四年级奥数幻方与数表

合集下载

小学四年级奥数笔记之幻方

小学四年级奥数笔记之幻方

第一讲 幻方【知识要点】在3×3(三行三列)的正方形方格中,既不重复又不遗漏地填上1~9这九个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。

如果在44×(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44×方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。

一般地,在n×n(n 行n 列)的方格里,既不重复又不遗漏地填上n×n 个连续自然数,(注意这些连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的n 个自然数和均相等,我们把这个相等的和叫做幻和,n 叫做阶,这样排成的数的图形叫做n 阶幻方。

中心方格中这个数叫做这个幻方的中间数。

任意阶数幻方的各行或各列或两条条对角线上所有数的和成为幻和! 幻方的幻和等于 n (n 2 +1) ÷2 。

幻和=总和÷阶数幻积=中间数的3次方。

二、幻方的特征:1、对称性2、轮换性三、幻方的种类:按照纵横各有数字的个数,可以分为:三阶幻方、四阶幻方、五阶幻方、六阶幻方… … 按照纵横数字数量奇偶的不同,可以分为: 1、奇数阶幻方 2、偶数阶幻方(1)单偶数阶幻方,阶数是2的倍数,形如:2n+2 (2)双偶数阶幻方,阶数是4的倍数,形如:2n+4四、幻方的构造方法1、杨辉口诀法(仅仅适用于三阶幻方)早在公元1275年,宋朝的杨辉就对幻方进行了系统的研究。

他称这种图为“纵横图”,他提出了一个构造三阶幻方的秘诀:九子斜排,上下对易,左右相更,四维挺出戴九履一,左三右七,二四为肩,六八为足2、罗伯法适用于奇数阶幻方,适合于连续自然数或者等差数列的奇数阶幻方。

口诀:1居下行正中央,依次斜填切莫忘;下出框时往上写,左出框时往右放;排重便往上格填,左下排重一个样。

3、巴舍法(平移补空法)(适合奇数阶幻方)要点,构造五阶具体操作:(1)画图:构造楼梯(2)按顺序填数(数字按顺序斜排)(3)平移补空:把幻方外的数字平移进幻方——上到下,下到上,左到右,右到左,注意:几阶幻方就平移几个格。

四年级上册数学奥数试题 第三讲《排排数——数表与幻方》 人教新课标 含答案

四年级上册数学奥数试题  第三讲《排排数——数表与幻方》 人教新课标  含答案

一、幻方这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”。

“洛书”就是幻和为15的三阶幻方。

如下图:我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央。

”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久。

三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆。

”幻方的种类还很多,这节课我们将学习认识了解它们。

幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3⨯3的数阵称作三阶幻方,4⨯4的数阵称作四阶幻方,5⨯5的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样。

四年级奥数必考知识点:第三讲:排排数——数表与幻方【例 1】3 3的正方形中,在每个格子里分别填入1~9的9个数字,要求每行每列及对角线上的三个数的和相等(请给出至少一种填法)。

三阶幻方的主要性质:1.能组成三阶幻方的数必须为从小到大排列,首尾对应相加均相等且等于中间数两倍的九个数数列。

2.幻方的中心数为数列中的中间数。

3.幻方中所有相等的和称做幻和,幻方的幻和等于中心数的3倍。

中心数还等于所有所填数的平均数。

4.数列中最大与最小数的配对不能出现在幻方的四角,即只能出现在中间位置,依次可得知第二大与第二小数的配对只能出现在四角上。

【例 2】请你将2~10这九个自然数填入图中的空格内每行、每列、每条对角线上的三数之和相等。

例2图【例 3】在下面两幅图的每个空格中,填入7个自然数,使得每行、每列、每条对角线上的三个数之和等于21。

例3图【例 4】用1~16编制一个四阶幻方。

二、数表与周期性问题【例 5】如图,横、竖各有12个方格,每个方格内都有一个数。

已知横行上任意3个相邻数之和为20,竖列上任意3个相邻数之和为2l,并且其中4个方格内的数分别是3,5,8和x。

小学奥数:5-1-4-2 幻方(二).学生版

小学奥数:5-1-4-2 幻方(二).学生版

1.会用罗伯法填奇数阶幻方2.了解偶数阶幻方相关知识点3.深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有:①求幻和:所有数的和÷行数(或列数)②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3.③角上的数=与它不同行、不同列、不同对角线的两数和÷2.四、数独数独简介:(日语:数独すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。

小学奥数思维训练幻方与数阵图扩展通用版

小学奥数思维训练幻方与数阵图扩展通用版

小学奥数思维训练幻方与数阵图扩展通用版文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]2014年四年级数学思维训练:幻方与数阵图扩展1.把1,2,…,9填入图20﹣1中9个空白圆圈内,使得三个圆周及三条线段上3个数之和都相等.2.如图,在3×3的方格表的每个方格中填入恰当的数,使得每行、每列、每条对角线上所填数之和都相等.3.如图,在4×4的方格表的每个方格中填人恰当的数,使得每行、每列、每条对角线上所填数之和都相等.4.如图所示的3×4方格表的每个方格中填人恰当的数后,可以使各行所填的数之和相等,各列所填的数之和也相等.现在一些数已经填出,标有符号“*”的方格内所填的数是多少5.如图,请在空格中填人适当的数,组成一个三阶幻方.6.请将如图所示的5×5方格表补充完整,使得每个方格内都有一个数字,并且具有如下的性质:方格表中每行,每列和每条对角线的5个方格内所填的5个数中,l、2、3、4、5恰好各出现一次.请问:标有符号“△”,“▽”和“○”的方格中所填的数分别是什么7.请将1至9这9个数填入图中的方框内,使得所有不等号都成立.所有满足要求的填法共有多少种8.请在如图所示的8个小圆圈内,分别填入1至8这8个数字,使得图中用线段连接的两个小圆圈内所填的数的差(大减小)恰好是1、2、3、4、5、6、7.9.将1至5这5个数字填入图中的小圆圈内,使得横线、竖线、大圆周上所填数之和都相等.10.请在图中的六块区域内填人1、2、3、4、5、6,使得对每一个小圆圈来说,与它相邻的区域内的数之和都相等.11.将0至9填入图的10块区域中(阴影区域除外),使得每个圆内的三个数之和都是相等的.请问:这个和最小是多少最大是多少12.将1,2,3,…,24,25分别填入图20﹣12的各个方格中,使得每行、每列及两条对角线上的数的和相等.现在已经填入了一些数,标有符号“*”的方格内所填的数是多少13.请在图的每个空格内填人一个合适的数,使得每行、每列及两条对角线上的3个方格中的各数之和都相等.14.在图的每个空格内填入一个数,使得每行、每列及两条对角线上的3个方格中的各数之和都等于.那么,标有“*”的方格内所填的数是多少15.请在图的每个空格内填人一个合适的数,使得每行、每列及两条对角线上的3个方格中的各数之和都相等.16.如图,大正方形的4个角上已填人4个数,4个数之和是264.奇妙的是,把这个图倒过来看,大正方形4个角上的数之和仍然是264.请你在中间的小正方形的4个角的圆圈里,填人另外4个数,使得每条对角线上的4个数正看和倒看时,其和都是264;而且小正方形角上的4个数正看和倒看时,其和也都是264.17.将1、2、3、5、6、7、9、10、11填人图中的小圆圈内,使得每条直线上各数之和都相等.18.请将1至10填入如图中的10个圆圈中(9已经填好),使得除了第一行外每个圆圈内的数都等于与它相连的上方两个圆圈内的两数之差.19.如图的7个圆圈内各填一个数,要求对于每一条直线上的3个数,居中的数是旁边两个数的平均数.现在已经填好了两个数,请把剩下的圆圈填好.20.请将1个1,2个2,3个3,…,8个8,9个9填人图中,使得相同的数所在的方格都连在一起(相连的两个方格必须有公共边);现在已经给出了其中8个方格中的数,并且知道A、B、C、D、E、F、G各不相同;那么,七位数是多少21.请你将数字1、2、3、4、5、6、7填在图中的圆圈内,使得每个圆圈上的三个数之和与每条直线上的三个数之和相等.应怎样填22.将1至9填人图中的9个圆圈内,使4个大圆周上的4个数之和都等于16.23.如图中一共有10个方格,现在把2至11这10个自然数填到里面,每个方格各填一个.如果要求图中的3个2×2的正方形中的4个数之和都相等,那么这个和最小可能是多少请给出一种填法.24.如图,大三角形被分成了9个小三角形.试将1、2、3、4、5、6、7、8、9分别填入这9个小三角形内,每个小三角形内填一个数,要求靠近大三角形三条边的每5个数相加的和相等.这5个数的和最大可能是多少请给出一种填法.25.请在图的每个空格内填入一个合适的数,使得每行、每列及两条对角线上的3个方格中的各数之和都相等.26.如图是有名的“六角幻方”:将l到19这19个自然数填人图中的圆圈中,使得每一条直线上圆圈中的各数之和相等,美国数学爱好者阿当斯从l910年开始,到1962年,用了52年的时间才找到了解答.我们给大家填人了6个自然数,请你完成这个“六角幻方”.27.在图中有6个正方形,请你将1至9填人图中,使得每个正方形的4个顶点上的数字之和都相等.28.在图中的七个圆圈中填人一些自然数,要求所填的自然数中最小的一个数是1,并且相邻两个圆圈内的数字之差(大数减小数)恰好等于这两个圆圈之间标出的数字.29.将1至9分别填人图中的9个圆圈内,使图中每条直线(图中有7条直线)上的圆圈内所填数之和都相等,那么这个和是多少30.将0,1,2,…,9这10个数分别填人图20﹣30中的各个圆圈内,使得各阴影三角形的3个顶点上的数之和相等.这个和最大是多少最小是多少请分别给出使得和最大、最小的填法.31.在下面的图中有11个空的圆圈,要求把1~13这些数填入各圈内(其中3,4已经填好),使得上面两个圆圈内数的和,等于与它相连的下面的圆圈内的数(例如,虚线框中上面两个圈中的数相加,它们的和应等于相连的下面一个圈中的数),并且最下面空着的四圆圈中的数之和等于43.32.图中共有10个圆圈,6条直线.请问:(1)能否将l至10填人图中,使得每条直线上各数之和都相等(2)能否将0至9填入图中,使得每条直线上各数之和都相等(3)请从1至1l中去掉一个数后,将剩下的数填人图中使得每条直线上各数之和都相等.参考答案1.由以上分析可得:【解析】试题分析:我们从图中可以看出:中间圆圈内所填的数是三条直线上共用的,它是一个“重复用数”.因此,我们在思考时,应该首先把中间圆圈内的数想出来.这样,根据题目中“每条直线上的三个数的和相等”,只需考虑每条直线上两个数的和相等.1~7七个数字的和为28,只有中间圆圈内填上一个数字后,剩下的六个数字的和能被3整除(因为要分成和相等的三组数),才能填写.所以,中间圆圈内所填的数很快可以确定下来:可为1、4、7.这时,其它圆圈内的数也就可以很快填出.解:根据题意可得:当中间圆圈填入1时,剩下的六个数:2+7=3+6=4+5;那么三条直线上的和是2+7+1=10,而两个圆圈上的三个数2+3+5=10,另外三个数7+6+4=17,所以不符合;当中间圆圈填入7时,剩下的六个数:1+6=2+5=3+4,那么三条直线上的和是1+6+7=14,而两个圆圈上的三个数不论怎么填都得不到14,所以不符合;当中间圆圈填入4时,剩下的六个数:1+7=2+6=3+5;那么三条直线上的和是1+7+4=12,又1+5+6=12,7+3+2=12;由以上分析可得:点评:解答此题的关键是求出中间圆圈的数是多少,然后再进一步解答即可.2.【解析】试题分析:首先根据第1列的三个数为16、11、12,求出幻和为:16+11+12=39;然后根据幻和为39,分别求出空格里的数即可.解:因为第1列的三个数为16、11、12,所以幻和为:16+11+12=39;因此第2行的第2个数为:39﹣11﹣15=13,第1行的第3个数为:39﹣12﹣13=14,第1行的第2个数为:39﹣16﹣14=9,第2列的第3个数为:39﹣9﹣13=17,第3列的第3个数为:39﹣14﹣15=10..点评:此题主要考查了幻方问题的应用,解答此题的关键是首先求出幻和是多少.3.【解析】试题分析:首先求出每行、每列、每条对角线上所填数之和均为:12+9+5+8=34,然后根据这个共同的和为34,分别求出空格里的数即可.解:每行、每列、每条对角线上所填数之和均为:12+9+5+8=34,所以第3行的第1个数为:34﹣5﹣16﹣3=10,第2列的第1个数为:34﹣4﹣5﹣11=14,第1行的第1个数为:34﹣14﹣7﹣12=1,第2行的第1个数为:34﹣1﹣10﹣8=15,第2行的第4个数为:34﹣15﹣4﹣9=6,第3列的第4个数为:34﹣7﹣9﹣16=2,第4列的第4个数为:34﹣12﹣6﹣3=13..点评:此题主要考查了幻方问题的应用,解答此题的关键是求出每行、每列、每条对角线上所填数之和均为34.4.【解析】试题分析:首先根据第1列的三个数分别为2、3、7,可得各列的各数之和均为:2+3+7=12;然后用12减去6,可得第4列的第1个数和第3个数的和是6,因此第4列的第1个数、第3个数可以分别为5、1;再求出第1行的4个数的和是:2+4+5+5=16,根据各行所填的数之和为16,各列所填的数之和为12,求出其余的空格中的数即可.解:根据第1列的三个数分别为2、3、7,可得各列的各数之和均为:2+3+7=12,所以第4列的第1个数和第3个数的和是:12﹣6=6,因此第4列的第1个数、第3个数可以分别为5、1;因为第1行的4个数的和是:2+4+5+5=16,所以第2行的第2个数和第3个数的和是:16﹣3﹣6=7,第3行的第2个数和第3个数的和是:16﹣7﹣1=8,第2列的第2个数和第3个数的和是:12﹣4=8,第3列的第2个数和第3个数的和是:12﹣5=7,因此第2行的第2个数和第3个数分别是5、2,第3行的第2个数和第3个数分别是3、5.答:标有符号“*”的方格内所填的数是1..点评:此题主要考查了幻方问题的应用,解答此题的关键是灵活应用“各行所填的数之和相等,各列所填的数之和也相等”,注意答案不唯一.5.【解析】试题分析:如图,首先根据第1行和对角线上a、15、11三个数的和相等,可得b+12=15+11,解得b=14,所以幻和为14+15+16=45;然后根据幻和为45,分别求出a、c、d、e的值即可.解:如图,根据第1行和对角线上a、15、11三个数的和相等,可得b+12=15+11,解得b=14,所以幻和为:14+15+16=45;因此a=45﹣12﹣14=19,c=45﹣19﹣16=10,d=45﹣10﹣15=20,e=45﹣16﹣11=18.点评:此题主要考查了幻方问题的应用,解答此题的关键是求出幻和是多少.6.△=5,▽=5,○=4.【解析】试题分析:根据图示,因为h在第3列中,所以h不能是1、3;又因为h在第3行中,所以h不能是4;因为h在对角线上,所以h不能是5,因此h=2,a、p只能从1、3中各取一个,因为a在第1行中,所以a不能是1,只能是3,则p=1;因为c、l在第4列中,只能从3、5中各取一个,因为c在第1行中,所以c不能是3,只能是5,则l=3;因为e、△在第3列中,只能从4、5中各取一个,因为e在第2行中,所以e不能是5,只能是4,则△=5;因为d、f在第2行中,只能从1、3中各取一个,因为d在第1列中,所以d不能是3,只能是1,则f=3;因为k、m在对角线上,只能从1、4中各取一个,因为m在第1列中,所以m不能是1,只能是4,则k=1;因为○、b在第1行中,只能从2、4中各取一个,因为b在第4列中,所以b不能是4,只能是2,则○=4;所以j=2,▽=5,g=3,i=1,n=2,o=5,据此解答即可.解:(1)根据图示,因为h在第3列中,所以h不能是1、3;又因为h在第3行中,所以h不能是4;因为h在对角线上,所以h不能是5,因此h=2,a、p只能从1、3中各取一个,因为a在第1行中,所以a不能是1,只能是3,则p=1;(2)因为c、l在第4列中,只能从3、5中各取一个,因为c在第1行中,所以c不能是3,只能是5,则l=3;(3)因为e、△在第3列中,只能从4、5中各取一个,因为e在第2行中,所以e不能是5,只能是4,则△=5;同理,可得d=1,f=3;m=4,k=1;b=2,○=4;j=2,▽=5,g=3,i=1,n=2,o=5.答:△=5,▽=5,○=4..点评:此题主要考查了幻方问题的应用,解答此题的关键是灵活应用“每行,每列和每条对角线的5个方格内所填的5个数中,l、2、3、4、5恰好各出现一次”,逐一确定每个方格中的数字.7.2种.【解析】试题分析:首先第一行第二列的数最大,只能是9,第一行的第三列最小只能是1,第一行第一列只能是8,第二行第一列只能是7,第二行第三列只能是2,第三行第三列只能是3,第三行第二列只能是4,中间的数可以是6或5,而第三行第一列可以是6或5,所以满足要求的方法有2种方法.解:答案如下:所以满足要求的填法共有2种.点评:解决此题的关键找出最大最小数的位置,进一步确定固定的数以及可调整的数,得出结论.8.【解析】试题分析:首先根据两个小圆圈内所填的数的差最大是:8﹣1=7,可得当差为7时,只能是8与1的差;剩下的2、3、4、5、6、7这6个数组成的差最大是:7﹣2=5,所以当差为6时,只能是7与1的差;同理,当差为5时,只能是6与1的差;5与4的差为1,5与3的差为2,5与2的差差为3,5与1的差为4;据此可得中间两个圆圈中的数分别为1、5,然后填上其余圆圈中的数即可.解:因为两个小圆圈内所填的数的差最大是:8﹣1=7,所以当差为7时,只能是8与1的差;因为剩下的2、3、4、5、6、7这6个数组成的差最大是:7﹣2=5,所以当差为6时,只能是7与1的差;同理,当差为5时,只能是6与1的差;5与4的差为1,5与3的差为2,5与2的差差为3,5与1的差为4;因此中间两个圆圈中的数分别为1、5,可得点评:此题主要考查了幻方问题的应用,解答此题的关键是判断出中间两个圆圈中的数只能是1和5.9.【解析】试题分析:1+2+3+4+5=15,根据题意,可得计算横线、竖线、大圆周上所填数之和时,圆圈中的每个数均被计算了2次,所以这个共同的和是:15×2÷3=10;然后根据1+4+5=2+3+5=1+2+3+4,可得中心圆圈的数为5,大圆周上所填数为1、2、4、3,据此解答即可.解:1+2+3+4+5=15,根据题意,计算横线、竖线、大圆周上所填数之和时,圆圈中的每个数均被计算了2次,所以这个共同的和是:15×2÷3=10;根据1+4+5=2+3+5=1+2+3+4,可得中心圆圈的数为5,大圆周上所填数为1、2、4、3.点评:此题主要考查了幻方问题的应用,解答此题的关键是求出横线、竖线、大圆周上所填数之和均为10.10.【解析】试题分析:如图,设图中的六块区域内填入的数分别为:A、B、C、D、E、F,则根据题意,可得A+B+C+D=C+D+E+F=A+B+E+F=B+C+E,整理,可得A+B=C+D=E+F;因为1+6=2+5=3+4,所以A、B可以从1、6中个取一个,C、D可以从2、5中各取一个,E、F可以从3、4中各取一个;最后根据B+C+E=2(A+B)=2×7=14,可得B=6,C=5,E=3,据此解答即可.解:如图,设图中的六块区域内填入的数分别为:A、B、C、D、E、F,则根据题意,可得A+B+C+D=C+D+E+F=A+B+E+F=B+C+E,整理,可得A+B=C+D=E+F;因为1+6=2+5=3+4,所以A、B可以从1、6中个取一个,C、D可以从2、5中各取一个,E、F可以从3、4中各取一个;又因为B+C+E=2(A+B)=2×7=14,所以B=6,C=5,E=3,可得.点评:此题主要考查了幻方问题的应用,解答此题的关键是设图中的六块区域内填入的数分别为:A、B、C、D、E、F,能判断出A+B=C+D=E+F.11.这个和最小是11,最大是16,如图所示:【解析】试题分析:根据图示,可得每个圆圈内的3个数有1个是圆圈独有的,有2个是和其它圆圈共有的;因为每个圆内的三个数之和都是相等的,所以要使这个和最小,则5个圆圈共有的5个数的和最小,是0、1、2、3、4;要使这个和最大,则5个圆圈共有的5个数的和最大,是5、6、7、8、9;据此解答即可.解:0+1+2+3+4+5+6+7+8+9=45,根据图示,可得每个圆圈内的3个数有1个是圆圈独有的,有2个是和其它圆圈共有的;(1)因为每个圆内的三个数之和都是相等的,所以要使这个和最小,则5个圆圈共有的5个数的和最小,是0、1、2、3、4,这个和最小是:(45+0+1+2+3+4)÷5=11;(2)所以要使这个和最大,则5个圆圈共有的5个数的和最大,是5、6、7、8、9,这个和最大是:(45+5+6+7+8+9)÷5=16.答:这个和最小是11,最大是16.点评:此题主要考查了最大与最小问题的应用,解答此题的关键是判断出:要使这个和最小,则5个圆圈共有的5个数的和最小;要使这个和最大,则5个圆圈共有的5个数的和最大.12.4.【解析】试题分析:首先根据第1列和对角线19、g、25、13的各数之和相等,可得g+19+25+13=20+9+23+12,解得g=7;然后根据第4列和第5行的各数之和相等,可得b+25+14+3=i+8+15+24,解得b=i+5…①;根据第1列和第1行的各数之和相等,可得i+12+23+9=a+b+*+13,解得b=i﹣a﹣*+31…②;再根据第5行和对角线i、19、7、25、13的各数之和相等,可得j+8+15+24=19+7+25+13,解得j=17;再根据第1行和对角线20、c、7、3、24的各数之和相等,可得a+*+b+13=c+7+3+24,解得c=b+5;再根据第2列和第3行的各数之和相等,可得a+c+19+8=23+7+14+16,解得a+c=33;再根据第5列和第2行的各数之和相等,可得13+16+10+24=9+c+d+25,解得c+d=29;再根据第3列和第4行的各数之和相等,可得*+d+7+15=12+19+3+10,解得*+d=22;解:根据第1列和对角线19、g、25、13的各数之和相等,可得g+19+25+13=20+9+23+12,解得g=7;根据第4列和第5行的各数之和相等,可得b+25+14+3=i+8+15+24,解得b=i+5…①;根据第1列和第1行的各数之和相等,可得i+12+23+9=a+b+*+13,解得b=i﹣a﹣*+31…②;由①②,可得a+*=26;根据第5行和对角线i、19、7、25、13的各数之和相等,可得j+8+15+24=19+7+25+13,解得j=17;根据第1行和对角线20、c、7、3、24的各数之和相等,可得a+*+b+13=c+7+3+24,解得c=b+5;根据第2列和第3行的各数之和相等,可得a+c+19+8=23+7+14+16,解得a+c=33;根据第5列和第2行的各数之和相等,可得13+16+10+24=9+c+d+25,解得c+d=29;根据第3列和第4行的各数之和相等,可得*+d+7+15=12+19+3+10,解得*+d=22;综上,可得a=22,*=4,因此d=22﹣4=18,c=29﹣18=11,b=11﹣5=6,f=b﹣1=5,e=(20+22+4+6)﹣(16+10+24)=52﹣50=2,h=(20+22+4+6+13)﹣(12+19+3+10)=65﹣44=21,i=(20+22+4+6+13)﹣(20+9+23+12)=65﹣64=1,h=(20+22+4+6+13)﹣(1+8+15+24)=65﹣48=17.答:标有符号“*”的方格内所填的数是4..点评:此题主要考查了幻方问题的应用,解答此题的关键是灵活应用“每行、每列及两条对角线上的数的和相等”.13.【解析】试题分析:(1)首先根据第2行和第1列的各数之和相等,可得a+95=100+19,解得a=24;然后根据第3列和对角线95、100、c三个数的和相等,可得f+19=95+100,解得f=176;再根据第3行和第2列的三个数的和相等,可得b+100=95+176,解得b=171;再求出另一条对角线上的三个数的和,进而求出c、d、e的值是多少即可.(2)首先根据第2行和第1列的各数之和相等,可得q+6=5+9,解得q=8;然后根据第3列和对角线9、8、n三个数的和相等,可得s+6=9+8,解得s=11;最后根据另一条对角线上的三个数分别是5、8、11,求出三个数的和是多少,进而求出n、m、p、r的值是多少即可.解:(1)根据第2行和第1列的各数之和相等,可得a+95=100+19,解得a=24;根据第3列和对角线95、100、c三个数的和相等,可得f+19=95+100,解得f=176;根据第3行和第2列的三个数的和相等,可得b+100=95+176,解得b=171;另一条对角线上的三个数的和为:24+100+176=300,所以c=300﹣24﹣171=105,d=300﹣100﹣19=181,e=300﹣95﹣176=29.(2)根据第2行和第1列的各数之和相等,可得q+6=5+9,解得q=8;根据第3列和对角线9、8、n三个数的和相等,可得s+6=9+8,解得s=11;根据另一条对角线上的三个数分别是5、8、11,可得三个数的和是:5+8+11=24,所以n=24﹣9﹣8=7,m=24﹣5﹣7=12,p=24﹣8﹣6=10,r=24﹣12﹣8=4..点评:此题主要考查了幻方问题的应用,解答此题的关键是灵活应用“每行、每列及两条对角线上的3个方格中的各数之和都相等”,逐一确定每个空格中的数即可.14..【解析】试题分析:首先根据题意,可得c+f=﹣=…①,e+f=﹣=…②;然后根据第1行和第2列的三个数的和相等,可得*=+c﹣=+c;再根据两条对角线上的三个数的和相等,可得*=+f﹣e,所以+c=+f﹣e,整理,可得f﹣c﹣e=…③;由①②③,求出f、c 的值,进而求出*是多少即可.解:根据题意,可得c+f=﹣=…①,e+f=﹣=…②;根据第1行和第2列的三个数的和相等,可得*=+c﹣=+c;根据两条对角线上的三个数的和相等,可得*=+f﹣e,所以+c=+f﹣e,整理,可得f﹣c﹣e=…③;由①+②+③,可得3f=,解得f=,所以c=﹣=,所以*=+c=+=.答:标有“*”的方格内所填的数是.点评:此题主要考查了幻方问题的应用,解答此题的关键是灵活应用“每行、每列及两条对角线上的3个方格中的各数之和都等于”,确定出两条对角线上的数分别是多少.15.【解析】试题分析:首先根据第1行和第1列的三个数的和相等,可得第1行的第3个数为:29+19﹣17=31;然后根据第2行的三个数和对角线上的三个数的和相等,可得第2行的第3个数为:19+31﹣29=21;再根据第2行和第2列的三个数的和相等,可得第2列的第3个数为:29+21﹣17=33;最后根据第1行和第3列的三个数的和相等,可得第1行的第1个数比第3列的第3个数多:21﹣17=4,再根据两条对角线上的三个数的和相等,可得第1行的第1个数和第3列的第3个数的和为:19+31=50,据此求出第1行的第1个数和第3列的第3个数分别是多少,进而求出中心方格的数是多少即可.解:第1行的第3个数为:29+19﹣17=31;第2行的第3个数为:19+31﹣29=21;第2列的第3个数为:29+21﹣17=33;第1行的第1个数比第3列的第3个数多:21﹣17=4,第1行的第1个数和第3列的第3个数的和为:19+31=50,所以第1行的第1个数为:50÷2+2=27,第3列的第3个数为:50÷2﹣2=23;中心方格的数为:(27+17+31)﹣(29+21)=75﹣50=25.点评:此题主要考查了幻方问题的应用,解答此题的关键是灵活应用“每行、每列及两条对角线上的3个方格中的各数之和都相等”,逐一判断出每个方格中的数是多少.16.【解析】试题分析:首先在0﹣9这10个数字中,找出0、1、6、8、9这5个数字倒过来是0、1、9、8、6;本题中用了1、6、8、9这4个数字,并且对角线上的数的个位相加都是7,所以本题用不上数字0,所以中间的小正方形四个角的圆圈里四个数还是1、6、8、9;然后分析确定出相应的数字即可.解:在0﹣9这10个数字中,有0、1、6、8、9这5个数字倒过来是0、1、9、8、6;本题中用了1、6、8、9这4个数字,并且对角线上的数的个位相加都是7,所以本题用不上数字0,所以中间的小正方形四个角的圆圈里四个数还是1、6、8、9;左下右上的圆圈里已经有了91、86,所以最简单的方法只需要在这条对角线里圈里的两个圆圈里填上19、68即可;左上右下的圆圈里已经有了19、68,所以只需要在这条对角线里圈里的两个圆圈里填上91、86即可.答:左上、左下、右上、右下的圆圈里应分别填上:91、68、19、86.实际上,还有很多种方法,例如:点评:此题主要考查了学生的分析推理能力,分析确定出中间的小正方形四个角的圆圈里四个数还是1、6、8、9是解答本题的关键.17.【解析】试题分析:如图,根据每条直线上各数之和都相等,可得a﹣b=9﹣1=8,除1、3、9之外的8个数中只有10、2两个数相差8,所以a=10,b=2;然后根据a+b=c+d,可得c+d=10+2=12,而且c﹣d=3﹣1=2,解得c=7,d=5;最后求出每条直线上的和是多少,进而求出e、f的值是多少即可.解:根据每条直线上各数之和都相等,可得a﹣b=9﹣1=8,除1、3、9之外的8个数中只有10、2两个数相差8,所以a=10,b=2;因为a+b=c+d,可得c+d=10+2=12,而且c﹣d=3﹣1=2,解得c=7,d=5;因此每条直线上的和为:10+3+5=18,所以e=18﹣5﹣7=6,f=18﹣5﹣2=11.点评:此题主要考查了幻方问题的应用,解答此题的关键是首先根据题意,分别求出四个角上的数分别是多少.18.【解析】试题分析:首先根据b、c的差是9,可得b、c只能是10、1各一个;然后根据c是1时,d、f的差是1,所以d、f是两个相邻的自然数,而且d=f+1;b是10时,a、b的差是e,所以a、e只能是2、8或3、7或4、6;(1)当a=2,e=8时,g=9﹣8=1,与c=1矛盾,因此e=2,则g=9﹣2=7;d、f、h、i从3、4、5、6中各取一个,经验证,可得d=6,f=5,h=4,i=3.(2)当a、e是6、4时,g=9﹣4=5,d、f、h、i从2、3、7、8中各取一个,经验证,可得d=8,f=7,h=2,i=3.(3)经验证,当a、e是3、7时,不符合题意.解:根据b、c的差是9,可得b、c只能是10、1各一个;当c是1时,d、f的差是1,所以d、f是两个相邻的自然数,而且d=f+1;当b是10时,a、b的差是e,所以a、e只能是2、8或3、7或4、6;(1)当a=2,e=8时,g=9﹣8=1,与c=1矛盾,因此e=2,则g=9﹣2=7;d、f、h、i从3、4、5、6中各取一个,经验证,可得d=6,f=5,h=4,i=3.,根据对称性,可得满足题意的还有:(2)当a、e是6、4时,g=9﹣4=5,d、f、h、i从2、3、7、8中各取一个,经验证,可得d=8,f=7,h=2,i=3.根据对称性,可得满足题意的还有:(3)经验证,当a、e是3、7时,不符合题意.点评:此题主要考查了幻方问题的应用,解答此题的关键是灵活应用“除了第一行外每个圆圈内的数都等于与它相连的上方两个圆圈内的两数之差”,逐一确定出每个圆圈中的数字即可.19.【解析】试题分析:如图,根据题意,可得a=(13+17)÷2=15,然后根据13+c=15+d=17+e=2f,可得c=d+2,d=e+2,再根据d+13=2e,可得e+2+13=2e,解得e=15,所以d=15+2=17,c=17+2=19,f=(19+13)÷2=16,据此解答即可.解:如图,根据题意,可得a=(13+17)÷2=15,因为13+c=15+d=17+e=2f,所以c=d+2,d=e+2,又因为d+13=2e,所以e+2+13=2e,解得e=15,所以d=15+2=17,c=17+2=19,f=(19+13)÷2=16.点评:此题主要考查了幻方问题的应用,解答此题的关键是首先求出a的值,并灵活应用“居中的数是旁边两个数的平均数”这一条件.20.6732489.【解析】试题分析:首先根据题意,可得A、B、C、D、E、F、G中不可能有1,也不可能有5,因此A、B、C、D、E、F、G只能是2、3、4、6、7、8、9各一个;然后根据C的正下方第二个数是3,D的正下方第一个数是2,所以C=3,D=2;根据图示,可得最下面一行中一定没有6,最下面一行中或者左边两个都不是9,或者右边两格都不是9,最下面一行中不可能有2个8,因此最下面一行中必有5,而且只能是A=9,B=8,或者G=9,F=8,经推理,可得G=9,F=8,E=4,A=6,B=7,所以七位数是6732489,据此解答即可.解:因为只有1个1,而且D的正下方第二个数是1,所以A、B、C、D、E、F、G中不可能有1,因为相同的数所在的方格都连在一起(相连的两个方格必须有公共边),所以A、B、C、D、E、F、G中也不可能有5,因此A、B、C、D、E、F、G只能是2、3、4、6、7、8、9各一个;因为C的正下方第二个数是3,D的正下方第一个数是2,所以C=3,D=2;根据图示,可得最下面一行中一定没有6,最下面一行中或者左边两个都不是9,或者右边两格都不是9,最下面一行中不可能有2个8,因此最下面一行中必有5,而且只能是A=9,B=8,或者G=9,F=8,经推理,可得G=9,F=8,E=4,A=6,B=7,所以七位数是6732489.答:七位数是6732489.点评:此题主要考查了幻方问题的应用,考查了分析推理能力的应用,解答此题的关键是灵活应用“相同的数所在的方格都连在一起(相连的两个方格必须有公共边)”,逐一确定出每个字母代表的数是多少即可.21.由以上分析可得:.【解析】试题分析:我们从图中可以看出:中间圆圈内所填的数是三条直线上共用的,它是一个“重复用数”.因此,我们在思考时,应该首先把中间圆圈内的数想出来.这样,根据题目中“每条直线上的三个数的和相等”,只需考虑每条直线上两个数的和相等.1~7七个数字的和为28,只有中间圆圈内填上一个数字后,剩下的六个数字的和能被3整除(因为要分成和相等的三组数),才能填写.所以,中间圆圈内所填的数很快可以确定下来:可为1、4、7.这时,其它圆圈内的数也就可以很快填出.解:根据题意可得:当中间圆圈填入1时,剩下的六个数:2+7=3+6=4+5;那么三条直线上的和是2+7+1=10,而两个圆圈上的三个数2+3+5=10,另外三个数7+6+4=17,所以不符合;。

小四奥数(幻方和数阵)

小四奥数(幻方和数阵)
课后练习:
1、用“罗伯法”编制一个五阶幻方。
2、在下图的空格里填上合适的数,使横、竖、斜行中三个数的和都是27.
3、在下图的七个圆圈里分别填上1-7,使每条直线上的三个数的和都相等。
4、把1-9这九个数分别填入下图“七一”图案的格子里,使每一横行、每一竖行的数的和都是13.
5、将1-8八个数分别填入下图中,是每条边上三个数的和等于12.
数阵问题的题型主要有三种:(1)辐射型;(2)封闭型;(3)综合型。幻方和数阵图的填写不能只采取试的办法,而要根据题目的要求,所给的数字的特征进行合理的分析思考,并在计算的基础上,先在计算的基础上,先填写关键位置的数,再填其他位置的数。
二、典型例题
例1将1-9九个数字填在右图内九个方格里,每格填一个数字,使每一横行、每一纵行和两条对角线上三个数之和相等。
这幅图用现在的数字表示,即为1-9这九个数字,填在九个格子里,每一纵列、每一横行以及两条对角线上的三个数字之和都是15(见上图)。我国古代数学家称它为“纵横图”或“九宫图”,国外称它为“魔方”、“幻方”或“中国方阵”。
幻方曾使不少的爱好者入迷,目前世界上最大的幻方——“1256阶泛对角幻方”就是1990年11月22日无锡以为中学教师发明,这个数字方阵方阵纵、横排成1256行,任何一条线以及对角线各数和都是990693236.
将1-7七个数字分别填入图中的七个圆圈内,使每条线上三个圆圈内的数的和相等。
想一想:从(1+2+3+、、、+7-x)除以3,商是整数而没有余数时,该怎样思考?
变式3-1把3-9这七个数填入下图中的圆圈内,使每条线段上三个圆圈内的数的和相等。
例4把1-10十个数填入下图中的小圆中,使每个大圆上六个数的和是30.

四年级计算幻方与数表教师版

四年级计算幻方与数表教师版

知识要点幻方与数表一、 如果一个n n ⨯的方阵中,每一横行、每一竖列以及两条对角线上数的和都相等,那么这个方阵称为n 阶幻方。

二、 在n 阶幻方中,其每一行、每一列、两条对角线上的数字之和都相等,这个和称为幻和。

对于n 行或者n 列,其和为幻和乘以n ,也等于所有2n 个数的和;所以,幻和2n S n=个数。

用1、2、……、2n 这2n 个数构造n 阶幻方,其幻和为2212(1)2n n n n ++++=……; 用1、2、3、4、5、6、7、8、9这9个数构造3阶幻方, 其幻和为21234567893(13)1532++++++++⨯+==。

三、 对于n 阶幻方,当n 分别为奇数或偶数时,幻方有一个明显的不同,即奇数阶幻方有一个中心方格,而偶数阶幻方则没有;奇数阶幻方这个中心方格上的数称为中心数。

中心数等于幻方中所有2n 个数的平均数,也等于任意一行、一列、一条对角线中n 个数的平均数,也等于任意两个关于中心对称的空格中的数的平均数;中心数22n S n =个数n=幻和。

用1、2、……、2n 这2n 个数构造n 阶幻方,其中心数为212n +。

用1、2、3、4、5、6、7、8、9这9个数构造3阶幻方,其中心数为21352+=。

四、在3阶幻方中,2222a i b h c g d f e ++++====,2f h a +=、2d h c +=、2b f g +=、2b di +=。

ihgf e d c b a幻方【例1】 请将2009、2010、2011、2012、2013、2014、2015、2016、2017这9个自然数填入图中的空格内,使每行、每列、两条对角线上的3个数之和相等。

(只要构造出一种)200920102011201220132014201520162017201620092014201520132011201220172010201420152010201720132009201620112012201020172012201120132015201420092016201620112012201720132009201420152010201020152014200920132017201220112016201420092016201120132015201020172012201220172010201520132011201620092014【分析】 (方法一)第一步——求幻和:幻和为(200920102011201220132014201520162017)36039++++++++÷=;第二步——求中心数:中心数为603932013÷=;第三步——确定4个角上的数:用尝试法,可推出4个角上的数只能为偶数; 第四步——求出幻方:根据幻和求出各边中点的数,求出1个基本解; 以基本解为基础,可通过旋转或镜像变换得到其它各解,共8解。

小学奥数四年级幻方与数阵图

小学奥数四年级幻方与数阵图

幻方与数阵图扩展[内容概述]本讲有两部分主要内容:1、 幻方的概念和性质,简单幻方的编制;2、把一些数字按照一定要求排列成相应的图形,叫做数阵图。

大致分为三类:封闭型数阵图、辐射型数阵图和复合型数阵图。

幻方的概念:所谓幻方是指在正方形方格表的每个方格内填入数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格数。

幻方题可以粗略的分为两种,一种是限制了所填入的数字,或者给出了需要填入的各个数字,或者已经填入一个或几个数字;另一种是对填入的数字没有任何限制,填对即可。

幻方又称为魔方,方阵等,它最早起源于我国。

宋代数学家杨辉称之为纵横图。

关于幻方的起源,我国有“河图”和“洛书”之说。

相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,感动了上苍,于是黄河中跃出一匹龙马,背上驮着一张图,反作为礼物献给他,这就是“河图”了,是最早的幻方。

伏羲氏凭借着“河图”而演绎出了八卦。

后来大禹治洪水时,洛水中浮出一只大乌龟,它的背上有图有字,人们称之为“洛书”。

“洛书”所画的图中共有黑、白圆圈45个。

把这些连在一起的小圆和数目表示出来,得到1至9这九个数,恰组成一个三阶幻方。

幻方问题主要方法: 一、 累加法:利用累加的方法可以求出“幻和”和关键位置上的数字。

通常将若干个“幻和”累加在一起,再计算每一个位置上的重数,从而求出“幻和”和关键位置上的数字。

二、 求出“幻和”和关键位置上的数字后,结合枚举法完成数阵图的填写,在填写数阵图的过程中注意从特殊的数字和位置入手。

三、 比较法:利用比较的方法可以直接填出某些位置的数字。

注意观察数阵图中相关联的“幻和”之间的关系,注意它们之间共同的部分,去比较不同的部分。

四、 掌握好3阶幻方中的规律。

本讲还有一部分内容是数阵图拓展,也就是在三年级数阵图初步的基础上继续学习数阵图问题的解题方法。

数阵图问题方法多样且特殊,我们将在例题中详细讲解。

其实这些方法和幻方是一致的,大家可以在下面的学习中体会到这一点。

【免费下载】第二讲四年级奥数幻方

【免费下载】第二讲四年级奥数幻方

幻方是一种广为流传的数学游戏,据说早在大禹治水时就发现过。

幻方的特点是:由自然数构成n×n正方形阵列,称为n阶幻方,每一行、每一列、两对角线上的数之和相等。

法国人罗伯总结出了构造奇数阶连续自然数幻方的简单易行的方法“罗伯法” (也叫“萝卜”法)。

三阶幻方解法“萝卜”法一居上行正中央依次填在右上角上出框时下边填右出框时左边放斜出框时下边放(出角重复一个样)排重便在下格填“萝卜”法适用于所有”奇数阶”幻方(真牛),比如9阶(了解)4758698011223344557687991122334446677881021324354567771820314253556661719304152636576162729405162647552628395061727441536384960717331425幻方的其它概念: 中心数和黄金三角的规律只适用于3阶幻方1.中心数: 中心数为对称两边数的和除以2 (比如(8+2)/2=5)2.黄金三角: 黄金三角顶点的数为两腰之和除以2(比如(7+9)/2=8)练习在图(1),(2)的空格中填入不大于15且互不相同的数(其中已填好一个数),使每一横行、每一竖列和对角线上的3个数之和都等于30.解析30被分为3行,那么10为中间的数,所以两个方格的正中间均为10,那么第一个正方形一条对角线上的数为8,10,12,接着一行可填15,10,5;需注意15和8相邻,那么剩下的只要相加为30即可.同理,第二个正方形一条对角线上的数为14,10,6,接着一行可填15,10,5;需注意15和6相邻,那么剩下的只要相加为30即可.解答解:如图:。

四年级计算幻方与数表教师版

四年级计算幻方与数表教师版

一、引言(100字)在四年级数学教学中,计算幻方和数表是重要的内容之一,它们对于学生的数学思维能力和计算能力的培养有着积极的影响。

本文将从教师的角度出发,详细介绍如何教授计算幻方和数表,并提供相应的教学案例。

二、计算幻方的教学(400字)计算幻方是指将自然数按照一定规律填充到一个格子中,使得每行、每列以及对角线上的数字之和都相等。

教学计算幻方可以培养学生的观察力、逻辑思考能力和计算能力。

1.引入概念:通过举例子,让学生感受到满足条件的幻方的特点,引发学生对计算幻方的兴趣。

2.规律总结:让学生思考填入格子的规律,从而总结出计算幻方的方法。

强调每行、每列和对角线上的数字之和都是多少,然后通过一步步推导,逐渐解决问题。

3.练习与巩固:通过大量的练习,让学生熟练掌握计算幻方的解题方法。

可设计不同难度的题目,逐步提高学生的解题能力。

4.拓展应用:引导学生用计算幻方的方法去解决实际问题,让学生意识到计算幻方的重要性和实际应用价值。

三、数表的教学(400字)数表在四年级的数学教学中是一个必须掌握的基本概念,可以培养学生的数值运算能力、观察力和逻辑思维能力。

1.引入概念:通过举例子,让学生感受到数表的特点和用处,引发学生对数表的兴趣。

2.规律总结:让学生思考数表的排列规律,从而总结出数表的整体关系。

通过观察和思考,引导学生找出数表的规律和特点。

3.练习与巩固:设计不同难度的题目,让学生通过填充数表的空缺,练习数值运算和逻辑思考能力。

可以采用小组竞赛的形式,增加学生的参与度和学习兴趣。

4.拓展应用:引导学生将数表的思维运用到实际问题中,解决实际生活中的数值运算问题。

通过实践,让学生意识到数表在数学中的重要性和应用价值。

四、教学案例(300字)1.计算幻方教学案例:教师可以从一个简单的3×3幻方开始教学。

首先,教师通过填写示例幻方来让学生感受每行、每列和对角线上数字之和相等的特点,然后与学生一起总结规律。

四年级上册数学奥数试题第三讲《排排数数表与幻方》 人教新课标含答案

四年级上册数学奥数试题第三讲《排排数数表与幻方》 人教新课标含答案

一、幻方这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”。

“洛书”就是幻和为15的三阶幻方。

如下图:我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央。

”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久。

三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆。

”幻方的种类还很多,这节课我们将学习认识了解它们。

幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3⨯3的数阵称作三阶幻方,4⨯4的数阵称作四阶幻方,5⨯5的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样。

四年级奥数必考知识点:第三讲:排排数——数表与幻方【例 1】3 3的正方形中,在每个格子里分别填入1~9的9个数字,要求每行每列及对角线上的三个数的和相等(请给出至少一种填法)。

三阶幻方的主要性质:1.能组成三阶幻方的数必须为从小到大排列,首尾对应相加均相等且等于中间数两倍的九个数数列。

2.幻方的中心数为数列中的中间数。

3.幻方中所有相等的和称做幻和,幻方的幻和等于中心数的3倍。

中心数还等于所有所填数的平均数。

4.数列中最大与最小数的配对不能出现在幻方的四角,即只能出现在中间位置,依次可得知第二大与第二小数的配对只能出现在四角上。

【例 2】请你将2~10这九个自然数填入图中的空格内每行、每列、每条对角线上的三数之和相等。

例2图【例 3】在下面两幅图的每个空格中,填入7个自然数,使得每行、每列、每条对角线上的三个数之和等于21。

例3图【例 4】用1~16编制一个四阶幻方。

二、数表与周期性问题【例 5】如图,横、竖各有12个方格,每个方格内都有一个数。

已知横行上任意3个相邻数之和为20,竖列上任意3个相邻数之和为2l,并且其中4个方格内的数分别是3,5,8和x。

小学奥数讲义4年级-6-幻方和数阵图-难版

小学奥数讲义4年级-6-幻方和数阵图-难版

传说在五千年前,大禹治水的时代,人们在黄河中发现一只大龟,龟背上有一些奇怪的图案,经过破译,人们将龟背上的神奇的图案译成了如下图这样的数阵图,也称做幻方。

幻方和数阵是我国文化遗产之一,早在公元前4世纪就有“河图”、“洛书”的传说与记载。

到了宋朝,杨辉对幻方已有较详细的记述,并探索出一些编制方法。

明朝程大位、清朝张潮等人,创制了绚丽多彩的幻方与数阵图式,其中九宫图是最简单的三阶幻方。

将三阶幻方推广,结合某些几何图形,把一些数字填入图形的某种位置上,并使数字满足一定的约束条件,这类问题,通常被称为“数阵图”。

幻方是特殊的数阵图。

大约在15世纪初,幻方传到国外,引起了欧洲很多数学家的兴趣,发现许多新成果。

人们发现幻方不仅仅是一种数字游戏,而且与实验方案的设计及一些高深数学分支有关,幻方已成为数阵图中最重要的课题,是数学研究中的一个重要分支。

数阵图大致分三种:封闭型数阵图、开放型数阵图和复合型数阵图。

幻方的特点:一个幻方每行、每列、每条对角线上的几个数的和都相等。

这个相等的和叫“幻和”。

要求在n 行n 列的方格里,既不重复又不遗漏地填上n ×n 个连续的自然数。

这些自然数所组成的一列数有极强的规律性,按顺序排列后,每一项都比它前面的一项大1,即它们构成了差相等的数列,是等差数列。

因此在解答这类问题时,常用的知识有: 1.等差数列的求和公式总和=(首项+末项)×项数÷2 2.数字的奇偶性 奇数±奇数=偶数 偶数±偶数=偶数知识梳理奇数±偶数=奇数可简记为:同性为偶,异性为奇(注:同性是同奇或同偶,异性是指一奇一偶)。

数阵图【例1】★如图所示,在三个圆圈中各填入一个自然数,使每条线段两端的两个数之和均为奇数。

请问这样的填法存在吗?如不存在,请说明理由;如存在,请写出一种填法。

【解析】不存在,设所填的数分别是a ,b ,c ,如图所示。

假设 a+b=奇数. a+c=奇数, b+c=奇数, 左边=2(a+b+c),是偶数,右边=三个奇数相加,是奇数, 偶效≠奇数。

四年级下册数学试题-奥数专题讲练:7 数表与幻方 精英篇(解析版)全国通用

四年级下册数学试题-奥数专题讲练:7 数表与幻方 精英篇(解析版)全国通用

第七讲 数表与幻方幻方问题千变万化,幻方的填法虽然单一,但组合起来却也是千变万化.1.三阶、四阶幻方与奇数阶幻方的填法;2.三阶幻方的主要性质;3.利用幻方的主要性质补填幻方图;数表一类的问题与幻方问题往往有结合和相近的内容,但数表问题更考验学生对数字规律的发现和运用能力.分析:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方,5×5的称作五阶幻方…… 如图为三阶幻方、四阶幻方的标准式样,三阶幻方的中心位置上的数等于所有所填数的平均数,也等于横行、竖列、对角线上数和的三分之一.解决数表类问题中,首先要找出数填写的规律,再从规律中找到数表的数量关系,从而找出解决问题的关键.专题精讲教学目标98765432114115106213169711548312 想 挑 战 吗?将1到9这9个数字填入3×3的正方形表格内,使表格中横、竖、对角线上三个数的和相等,你能有多少种填法?(一)幻方[小故事](教师导入)同学们是否知道我国古代有关“洛书”的神话传说?传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987653421【例1】请你将2~10这九个自然数填入图中的空格内每行、每列、每条对角线上的三数之和相等.分析:第一步:求幻和:2+3+4+…+9+10=54第二步:求中心数:我们把幻方中对角线交点的数叫“中心数”,仔细观察可以发现:除了对角线外,第二行、第二列也分别经过中心数,那么,经过中心数的四条线段上的数字总和是幻和的4倍,即18×4=72,显然,在这个总和中,中心数用了四次,其余各数正好各用一次,所以中心数应是:(72-54)÷3=6第三步:确定四个角上的数:用尝试法,不难推知,四个角只能是奇数.第四步:用尝试法填一个基本解,以基本解为基础,可绕中心旋转与对调得到其它各解,共八解,如图:[巩固]3×3的正方形中,在每个格子里分别填入1~9的9个数字,要求每行每列对角线上的三个数的和相等,请给出至少一种填法分析:除了运用例题中的方法,还有两种方法:(方法一)罗伯法:把1(或最小的数)放在第一行正中,按以下规律排列剩下的数:(1)每一个数放在前一个数的右上一格(2)如果这个数所要放的格已经超出了最顶行,那么就把它放在最底行,仍然要放在右一列(3)如果这个数所要放的格已经超出了最右列,那么就把它放在最左列,仍然要放在上一行(4)如果这个数所要放的格已经填好了其它的数,或者同时超出了最顶行和最右列,那么就把它放在前一个数的下面,具体如下图:1213213421563421563742156387421563987421(方法二)对易法:先把1到9九个数字按顺序斜着排列,再把上下的数字1和9对调,左右的数字7和3对调,最后把4个不在边上也不在最中心的数字拉到角上,一个三阶幻方就形成了.563987421563987421563987421[说明]南宋数学家杨辉曾概括幻方为:“九子斜排,上下对易,左右相更,四维挺出.”这就是我们现在所学的对易法.[小知识] 我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久,三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”【例2】请你将1~25这二十五个自然数填入图中的空格内每行、每列、每条对角线上的五数之和相等.[亮点设计](1)提问:三阶幻方的我们可以通过算的方法填出,五阶的呢?算算看,累死.七阶呢?更累死.同学们想不想在一分钟之内写出五阶幻方呢?看老师的:(2)示范:边写边说口诀:“一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样”.见第二个图.这是法国人罗伯特总结出的“罗伯法”,它对于构造连续自然数幻方是最简单易行的.(3)练习:写个七阶的看看(大家一起来练)注意强调细节.上出框与右出框的处理有时不容易把握,老师隆重推荐大家一种方法——“卷纸筒”,即把上下边重合在一线,则上出框后往右上填的位置正好在下边的对应点上.强调这种方法适用于任意奇数阶幻方.(4)亮化:大家现在感到是不是很好玩?美国的有个小孩子写出了105阶的幻方,被记在一本数学课本上.我们现在知道,这里的方法其实不算难吧?其实我们也不妨跟美国小朋友PK一下,来构造一个比较大的幻方,也可以是或者就是做一份数学作品,跟书法作品一样装裱得非常漂亮地挂在你家客厅的墙上,客人到你家作客时,一看是一头雾水,你就简单地问一问他,横行的所有数之和是多少?所有横行的每个和怎么样呢?都相等吧?竖列所有数之和是多少?跟横行的和相等吧!还有,看看两条对角线上,每条对角线上所有数之和呢?轻轻而清晰地告诉他,这就是57阶幻方或者**阶幻方!厉害吧,这就是奥数研究生的作品.(研究奥数的学生简称奥数研究生嘛)当然,别忘了,十几阶的奇数幻方奖一个章,二十几阶的奖励三个章,三十几阶的奖励五个章,四十几阶的奖励七个章,如果六十几阶应该奖励几个章呢?【例3】将九个数填入左下图的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定数k,则中心方格中的数必为k÷3证明:因为每行的三数之和都等于k,共有三行,所以九个数之和等于3k.如右上图所示,经过中心方格的有四条虚线,每条虚线上的三个数之和都等于k,四条虚线上的所有数之和等于4k,其中只有中心方格中的数是“重叠数”,九个数各被计算一次后,它又被重复计算了三次.所以有:九数之和+中心方格中的数×3=4k,3k+中心方格中的数×3=4k,中心方格的数=k÷3注意:例题中对九个数及定数k都没有特殊要求.这个结论对求解3×3方格中的数阵问题很实用. [拓展]如图是一个三阶幻方,那么标有*的方格中所填的数是多少?110 8*分析:首先确定左下角的数为17,这样才能保证第一行和第一列的和相等,如此可以得出,这个三阶幻方中围绕中心的相对位置上的两个数和为17+10=27,接着确定底边和右边上的数,通过设左上角标有*的方格中所填的数未知数为X,列式为(18+x)÷3+27=18+x,最后求出标有*的方格中所填的数为22.5.【例4】在下图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21.分析:中间方格中的数为7.再设右下角的数为x,然后根据任一行、任一列及每条对角线上的三个数之和都等于21,如下图所示填上各数(含x).因为九个数都不大于12,由16-x≤12知4≤x,由x+2≤12知x≤10,即4≤x≤10.考虑到5,7,9已填好,所以x只能取4,6,8或10.经验证,当x=6或8时,九个数中均有两个数相同,不合题意;当x=4或10时可得两个解(见下图).这两个解实际上一样,只是方向不同而已.[巩固]如图所示,在3×3方格表内已填好了两个数19和95,在其余的空格中填上适当的数,可以使得每行、每列以及两条对角线上的三个数之和都相等.(1)求x;(2)如果中间的空格内填入100,试在上一小题的基础上,完成填图.x19 95100951918124171291761051009519分析:(1)设中间的数为Y,则各行各列的和为3Y,求出各个方格中每个数的代数式,左上角为Y-X+95,右上角为2Y-95,右下角为:Y+X-95,最下面一行中间的数为:2Y-X,根据每行每列的和相等,最左面的一列等于最右面的一列,可列出方程:X+3Y-190+19=3Y-X+190-19,解得X=171.(由此引出三阶幻方性质:角上的数等于不相邻边上数的平均数)(2)根据(1)所得的每个方格中的代数式可得右上图.【例5】将前9个自然数填入右图的9个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,并且相邻的两个自然数在图中的位置也相邻.分析:题目要求相邻的两个自然数在图中的位置也相邻,所以这9个自然数按照大小顺序在图中应能连成一条不相交的折线.经试验有下图所示的三种情况:按照从1到9和从9到1逐一对这三种情况进行验算,只有第二种情况得到下图的两个解.因为第二种情况是螺旋形,故本题的解称为螺旋反幻方.[前铺]用11,13,15,17,19,21,23,25,27编制成一个三阶幻方.分析:给出的九个数形成一个等差数列,1~9也是一个等差数列.不难发现:中间方格里的数字应填等差数列的第五个数,即应填19;填在四个角上方格中的数是位于偶数项的数,即13,17,21,25,而且对角两数的和相等,即13+25=17+21;余下各数就不难填写了(见下图).与幻方相反的问题是反幻方.将九个数填入3×3(三行三列)的九个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,这样填好后的图称为三阶反幻方.【例6】将1、2、3、4、5、6、7、8、9这九个数字,分别填入3×3阵列中的九个方格,使第二行组成的三位数是第一行组成的三位数的2倍,第三行组成的三位数是第一行组成的三位数的3倍.分析:这一例题较复杂些,但如果我们充分利用题目的要求和1至9这九个数的特性(五奇四偶),那么也能缩小每格中所应填的数的范围,直至完全确定每格中应填的数.为了方便起见,把九个格中的数字用A至I这九个英文字母代替.这样,例如C=2,则F=4,I=6.因而其余六格应包含全部奇数(1、3、5、7、9)和偶数8,由于DEF=2×ABC,GHI=3×ABC,所以GHI=ABC+DEF,因此又可把3×3方格中的数看作一个加式:前两行之和等于第三行.这对于我们用奇偶性去分析加式成立的可能性是有用的.由于个位上的加法没有进位,因此十位上的三个数字不能都为奇数(否则将出现奇数+奇数=奇数的矛盾等式),即8一定是其中的一个十位数字,显然B≠8(否则E=6,与I=6矛盾).又H≠8(否则,B≤8/3,只有B=1.而当B=1时,H至多为5).因此E=8,这样,B=9,H=7.最后,由于A<D<G必有A=1,D=3,G=5.由于192×2=384,192×3=576,所以所填的数满足题目要求.又如,C=4,则F=8,I=2.个位上的加式向十位进1,因此十位上的三个数字都是奇数,因此6是一个百位数字.显然A≠6.如果D=6,则必有A=3,G=9.而B、E、H是1、5、7这三个数,要满足B+E+1=H,只能B=1,E=5,H=7或B=5,E=1,H=7.由于314×2≠658,354×2≠618,所以此时不满足题目要求.如果G=6,显然A<3,此时只有A=1,但当A=1时,G<(1+1)×3=6.因而当C=4时,不可能有满足题目要求的填法.其他的情形可以类似地加以讨论,分别给出肯定的或否定的结论.由分析,下左图是一种符合要求的填法.由于作为一个加法算式(上两行的和等于第三行),上图只是在十位上的加式向百位进了1,其他两个数位上都没有进位,因此把它的个位移到百位的位置上加式仍然成立,所以上右图也是一种符合要求的填法.还有两种符合要求的填法,希望同学们利用分析中的方法把它们找出来.【例7】 在一个3×3的网格中填入9个数使得每一横行、竖行、对角线上三个数的乘积相等.分析:先填出一个普通幻方,任意取一个自然数n ,然后将幻方中的数改成以n 为底,原来的数为指数的形式即可,取n=2,如果取2,则九个数字为:2、4、8、16、64、128、256、512,如图.563987421512256128641684232[拓展]把1,2,3,4,6,9,12,18,36这9个数分别填入3×3方格表的各方格内,使每一行、每一列及两条对角线上的3个数的乘积都是216.求位于正中间的方格中所填的数.分析:1=2030,2=2130,3=2031,4=2230,6=2131,9=2032,12=2231,18=2132,36=2232,只要将这些数填入空格保证每行每列以及对角线上的2和3上的指数和相等.943122183616【例8】已知如图是一个四阶幻方,那么标有*的方格中所填的数是多少?分析:对角线上的和为34,由此可以确定第四行第三列的数为2,右下角的数为13,于是便可以确定标有*的方格中所填的数为6.3811165*49712(二)数表【例9】如下图,在方格中填入一些数以后使得无论横行、竖行相邻三个数的和都为20,那么“*”所代表的数是多少?分析:设左上角方格中的数为x,由相邻三个数的和为20,可知横行、竖行都以3为循环,那么左上角的数为14-x,左下角方格中的数为12-x,由此还能求到右下角的数为6+x,“*”所代表的数为20-(14-x)-(6+x)=0.[巩固]如图,横、竖各有12个方格,每个方格内都有一个数.已知横行上任意3个相邻数之和为20,竖列上任意3个相邻数之和为2l,并且其中4个方格内的数分别是3,5,8和x.那么x所代表的数是多少?分析:先分析竖直方向的数字出现规律,都是以3为周期循环出现相同数字,求得交叉点上数字为10,同理可求得x=5.【例10】请在4×8方格表的每个方格内填入数1,2或3,使得任何排列如图所示形状的4个方格中所填数的和都是7.11121132113211321133232132113211分析:这个图形如中间图所示打上斜线,那么这四个格子都在不同的斜线上,将4×8的方格网也打上斜线,填数的时候,只要保证同一条斜线上的数相同,并且从最上边的斜线向下,线上对应的数以4为周期依次出现两个1,一个2,一个3.[拓展] 请在4×8方格表的每个方格内填入数1、2、3、4,使得任何排列如例10图所示形状的4个方格中所填数的和都是10.分析:只需将图中的部分斜线上的1替换成4.[前铺]请在4×8方格表的每个方格内填人数1,2或3,使得任何排列如图所示形状的4个方格中所填数的和都是7.*26883x511121132113211321133232132113211分析,首先考虑一个横排,要使横排任意四个数包含3、2、1、1,那么每个横排上的数都应该以4为一个周期,将这样的一个横排向左错位一格作为它的下一排,向左错位两格作为它的下边第二排,……,那么在竖直方向,数表也将符合题目条件的性质.[巩固]在如左图6×6的方格网中填入1、2、3这三个数,使得用右图任意一种图形覆盖方格网,盖住的数和为12.分析:12=1+1+2+2+3+3,由例10得到灵感:将1、2、3如图排列后能保证符合条件211333222211111333333222221111333221[拓展]用一个九宫格盖住下边表中9个数,已知这个九宫格中间一个数是86,你能否用这被盖住的9个数构成一个幻方,使得每一横行,每一竖行还有对角线上三个数的相等.1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 1819 20 21 22 23 24 25 26 2728 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45…………………………………………………………分析:表中对于任何一个数,它的左邻比它小1,右邻比它大1,上邻比它小9,下邻比他大9,由此可知,九宫格盖住的9个数分别为76、77、78、85、86、87、94、95、96,将它们填成幻方如图,86当然放在最中间.969594878685787776【例11】 如图表中所示的顺序,将正整数1、2、3、4、5……按顺序依次填入,求2007在第几行第几列?第一列 第二列 第三列 第四列……第一行 1 2 5 10 17 第二行 4 3 6 11 第三行 9 8 7 12 第四行 16 15 14 13 ……分析:按照填写顺序,所有的完全平方数都出现在数表的第一列,所有小于等于2n 的正整数数都能够组成一个边长为n 的正方形,442<2007<452,所以2007处在边长为45的正方形的边缘,边长为四十五的正方形边缘第一个数是442+1=1937,位于第一行、第四十五列,最后一个数是452=2025,位于第四十五行,第一列,所以第四十五行,第四十五列的数是(2025+1937)÷2=1981,2007>1981,所以2007在第四十五行上,2025-2007=18,所以2007在第十九列上.[拓展]如图表中所示的顺序,将正整数1、2、3、4、5……按顺序依次填入,求2007在第几行第几列?第1列 第2列 第3列 第4列 第5列 第6列……第1行 1 2 6 7 15 16 第2行 3 5 8 14 17 第3行 4 9 13 18 第4行 10 12 19 第5行 11 20 第6行 21 ……分析:每当所填的数能表示成n n+12()时(n 为正整数),所有已经填的数就构成一个直角边长为n 个数的直角三角形,n 为奇数时,2n (n+1)在第一行,n 为偶数时,n n+12()在第一列,因为6262+12⨯()<2007<6363+12⨯(),所以2007在边长为63个数的直角三角形的斜边上,6363+12⨯()=2016位于第1行第63列,2016-2007=9,所以2007在第10行,第54列.【例12】在有大小六个正方形的方框下左图中的圆圈内,填入1~9这九个自然数,使每一个正方形角上四个数字之和相等.a1+a2+b1+b2=S,a2+b2+a3+b3=S,b1+b2+c1+b2=S,a2+b3+b2+b1=S,b2+b2+b3+c3=S,a1+a3+c3+c1=S.将上面的六个等式相加可得到:2(a1+a3+c3+c1)+3(a2+b3+b2+b1)+4b2=6S.则4b2=S4(a1+a3+c3+c1)+4(a2+b3+b2+b1)+4b2=9S.于是有:4(a1+a2+a3+b1+b2+b3+c1+b2+c3)=4×45=9S. 9S=4×45 S=20.这就说明每个正方形角上四个数字之和为20. 所以:b2=5. 从而得到:a1+a2+b1=a2+a3+b3=15,b1+c1+b2=b2+c3+b3=15.由上面两式可得:a1+b1=a3+b3,b1+c1=b3+c3.如果a2为奇数,则a1+b1和a3+b3均为偶数.①若a1为奇数,a3为偶数,则b1为奇数,b3为偶数.因为a2+b3+b2+b1=20,所以b2为偶数,则c1为偶数,c3为奇数.但是a1+a2+5+b1=20,而奇数1、3、5、7、9中含有5的任意四个奇数的和不等于20,有矛盾.②若a1为偶数,a3为偶数,则b1也为偶数,b3也为偶数.因为a2+b3+b2+b1=20,所以b2为奇数,则c1为偶数,c3为偶数,但1~9中只有4个偶数,有矛盾.③若a1为奇数,a3为奇数,则b1、b3也为奇数,这样1~9中有六个奇数,有矛盾.④若a1为偶数,a3为奇数,情况与①相同.综合上述,a2必为偶数.由对称性易知:b2、b2、b1也为偶数.因此a1、a3、c3、c1全为奇数..这样,就比较容易找到此解专题展望幻方、数表类题目虽然变化不多,但这一类题目与数学很多分支包括:组合数学、数论等都有结合,今后同学们接触到更多的数学知识后会对幻方有更深入的了解.1. (例4)在图中的每个空格内填入一个数,使得每行、每列及两条对角线上的3个方格中的各数之和都等于19.95.那么,标有*的格内所填的数是多少?分析:设中间的数为X ,可以此确定上边、右上角、右下角、左下角、左边、右边所填数的代数式,由于3X=19.95,X=6.65,最后得到,标有*的格内所填的数是11.12.*8.804.332. (例6)将自然数1至9分别填在如图所示的3×3方格表内,使得每行、每列及两条对角线上的数满足:两端的两个数之和减去中间的数,结果都等于5.分析:中间的数只能为5,这样才能保证有4组数对分别填写于方格四周,相对位置两数和相等并且比中心所填的数大5.9876432153. (例9)如图,有一个11位数,它的每3个相邻数字之和都是20.问标有*的那个数位上的数字应是几?分析:这个数的各个数位上的数字以3为周期循环出现,这个数为97497497497,标有*的那个数位上的数字应是7.7*9练习七4.(例11)如图表中数的排列顺序,2007在第几行第几列?2007的下边是哪个数?第一列第二列第三列第四列第五行第一行 1 2 3 4第二行8 7 6 5第三行9 10 11 12第四行16 15 14 13……分析:各个自然数的列号以8为循环,行号每4个数加一行,2007=8×250+7,所以2007在第3列,第502行,它下边的数比2007大4,所以2007下边是2011.5.(例12)将1~8填入下图中的○内,要求按照自然数顺序相邻的两个数不能填入有直线段连接的相邻的两个○内.分析:因为中间两个○分别只与一个○不相邻,只能填1和8,其余数的填法见右上图.许多名人喜欢用数学比喻,往往出语幽默、诙谐,好比深山闻钟,使人记忆久远.古希腊哲学家芝诺号称"悖论之父",他有四个数学悖论一直传到今天.他曾讲过一句名言:"大圆圈比小圆圈掌握的知识要多一点,但因为大圆圈的圆周比小圆圈的长,所以它与外界空白的接触面也就比小圆圈大,因此更感到知识的不足,需要努力去学习".人民教育家陶行知先生曾经说,他有八位好朋友做帮手,使他少犯错误,甚至可以不犯错误.他编了一首歌,读起来非常动听:我有八位好朋友,肯把万事指嘉摇?你若想问真姓名,名字不同都姓何. 何事、何故、何人、何如、何时、何来、何去,好像弟弟与哥哥.还有一个西洋派,姓名颠倒叫几何.若向八贤常请教,虽是笨人少错误. 美国作家杰克·伦敦成名后,曾收到过一位女士的求爱信;"你有一个出众的名声,我有一个高贵的地位.这两者加起来,再乘上万能的黄金,足以使我们建立起一个天堂都不能比拟的美满家庭."杰克·伦敦连忙回信,他答得很妙:"根据你列出的那道爱情公式,我看还要开平方!不过这个平方根却是负数".古希腊哲学家芝诺对他的学生说:“如果用小圆代表你们学到的知识,用大圆代表我学到的知识,那么大圆的面积大一点;但两圆之外的空白,都是我们的无知面,圆越大其圆周接触的无知面就越多.”毛泽东曾经批评个人主义严重的人说:“有的人总是以‘我'为‘圆心'、‘个人主义'为‘半径',在这个圆圈里转来转去,总是不能跳出这个圆圈.”数学知识。

(最新整理)第二讲四年级奥数幻方

(最新整理)第二讲四年级奥数幻方

第二讲四年级奥数幻方编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(第二讲四年级奥数幻方)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为第二讲四年级奥数幻方的全部内容。

幻方是一种广为流传的数学游戏,据说早在大禹治水时就发现过。

幻方的特点是:由自然数构成n×n正方形阵列,称为n阶幻方,每一行、每一列、两对角线上的数之和相等。

法国人罗伯总结出了构造奇数阶连续自然数幻方的简单易行的方法“罗伯法" (也叫“萝卜"法)。

三阶幻方解法“萝卜”法一居上行正中央依次填在右上角上出框时下边填右出框时左边放斜出框时下边放(出角重复一个样)排重便在下格填“萝卜"法适用于所有”奇数阶"幻方(真牛),比如9阶 (了解)幻方的其它概念: 中心数和黄金三角的规律只适用于3阶幻方1。

中心数: 中心数为对称两边数的和除以2 (比如(8+2)/2=5)2.黄金三角: 黄金三角顶点的数为两腰之和除以2(比如(7+9)/2=8)练习在图(1),(2)的空格中填入不大于15且互不相同的数(其中已填好一个数),使每一横行、每一竖列和对角线上的3个数之和都等于30.解析30被分为3行,那么10为中间的数,所以两个方格的正中间均为10,那么第一个正方形一条对角线上的数为8,10,12,接着一行可填15,10,5;需注意15和8相邻,那么剩下的只要相加为30即可.同理,第二个正方形一条对角线上的数为14,10,6,接着一行可填15,10,5;需注意15和6相邻,那么剩下的只要相加为30即可.解答解:如图:。

四年级奥数幻方和数阵图

四年级奥数幻方和数阵图

幻方和数阵图一、幻方例:用1—9这9个数排成一个三阶幻方1.用3—11这9个数补全图中的幻方,并求出幻和。

2.在图的空格中填入不大于15且互不相同的自然数(其中已填好一个数),使每一个横行、竖列和对角线上的三个数之和都等于30。

3.在图(a )(b )的空格中填入不大于15且互不相同的数(其中已填好一个数),使每一横行,每一竖列和对角线上的三个数之和都等于30。

(a ) (b )4.将5—20这16个数排成一个四阶幻方。

5.将5—29这25个数排成一个五阶幻方。

6.在图中的方格中填入不相同的数,使得每行、每列及每条对角线上的三个数之和都相等,问图中左上角的数是几?7.从1—13这十三个数中选出12个数填到图的方格中,使每一横行四个数之和相等,每一竖列三数之和也相等。

8.在图中每个方格内填一个数,使得每行、每列及每条对角线上的四个方格中的数都是1、3、5、7,那么带“☆”号的两个方格中的数之和等于几?4 859 8 14?19 13第2题 第3题二、数阵图1.把1—7这七个数填入图中的○中,使每条直线上三个数的和都等于14。

第1题 第2题2.将1—9这九个数填入图中的○中,使每条边上四个数的和都等于17。

3.将数字1,2,3,4,5,6填入图中的小圆圈内,使每个大圆上4个数字的和都是16。

第3题4.将1—8填在图中的○中,使每条线上的三个数的和都相等,并求出这个和的取值范围。

○ ○ ○○ ○○ ○ ○第4题5.将1—8填在图中的○中,使大圆上、小圆上、横线上、竖线上四个数的和都相等,而且在大圆上的四个数中最大的数尽可能小。

13 57 7 1☆ ☆第5题6.把1—7七个自然数分别填在图中的○内,使得四个三角形的三个顶点数之和等于11,则a填。

○○○a○A○○○B8.将1—8个数填入图中的八个方格内,使上面四格,下面四格,左边四格,右边四格,对角线四格和四角四格内四个数相加的和都是18。

第8题9.把1~9这9个数,填入图11中的九个○内,使每条线段上三个数的和相等,两个四边形四个顶点上数的和也相等。

四年级奥数 教师版 第六讲幻方与数阵图

四年级奥数 教师版 第六讲幻方与数阵图

第六讲 幻方与数阵图知识导航三阶幻方的性质:1.中心位置上的数等于幻和除以3;2.角上得数等于和它不相邻的两条边上的数的平均数;3.中心数两头的数等于中心数的2倍。

例1:我们先来一起解决三道难度相差很大的题目,目的在于总结出三阶幻方的若干重要性质。

如下图,将1—9填入3×3的方格表中,使得每行每列以及两条对角线上的三个数字之和都相等,你一共可以得到多少种填法?解析:首先,我们思考要填出一个三阶幻方,什么量的求出是最重要的?立刻我们就知道,那个所谓的“幻和”,即每行、每列、每条对角线三个数的和是最重要的量。

它是多少呢?哦,如果我们按照行(按照列也一样)把幻方中的九个数加起来,那么它们的总和不就是3倍的“幻和”吗?而另一方面,我们也知道,由于1到9这九个数字都只各用了一次,所以3倍的的“幻和”就等于1+2+3+4+5+6+7+8+9=45(请复习学过的等差数列知识)。

于是最后,我们终于得到这个至关重要的“幻和”就是45÷3=15。

接下来第二步,我们来关心一下中间一格应该填哪个数字。

同学们可能会说,中间一定填5,因为1到9的中间数字就是5,而幻方又是上下左右对称的。

没错,同学们有这样的数学直观很好,但是为了确定我们的判断,还是需要严格地说明一下。

看上面的表格,由于我们还没有填入任何一个数字,所以就用了九个大写字母来表示。

下面就需要技巧了,我们现在只考虑包含E 的四条直线:因为A +E +I =15, B +E +H =15, C +E +G =15, D +E +F =15, 所以如果我们把这四个式子的左右两边分别相加,就可以得到(A+B+C+D+E+F+G+H+I )+3×E=60,而A+B+C+D+E+F+G+H+I 不就是所填数的总和吗?不论填法如何,这个数是第1题不变的,它就是45,于是那么我们就得到E=5了。

解:根据上面的分析,我们知道“幻和”=15,而E=5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识要点幻方与数表二、 如果一个n n ⨯的方阵中,每一横行、每一竖列以及两条对角线上数的和都相等,那么这个方阵称为n 阶幻方。

三、 在n 阶幻方中,其每一行、每一列、两条对角线上的数字之和都相等,这个和称为幻和。

对于n 行或者n 列,其和为幻和乘以n ,也等于所有2n 个数的和;所以,幻和2n S n=个数。

用1、2、……、2n 这2n 个数构造n 阶幻方,其幻和为2212(1)2n n n n ++++=……; 用1、2、3、4、5、6、7、8、9这9个数构造3阶幻方,其幻和为21234567893(13)1532++++++++⨯+==。

四、 对于n 阶幻方,当n 分别为奇数或偶数时,幻方有一个明显的不同,即奇数阶幻方有一个中心方格,而偶数阶幻方则没有;奇数阶幻方这个中心方格上的数称为中心数。

中心数等于幻方中所有2n 个数的平均数,也等于任意一行、一列、一条对角线中n 个数的平均数,也等于任意两个关于中心对称的空格中的数的平均数;中心数22n S n =个数n=幻和。

用1、2、……、2n 这2n 个数构造n 阶幻方,其中心数为212n +。

用1、2、3、4、5、6、7、8、9这9个数构造3阶幻方,其中心数为21352+=。

五、在3阶幻方中,2222a i b h c g d f e ++++====,2f h a +=、2d h c +=、2b f g +=、2b di +=。

ihgf e d c b a幻方【例1】 请将2009、2010、2011、2012、2013、2014、2015、2016、2017这9个自然数填入图中的空格内,使每行、每列、两条对角线上的3个数之和相等。

(只要构造出一种)一、 若一个n n ⨯的方阵1111n n nna a a a 是n 阶幻方,则方阵1111n n nn a b c a b ca b ca b c⨯+⨯+⨯+⨯+也是n 阶幻方。

数表中心数幻和三阶幻方的性质幻方的构造幻方幻方与数表(本讲)200920102011201220132014201520162017201620092014201520132011201220172010201420152010201720132009201620112012201020172012201120132015201420092016201620112012201720132009201420152010201020152014200920132017201220112016201420092016201120132015201020172012201220172010201520132011201620092014【分析】 (方法一)第一步——求幻和:幻和为(200920102011201220132014201520162017)36039++++++++÷=;第二步——求中心数:中心数为603932013÷=;第三步——确定4个角上的数:用尝试法,可推出4个角上的数只能为偶数; 第四步——求出幻方:根据幻和求出各边中点的数,求出1个基本解; 以基本解为基础,可通过旋转或镜像变换得到其它各解,共8解。

答案如图所示。

(方法二)与1~9的3阶幻方相比,每个空格上的数都增加2008; 根据1~9的3阶幻方的8个图可以求出原题的答案。

答案如图所示。

【例2】 请构造出一个3阶幻方,使其幻和为2010。

(只要构造出一种)【分析】 因为3阶幻方的幻和为2010;所以,中心数为20103670÷=。

与1~9的3阶幻方的中心数5相比,中心数增加了6705665-=或者放大了6705134÷= 或者先增加62再放大10或者先放大150再减小80。

根据1~9的3阶幻方的图,将每个方格上的数“665+”或者“134⨯”或者“先62+再10⨯”或者“先150⨯再80-”可以求出原题的答案。

答案如图所示,答案不惟一。

可以通过其它线性变换构造成幻方,也可以通过旋转或者镜像变换得到其它的幻方。

_6407106607006306806906706508351672944927615385201270220970820706703701120673668670666671672667674669835167294每个方格上的数x 134每个方格上的数+66549276153840267093880413410725361206268【例3】 一个3阶幻方,每个方格里的数均为自然数,且其中最大的数为2009,最小的数不小于1970,请试说明,这样的幻方中9个方格中的数全都不相同的有4种,并构造出这4种幻方。

【分析】 因为每个方格里的数均为自然数;所以,这9个数组成从小到大排列的等差数列的公差为自然数。

所以,最大的数2009减去最小的数的差为8的倍数。

因为2009197039-=;所以,最大的数减去最小的数的差为8或16或24或32; 所以,符合题意的幻方共有4种。

公差为1的9个数:2001、2002、2003、2004、2005、2006、2007、2008、2009; 公差为2的9个数:1993、1995、1997、1999、2001、2003、2005、2007、2009; 公差为3的9个数:1985、1988、1991、1994、1997、2000、2003、2006、2009; 公差为4的9个数:1977、1981、1985、1989、1993、1997、2001、2005、2009。

构造成符合题意的3阶幻方如图所示。

199720011981200919931977200519851989200020031988200919971985200619911994200320051995200920011993200719971999200920082007200620052004200320022001【例4】 (1997年第六届“华罗庚金杯”少年数学邀请赛团体决赛口试试题)你能在33⨯的方格表中每个格子里填一个自然数,使得每行、每列及两条对角线上的三数之和都等于1997吗?若能,请填出一例;若不能,请说明理由。

IHG F E D C B A【分析】 如图所示,假设9个空格里能分别填上自然数A 、B 、C 、D 、E 、F 、G 、H 、I 。

1997D E F ++=∵、1997B E H ++=、1997A E I ++=、1997C E G ++=()()()()()3D E F B E H A E I C E G A B C D E F G H I E +++++++++++=+++++++++∴199747988=⨯=199735991A B C D E F G H I ++++++++=⨯=∵3798859911997E =-=∴;19973E =与E 是自然数相矛盾。

∴原假设不成立,不能填入满足题意的9个自然数在方格表中。

【例5】 (2008年3月第九届“中环杯”小学生思维能力训练活动六年级决赛)如图所示,9个小正方形内各填入一个有理数,使每行每列以及两条对角线上的三个有理数的和相等。

现在29和76两个数已给出,那么x =( )。

2976x52.52976【分析】 中心数297610552.522x +===【例6】 (第六届“华罗庚金杯”少年数学邀请赛初赛)图中有9个方格,要求每个方格中填入不相同的数,使得每行、每列、每条对角线上的三个数之和都相等。

问图中左上角的数是多少?1319?【分析】 设i j R C 表示第i 行、第j 列方格中的数(,1i j =、2、3)设中心数22R C x =,则幻和3x =,所以,33R C =幻和11223?2?R C R C x x x --=--=- 31R C =幻和3233313(2?)?13R C R C x x x --=---=+- 13R C =幻和2333319(2?)?19R C R C x x x --=---=+-幻和132231(?13)(?19)32?323R C R C R C x x x x x =++=+-+++-=+-= 所以,?32216=÷=161913x +?-19132x -?19x ?2x -??1319x x 19?13x +?-13【例7】 (2008年3月第九届“中环杯”小学生思维能力训练活动四年级初赛)如图,要在下面的空格中填入适当的数,使每行、每列及对角线的3个数之和都相等,问号处应填入的数。

要求写出关键的解题推理过程。

?86547711109437658658?865【分析】 设i j R C 表示第i 行、第j 列方格中的数(,1i j =、2、3)。

中心数11332268722R C R C R C ++===, 111213132231R C R C R C R C R C R C ++=++∵;31111222?6574R C R C R C R C ==+-=+-=∴【例8】 (2008年天津“陈省身杯”国际青少年数学邀请赛三年级)在下面的方格中填上合适的数,使得每一横行、竖行、斜行的三个数之和相等,则图中涂上阴影的方格中所填的数是________。

【分析】 设i j R C 表示第i 行、第j 列方格中的数(,1i j =、2、3)111213132333R C R C R C R C R C R C ++=++∵ 331112232081810R C R C R C R C =+-=+-=∴ ∴中心数11332220101522R C R C R C ++=== 即图中涂上阴影的方格所填的数为15【例9】 (2008年4月第七届小学“希望杯”全国数学邀请赛四年级第2试)在图中的九个方格里,每行、每列、每条对角线上的三个数的和相等,则______N =。

N 12166814818410616212188410616212248N 106161210N 121668【分析】 设i j R C 表示第i 行、第j 列方格中的数(,1i j =、2、3)幻和112131861630R C R C R C =++=++=;所以22R C =幻和1133308121R C R C --=--= 或中心数2230103R C ===或中心数1133228121022R C R C R C ++====; 13R C =幻和22313010164R C R C --=--=,32R C =幻和31333016122R C R C --=--=;12R C N ==幻和1113308418R C R C --=--=或12R C N ==幻和22323010218R C R C --=--=。

相关文档
最新文档