几何关系建立二次函数模型,再利用二次函数性质求解.教学点2 最大利润问题例2 讲解教材P31例题【教学说明】通过例题讲解使学生初步认识到要解决实际问题中的最值,首先要找出最值问题的二次函数关系式,利用二次函数的性质为理论依据来解决问题.例3某商店将每件进价8元的某种商品按每件10元出售,一天可售出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大?【分析】找出进价,售价,销售,总利润之间的关系,建立二次函数,再求最大值.列表分析如下:关系式:每件利润=售价-进价,总利润=每件利润×销量.解:设降价x元,总利润为y元,由题意得y=(10-x-8)(100+100x)=-100x2+100x+200=-100(x-0.5)2+225.当x=0.5时,总利润最大为225元.∴当商品的售价降低0.5元时,销售利润最大.三、运用新知,深化理解1.如图,点C是线段AB上的一个支点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是( )A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大C.当C为AB的三点分点时,S最小D.当C是AB的三等分点时,S最大第1题图第2题图2.如图,某水渠的横断面是等腰梯形,底角为120°,两腰与下底的和为4cm,当水渠深x为时,横断面面积最大,最大面积是 .3.某经销店为某工厂代销一种建筑材料,当每吨售价为260元时,月销售量为45吨,该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出1吨建筑材料共需支付厂家及其他费用100元,设每吨材料售价为x (元),该经销店的月利润为y(元).①当每吨售价是240元时,计算此时的月销售量;②求出y 与x 的函数关系式(不要求写出x 的取值范围);③该经销店要获得最大月利润,售价应定为每吨多少元?④小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.【答案】1.A 2.5 cm, 5cm 2 3.解:①45+26024010- ×7.5=60(吨). ②y=(x-100)(45+26010x -×7.5). 化简,得y=-34x 2+315x-24 000. ③y=-34x 2+315x-24 000=-34(x-210)2+9 075. 此经销店要获得最大月利润,材料的售价应定为每吨210元.④我认为,小静说得不对.理由:当月利润最大时,x 为210元,每月销售额W=x(45+26010x -×7.5=-34 (x-160)2+19 200.当x 为160元时,月销售额W 最大.∴当x 为210元时,月销售额W 不是最大的.∴小静说得不对.【教学说明】1.先列出函数的解析式,再根据其增减性确定最值.2.要分清利润,销售量与售价的关系;分清最大利润与最大销售额之间的区别.四、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:能根据实际问题建立二次函数的关系式并确定自变量取值范围,并能求出实际问题的最值.1.教材P 31第1、2题.2.完成同步练习册中本课时的练习.本节课主要是用二次函数理论知识解决最大面积问题和最大利润问题,通过对此问题的探究解决,使学生认识到数学知识和生活实际的紧密联系,提高学习数学的积极性.章末复习【知识与技能】掌握本章重要知识,能灵活运用二次函数的图象与性质解决实际问题. 【过程与方法】通过梳理本章知识,回顾解决问题中所涉及的数形结合思想,转化化归思想的过程,加深对本章知识的理解.【情感态度】在运用本章知识解决具体问题过程中,进一步体会数学与生活的密切联系,激发学习兴趣.【教学重点】回顾本章知识点,构建知识体系.【教学难点】利用二次函数的相关知识解决具体问题.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识结构框图,使学生系统了解本章知识及它们之间的关系,教学时,边回顾边建立结构框图.二、释疑解惑,加深理解1.由于y=ax2+bx+c配方后可得y=224()24b ac ba xa a-++ ,所以y=ax2+bx+c的图象总可由y=ax2平移得到.2.对于现实生活中的许多问题,可以通过建立二次函数模型来解决.3.利用二次函数解法实际问题时,自变量的取值范围要结合具体问题来确定.三、典例精析,复习新知例1下列函数中,是二次函数的是( )A.y=8x2+1B.y=x2+1xC.y=(x-2)(x+2)-x2D.y=ax2【解析】选A.选项A符合二次函数的一般形式,是二次函数,正确;选项B 不是整式形式,错误;选项C不含二次项,错误;选项D,二次项系数a=0时,不是二次函数,错误.例2 抛物线y=-(x-1)2是由抛物线y=-(x+3)2向平移个单位得到的;平移后的抛物线对称轴是,顶点坐标是,当x= 时,函数y有最值,其值是 .【解析】本题因为a=-1<0,所以抛物线开口向下,函数有最大值;掌握“左加右减”的平移规律时,关键是把握平移方向.答案:右 4 直线x=1 (1,0) 1 大 0例3如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随着x的增大而增大.正确的说法有 .(请写出所有正确说法的序号)【解析】∵抛物线开口向上,即a>0;与y轴的交点在x轴下方,即c<0,∴ac<0,①正确;由函数图象与x轴的交点坐标(-1,0),(3,0),可得方程ax2+bx+c=0的根为x1=-1,x2=3,②正确;由函数图象与x=1的交点位于x轴下方,即a+b+c<0,③错误;由函数图象可得抛物线的对称轴为x=1,当x>1时,y随着x的增大而增大,故正确的说法有①②④.例4 如图,利用一面墙(墙长为15m)和30m长的篱笆来围矩形场地,若设垂直墙的一边长为x(m),围成的矩形场地的面积为y(m2).(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)怎样围成一个面积为112m2的矩形场地?。

新湘教版九年级下册数学全册教案.pdf

新湘教版九年级下册数学全册教案.pdf
误区二:并非对称点,存在漏点现象,导致抛物线变形. 如图(2)就是漏掉点(0,0)的 y=x2 的图象的错误画法. 误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要 向两旁无限延伸,而并非到某些点停止. 如图(3),就是到点(-2,4),(2,4)停住的 y=x2 图象的错误画法.
心重合),剩余部分的面积为 y.
(1)求 y 关于 x 的函数关系式;
(2)试求自变量 x 的取值范围;
(3)求当圆的半径为 2 时,剩余部分的面积(π取 3.14,结果精确到十分
位).
【答案】1.D 2.D 3.A 7.(1)y=25-πx2=-πx2+25.
4.a≠-2
5.5,-3,1
6. y = 1 x2 − 1 x 是 22
五、师生互动,课堂小结
1.师生共同回顾二次函数 y=ax2(a>0)图象的画法及其性质.
2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.
1.教材 P7 第 1、2 题. 2.完成同步练习册中本课时的练习.
本节课是从学生画 y=x2 的图象,从而掌握二次函数 y=ax2(a>0)图象的画法,
D.y= 1 x
2.已知点(-1,y1),(2,y2),(-3,y3)都在函数 y=x2 的图象上,则(

A.y1<y2<y3
B.y1<y3<y2
C.y3<y2<y1
D.y2<y1<y3
3.抛物线 y= 1 x2 的开口向 3

,当 x=-2 时,y=
,顶点坐标为 ;当 y=3 时,x=
,对称轴 ,当 x≤0 时,
2
一寸光阴不可轻
∴当 m≠0 且 m≠1 时,函数 y=(m2-m)x2+mx+(m+1)是二次函数.

【重磅】新湘教版九年级下册数学全册教案

【重磅】新湘教版九年级下册数学全册教案

第1章二次函数1.1二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识. 【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度R(m)的关系式是S=-2R2+100R,(0<R<50);电脑价格R (元)与平均降价率R的关系式是R=6000R2-120RRR+6000,(0<R<1).它们有什么共同点?一般形式是R=aR2+bR+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如R=aR 2+bR+c(a, b,c 是常数,a ≠0)的函数,叫做二次函数,其中R 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.三、典例精析,掌握新知例1指出下列函数中哪些是二次函数.(1)R=(R-3)2-R 2;(2)R=2R(R-1);(3)R=32R-1;(4)R=22x;(5)R=5-R 2+R. 【分析】先化为一般形式,右边为整式,依照定义分析.解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路:1.将函数化为一般形式.2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0.例2讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围. 例3已知函数R=(m 2-m)R 2+mR+(m+1)(m 是常数),当m 为何值时:(1)函数是一次函数;(2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.解:(1)由200m m m ⎧-=⎨≠⎩得010m m ⎩=≠⎧⎨或, ∴m=1.即当m=1时,函数R=(m 2-m)R 2+mR+(m+1)是一次函数.(2)由m 2-m ≠0得m ≠0且m ≠1,∴当m ≠0且m ≠1时,函数R=(m 2-m)R 2+mR+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是() A.2123y x x =+- B.R=3R 3+2R 2C.R=(R-2)2-R 3D.21y =- 2.二次函数R=2R(R-1)的一次项系数是()A.1B.-1C.2D.-23.若函数232(3)1k k y k x kx -+=-++是二次函数,则k 的值为()A.0B.0或3C.3D.不确定4.若R=(a+2)R 2-3R+2是二次函数,则a 的取值范围是 .5.已知二次函数R=1-3R+5R 2,则二次项系数a= ,一次项系数b= ,常数项c= .6.某校九(1)班共有R 名学生,在毕业典礼上每两名同学都握一次手,共握手R 次,试写出R 与R 之间的函数关系式 ,它 (填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为R 的圆(圆心与正方形的中心重合),剩余部分的面积为R.(1)求R 关于R 的函数关系式;(2)试求自变量R 的取值范围;(3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位).【答案】1.D2.D3.A4.a ≠-25.5,-3,16.21122y x x =-是 7.(1)R=25-πR 2=-πR 2+25.(2)0<R ≤52.(3)当R=2时,R=-4π+25≈-4×3.14+25=12.44≈12.4.即剩余部分的面积约为12.4.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.教材P 4第1~3题.2.完成同步练习册中本课时的练习.本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.1.2二次函数的图象与性质第1课时二次函数R=aR2(a>0)的图象与性质【知识与技能】1.会用描点法画函数R=aR2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用R=aR2(a>0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数R=aR2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数R=aR2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画R=aR2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1画二次函数R=aR2(a>0)的图象.画二次函数R=aR2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图R=R2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于R轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是R=R2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0,0)的R=R 2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的R=R 2图象的错误画法.探究2R=aR 2(a >0)图象的性质在同一坐标系中,画出R=R 2,212y x =,R=2R 2的图象. 【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数R=aR2(a >0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,R 随R 的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.R=aR 2(a >0)图象的性质1.图象开口向上.2.对称轴是R 轴,顶点是坐标原点,函数有最低点.3.当R >0时,R 随R 的增大而增大,简称右升;当R <0时,R 随R 的增大而减小,简称左降.三、典例精析,掌握新知例已知函数24(2)kk y k x +-=+是关于R 的二次函数. (1)求k 的值.(2)k 为何值时,抛物线有最低点,最低点是什么?在此前提下,当R 在哪个范围内取值时,R 随R 的增大而增大?【分析】此题是考查二次函数R=aR 2的定义、图象与性质的,由二次函数定义列出关于k 的方程,进而求出k 的值,然后根据k+2>0,求出k 的取值范围,最后由R 随R 的增大而增大,求出R 的取值范围.解:(1)由已知得22042k k k +≠+-=⎧⎨⎩,解得k=2或k=-3. 所以当k=2或k=-3时,函数24(2)k k y k x +-=+是关于R 的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.由(1)知k=2,最低点是(0,0),当R ≥0时,R 随R 的增大而增大.四、运用新知,深化理解1.(广东广州中考)下列函数中,当R >0时,R 值随R 值增大而减小的是()A.R=R 2B.R=R-1C.34y x =D.R=1x2.已知点(-1,R 1),(2,R 2),(-3,R 3)都在函数R=R 2的图象上,则()A.R 1<R 2<R 3B.R 1<R 3<R 2C.R 3<R 2<R 1D.R 2<R 1<R 33.抛物线R=13R 2的开口向 ,顶点坐标为 ,对称轴为 ,当R=-2时,R= ;当R=3时,R= ,当R ≤0时,R 随R 的增大而 ;当R >0时,R 随R 的增大而 .4.如图,抛物线R=aR 2上的点B ,C 与R 轴上的点A (-5,0),D (3,0)构成平行四边形ABCD ,BC 与R 轴交于点E (0,6),求常数a 的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D2.A3.上,(0,0),R 轴,43,±3,减小,增大 4.解:依题意得:BC=AD=8,BC ∥R 轴,且抛物线R=aR 2上的点B ,C 关于R轴对称,又∵BC与R轴交于点E(0,6),∴B点为(-4,6),C点为(4,6),将(4,6)代入R=aR2得:a=3.8五、师生互动,课堂小结1.师生共同回顾二次函数R=aR2(a>0)图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.1.教材P7第1、2题.2.完成同步练习册中本课时的练习.本节课是从学生画R=R2的图象,从而掌握二次函数R=aR2(a>0)图象的画法,再由图象观察、探究二次函数R=aR2(a>0)的性质,培养学生动手、动脑、探究归纳问题的能力.第2课时二次函数R=aR2(a<0)的图象与性质【知识与技能】1.会用描点法画函数R=aR2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用R=aR2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数R=aR2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数R=aR2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画R=aR2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.一、情境导入,初步认识1.在坐标系中画出R=12R2的图象,结合R=12R2的图象,谈谈二次函数R=aR2(a>0)的图象具有哪些性质?2.你能画出R=-12R2的图象吗?二、思考探究,获取新知探究1画R=aR2(a<0)的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出R=-12R2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,R=12R2与R=-12R2有何关系?归纳:R=12R2与R=-12R2二者图象形状完全相同,只是开口方向不同,两图象关于R轴对称.(教师引导学生从理论上进行证明这一结论)探究2二次函数R=aR2(a<0)性质问:你能结合R=-1R2的图象,归纳出2R=aR2(a<0)图象的性质吗?【教学说明】教师提示应从开口方向,对称轴,顶点位置,R随R的增大时的变化情况几个方面归纳,教师整理,强调R=aR2(a<0)图象的性质.1.开口向下.2.对称轴是R轴,顶点是坐标原点,函数有最高点.3.当R>0时,R随R的增大而减小,简称右降,当R<0时,R随R的增大而增大,简称左升.探究3二次函数R=aR2(a≠0)的图象及性质学生回答:【教学点评】一般地,抛物线R=aR2的对称轴是,顶点是,当a>0时抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越;当a<0时,抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越,总之,|a|越大,抛物线开口越 .答案:R轴,(0,0),上,低,小,下,高,大,小三、典例精析,掌握新知例1填空:①函数R=(-2R)2的图象是,顶点坐标是,对称轴是,开口方向是 .②函数R=R2,R=1R2和R=-2R2的图象如图所示,2请指出三条抛物线的解析式.解:①抛物线,(0,0),R轴,向上;②根据抛物线R=aR2中,a的值的作用来判断,上面最外面的抛物线为R2,中间为R=R2,在R轴下方的为R=-2R2.R=12【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线R=aR2中,当a>0时,开口向上;当a<0时,开口向下,|a|越大,开口越小.例2已知抛物线R=aR2经过点(1,-1),求R=-4时R的值.【分析】把点(1,-1)的坐标代入R=aR2,求得a的值,得到二次函数的表达式,再把R=-4代入已求得的表达式中,即可求得R的值.解:∵点(1,-1)在抛物线R=aR2上,-1=a·12,∴a=-1,∴抛物线为R=-R2.当R=-4时,有-4=-R2,∴R=±2.【教学说明】在求R=aR2的解析式时,往往只须一个条件代入即可求出a值.四、运用新知,深化理解1.下列关于抛物线R=R2和R=-R2的说法,错误的是()A.抛物线R=R2和R=-R2有共同的顶点和对称轴B.抛物线R=R2和R=-R2关于R轴对称C.抛物线R=R2和R=-R2的开口方向相反D.点(-2,4)在抛物线R=R2上,也在抛物线R=-R2上2.二次函数R=aR2与一次函数R=-aR(a≠0)在同一坐标系中的图象大致是()3.二次函数226=-,当R<0时,R随R的增大而减小,则(1)m my m x+-m= .4.已知点A(-1,R1),B(1,R2),C(a,R3)都在函数R=R2的图象上,且a>1,则R1,R2,R3中最大的是 .5.已知函数R=aR2经过点(1,2).①求a的值;②当R<0时,R的值随R值的增大而变化的情况.【教学说明】学生自主完成,加深对新知的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D2.B3.24.R35.①a=2②当R<0时,R随R的增大而减小五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑?在学生回答的基础上,教师点评:(1)R=aR2(a<0)图象的性质;(2)R=aR2(a≠0)关系式的确定方法.1.教材P10第1~2题.2.完成同步练习册中本课时的练习.本节课仍然是从学生画图象,结合上节课R=aR2(a>0)的图象和性质,从而得出R=aR2(a<0)的图象和性质,进而得出R=aR2(a≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时二次函数R=a(R-h)2的图象与性质【知识与技能】1.能够画出R=a(R-h)2的图象,并能够理解它与R=aR2的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出R=a(R-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数R=a(R-h)2的图象的作法和性质的过程,进一步领会数形结合的思想.【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握R=a(R-h)2的图象及性质.【教学难点】理解R=a(R-h)2与R=aR2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识1.在同一坐标系中画出R=12R2与R=12(R-1)2的图象,完成下表.2.二次函数R=12(R-1)2的图象与R=12R2的图象有什么关系?3.对于二次函数12(R-1)2,当R取何值时,R的值随R值的增大而增大?当R 取何值时,R的值随R值的增大而减小?二、思考探究,获取新知归纳二次函数R=a(R-h)2的图象与性质并完成下表.三、典例精析,掌握新知例1教材P12例3.【教学说明】二次函数R=aR2与R=a(R-h)2是有关系的,即左、右平移时“左加右减”.例如R=aR2向左平移1个单位得到R=a(R+1)2,R=aR2向右平移2个单位得到R=a(R-2)2的图象.例2已知直线R=R+1与R轴交于点A,抛物线R=-2R2平移后的顶点与点A重合.①水平移后的抛物线l的解析式;②若点B(R1,R1),C(R2,R2)在抛物线l <R1<R2,试比较R1,R2的大小.上,且-12解:①∵R=R+1,∴令R=0,则R=-1,∴A(-1,0),即抛物线l的顶点坐标为(-1,0),又∵抛物线l是由抛物线R=-2R2平移得到的,∴抛物线l的解析式为R=-2(R+1)2.②由①可知,抛物线l的对称轴为R=-1,∵a=-2<0,∴当R>-1时,R随R<R1<R2,∴R1>R2.的增大而减小,又-12【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数R=15(R-1)2的最小值是()A.-1B.1C.0D.没有最小值2.抛物线R=-3(R+1)2不经过的象限是()A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限中,当R>0时,R随R的增大而增大,则二次函数3.在反比例函数R=kxR=k(R-1)2的图象大致是()4.(1)抛物线R=1R2向平移个单位得抛物线3(R+1)2;R=13(2)抛物线向右平移2个单位得抛物线R=-2(R-2)2.5.(广东广州中考)已知抛物线R=a(R-h)2的对称轴为R=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当R取何值时,R随R的增大而增大?当R取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1.C2.A3.B4.(1)左,1(2)R=-2R2(R+2)2(2)略(3)当R<-2时,R随R增大而增大;当R=-25.解:(1)R=-13时,R有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)R=a(R-h)2的图象与性质;(2)R=a(R-h)2与R=aR2的图象的关系.1.教材P12第1、2题.2.完成同步练习册中本课时的练习.通过本节学习使学生认识到R=a(R-h)2的图象是由R=aR2的图象左右平移得到的,初步认识到a,h对R=a(R-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h决定向左右平移;从中领会数形结合的数学思想.第4课时二次函数R=a(R-h)2+k的图象与性质【知识与技能】1.会用描点法画二次函数R=a(R-h)2+k的图象.掌握R=a(R-h)2+k的图象和性质.2.掌握R=a(R-h)2+k与R=aR2的图象的位置关系.3.理解R=a(R-h)2+k,R=a(R-h)2,R=aR2+k及R=aR2的图象之间的平移转化.【过程与方法】经历探索二次函数R=a(R-h)2+k的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣.【教学重点】二次函数R=a(R-h)2+k的图象与性质.【教学难点】由二次函数R=a(R-h)2+k的图象的轴对称性列表、描点、连线.一、情境导入,初步认识复习回顾:同学们回顾一下:①R=aR2,R=a(R-h)2,(a≠0)的图象的开口方向、对称轴、顶点坐标,R随R 的增减性分别是什么?②如何由R=aR2(a≠0)的图象平移得到R=a(R-h)2的图象?③猜想二次函数R=a(R-h)2+k的图象开口方向、对称轴、顶点坐标及R随R的增减性如何?二、思考探究,获取新知探究1R=a(R-h)2+k的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:(R+1)2-1图象的开口方向、对称轴、顶点坐标及R随R的增减性①R=-12如何?R2向左平移1个单位,再向下平移1个单位得抛物线②将抛物线R=-12R=-1(R+1)2-1.22.同学们讨论回答:①一般地,当h>0,k>0时,把抛物线R=aR2向右平移h个单位,再向上平移k个单位得抛物线R=a(R-h)2+k;平移的方向和距离由h,k的值来决定.②抛物线R=a(R-h)2+k的开口方向、对称轴、顶点坐标及R随R的增减性如何?探究2二次函数R=a(R-h)2+k的应用【教学说明】二次函数R=a(R-h)2+k的图象是,对称轴是,顶点坐标是,当a>0时,开口向,当a<0时,开口向.答案:抛物线,直线R=h,(h,k),上,下三、典例精析,掌握新知例1已知抛物线R=a(R-h)2+k,将它沿R轴向右平移3个单位后,又沿R轴向下平移2个单位,得到抛物线的解析式为R=-3(R+1)2-4,求原抛物线的解析式.【分析】平移过程中,前后抛物线的形状,大小不变,所以a=-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线R=-3(R+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为R=-3(R+4)2-2.【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.例2如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向目标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C?并说明理由.【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.解:该火球能点燃目标.如图,以OB所在直线为R轴,OA所在直线为R轴建立直角坐标系,则点(12,20)为抛物线顶点,设解析式为R=a(R-12)2+20,∵点(0,2)在图象上,∴144a+20=2,∴a=-18,∴R=-18(R-12)2+20.当R=20时,R=-18×(20-12)2+20=12,即抛物线过点(20,12),∴该火球能点燃目标.【教学说明】二次函数R=a(R-h)2+k的应用关键是构造出二次函数模型.四、运用新知,深化理解1.若抛物线R=-7(R+4)2-1平移得到R=-7R2,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向上平移4个单位2.抛物线R=R2-4与R轴交于B,C两点,顶点为A,则△ABC的周长为()A.45B.45+4C.12D.25+43.函数R=aR2-a与R=aR-a(a≠0)在同一坐标系中的图象可能是()4.二次函数R=-2R2+6的图象的对称轴是,顶点坐标是,当R 时,R随R的增大而增大.5.已知函数R=aR2+c的图象与函数R=-3R2-2的图象关于R轴对称,则a= ,c= .6.把抛物线R=(R-1)2沿R轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.【答案】1.B2.B3.C4.R轴,(0,6),<05.3,26.R=(R-1)2-4五、师生互动,课堂小结1.这节课你学到了什么,还有哪些疑惑?2.在学生回答的基础上,教师点评:①二次函数R=a(R-h)2+k的图象与性质;②如何由抛物线R=aR2平移得到抛物线R=a(R-h)2+k.【教学说明】教师应引导学生自主小结,加深理解掌握R=aR2与R=a(R-h)2+k二者图象的位置关系.1.教材P15第1~3题.2.完成同步练习册中本课时的练习.掌握函数R=aR2,R=a(R-h)2,R=a(R-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.第5课时二次函数R=aR2+bR+c的图象与性质【知识与技能】1.会用描点法画二次函数R=aR2+bR+c的图象.2.会用配方法求抛物线R=aR2+bR+c的顶点坐标、开口方向、对称轴、R随R的增减性.3.能通过配方求出二次函数R=aR2+bR+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数R=aR2+bR+c(a≠0)的图象的作法和性质的过程,体会建立二次函数R=aR2+bR+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习R=aR2+bR+c(a≠0)的性质的过程中,渗透转化(化归)的思想. 【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求R=aR2+bR+c的顶点坐标;②会用描点法画R=aR2+bR+c 的图象并能说出图象的性质.【教学难点】能利用二次函数R=aR2+bR+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数R=aR2+bR+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数R=-2R2+6R-1化成R=a(R-h)2+k的形式.2.写出二次函数R=-2R2+6R-1的开口方向,对称轴及顶点坐标.3.画R=-2R2+6R-1的图象.4.抛物线R=-2R2如何平移得到R=-2R2+6R-1的图象.5.二次函数R=-2R 2+6R-1的R 随R 的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会R=aR 2+bR+c 与R=a(R-h)2+k 的转化过程.二、思考探究,获取新知探究1如何画R=aR 2+bR+c 图象,你可以归纳为哪几步?学生回答、教师点评:一般分为三步:1.先用配方法求出R=aR 2+bR+c 的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2二次函数R=aR 2+bR+c 图象的性质有哪些?你能试着归纳吗? 学生回答,教师点评:抛物线R=aR 2+bR+c=224()24b ac b a x a a -++,对称轴为R=-2b a,顶点坐标为(-2b a ,244ac b a -),当a >0时,若R >-2b a ,R 随R 增大而增大,若R <-2b a ,R 随R 的增大而减小;当a <0时,若R >-2b a ,R 随R 的增大而减小,若R<-2b a,R 随R 的增大而增大. 探究3二次函数R=aR 2+bR+c 在什么情况下有最大值,什么情况下有最小值,如何确定?学生回答,教师点评:三、典例精析,掌握新知例1将下列二次函数写成顶点式R=a(R-h)2+k 的形式,并写出其开口方向,顶点坐标,对称轴.R2-3R+21②R=-3R2-18R-22①R=14R2-3R+21解:①R=14=1(R2-12R)+214=1(R2-12R+36-36)+214(R-6)2+12.=14∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是R=6.②R=-3R2-18R-22=-3(R2+6R)-22=-3(R2+6R+9-9)-22=-3(R+3)2+5.∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是R=-3.【教学说明】第②小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2用总长为60m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?①S与l有何函数关系?②举一例说明S随l的变化而变化?③怎样求S的最大值呢?解:S=l(30-l)=-l2+30l(0<l<30)=-(l2-30l)=-(l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225)【教学说明】二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.四、运用新知,深化理解1.(北京中考)抛物线R=R2-6R+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.(贵州贵阳中考)已知二次函数R=aR2+bR+c(a <0)的图象如图所示,当-5≤R≤0时,下列说法正确的是()A.有最小值5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数R=aR2+bR+c的图象开口向上,图象经过点(-1,2)和(1,0),且与R轴相交于负半轴.(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确结论的序号是 .(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序号是 .【教学说明】通过练习,巩固掌握R=aR2+bR+c的图象和性质.【答案】1.A2.B3.(1)①④(2)②③④五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)用配方法求二次R=aR2+bR+c的顶点坐标、对称轴;(2)由R=aR2+bR+c的图象判断与a,b,c有关代数式的值的正负;(3)实际问题中自变量取值范围及函数最值.1.教材P15第1~3题.2.完成同步练习册中本课时的练习.R=aR2+bR+c的图象和性质可以看作是R=aR2,R=a(R-h)2+k,R=a(R-h)2+k的图象和性质的归纳与综合,让学生初步体会由简单到复杂,由特殊到一般的认识规律.R1.3不共线三点确定二次函数的表达式【知识与技能】1.掌握用待定系数法列方程组求二次函数解析式.2.由已知条件的特点,灵活选择二次函数的三种形式,合适地设置函数解析式,可使计算过程简便.【过程与方法】通过例题讲解使学生初步掌握,用待定系数法求二次函数的解析式.【情感态度】通过本节教学,激发学生探究问题,解决问题的能力.。

新版湘教版九年级下学期数学教案全集

新版湘教版九年级下学期数学教案全集

新版湘教版九年级下学期数学教案全集LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】义务教育课程标准实验教科书数学教案九年级下册巨口铺镇栗坪中学授课教师吴理科授课班级130 班目录湘教版九年级数学下册教学计划 (4)第1章二次函数 (1)二次函数 (1)二次函数的图象与性质 (4)第1课时二次函数y=ax2(a>0)的图象与性质 (4)第2课时二次函数y=ax2(a<0)的图象与性质 (8)第3课时二次函数y=a(x-h)2的图象与性质 (12)第4课时二次函数y=a(x-h)2+k的图象与性质 (15)第5课时二次函数y=ax2+bx+c的图象与性质 (19)*不共线三点确定二次函数的表达式 (23)二次函数与一元二次方程的联系 (26)二次函数的应用 (29)第1课时二次函数的应用(1) (29)第2课时二次函数的应用(2) (33)章末复习 (38)第2章圆 (42)圆的对称性 (42)圆心角、圆周角 (46)圆心角 (46)圆周角 (49)第1课时圆周角(1) (49)第2课时圆周角(2) (53)*垂径定理 (56)过不共线三点作圆 (60)直线与圆的位置关系 (63)直线与圆的位置关系 (63)圆的切线 (67)第1课时圆的切线的判定 (67)第2课时圆的切线的性质 (70)切线长定理 (74)三角形的内切圆 (78)弧长与扇形面积 (82)第1课时弧长及其相关量的计算 (82)第2课时扇形面积 (85)正多边形与圆 (89)章末复习 (92)第3章投影与视图 (97)投影 (97)第1课时平行投影与中心投影 (97)第2课时正投影 (101)直棱柱、圆锥的侧面展开图 (105)三视图 (109)第1课时几何体的三视图 (109)第2课时由三视图确定几何体 (113)章末复习 (116)第4章概率 (120)随机事件与可能性 (120)概率及其计算 (124)概率的概念 (124)用列举法求概率 (127)第1课时用列表法求概率 (127)第2课时用树状图法求概率 (131)用频率估计概率 (134)章末复习 (138)湘教版九年级数学下册教学计划130班吴理科一、课程目标(一)、本学段课程目标(二)知识技能1.体验从具体情境中抽象出数学符号的过程,理解有理数、实数、代数式、方程、不等式、函数;掌握必要的运算(包括估算)技能;探索具体问题中的数量 2.探索并掌握相交线、平行线、三角形、四边形和圆的基本性质与判定,掌握基本的证明方法和基本的作图技能;探索并理解平面图形的平移、旋转、轴对称;认识投影与视图;3.体验数据收集、处理、分析和推断过程,理解抽样方法,体验用样本估计总体的过程;进一步认识随机现象,能计算一些简单事件的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章二次函数1.1 二次函数【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识. 【教学重点】二次函数的概念.【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程.一、情境导入,初步认识1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(0<x<50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-12000x+6000,(0<x<1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数.2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax 2+bx+c(a, b,c 是常数,a ≠0)的函数,叫做二次函数,其中x 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项.注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.三、典例精析,掌握新知例1 指出下列函数中哪些是二次函数.(1)y=(x-3)2-x 2 ;(2)y=2x(x-1);(3)y=32x-1;(4)y=22x;(5)y=5-x 2+x. 【分析】先化为一般形式,右边为整式,依照定义分析.解:(2)(5)是二次函数,其余不是.【教学说明】判定一个函数是否为二次函数的思路:1.将函数化为一般形式.2.自变量的最高次数是2次.3.若二次项系数中有字母,二次项系数不能为0.例2 讲解教材P3例题.【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围. 例3 已知函数y=(m 2-m)x 2+mx+(m+1)(m 是常数),当m 为何值时:(1)函数是一次函数;(2)函数是二次函数.【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.解:(1)由200m m m ⎧−=⎨≠⎩ 得010m m ⎩=≠⎧⎨或 , ∴m=1.即当m=1时,函数y=(m 2-m)x 2+mx+(m+1)是一次函数.(2)由m 2-m ≠0得m ≠0且m ≠1,∴当m ≠0且m ≠1时,函数y=(m 2-m)x 2+mx+(m+1)是二次函数.【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.四、运用新知,深化理解1.下列函数中是二次函数的是( )A. 2123y x x =+− B.y=3x 3+2x 2 C.y=(x-2)2-x 3 D.212y x =− 2.二次函数y=2x(x-1)的一次项系数是( )A.1B.-1C.2D.-23.若函数232(3)1k k y k x kx −+=−++ 是二次函数,则k 的值为( )A.0B.0或3C.3D.不确定4.若y=(a+2)x 2-3x+2是二次函数,则a 的取值范围是 .5.已知二次函数y=1-3x+5x 2,则二次项系数a= ,一次项系数b= ,常数项c= .6.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式 ,它 (填“是”或“不是”)二次函数.7.如图,在边长为5的正方形中,挖去一个半径为x 的圆(圆心与正方形的中心重合),剩余部分的面积为y.(1)求y 关于x 的函数关系式;(2)试求自变量x 的取值范围;(3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位).【答案】1.D 2.D 3.A 4.a ≠-2 5.5,-3,1 6.21122y x x =− 是 7.(1)y=25-πx 2=-πx 2+25.(2)0<x ≤52.(3)当x=2时,y=-4π+25≈-4×3.14+25=12.44≈12.4.即剩余部分的面积约为12.4.【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.五、师生互动,课堂小结1.师生共同回顾二次函数的有关概念.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.第1~3题.1.教材P42.完成同步练习册中本课时的练习.本节课是从生活实际中引出二次函数模型,从而得出二次函数的定义及一般形式,会写简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围,使学生认识到数学来源于生活,又应用于生活实际之中.1.2 二次函数的图象与性质第1课时二次函数y=ax2(a>0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0,0)的y=x2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x2图象的错误画法.探究2 y=ax 2(a >0)图象的性质在同一坐标系中,画出y=x 2, 212y x =,y=2x 2的图象.【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数y=ax2(a >0)的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y 随x 的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.y=ax 2(a >0)图象的性质1.图象开口向上.2.对称轴是y 轴,顶点是坐标原点,函数有最低点.3.当x >0时,y 随x 的增大而增大,简称右升;当x <0时,y 随x 的增大而减小,简称左降.三、典例精析,掌握新知例 已知函数24(2)kk y k x +−=+是关于x 的二次函数.(1)求k 的值.(2)k 为何值时,抛物线有最低点,最低点是什么?在此前提下,当x 在哪个范围内取值时,y 随x 的增大而增大?【分析】此题是考查二次函数y=ax 2的定义、图象与性质的,由二次函数定义列出关于k 的方程,进而求出k 的值,然后根据k+2>0,求出k 的取值范围,最后由y 随x 的增大而增大,求出x 的取值范围.解:(1)由已知得22042k k k +≠+−=⎧⎨⎩ ,解得k=2或k=-3. 所以当k=2或k=-3时,函数24(2)k k y k x +−=+是关于x 的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.由(1)知k=2,最低点是(0,0),当x ≥0时,y 随x 的增大而增大.四、运用新知,深化理解1.(广东广州中考)下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x2B.y=x-1C.34y x= D.y=1x2.已知点(-1,y1),(2,y2),(-3,y3)都在函数y=x2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y3<y2<y1D.y2<y1<y33.抛物线y=13x2的开口向,顶点坐标为,对称轴为,当x=-2时,y= ;当y=3时,x= ,当x≤0时,y随x的增大而;当x>0时,y随x的增大而 .4.如图,抛物线y=ax2上的点B,C与x轴上的点A(-5,0),D(3,0)构成平行四边形ABCD,BC与y轴交于点E(0,6),求常数a的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.A 3.上,(0,0),y轴,43,±3,减小,增大4.解:依题意得:BC=AD=8,BC∥x轴,且抛物线y=ax2上的点B,C关于y 轴对称,又∵BC与y轴交于点E(0,6),∴B点为(-4,6),C点为(4,6),将(4,6)代入y=ax2得:a=38.五、师生互动,课堂小结1.师生共同回顾二次函数y=ax2(a>0)图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.1.教材P7第1、2题.2.完成同步练习册中本课时的练习.本节课是从学生画y=x2的图象,从而掌握二次函数y=ax2(a>0)图象的画法,再由图象观察、探究二次函数y=ax2(a>0)的性质,培养学生动手、动脑、探究归纳问题的能力.第2课时二次函数y=ax2(a<0)的图象与性质【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.一、情境导入,初步认识1.在坐标系中画出y=12x2的图象,结合y=12x2的图象,谈谈二次函数y=ax2(a>0)的图象具有哪些性质?2.你能画出y=-12x2的图象吗?二、思考探究,获取新知探究1画y=ax2(a<0)的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y=-12x2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,y=12x2与y=-12x2有何关系?归纳:y=12x2与y=-12x2二者图象形状完全相同,只是开口方向不同,两图象关于y轴对称.(教师引导学生从理论上进行证明这一结论)探究2二次函数y=ax2(a<0)性质问:你能结合y=-12x2的图象,归纳出y=ax2(a<0)图象的性质吗?【教学说明】教师提示应从开口方向,对称轴,顶点位置,y随x的增大时的变化情况几个方面归纳,教师整理,强调y=ax2(a<0)图象的性质.1.开口向下.2.对称轴是y轴,顶点是坐标原点,函数有最高点.3.当x>0时,y随x的增大而减小,简称右降,当x<0时,y随x的增大而增大,简称左升.探究3二次函数y=ax2(a≠0)的图象及性质学生回答:【教学点评】一般地,抛物线y=ax2的对称轴是,顶点是,当a>0时抛物线的开口向,顶点是抛物线的最点,a 越大,抛物线开口越;当a<0时,抛物线的开口向,顶点是抛物线的最点,a越大,抛物线开口越,总之,|a|越大,抛物线开口越 .答案:y轴,(0,0),上,低,小,下,高,大,小三、典例精析,掌握新知例1 填空:①函数y=(-2x)2的图象是,顶点坐标是,对称轴是,开口方向是 .②函数y=x2,y=12x2和y=-2x2的图象如图所示,请指出三条抛物线的解析式.解:①抛物线,(0,0),y轴,向上;②根据抛物线y=ax2中,a的值的作用来判断,上面最外面的抛物线为y=12x2,中间为y=x2,在x轴下方的为y=-2x2.【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax2中,当a>0时,开口向上;当a<0时,开口向下,|a|越大,开口越小.例2 已知抛物线y=ax2经过点(1,-1),求y=-4时x的值.【分析】把点(1,-1)的坐标代入y=ax2,求得a的值,得到二次函数的表达式,再把y=-4代入已求得的表达式中,即可求得x的值.解:∵点(1,-1)在抛物线y=ax2上,-1=a·12,∴a=-1,∴抛物线为y=-x2.当y=-4时,有-4=-x2,∴x=±2.【教学说明】在求y=ax2的解析式时,往往只须一个条件代入即可求出a 值.四、运用新知,深化理解1.下列关于抛物线y=x2和y=-x2的说法,错误的是()A.抛物线y=x 2和y=-x 2有共同的顶点和对称轴B.抛物线y=x 2和y=-x 2关于x 轴对称C.抛物线y=x 2和y=-x 2的开口方向相反D.点(-2,4)在抛物线y=x 2上,也在抛物线y=-x 2上2.二次函数y=ax 2与一次函数y=-ax(a ≠0)在同一坐标系中的图象大致是( )3.二次函数226(1)m m y m x+−=−,当x <0时,y 随x 的增大而减小,则m= .4.已知点A (-1,y 1),B(1,y 2),C(a,y 3)都在函数y=x 2的图象上,且a >1,则y 1,y 2,y 3中最大的是 .5.已知函数y=ax 2经过点(1,2).①求a 的值;②当x <0时,y 的值随x 值的增大而变化的情况.【教学说明】学生自主完成,加深对新知的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.B 3.2 4.y 35.①a=2 ②当x <0时,y 随x 的增大而减小 五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑?在学生回答的基础上,教师点评:(1)y=ax 2(a<0)图象的性质;(2)y=ax 2(a ≠0)关系式的确定方法.1.教材P 10第1~2题.2.完成同步练习册中本课时的练习.本节课仍然是从学生画图象,结合上节课y=ax 2(a >0)的图象和性质,从而得出y=ax 2(a <0)的图象和性质,进而得出y=ax 2(a ≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时二次函数y=a(x-h)2的图象与性质【知识与技能】1.能够画出y=a(x-h)2的图象,并能够理解它与y=ax2的图象的关系,理解a,h对二次函数图象的影响.2.能正确说出y=a(x-h)2的图象的开口方向、对称轴和顶点坐标.【过程与方法】经历探索二次函数y=a(x-h)2的图象的作法和性质的过程,进一步领会数形结合的思想.【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识.【教学重点】掌握y=a(x-h)2的图象及性质.【教学难点】理解y=a(x-h)2与y=ax2图象之间的位置关系,理解a,h对二次函数图象的影响.一、情境导入,初步认识1.在同一坐标系中画出y=12x2与y=12(x-1)2的图象,完成下表.2.二次函数y=12(x-1)2的图象与y=12x2的图象有什么关系?3.对于二次函数12(x-1)2,当x取何值时,y的值随x值的增大而增大?当x取何值时,y的值随x值的增大而减小?二、思考探究,获取新知归纳二次函数y=a(x-h)2的图象与性质并完成下表.三、典例精析,掌握新知例1 教材P12例3.【教学说明】二次函数y=ax2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”. 例如y=ax2向左平移1个单位得到y=a(x+1)2,y=ax2向右平移2个单位得到y=a(x-2)2的图象.例2 已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A 重合.①水平移后的抛物线l的解析式;②若点B(x1,y1),C(x2,y2)在抛物线l上,且-12<x1<x2,试比较y1,y2的大小.解:①∵y=x+1,∴令y=0,则x=-1,∴A(-1,0),即抛物线l的顶点坐标为(-1,0),又∵抛物线l是由抛物线y=-2x2平移得到的,∴抛物线l的解析式为y=-2(x+1)2.②由①可知,抛物线l的对称轴为x=-1,∵a=-2<0,∴当x>-1时,y随x的增大而减小,又-12<x1<x2,∴y1>y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是()A.-1B.1C.0D.没有最小值2.抛物线y=-3(x+1)2不经过的象限是()A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限3.在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是()4.(1)抛物线y=13x2向平移个单位得抛物线y=13(x+1)2;(2)抛物线向右平移2个单位得抛物线y=-2(x-2)2.5.(广东广州中考)已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大?当x取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1.C 2.A 3.B 4.(1)左,1 (2)y=-2x25.解:(1)y=-13(x+2)2 (2)略(3)当x<-2时,y随x增大而增大;当x=-2时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.1.教材P12第1、2题.2.完成同步练习册中本课时的练习.通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax2的图象左右平移得到的,初步认识到a,h对y=a(x-h)2位置的影响,a的符号决定抛物线方向,|a|决定抛物线开口的大小,h决定向左右平移;从中领会数形结合的数学思想.第4课时二次函数y=a(x-h)2+k的图象与性质【知识与技能】1.会用描点法画二次函数y=a(x-h)2+k的图象.掌握y=a(x-h)2+k的图象和性质.2.掌握y=a(x-h)2+k与y=ax2的图象的位置关系.3.理解y=a(x-h)2+k,y=a(x-h)2,y=ax2+k及y=ax2的图象之间的平移转化. 【过程与方法】经历探索二次函数y=a(x-h)2+k的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力.【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣.【教学重点】二次函数y=a(x-h)2+k的图象与性质.【教学难点】由二次函数y=a(x-h)2+k的图象的轴对称性列表、描点、连线.一、情境导入,初步认识复习回顾:同学们回顾一下:①y=ax2,y=a(x-h)2,(a≠0)的图象的开口方向、对称轴、顶点坐标,y随x的增减性分别是什么?②如何由y=ax2(a≠0)的图象平移得到y=a(x-h)2的图象?③猜想二次函数y=a(x-h)2+k的图象开口方向、对称轴、顶点坐标及y随x 的增减性如何?二、思考探究,获取新知探究1 y=a(x-h)2+k的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:①y=-12(x+1)2-1图象的开口方向、对称轴、顶点坐标及y随x的增减性如何?②将抛物线y=-12x2向左平移1个单位,再向下平移1个单位得抛物线y=-12(x+1)2-1.2.同学们讨论回答:①一般地,当h>0,k>0时,把抛物线y=ax2向右平移h个单位,再向上平移k个单位得抛物线y=a(x-h)2+k;平移的方向和距离由h,k的值来决定.②抛物线y=a(x-h)2+k的开口方向、对称轴、顶点坐标及y随x的增减性如何?探究2二次函数y=a(x-h)2+k的应用【教学说明】二次函数y=a(x-h)2+k的图象是,对称轴是,顶点坐标是,当a>0时,开口向,当a<0时,开口向.答案:抛物线,直线x=h,(h,k),上,下三、典例精析,掌握新知例1 已知抛物线y=a(x-h)2+k,将它沿x轴向右平移3个单位后,又沿y轴向下平移2个单位,得到抛物线的解析式为y=-3(x+1)2-4,求原抛物线的解析式.【分析】平移过程中,前后抛物线的形状,大小不变,所以a=-3,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线y=-3(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=-3(x+4)2-2.【教学说明】抛物线平移不改变形状及大小,所以a值不变,平移时抓住关键点:顶点的变化.例2 如图是某次运动会开幕式点燃火炬时的示意图,发射台OA的高度为2m,火炬的高度为12m,距发射台OA的水平距离为20m,在A处的发射装置向目标C发射一个火球点燃火炬,该火球运行的轨迹为抛物线形,当火球运动到距地面最大高度20m时,相应的水平距离为12m.请你判断该火球能否点燃目标C?并说明理由.【分析】建立适当直角坐标系,构建二次函数解析式,然后分析判断.解:该火球能点燃目标.如图,以OB所在直线为x轴,OA所在直线为y轴建立直角坐标系,则点(12,20)为抛物线顶点,设解析式为y=a(x-12)2+20,∵点(0,2)在图象上,∴144a+20=2,∴a=-18,∴y=-18(x-12)2+20.当x=20时,y=-18×(20-12)2+20=12,即抛物线过点(20,12),∴该火球能点燃目标.【教学说明】二次函数y=a(x-h)2+k的应用关键是构造出二次函数模型.四、运用新知,深化理解1.若抛物线y=-7(x+4)2-1平移得到y=-7x2,则必须()A.先向左平移4个单位,再向下平移1个单位B.先向右平移4个单位,再向上平移1个单位C.先向左平移1个单位,再向下平移4个单位D.先向右平移1个单位,再向上平移4个单位2.抛物线y=x2-4与x轴交于B,C两点,顶点为A,则△ABC的周长为()A.45B.45+4C.12D.25+43.函数y=ax2-a与y=ax-a(a≠0)在同一坐标系中的图象可能是()4.二次函数y=-2x2+6的图象的对称轴是,顶点坐标是,当x 时,y随x的增大而增大.5.已知函数y=ax2+c的图象与函数y=-3x2-2的图象关于x轴对称,则a= ,c= .6.把抛物线y=(x-1)2沿y轴向上或向下平移,所得抛物线经过Q(3,0),求平移后抛物线的解析式.【教学说明】学生自主完成,加深对新知的理解,教师引导解疑.【答案】1.B 2.B 3.C 4.y轴,(0,6),<0 5.3,2 6.y=(x-1)2-4五、师生互动,课堂小结1.这节课你学到了什么,还有哪些疑惑?2.在学生回答的基础上,教师点评:①二次函数y=a(x-h)2+k的图象与性质;②如何由抛物线y=ax2平移得到抛物线y=a(x-h)2+k.【教学说明】教师应引导学生自主小结,加深理解掌握y=ax2与y=a(x-h)2+k 二者图象的位置关系.第1~3题.1.教材P152.完成同步练习册中本课时的练习.掌握函数y=ax2,y=a(x-h)2,y=a(x-h)2+k图象的变化关系,从而体会由简单到复杂的认识规律.第5课时二次函数y=ax2+bx+c的图象与性质【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x 的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想. 【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识. 【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x 2+6x-1的图象.4.抛物线y=-2x 2如何平移得到y=-2x 2+6x-1的图象.5.二次函数y=-2x 2+6x-1的y 随x 的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax 2+bx+c 与y=a(x-h)2+k 的转化过程.二、思考探究,获取新知探究1 如何画y=ax 2+bx+c 图象,你可以归纳为哪几步?学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax 2+bx+c 的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax 2+bx+c 图象的性质有哪些?你能试着归纳吗? 学生回答,教师点评:抛物线y=ax 2+bx+c=224()24b ac b a x a a −++ ,对称轴为x=-2b a ,顶点坐标为(-2b a ,244ac b a −),当a >0时,若x >-2b a ,y 随x 增大而增大,若x <-2b a ,y 随x 的增大而减小;当a <0时,若x >-2b a ,y 随x 的增大而减小,若x<-2b a,y 随x 的增大而增大. 探究3 二次函数y=ax 2+bx+c 在什么情况下有最大值,什么情况下有最小值,如何确定?学生回答,教师点评:三、典例精析,掌握新知例1 将下列二次函数写成顶点式y=a(x-h)2+k 的形式,并写出其开口方向,顶点坐标,对称轴.①y=14x2-3x+21 ②y=-3x2-18x-22解:①y=14x2-3x+21=14(x2-12x)+21=14(x2-12x+36-36)+21=14(x-6)2+12.∴此抛物线的开口向上,顶点坐标为(6,12),对称轴是x=6.②y=-3x2-18x-22=-3(x2+6x)-22=-3(x2+6x+9-9)-22=-3(x+3)2+5.∴此抛物线的开口向下,顶点坐标为(-3,5),对称轴是x=-3.【教学说明】第②小题注意h值的符号,配方法是数学的一个重要方法,需多加练习,熟练掌握;抛物线的顶点坐标也可以根据公式直接求解.例2 用总长为60m的篱笆围成的矩形场地,矩形面积S随矩形一边长l的变化而变化,l是多少时,场地的面积S最大?①S与l有何函数关系?②举一例说明S随l的变化而变化?③怎样求S的最大值呢?解:S=l (30-l)=- l2+30l (0<l<30)=-( l2-30l)=-( l-15)2+225画出此函数的图象,如图.∴l=15时,场地的面积S最大(S的最大值为225)【教学说明】二次函数在几何方面的应用特别广泛,要注意自变量的取值范围的确定,同时所画的函数图象只能是抛物线的一部分.四、运用新知,深化理解1.(北京中考)抛物线y=x2-6x+5的顶点坐标为()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)2.(贵州贵阳中考)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值5、最大值0B.有最小值-3、最大值6C.有最小值0、最大值6D.有最小值2、最大值63.如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴.(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确结论的序号是 .(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序号是 .【教学说明】通过练习,巩固掌握y=ax2+bx+c的图象和性质.【答案】1.A 2.B 3.(1)①④ (2)②③④五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)用配方法求二次y=ax2+bx+c的顶点坐标、对称轴;(2)由y=ax2+bx+c的图象判断与a,b,c有关代数式的值的正负;(3)实际问题中自变量取值范围及函数最值.第1~3题.1.教材P152.完成同步练习册中本课时的练习.。

相关文档
最新文档