半导体物理分章答案第八章
半导体物理与器件(尼曼第四版)答案
半导体物理与器件(尼曼第四版)答案第一章:半导体材料与晶体1.1 半导体材料的基本特性半导体材料是一种介于导体和绝缘体之间的材料。
它的基本特性包括:1.带隙:半导体材料的价带与导带之间存在一个禁带或带隙,是电子在能量上所能占据的禁止区域。
2.拉伸系统:半导体材料的结构是由原子或分子构成的晶格结构,其中的原子或分子以确定的方式排列。
3.载流子:在半导体中,存在两种载流子,即自由电子和空穴。
自由电子是在导带上的,在外加电场存在的情况下能够自由移动的电子。
空穴是在价带上的,当一个价带上的电子从该位置离开时,会留下一个类似电子的空位,空穴可以看作电子离开后的痕迹。
4.掺杂:为了改变半导体材料的导电性能,通常会对其进行掺杂。
掺杂是将少量元素添加到半导体材料中,以改变载流子浓度和导电性质。
1.2 半导体材料的结构与晶体缺陷半导体材料的结构包括晶体结构和非晶态结构。
晶体结构是指材料具有有序的周期性排列的结构,而非晶态结构是指无序排列的结构。
晶体结构的特点包括:1.晶体结构的基本单位是晶胞,晶胞在三维空间中重复排列。
2.晶格常数是晶胞边长的倍数,用于描述晶格的大小。
3.晶体结构可分为离子晶体、共价晶体和金属晶体等不同类型。
晶体结构中可能存在各种晶体缺陷,包括:1.点缺陷:晶体中原子位置的缺陷,主要包括实际缺陷和自间隙缺陷两种类型。
2.线缺陷:晶体中存在的晶面上或晶内的线状缺陷,主要包括位错和脆性断裂两种类型。
3.面缺陷:晶体中存在的晶面上的缺陷,主要包括晶面位错和穿孔两种类型。
1.3 半导体制备与加工半导体制备与加工是指将半导体材料制备成具有特定电性能的器件的过程。
它包括晶体生长、掺杂、薄膜制备和微电子加工等步骤。
晶体生长是将半导体材料从溶液或气相中生长出来的过程。
常用的晶体生长方法包括液相外延法、分子束外延法和气相外延法等。
掺杂是为了改变半导体材料的导电性能,通常会对其进行掺杂。
常用的掺杂方法包括扩散法、离子注入和分子束外延法等。
《半导体物理学》刘恩科、朱秉生版上海科技1-12章课后答案
第 1 页第一章 半导体中的电子状态1. 设晶格常数为 a 的一维晶格,导带极小值附近能量 E c (k )和价带极大值附近 能量 E v (k )分别为:E c (k)=2 2h k + 3m 02h (k − m 0k1) 2和 E v (k)= 2 2h k - 6m 0322h k ; m 0m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。
试求: ①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。
[解] ①禁带宽度 Eg22h k − k =0;可求出对应导带能量极小值 E min的 k 值:根据 dEc (k ) =2h k +2( dk 3m 0m 03 ,1 )k min= k 14由题中 E C式可得:E min=E C(K)|k=k min=h k 2;m 401 由题中 E V式可看出,对应价带能量极大值 Emax 的 k 值为:k max=0;2 2 2h 2并且 E min=E V(k)|k=k max=k ;∴Eg =E min-E max=hk 1= h 21 6m 12m48m a 20 −27 20 0=×−28× (6.62 ×10) −8 2 ×× −11=0.64eV48 × 9.1 10(3.14 ×10 1.6 10②导带底电子有效质量 m n22 2 22d E C= 2h + 2h = 8h ;∴ m n= h2 / d E C =3 m 0dk 23m 0 m 0 3m 0dk 28 ③价带顶电子有效质量 m ’222d E V= −6h'=,∴ mh2/ d E V= − 1 mdk 2m 0ndk 2 6 0④准动量的改变量h△k = h (k min-k max)=3 4h k1=3h 8a2. 晶格常数为 0.25nm 的一维晶格,当外加 102V/m ,107V/m 的电场时,试分别 计算电子自能带底运动到能带顶所需的时间。
半导体物理第八章
ρx =−
εrε0
=
−
q εrε0
⎡⎣
pp0
e−qV /k0T −1
− np0
eqV /k0T −1 ⎤⎦
(5)
上式两边乘dV并积分,可得
∫ ∫ [ ( ) ( )] dV dx
dV
d⎜⎛ dV
⎟⎞
=
−
q
0 dx ⎝ dx ⎠ ε rε0
V 0
p p0 e−qV / k0T −1 − n p0 eqV / k0T −1 dV
3、VG > 0,表面处Ei与EF重合,表面本征型
E VG > 0
MI S
Ec Ei
++++++++++
EF
Ev
nS = ni exp[(ESF − Ei )/ kT] pS = pi exp[(Ei − ESF )/ kT]
表面处于本征型, VS >0.
pS = nS = ni
4、VG >>0,表面反型
VG-VT 由绝缘层承受。 ¾应用:MOSFET(MOS场效应晶体管)
¾ 前面讨论的是空间电荷区的平衡态,VG不变或者变化 速率很慢,空间电荷区载流子浓度能跟上VG的变化。
¾ 以下讨论非平衡状态-深耗尽状态, VG为高频信号或 者阶跃脉冲,空间电荷区少子来不及产生和输运。
5、VG >>0,加高频或脉冲电压,表面深耗尽。
¾深耗尽和反型是同一条件下不同时间内的表面状况 ¾深耗尽状态的应用:制备CCD等。
6、平带VS=0
对理想MIS结构VS=0时,处于平带。
8.2.2 表面空间电荷层的电场、电势和电容
半导体物理习题第八章答案
半导体物理习题第八章答案半导体物理习题第八章答案第一题:根据题目要求,我们需要计算一个p型半导体的载流子浓度。
根据半导体物理的知识,p型半导体中主要存在的是空穴载流子,因此我们需要计算空穴浓度。
在p型半导体中,空穴浓度可以通过以下公式计算:p = ni^2 / n其中,p表示空穴浓度,ni表示本征载流子浓度,n表示杂质浓度。
根据题目给出的数据,本征载流子浓度ni为2.5 x 10^16 cm^-3,杂质浓度n为1 x10^16 cm^-3。
将这些数据代入公式中,我们可以得到:p = (2.5 x 10^16 cm^-3)^2 / (1 x 10^16 cm^-3) = 6.25 x 10^16 cm^-3因此,该p型半导体的空穴浓度为6.25 x 10^16 cm^-3。
第二题:第二题要求我们计算一个n型半导体的载流子浓度。
根据半导体物理的知识,n 型半导体中主要存在的是电子载流子,因此我们需要计算电子浓度。
在n型半导体中,电子浓度可以通过以下公式计算:n = ni^2 / p其中,n表示电子浓度,ni表示本征载流子浓度,p表示空穴浓度。
根据题目给出的数据,本征载流子浓度ni为2.5 x 10^16 cm^-3,空穴浓度p为5 x10^15 cm^-3。
将这些数据代入公式中,我们可以得到:n = (2.5 x 10^16 cm^-3)^2 / (5 x 10^15 cm^-3) = 12.5 x 10^16 cm^-3因此,该n型半导体的电子浓度为12.5 x 10^16 cm^-3。
第三题:第三题要求我们计算一个p-n结的内建电势。
根据半导体物理的知识,p-n结的内建电势可以通过以下公式计算:Vbi = (kT / q) * ln(Na * Nd / ni^2)其中,Vbi表示内建电势,k表示玻尔兹曼常数,T表示温度,q表示电子电荷量,Na和Nd分别表示p型和n型半导体中杂质浓度,ni表示本征载流子浓度。
半导体物理学第八章知识点
第8章 半导体表面与MIS 结构许多半导体器件的特性都和半导体的表面性质有着密切关系,例如,晶体管和集成电路的工作参数及其稳定性在很大程度上受半导体表面状态的影响;而MOS 器件、电荷耦合器件和表面发光器件等,本就是利用半导体表面效应制成的。
因此.研究半导体表面现象,发展相关理论,对于改善器件性能,提高器件稳定性,以及开发新型器件等都有着十分重要的意义。
§8.1 半导体表面与表面态在第2章中曾指出,由于晶格不完整而使势场的周期性受到破坏时,禁带中将产生附加能级。
达姆在1932年首先提出:晶体自由表面的存在使其周期场中断,也会在禁带中引入附加能级。
实际晶体的表面原子排列往往与体内不同,而且还存在微氧化膜或附着有其他分子和原子,这使表面情况变得更加复杂。
因此这里先就理想情形,即晶体表面无缺陷和附着物的情形进行讨论。
一、理想一维晶体表面模型及其解达姆采用图8-l 所示的半无限克龙尼克—潘纳模型描述具有单一表面的一维晶体。
图中x =0处为晶体表面;x ≥0的区域为晶体内部,其势场以a 为周期随x 变化;x ≤0的区域表示晶体之外,其中的势能V 0为一常数。
在此半无限周期场中,电子波函数满足的薛定谔方程为)0(20202≤=+-x E V dx d m φφφη (8-1))0()(2202≥=+-x E x V dx d m φφφη (8-2)式中V (x)为周期场势能函数,满足V (x +a )=V(x )。
对能量E <V 0的电子,求解方程(8-1)得出这些电子在x ≤0区域的波函数为 ])(2ex p[)(001x E V m A x η-=φ (8-3) 求解方程(8-2),得出这些电子在x ≥0区域中波函数的一般解为kx i k kx i k e x u A e x u A x ππφ22212)()()(--+= (8-4)当k 取实数时,式中A 1和A 2可以同时不为零,即方程(8-2)满足边界条件φ1(0)=φ2(0)和φ1'(0)=φ2'(0)的解也就是一维无限周期势场的解,这些解所描述的就是电子在导带和价带中的允许状态。
尼曼-半导体物理与器件第八章
pn x pn x pn0 Aex Lp Bex Lp x xn
利用上述两个边界条件,可得稳态输运方程解为:
pn x
pn0
exp
eVa kT
1
sinh
xn Wn
sinh Wn
x
Lp
Lp
第八章 pn结二极管
26
高等半导体物理与器件
对于Wn<<Lp的条件,将上式进一步简化:
ni2
T3
exp
Eg kT
正偏:J
exp
Eg kT
exp
Va kT
第八章 pn结二极管
24
高等半导体物理与器件
(8)短二极管
前面分析中,假设理想pn结二极管n型区和p型区的长度远大于少子扩散长 度。实际pn结中,往往有一侧的长度小于扩散长度,如下图所示,n型区的 长度Wn<Lp。 此时n型区中过剩少子空穴的稳态输运方程为:
第八章 pn结二极管
29
高等半导体物理与器件
反偏产生电流
• 对于反偏pn结,认为空间电荷区内不存在可移动的电子和空穴。因此, n≈p≈0,则过剩电子与空穴的复合率变为
R CnCp Nt ni2 • 上式中的负号意味着负的复合率C;nn实 际C上p,p在反偏下,空间电荷区内产生了
电子-空穴对。
• 由于反偏空间电荷区电子和空穴浓度基 本为零,过剩电子和过剩空穴的复合过 程实际上是一个恢复到热平衡过程。
R
ni
11
• 由式(6.103)、(6.104)中寿命C的p N定t 义C,n则Nt
R ni
p0 n0
第八章 pn结二极管
31
高等半导体物理与器件
• 定义载流子的平均寿命:τ0=(τp0+τn0)/2,则 R ni G
《半导体物理》习题答案第八章
第8章 半导体表面与MIS 结构2.对于电阻率为8cm Ω⋅的n 型硅,求当表面势0.24s V V =-时耗尽层的宽度。
解:当8cm ρ=Ω⋅时:由图4-15查得1435.810D N cm -=⨯∵22D d s rs qN x V εε=-,∴1022()rs s d D V x qN εε=-代入数据:11141352219145211.68.85100.24 4.9210()()7.3101.610 5.8109.2710d x cm -----⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯3.对由电阻率为5cm Ω⋅的n 型硅和厚度为100nm 的二氧化硅膜组成的MOS 电容,计算其室温(27℃)下的平带电容0/FB C C 。
解:当5cm ρ=Ω⋅时,由图4-15查得143910D N cm -=⨯;室温下0.026eV kT =,0 3.84r ε=(SiO 2的相对介电系数) 代入数据,得:1141/20002197722110.693.84(11.68.85100.026)11()11.6 1.61010010310FBr rs rs A C C kT q N d εεεε---===⨯⨯⨯+⋅+⨯⨯⨯⨯⨯此结果与图8-11中浓度为1⨯1015/cm 3的曲线在d 0=100nm 的值非常接近。
4. 导出理想MIS 结构的开启电压随温度变化的表示式。
解:按定义,开启电压U T 定义为半导体表面临界强反型时加在MOS 结构上的电压,而MOS结构上的电压由绝缘层上的压降U o 和半导体表面空间电荷区中的压降U S (表面势)两部分构成,即oST S Q U U C =-+ 式中,Q S 表示在半导体表面的单位面积空间电荷区中强反型时的电荷总数,C o 单位面积绝缘层的电容,U S 为表面在强反型时的压降。
U S 和Q S 都是温度的函数。
以p 型半导体为例,强反型时空间电荷区中的电荷虽由电离受主和反型电子两部分组成,且电子密度与受主杂质浓度N A 相当,但反型层极薄,反型电子总数远低于电离受主总数,因而在Q S 中只考虑电离受主。
半导体物理与器件习题
半导体物理与器件习题目录半导体物理与器件习题 (1)一、第一章固体晶格结构 (2)二、第二章量子力学初步 (2)三、第三章固体量子理论初步 (2)四、第四章平衡半导体 (3)五、第五章载流子输运现象 (5)六、第六章半导体中的非平衡过剩载流子 (5)七、第七章pn结 (6)八、第八章pn结二极管 (6)九、第九章金属半导体和半导体异质结 (7)十、第十章双极晶体管 (7)十一、第十一章金属-氧化物-半导体场效应晶体管基础 (8)十二、第十二章MOSFET概念的深入 (9)十三、第十三章结型场效应晶体管 (9)一、第一章固体晶格结构1.如图是金刚石结构晶胞,若a 是其晶格常数,则其原子密度是。
2.所有晶体都有的一类缺陷是:原子的热振动,另外晶体中常的缺陷有点缺陷、线缺陷。
3.半导体的电阻率为10-3~109Ωcm。
4.什么是晶体?晶体主要分几类?5.什么是掺杂?常用的掺杂方法有哪些?答:为了改变导电性而向半导体材料中加入杂质的技术称为掺杂。
常用的掺杂方法有扩散和离子注入。
6.什么是替位杂质?什么是填隙杂质?7.什么是晶格?什么是原胞、晶胞?二、第二章量子力学初步1.量子力学的三个基本原理是三个基本原理能量量子化原理、波粒二相性原理、不确定原理。
2.什么是概率密度函数?3.描述原子中的电子的四个量子数是:、、、。
三、第三章固体量子理论初步1.能带的基本概念◼能带(energy band)包括允带和禁带。
◼允带(allowed band):允许电子能量存在的能量范围。
◼禁带(forbidden band):不允许电子存在的能量范围。
◼允带又分为空带、满带、导带、价带。
◼空带(empty band):不被电子占据的允带。
◼满带(filled band):允带中的能量状态(能级)均被电子占据。
导带:有电子能够参与导电的能带,但半导体材料价电子形成的高能级能带通常称为导带。
价带:由价电子形成的能带,但半导体材料价电子形成的低能级能带通常称为价带。
半导体物理分章答案第八章
上式两边乘以dV并积分,得到
d( dV dx ) q
dx
dV dx
0
rs 0
V
0
{ p p 0 [exp(
qV k 0T
) 1 ] n p 0 [exp(
qV k 0T
) 1]} dV
将上式两边积分,并根据 得
2 k 0T q ) [
2
| E |
dV dx
第八章 半导体表面与MIS结构
Semiconductor surface and metal-insulator-semiconductor structure
重点:
表面态概念 表面电场效应 MIS结构电容-电压特性 硅-二氧化硅系统性质
沈阳工业大学电子科学与技术系
VG 绝缘层 金属栅电极
E
2
(
q p p0 2 rs 0 k 0 T
2
]{[exp(
qV k 0T
)
qV k 0T
1]
n p0 p p0
[exp(
qV k 0T
)
qV k 0T
1]}
令,
qV n p 0 F , k T p n0 0 exp n p0 qV qV 1 k T k T p p0 0 0 LD 2 k T 0 rs 0 q2 p p0
• 当|Vs|较大时,C/C0=1。此时从半导体内部到表面可视为导 通的,电荷聚集在绝缘层两边。 • 当|VG|较小时,|Vs|也很小,此时C/C0值随|Vs|减小而下降。
• 平带状态(Vs = 0,Qs < 0)
半导体物理学习题答案(有目录)
半导体物理学习题答案(有目录)半导体物理习题解答目录1-1.(P32)设晶格常数为a的一维晶格,导带极小值附近能量E c(k)和价带极大值附近能量E v(k)分别为: (2)1-2.(P33)晶格常数为0.25nm的一维晶格,当外加102V/m,107V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
(3)3-7.(P81)①在室温下,锗的有效状态密度Nc=1.05×1019cm-3,Nv=5.7×1018cm-3,试求锗的载流子有效质量mn*和mp*。
(3)3-8.(P82)利用题7所给的Nc和Nv数值及Eg=0.67eV,求温度为300k和500k时,含施主浓度ND=5×1015cm-3,受主浓度NA=2×109cm-3的锗中电子及空穴浓度为多少? (4)3-11.(P82)若锗中杂质电离能△ED=0.01eV,施主杂质浓度分别为ND=1014cm-3及1017cm-3,计算(1)99%电离,(2)90%电离,(3)50%电离时温度各为多少? (5)3-14.(P82)计算含有施主杂质浓度ND=9×1015cm-3及受主杂质浓度为1.1×1016cm-3的硅在300k 时的电子和空穴浓度以及费米能级的位置。
(6)3-18.(P82)掺磷的n型硅,已知磷的电离能为0.04eV,求室温下杂质一般电离时费米能级的位置和磷的浓度。
(7)3-19.(P82)求室温下掺锑的n型硅,使EF=(EC+ED)/2时的锑的浓度。
已知锑的电离能为0.039eV。
(7)3-20.(P82)制造晶体管一般是在高杂质浓度的n型衬底上外延一层n型的外延层,再在外延层中扩散硼、磷而成。
①设n型硅单晶衬底是掺锑的,锑的电离能为0.039eV,300k时的EF位于导带底下面0.026eV处,计算锑的浓度和导带中电子浓度。
(8)4-1.(P113)300K时,Ge的本征电阻率为47Ω.cm,如电子和空穴迁移率分别为3900cm2/V.S和1900cm2/V.S,试求本征Ge的载流子浓度。
半导体物理学第六第七版第一章到第八章完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eVm k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ηηηηηηηη因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===ηsN k k k p k p m dkE d mk k k k VnV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-==ηηηηη所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆ηsat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππηη补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=η(, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAXη=( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX η=-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==ηη (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-==η能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理与器件第四版课后习题答案8
Chapter 88.1In forward bias Then or (a)For 1021=f f I I , thenor6.5921=-V V mV 60≅mV (b)For 10021=f f I I , thenor3.11921=-V V mV 120≅mV_______________________________________ 8.2()4152102108125.2108105.1⨯=⨯⨯==a i po N n n cm 3-()515210210125.1102105.1⨯=⨯⨯==d i no N n p cm 3-(a) 45.0=a V V,121095.3⨯=cm 3- or()111088.9⨯=-p p x n cm 3- (b) 55.0=a V V,141088.1⨯=cm 3- 131069.4⨯=cm 3- (c) 55.0-=a V V_______________________________________ 8.3()516262101.8104108.1-⨯=⨯⨯==a i po N n n cm 3-()4162621024.310108.1-⨯=⨯==d i noN n p cm 3-(a) 90.0=a V V,11100.4⨯=cm 3- 10100.10⨯=cm 3- (b) 10.1=a V V141003.9⨯=cm 3-141026.2⨯=cm 3-_______________________________________ 8.43105.4⨯=cm 3-4105.4⨯=cm 3-(i)()⎪⎪⎭⎫⎝⎛=t a no n n V V p x p exp or ()⎥⎦⎤⎢⎣⎡=no n n t a p x p V V ln599.0=V (ii) n-region - lower doped side 410214.3⨯=cm 3-3105.7⨯=cm 3-(i) ()⎥⎥⎦⎤⎢⎢⎣⎡=po a t a n N V V 1.0ln6165.0=V(ii) p-region - lower doped side_______________________________________ 8.5849.1=A/cm 2()()()849.1103-=-=p n n x AJ I Aor 85.1=n I mA521.4=A/cm 2()()()521.4103-==n p p x AJ I Aor 52.4=p I mA(a) 37.652.485.1=+=+=p n I I I mA _______________________________________ 8.6For an p n + silicon diode or15108.1-⨯=S I A (a) For 5.0=a V V, or71036.4-⨯=D I A(b) For 5.0-=a V V, or15108.1-⨯-=-≅S D I I A_______________________________________ 8.7410568.1-⨯=s J A/cm 2 41044.2-⨯= A or 244.0=I mA810568.1-⨯-= A_______________________________________ 8.81110145.5-⨯=s J A/cm 2 1410029.1-⨯= A (i)()⎪⎭⎫ ⎝⎛⨯=-0259.045.0exp 10029.114I71061.3-⨯= A(ii)()⎪⎭⎫⎝⎛⨯=-0259.055.0exp 10029.114I51072.1-⨯= A (iii)()⎪⎭⎫ ⎝⎛⨯=-0259.065.0exp 10029.114I 41016.8-⨯= A_______________________________________ 8.9We haveor we can write this as so thatIn reverse bias, I is negative, so at90.0-=SI I, we haveor6.59-=V mV_______________________________________ 8.10Case 1: ⎪⎪⎭⎫⎝⎛=t a s V V I I exp1510305.6-⨯=⇒s I A 1210305.6-⨯=mA 810153.3-⨯=mA/cm 2Case 2: ⎪⎪⎭⎫⎝⎛=t a s V V I I exp or 093.1=I mA9102-⨯=mA/cm 2Case 3: ⎪⎪⎭⎫⎝⎛=t a s V V AJ I exp So ⎥⎦⎤⎢⎣⎡=s t a AJ I V V ln6502.0=a V V Then()()1174101010---===s s AJ I mACase 4: ⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0259.072.0exp 20.1exp ta s V V I I1210014.1-⨯=s I mA 51007.5-⨯=cm 2 _______________________________________ 8.1107857.0=da N Nor73.12=adN N (a) From part (a),828.2=daN N or 354.0=adN N _______________________________________ 8.12The cross-sectional area is43105201010--⨯=⨯==J I A cm 2We have which yields1010522.2-⨯=S J A/cm 2 We can write We want or=()10.010472.410071.710071.7333=⨯+⨯⨯da N Nwhich yields Now We find141009.7⨯=d N cm 3- and161001.1⨯=a N cm 3-_______________________________________ 8.13Plot_______________________________________ 8.14 (a)We have4.21==np np D D μμ and 1.01=po no ττ soor(b) Using Einstein's relation, we can write We haved n n Ne μσ= and a p p N e μσ= Also Then_______________________________________ 8.15(a) p-side; or329.0=-F Fi E E eV Also on the n-side; or407.0=-Fi F E E eV (b) We can find()()4.320259.01250==n D cm 2/s ()()29.80259.0320==p D cm 2/sNow or1110426.4-⨯=S J A/cm 2 Then or1510426.4-⨯=S I A We find or61007.1-⨯=I A μ07.1= A (c) The hole current is or⎪⎪⎭⎫⎝⎛⨯=-t D p V V I exp 10278.316 (A) Then_______________________________________ 8.161410342.1-⨯=sp I A ()()()162107419105105.110225105106.1⨯⨯⋅⨯⨯⨯=--- 1510025.4-⨯=sn I A746826.0=V()()()59746.0746826.08.08.0===bi a V V V 141056.1⨯=cm 3- 5101981.4-⨯= A 4103997.1-⨯= A 410820.1-⨯= ANow5104896.8-⨯= A Then510710.9-⨯= A_______________________________________ 8.17(a) The excess hole concentration is given byWe find()41621021025.210105.1⨯=⨯==d i no N n p cm 3- and410828.2-⨯=cm μ828.2=m Then or()⎪⎭⎫⎝⎛⨯-⨯=-41410828.2exp 1081.3x p n δ cm 3-(b) We haveAt 4103-⨯=x cm, or()5966.03=p J A/cm 2 (c) We haveWe can determine that3105.4⨯=po n cm 3- andμ72.10=n L m Then or2615.0=no J A/cm 2 We can also find724.1=po J A/cm 2Then at μ3=x m, or()39.13=n J A/cm 2_______________________________________ 8.18 (a) Problem 8.7 or()⎥⎥⎦⎤⎢⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛=a i a t po p t a N n N V n n V V 21.0ln ln 205.0=V (b) Problem 8.8or ⎥⎦⎤⎢⎣⎡=no n t a p p V V ln ()⎥⎥⎦⎤⎢⎢⎣⎡=d i d t N n N V 21.0ln623.0=V_______________________________________8.19The excess electron concentration is given byThe total number of excess electrons is We may note that ThenWe find that25=n D cm 2/s and μ0.50=n L m Also()41521021081.2108105.1⨯=⨯⨯==a i po N n n cm 3- Then orThen, we find the total number of excess electrons in the p-region to be: (a)3.0=a V V, 41051.1⨯=p N(b)4.0=a V V, 51017.7⨯=p N (c)5.0=a V V, 71040.3⨯=p N Similarly, the total number of excess holes inthe n-region is found to be We find that0.10=p D cm 2/s and μ0.10=p L mAlso()41621021025.210105.1⨯=⨯==d i no N n p cm 3- Then So(a)3.0=a V V, 31041.2⨯=n P(b)4.0=a V V, 51015.1⨯=n P (c)5.0=a V V, 61045.5⨯=n P_______________________________________ 8.20Then so orWe then have or Then or769.02=g E eV_______________________________________ 8.21(a) We havewhich can be written in the form or(b) Taking the ratioFor 3001=T K, 0259.01=kT ,61.3811=kT For 4002=T K, 03453.02=kT , 96.2812=kT (i) Germanium: 66.0=g E eV or138312=S S I I (ii) Silicon: 12.1=g E eVor5121017.1⨯=S S I I _______________________________________ 8.22Plot_______________________________________ 8.23First case: or()05049.0102ln 50.0ln 4=⨯==sf a t I I V V VNow ()⎪⎭⎫⎝⎛=3000259.005049.0T8.584=⇒T K Second case:or 272102519.8⨯=i n NowBy trial and error, 502≅T KThe reverse-bias current is limiting factor. _______________________________________ 8.24()()37101010--===po p p D L τcmor μ10=p L m; p n L W <<⇒(i)()()⎪⎪⎭⎫ ⎝⎛==tano d n n VV p N x p exp 1.0 or ()⎥⎥⎦⎤⎢⎢⎣⎡=221.0ln i d t a n N V V 5516.0=a V V(ii)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=t ad i n p p V VN n W AeD I exp 2310565.4-⨯=p I A 61026.2-⨯=n I A 310567.4-⨯= A or 567.4=I mA (b)(i)()()⎪⎪⎭⎫⎝⎛==-t a po a p p V V n N x n exp 1.0 or ()⎥⎥⎦⎤⎢⎢⎣⎡=221.0ln i a t a n N V V 5516.0=a V V (ii)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=t adi n p p V VN n W AeD I exp 2 510565.4-⨯=p I A 4102597.2-⨯=n I A 410716.2-⨯= A or 2716.0=I mA_______________________________________ 8.25(a) We can write for the n-region The general solution is of the formThe boundary condition at n x x =gives and the boundary condition at n n W x x += givesFrom this equation, we haveThen, from the first boundary condition, weobtainWe then obtainwhich can be written as We can also findThe solution can now be written as or finally (b)=⎪⎪⎭⎫⎝⎛⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-p n t a no p L W V V p eD sinh 1expThen_______________________________________ 8.26For the temperature range 320300≤≤T K,neglect the change in c N and υN . ThenTaking the ratio of currents, but maintainingD I a constant, we have We then have We have300=T K , 60.01=D V V and 0259.01=kT eV,0259.01=ekT V 310=T K ,02676.02=kT eV,02676.02=ekT V 320=T K ,02763.03=kT eV,02763.03=ekT V For 310=T K , which yields5827.02=D V V For 320=T K , which yields5653.03=D V V_______________________________________ 8.27(a) We can writewhere C is a constant, independent of temperature.As a first approximation, neglect the variation of c N and υN with temperatureover the range of interest. We can then writewhere 1C is another constant, independent oftemperature. We find or_______________________________________ 8.281510323.2-⨯=s I A We find7665.0=V and510109.6-⨯=W cm Then()()()()()751019410210109.6105.1106.110----⨯⨯⨯=gen I 1110331.7-⨯= A_______________________________________ 8.29(a) Set gen S I I =,so 131321050.2109528.3100545.3--⨯+⨯⨯=i n 1410734.4⨯=cm 3- ThenBy trial and error,567≅T K We have()()()()()751419410210109.610734.4106.110----⨯⨯⨯=Thengen s I I +610314.2-⨯= Aor μ314.2==gen s I I A (b) From Problem 8.281510323.2-⨯=s I A 1110331.7-⨯=gen I ASo ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=t a gen t a s V V I V V I I 2exp exp 5366.0=V_______________________________________ 8.305.142=cm 2/s()()70.52200259.0==p D cm 2/s(a)(i)⎥⎥⎦⎤⎢⎢⎣⎡+=00211p p dn nais D N D N Aen I ττ 221050.1-⨯=s I A (ii)⎪⎪⎭⎫⎝⎛=tas D VV I I exp 1210726.1-⨯= A(iii)()⎪⎭⎫⎝⎛⨯=-0259.08.0exp 1050.122D I910896.3-⨯= A(iv)()⎪⎭⎫⎝⎛⨯=-0259.00.1exp 1050.122D I610795.8-⨯= A(b)02τWAen I i gen =263.1=V 510201.4-⨯=cm (i)Then()()()()()856194102210201.4108.1106.1102----⨯⨯⨯⨯⨯=genI 1410049.6-⨯= A(ii)⎪⎪⎭⎫⎝⎛=t a ro rec V V I I 2exp 910436.6-⨯= A(iii)()()⎪⎪⎭⎫⎝⎛⨯=-0259.028.0exp 10614rec I710058.3-⨯= A(iv)()()⎪⎪⎭⎫⎝⎛⨯=-0259.020.1exp 10614rec I510453.1-⨯= A_______________________________________ 8.31Using results from Problem 8.30, we find 4.0=a V V, 161064.7-⨯=d I A, 101035.1-⨯=rec I A, 101035.1-⨯≅T I A6.0=a V V, 121073.1-⨯=d I A 91044.6-⨯=rec I A, 91044.6-⨯≅T I A8.0=a V V, 91090.3-⨯=d I A71006.3-⨯=rec I A, 71010.3-⨯=T I A0.1=a V V, 61080.8-⨯=d I A 51045.1-⨯=rec I A, 51033.2-⨯=T I A2.1=a V V. 21099.1-⨯=d I A 41090.6-⨯=rec I A,21006.2-⨯=T I A_______________________________________ 8.32Plot_______________________________________ 8.33Plot_______________________________________ 8.34We have thatLet O nO pO τττ≡= and i n p n ='='We can write andWe also have so thatThen DefinekT eV a a =η and ⎪⎪⎭⎫⎝⎛-=kT E E Fi Fn η Then the recombination rate can be written asorTo find the maximum recombination rate, setorwhich simplifies toThe denominator is not zero, so we have orThen the maximum recombination rate becomes orwhich can be written asIf ()e kT V a >>, then we can neglect the (-1)term in the numerator and the (+1) term in thedenominator, so we finally have_______________________________________ 8.35We haveIn this case, 19104⨯='=g G cm 3-s 1- and isa constant through the space charge region. Then We find or659.0=bi V V Also or41035.2-⨯=W cm Then or3105.1-⨯=gen J A/cm 2_______________________________________ 8.36 or1110638.1-⨯=S J A/cm 2 Now We want orwhich can be written as We find or548.0=D V V_______________________________________ 8.3781016.1-⨯= For 6.11=d C nF91016.1-⨯= F or 16.1=d C nF_______________________________________ 8.38(a) VQC d ∆∆=, For 2.1=D I mA101079.5-⨯= C (b) For 12.0=D I mA 111079.5-⨯= C_______________________________________ 8.39For a n p + diodet DQ d V I g =, tpODQ d V I C 2τ=Now231086.30259.010--⨯==d g Sand()()()9731093.10259.021010---⨯==d C FWe havewhere f πω2= We obtain10=f kHz , 0814.09.25j Z -=100=f kHz , 814.09.25j Z -= 1=f MHz , 41.76.23j Z -= 10=f MHz , 49.738.2j Z -= _______________________________________ 8.40Reverse bias790.0=Vr bi j V V C +⨯=-12101078.5 FR V (V) j C (pF) 10 1.555 5 2.123 3 2.624 1 3.818 0 5.74720.0- 6.650 40.0- 8.179 Forward biasFor no po d a I I N N >>⇒>> Then()⎪⎪⎭⎫⎝⎛⨯=-t a po V V I exp 10006.114A a V (V) d C (F) + j C (F)= Total C (F)_______________________________________ 8.41For a n p + diode, nO pO I I >>, then Now6105.22-⨯=tpOV τF/AThen or7103.1-⨯=pO τsAt 1 mA, or9105.2-⨯=d C F_______________________________________ 8.42(i) tp po d V I C 20τ=or ()()()7910100259.022--==p d t po C V I τ 41018.5-⨯= A or 518.0=po I mA(ii) ⎪⎪⎭⎫ ⎝⎛⋅=t a d i p ppo V V N n D Ae I exp 20τ 618.0=V(iii) Ω=⨯==-5010518.00259.03D t d I V r(b)(i)()()()790101025.00259.022--⨯==p d t po C V I τ 410295.1-⨯= Aor 1295.0=po I mA(ii) ()⎪⎪⎭⎫⎝⎛⨯⨯=--1431025.2101295.0ln 0259.0a V5821.0=V(iii) Ω=⨯=-200101295.00259.03d r_______________________________________ 8.43(a) p-region: so orn-region: so orThe total resistance is or (b)which yields 38.1=I mA_______________________________________ 8.44 orWe can write(a) (i) For 1=D I mA, or 567.0=V V (ii) For 10=D I mA, or 98.1=V V (b) Set 0=R (i) For 1=D I mA, or 417.0=V V (ii) For 10=D I mA, or 477.0=V V_______________________________________ 8.45or 41009375.8-⨯=D I A 4896.0=a V V(a) 4103167.4600259.0-⨯===d t D r V I A 4733.0=V_______________________________________ 8.46(a) ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==t a t S a Dd V V V I dV dI r exp 11 orwhich yields (b)which yields_______________________________________ 8.47(a) If 2.0=FR I IThen we have orWe find(b) If 0.1=FR I I, thenwhich yields_______________________________________ 8.48(a) erf RF Fp s I I I t +=τerf 3.0= erf ()5477.0≅erf ()56332.055.0= Then FR I I +=1156332.0 (b) erf()⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-+F Rp p p II t tt 1.01exp 02022τπττ By trial and error,80.002≅p t τ_______________________________________ 8.4918=j C pF at 0=R V 2.4=j C pF at 10=R V V We have710-==pO nO ττs , 2=F I mA and 11010==≅R V I R R mA So or7101.1-⨯=s t s Also1.1122.418=+=avg C pF The time constant is71011.1-⨯=s Now, the turn-off time is or71021.2-⨯=off t s_______________________________________ 8.50()()()136.1105.1105ln 0259.0210219=⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯=bi V VWe find which yields71017.6-⨯=W cm oA 7.61=_______________________________________ 8.51Sketch_______________________________________ 8.53From Figure 7.15, 15109⨯≅d N cm 3- Let 17105⨯=a N cm 3-()4152102105.2109105.1⨯=⨯⨯==d i no N n p cm 3- Then()6295.0105.2109ln 0259.0414=⎪⎪⎭⎫⎝⎛⨯⨯=a V V1210389.1-⨯= A or 21091.4-⨯=A cm 2_______________________________________。
半导体物理第八章 半导体表面和MIS结构
8.1表面电场效应 8.1.1空间电荷层及表面势
⑵多数载流子的耗尽状态(耗尽层)
电场由半导体表面指向体内, 表面势为正值,表面处能带
ε
越靠近表面向下弯曲。越接
近表面,半导体价带顶离费
米能级越远,价带顶处的空
穴浓度随之降低。表面处空
穴浓度较体内空穴浓度低得
多,表面层的负电荷基本上
等于电离受主杂质浓度——
qV
exp( ) 1
p qpP0 LD 0
k0T
dV
2k0T Vs F ( qV , n p0 )
同理可得
k0T p p0
exp( qV ) 1
n qpP0 LD 0
k0T
dV
2k0T Vs F ( qV , n p0 )
k0T p p0
8.1 表面电场效应 8.1.2 表面空间电荷层的电场、电势和电容
8.1表面电场效应 8.1.1空间电荷层及表面势
│E│ Vs
在空间电荷区内,电场的 方向由半导体与绝缘层的 交界面(半导体表面)指 向半导体内部,同时空间 电荷区内的电势也随距离 而变化,这样半导体表面 相对体内产生了电势差, 同时能带在空间电荷区内 发生了弯曲。
8.1表面电场效应 8.1.1空间电荷层及表面势
,
np0 ) p p0
根据高斯定理,表面处电荷面密度Qs与表面处 的电场强度有如下关系
Qs rs 0 Es
8.1 表面电场效应 8.1.2 表面空间电荷层的电场、电势和电容
带入可得表面处电荷面密度
当金属电极为正,即Vs>0,Qs用负号;反之 Qs用正号。可以看出,表面空间电荷层的电荷 面密度QS随表面势VS变化,正体现出MIS结构 的电容特性。
半导体物理学第八章
理想MOS结构的能带图
热平衡情形能带结构: 1)三种材料接触构成MOS结构,在热平衡情况下Ef = 常数,正如schottky接触或P-N结二极管。 2)通过SiO2的电流为0,因此,MOS结构由靠自身结 构首先由非平衡达到平衡的过程将非常漫长,或者需 要通过辅助的导电路径,实现热平衡。 理想MOS的平衡能带图 对于MOS结构,重要的 是了解不同偏置电压下的 能带结构和电荷分布情形
(4)
实际MOS结构及其C-V特性
★ MOS结构的微分电容 ♦ 栅压-- VG= VOX+ VS , ♦ 当不考虑表面态电荷,半导体的总电荷 面密度-- QS = QSC = - QG ♦ MOS结构的微分电容— C dQG/dVG
1 dVG dVOX dVS C dQG dQG dQG
VS 0
2 rs 0 LD
♦ 德拜长度
2 rs 0 kT LD e2 N A
对半导体表面空间电荷区电容的小结: ♦ 表面积累, CSC很大
♦ 表面耗尽
CSC
rs 0
d
♦ 表面反型, CSC很大
♦ 表面平带
CSC CFBS
2 rs 0 LD
理想MOS结构
金属-氧化物(SiO2)-半导体(Si) (MOS)结构是 主流半导体器件CMOS的重要组成部分, 典型 的结构如Al/SiO2/p-Si, 其基本的能带结构参数如下图所示。
d
2 rs 0 VS eN A
QSC eN Ad
Csc
rs 0
d
图8-7
③表面反型(强反型): ♦当VS =2VB 耗尽层宽度达到最大
4 rs 0 d dM VB eN A
半导体物理》第八章
ND ni
0.026
ln
7 1014 1.5 1010
0.28eV
Vs VB,此时为耗尽状态
Vs
qND xd 2
2 rs 0
xd
2 rs0 Vs 0.672um
qNd
3、解: 5.cm ND 1015 cm3
CFB C0
1 3.9 11.9
2VB
Байду номын сангаас
QS 2 k0T ln N A
C0
q ni
把Qs
m2 rs 0k0TN AV
qLD
F ( qVs k0T
,
n )代人上式,得 pp0
VG
2rs0k0TNAV
C0qLD
F ( qVs k0T
,
np0 ) pp0
2k0T q
ln
NA ni
5、解:
(1)VG>0时,表面势为正值,表面处能带向下弯 曲,随着向表面靠近,导带底将逐渐移近甚至低于 费米能级,同时导带中电子浓度也将随之增加,这 样形成多数载流子的堆积。
《半导体物理》第八章 习题答案
解:在表面层中,由泊松放出得:
d 2V dx2
(x) rs
(x) q(nD pp pA np )
由题意得: Pp np
d 2V dx2
q(np0 pp0)
rs 0
q( pp0 np0)
rs 0
两边都乘以d v,并积分得:
(2)三角形电荷分布,金属附近高,硅附近为0
d0
0
0
d0
(d0
半导体物理--第八章 半导体的光电性质及光电效应
定态光电导与光强的关系,存在两种情况:
n=1, s I s I n=0.5, s I
(3)杂质吸收
杂质能级上的电子(或空穴)吸收光子跃迁到导带 (或价带)能级中,称为杂质吸收。 所以吸收的长波限为: h c =E i
0
(4)晶格吸收 光子能量直接转换为晶格振动能。
第八章 半导体的光电性质及光电效应
• 8.1 半导体的光学常数 • 8.2 半导体的光吸收 • 8.3 半导体的光电导
k k
E=E -E h
跃迁前后动量改变为:
hk=hk hq k k q
二. 其他吸收过程 (1)激子吸收 电子和空穴互相束缚形成 一个新的电中性系统。 特点: * h E g * 激子是电中性的。 * 激子能在晶体中运动。 * 激子消失形式:分离;复合
(2)自由载流子吸收 电子在导带中不同能级间的跃迁,或空穴 在价带中不同能级间的跃迁。
hk+光子动量 hq=hk
通常, h h a 光子的动量比 hq 小得多,所以
E h=E hk hq=hk
(1)直接跃迁
一个电子只吸收 一个光子,不与 晶格交换能量。
跃迁前后能量改变为:
E=E -E h
跃迁前后动量没有改变:
hk hk
(2)间接跃迁
跃迁前后能量改变为:
(2)复合中心和多数载流子陷阱的综合作用 对光电导的影响。 (a)如果同时存在多数载流子陷阱,陷阱效应对 半导体光电导的弛豫时间有决定性的影响,延长 了光电导的上升和下降的弛豫时间,并且可使两 者很不相同。
半导体物理分章节答案第八章节
重点与难点
重点
能带结构、载流子类型和浓度、 迁移率的概念和计算方法。
难点
能带结构的理解、迁移率的物理 机制和影响因素。
学习目标
掌握半导体的能带结构、载流子 类型和浓度的基本概念和计算方
法。
理解迁移率的物理机制和影响因 素,掌握迁移率的计算方法。
能够运用所学知识解决一些简单 的半导体物理问题,培养分析和
电子器件
通信技术
半导体材料是制造电子器件的主要材料, 如晶体管、集成电路、太阳能电池等。
半导体技术在通信领域的应用广泛,如光 纤通信、卫星通信、移动通信等。
计算机技术
新能源
计算机技术的快速发展离不开半导体技术 的支持,如CPU、内存、硬盘等关键部件 都由半导体材料制成。
半导体技术在新能源领域的应用也日益广 泛,如太阳能电池、风力发电等。
03 第八章节习题解答
选择题
题目:在半导体中,哪种类型的载流子导电能题
(C) 受主离子
(D) 施主离子
答案:(B) 自由空穴。自由空穴是半导体中导电能力最强的载流子,因为它们在半导体中更 容易移动和扩散。
选择题
题目:在半导体中,哪种类型的载流子浓度最高? (A) 自由电子
(B) 自由空穴
选择题
01
(C) 受主离子
02
(D) 施主离子
答案:(A) 自由电子。在半导体中,自由电子的浓度通常高于自
03
由空穴的浓度,这是由于电子的迁移率高于空穴。
填空题
题目
在半导体中,电子和空穴的运动受到哪些因素的影响?
答案
在半导体中,电子和空穴的运动受到温度、掺杂浓度、电场和磁场等因素的影响。温度越 高,电子和空穴的平均动能越大,迁移率越小;掺杂浓度越高,载流子浓度越高,导电能 力越强;电场和磁场可以改变电子和空穴的运动方向和速度。
尼曼 半导体物理及器件第八章
pnxnpn0expekV Ta
np
n p0
Ln
pn
Lp
p n0 n p0
Ln
np
Lp p n0
pn
x p x0 x n
x p x0 x n
(5)理想pn结电流
• 第四个假设
– pn结电流为空穴电流和电子电流之和 – 空间电荷区内电子电流和空穴电流为定值
因此,耗尽区靠近n型区一侧边界处空穴的扩散电流密度为:
Jn xp eDndndpxx
xxp
利用少子分布公式,上式简化为:
Jn xp eD L nn np0 exp e kV T a 1
pn结正偏,上述电子电流密度也是沿着x轴正方向。
若假设电子电流和空穴电流在通过pn结耗尽区时保持不变,则 流过pn结的总电流为:
J J p x n J n x p e D L p p p n 0 e D L n n n p 0 e x p e k V T a 1
pn
pn0
expekVTa
正偏pn结耗尽区 边界处少数载流 子浓度的变化情 况
反偏pn结耗尽 区边界处少数 载流子浓度的 变化情况
例8.1
(4)少数载流子分布
假设:中性区内电场为0 无产生,稳态pn结,长pn结
0
0
0
D n 2x 2n n E x n g n n 0 tn
双极输运方程可以简化为:
高等半导体物理 与器件
第八章 pn结二极管
本章内容
• pn结电流 • 产生-复合电流和大注入 • pn结的小信号模型
8.1 pn结电流
(1)pn结内电荷流动的定性描述
• pn 结加正偏Va,Va基本上全降落在耗尽区的势垒上
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
rs 0k0T
N
A
ln
NA ni
讨论
(1)用电荷面密度与Vs的定性关系解释C-V特性 (2) C-V特性与频率有关,可利用高频特性判断
半导体的导电类型 (3)MIS结构的半导体材料及绝缘体材料一定时,
利用C-V特性测试d0及掺杂浓度
(2)金属与半导体功函数差对MIS结构C-V特性的影响
例:当Wm < Ws 时(P型半导体)将导致C-V特性曲线向负 栅压方向移动。
np0 pp0
1/ 2
exp
qVs 2k0T
Es
2k0T qLD
np0 pp0
1/ 2
exp
qVs 2k0T
2ns
k0T
rs 0
1/ 2
1/ 2
Qs
2 rs 0k0T
qLD
np0 pp0
exp
qVs 2k0T
(2k0T
rs 0ns
)1/
2
1/ 2
1/ 2
Cs
rs 0
LD
np0 pp0
• 当|VG|较小时,|Vs|也很小,此时C/C0值随|Vs|减小而下降。
• 平带状态(Vs = 0,Qs < 0)
CFB
C0 1 r0 rs
1
rs 0k0T
q2 N Ad02
• 耗尽状态(Vs > 0)
C C0
1 r0 rs d0
1 2rs0Vs p p0q
1/ 2
• 强反型后(Vs > 0) A. 低频时
0 x xd
设半导体中性 区电势为零
V
(x)
qN A
2 r0
(x2
2xd
x
xd2
)
V (x) 0 x xd
0 x xd
• 空间电荷区电容
• 空间电荷区宽度
Vs
qN A xd2
2 rs 0
Cs
rs 0
xd
xd
2 r 0Vs
qN A
① 临界强反型时,Vs = 2VB
F
qVs k0T
,
C 1 11 C0 Cs
C0
r00 d0
Cs
dQs dVs
沈阳工业大学电子科学与技术系
归一化电容:
C1
C0 1 C0 Cs
• 多数载流子堆积区(Vs < 0,Qs > 0)
C
1
C0
1
C0 LD
rs 0
exp
qVs 2k0T
• 当|Vs|较大时,C/C0=1。此时从半导体内部到表面可视为导 通的,电荷聚集在绝缘层两边。
N fc
Q fc q
r0 0
qd0
(VFB Vms )
(3)硅-二氧化硅界面处的快界面态
快界面态与表面态类似,指未被饱和的悬挂键,位于 硅-二氧化硅界面处,形成表面能级,可以快速与半导体 的导带或价带交换电荷。之所以称为快界面态是为了与二 氧化硅外表面未饱和键以及吸附的分子、原子等所引起的 表面态区别开。
将上式两边积分,并根据
| E | dV dx
得
E 2 ( 2k0T )2[ q2 pp0 ]{[exp( qV ) qV 1] np0 [exp( qV ) qV 1]}
q 2 rs0k0T
k0T k0T
pp0
k0T k0T
令,
F
qV k0T
,
np0 pn0
exp
qV k0T
qV k0T
作偏压–温度(B-T)实验,可以测量二氧化硅中 单位面积上的Na离子电荷量:
QNa CoVFB
单位面积钠离子电荷数:
NNa
QNa q
• 降低碱金属离子影响的 工艺方法:
(a) 磷稳定化
(b)氯中性化
(2)二氧化硅中的固定表面电荷
二氧化硅层中固定电荷有如下特征 电荷面密度是固定的,不随偏压而变化; 这些电荷位于Si-SiO2界面200Å范围以内 固定表面电荷面密度的数值不明显地受氧化层
硅表面的晶格缺陷和损伤,将增加悬挂键的密度,同样 引入界面态。
界面态的特点: 界面态密度与晶体的晶向有
关。 峰值分布:认为界面态能级
连续地分布在禁带中,其中 有两个高密度峰:一个靠近 导带底为受主界面态;另一 个靠近价带顶为施主界面态 界面态电荷密度随外加偏置 而变,不但可改变平带电压, 还会使C-V曲线形状改变。
于体内,基本上耗尽,表面带负电。
N 型 半 导 体
2、表面空间电荷层的电场、电势及电容
(1)表面电场分布
空间电荷层中电势V(x)满足:
d
2V (x) dx2
(x) 0rs
( x)
q[nD
p
A
p(x)
n(x)]
n(
x)
n
p
0
exp
qV (x) k0T
p(x)
pp0
exp
qV (x) k0T
nD
np0 pn0
qVs k0T
1/ 2
1/ 2
Es
2k0T qLD
qVs k0T
1/ 2
Qs
2 rs 0k0T
qLD
qVs k0T
(2 rs 0qN AVs )1/ 2
开启电压: 使半导体空间电荷层处于临界强反型时, 在MIS结构上所加的栅压。
② 强反型时,Vs >> 2VB
F
qVs k0T
,
np0 pn0
2
(Vs
)1/ቤተ መጻሕፍቲ ባይዱ
2
Cs
rs 0
LD
1
qVs k0T
1/ 2
1/ 2
Cs
N Aq rs 0
2Vs
• 反型状态(强反型、弱反型)
临界反型时,Vs = VB
表面势=费米势
从耗尽到临界强反型状态,空间电荷区电场、电势和电 容均可以通过耗尽层近似求得
E(x)
qN A
r0
( xd
x)
E(x) 0 x xd
exp
qVs k0T
rs 0
LD
ns pp0
(5)关于空间电荷层的讨论
强反型时空间电荷层达到最厚
由8-43式得
1
xd
2 rs
qN
0Vs
A
2
1
当Vs=2VB时xd达到最大xdm 深耗尽现象
4 rs 0k0T
q2NA
ln
NA ni
2
反型层中的电子是通过热激发产生的,需要时间。 若Vs突变、远大于2VB时,空间电荷只能由多子 耗尽方式提供,于是发生深耗尽现象
第八章 半导体表面与MIS结构
Semiconductor surface and metal-insulator-semiconductor structure
重点:
表面态概念 表面电场效应 MIS结构电容-电压特性 硅-二氧化硅系统性质
沈阳工业大学电子科学与技术系
绝缘层
VG 金属栅电极
半导体
强反型高频条件下, 空间电荷层电容保持最小
Cs
Cs min
rs 0
xdm
§8.3 MIS结构的电容-电压特性
C-V characteristics of MIS structure
(1)理想MIS结构的电容-电压特性
绝缘层
VG 金属栅电极
半导体
VG
C0 Cs
MIS结构
等效电路
VG V0 Vs
qVms Ws Wm
Vms
Ws
Wm q
VFB
Vms
Wm
Ws q
平带电压:使零偏时产生的能带弯曲恢复到平带状态所需加 的栅压称为~。
(3)绝缘层中电荷对MIS结构C-V特性的影响
当绝缘层处有一薄层电荷,其面电荷密度为
Q (x)x
VFB
xQ
rs 0
Q CO
x dOX
当绝缘层中有分布电荷
§8.2 表面电场效应
Effect of Surface Electric
• 多子积累状态 • 耗尽状态 • 反型状态
理想MIS结构
(1) Wm=Ws ; (2)绝缘层内无电荷,且绝缘层不导电; (3)绝缘层与半导体界面处不存在界面态; (4)由均匀半导体构成,无边缘电场效应。
绝缘层
VG 金属栅电极
Qs 0 rs Es
Qs
2 0 rsk0T
qLD
F
qVs k0T
,
np0 pn0
(3)表面电容Cs
Cs
Qs Vs
Cs
0 rs
LD
exp
qVs k0T
1
np0 pp0
exp
qVs k0T
F
qVs k0T
,
np0 pn0
1
(4)各种状态下的表面电场、电荷量、电容
• 多数载流子堆积状态(Vs < 0,Qs > 0)
• 少子的产生-复合跟得上小信号的变化。
C C0 1
1
r0LD
1/ 2
rsd0
np0 pp0
exp
qVs k0T
|Vs |
1
• 强反型后(Vs > 0) B. 高频时
• 反型层电荷对MIS电容没有贡献。
Cs
Cs min
rs 0
xdm
C C0
Cm in C0
1
1
r0
xdm
rsd0
1 2 r0 q rsd0
(1)多数载流子堆积状态
P型半导体
Qs Qm
VG<0