小学数学教学中思想方法

合集下载

小学数学中体现的数学思想与方法有哪些

小学数学中体现的数学思想与方法有哪些

小学数学中体现的数学思想与方法有哪些在小学数学中,体现了许多数学思想与方法,以下是其中一些例子:1.抽象思维:小学数学强调从具体的事物中提取共性、去除特殊性,实现抽象思维。

例如,学习数的运算时,通过将具体的事物抽象成数字,进行运算操作;学习几何时,通过将具体的图形抽象成几何形状,并进行相应的运算和推理。

2.归纳与演绎:小学数学通过归纳与演绎的方法培养学生的逻辑思维能力。

通过观察和总结,归纳出事物之间的规律,并进一步演绎出更一般的结论。

例如,学习数列时,通过观察数列中的规律,归纳出通项公式,从而推算出数列的任意项。

3.探究性学习:小学数学注重培养学生的探究精神和问题解决能力。

通过设计问题和情境,引导学生主动思考和探索。

例如,教学中可以使用教具和故事情境,让学生通过操作、实践和讨论解决问题。

这种学习方式能够激发学生的学习兴趣,增强他们的思考能力和创新能力。

4.决策与推理:小学数学通过决策问题和推理问题的解决过程,培养学生的逻辑思维和批判思维能力。

通过分析问题,寻找解决方案,并进行论证和验证。

例如,在解决实际问题时,学生需要选择合适的数学方法,进行计算和推理,从而得到正确的答案。

5.审美与美感:小学数学通过培养学生的审美意识,提高他们对数学美感的感知和理解能力。

例如,在几何学习中,学生通过观察和欣赏各种几何形状、图案和艺术作品,体验到数学的美妙和魅力。

6.适度抽象与形象思维:小学数学在引导学生进行适度抽象时,也注重发展形象思维。

通过使用具体的物体和图形,辅助学生理解数学概念、规则和运算。

例如,在学习分数时,可以使用物体的切割和图形的绘制,帮助学生形象地理解分数的概念和运算。

7.整体与部分:小学数学注重培养学生分析整体与部分之间的关系与变化的能力。

例如,在学习分数时,学生需要理解分数是整体与部分的关系,能够将一个整体分成几个相等的部分,并掌握分数的基本概念和运算规则。

以上只是一些例子,小学数学中还有许多其他数学思想与方法的体现。

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些

小学数学中常见的数学思想方法有哪些1.归纳法:通过观察一般情况,从而推断出普遍规律。

例如,通过寻找一些数列的规律,利用归纳法可以推出数列的通项公式。

2.逆向思维:通过逆向思考问题,从结果出发逆推回起始状态。

逆向思维常用于解决逻辑推理和问题求解。

例如,将一个求和问题转化为找到使得等式成立的数。

3.分解与组合:将一个大问题分解为若干个较小的子问题,然后通过解决子问题得到解决整个问题的方法。

这种思想方法常用于解决复杂的问题,可以降低问题的难度。

4.比较与类比:通过比较或类比不同的情况或对象,找到相似之处或变化的规律,从而解决问题。

例如,可以通过类比找到两个数的最大公约数和两个数的最大公倍数之间的关系。

5.推理与证明:通过逻辑推理和数学证明解决问题。

推理与证明是数学思维中最基本和最重要的方法之一、通过推理和证明,可以建立数学定理和推理规则,从而解决更复杂的问题。

6.抽象与泛化:将问题抽象为一般性质或模式,从而简化问题,找到问题的本质。

抽象与泛化是数学思想中的核心思维方法之一,通过抽象和泛化,可以建立数学概念和定理。

7.反证法:通过反证得到正证结论。

反证法常用于证明一些结论的唯一性或否定性。

通过假设结论不成立,然后推导出与已知条件矛盾的结果,从而得到结论的成立性。

8.猜想与验证:通过猜想和验证的方法解决问题。

猜想与验证是一种探索性的方法,通过发现规律和验证猜想的正确性,找到问题的解决方法。

9.近似与估算:通过近似和估算的方法解决问题。

近似与估算是数学思维中的实用方法之一,可以在缺乏精确计算方法时得到近似的结果。

以上是小学数学中常见的数学思想方法,请注意,数学思想方法的具体应用还受到问题性质、题型以及学生认识和思维水平的影响,因此,教学中还应根据具体情况灵活运用。

小学数学中常见的数学思想方法有哪些?

小学数学中常见的数学思想方法有哪些?

小学数学中常见的数学思想方法有哪些?答;1、集合思想。

集合思想对数学的影响巨大,很多的数学分支都需要用集合语言表达。

①教学中要注重集合概念的渗透。

例如,认识“2”的教学中,例举多个两个物体,这多个两个物体的所在类的代表就是“2”。

又如六头猪和六只狗等所在类的代表就是“6”。

这里的2、6就是集合的基数。

”②教学中要注重集合关系的渗透。

如:一一对应关系,包含关系等。

③教学中要注重集合运算的渗透。

如:加法运算其实就是并集,减法运算的结果就是差集。

2、数形结合思想。

数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。

数与形之间的联系即称为数形结合,或形数结合。

数形结合,主要指的是数与形之间的一一对应关系。

数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。

即“以形助数”或“以数解形”。

作为一种数学思想方法,数形结合的应用一般可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系。

数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决很多数学问题。

①利用数与形的对应来理解数学概念。

例如:认识分数的教学。

②利用数与形的对应解应用题。

例如:画线段图解应用题。

③坐标思想。

用方程表示图形,沟通数形之间的关系。

在教学中要培养学生积极主动地利用数形结合的思想解决问题。

3、函数思想。

函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律。

函数的思想方法就是提取问题的数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系,并利用函数的性质研究、解决问题的一种数学思想方法。

在小学阶段学习的对应关系,正、反比例关系中就蕴藏中基本的函数思想。

4、变换与转化思想。

变换与转化思想是中小学数学中最重要的数学思想,充分重视这种数学思想方法在解题中的应用,不但可使问题化繁为简、化难为易,而且还可以提高学生的思维品质,培养学生的创新能力。

浅谈小学数学教学中的数学思想方法

浅谈小学数学教学中的数学思想方法

浅谈小学数学教学中的数学思想方法小学数学教学中的数学思想方法是指在教学过程中,教师引导学生通过观察、比较、抽象、推理、解决问题等一系列思维活动,培养和发展学生的数学思维能力。

以下是几种常见的数学思想方法。

一、分析归纳法:通过观察具体的数学现象,总结规律、归纳规则,从而形成一般性的数学概念和理论。

如在教学中,通过观察一组数据,学生可以通过分析归纳,得出相应的规律,并运用到解决问题中。

二、抽象方法:将具体问题中的某些特征抽象出来,形成一般性的数学模型,从而解决类似的问题。

在教学中,通过将具体的几何图形抽象成图形的性质、关系等概念,可以解决各种不同几何问题。

三、推理方法:通过已知条件和数学方法,推导出未知结论,通过逻辑推理的过程来解决问题。

在教学中,通过已知两个角相等推导出两个角的性质,从而解决各类相似三角形的问题。

四、问题解决方法:通过让学生参与问题的提出、分析和解决,培养学生的数学思维能力和解决实际问题的能力。

在教学中,设计一些实际生活中的问题,让学生运用所学的数学知识解决问题,培养他们的创造思维和解决问题的能力。

五、探究方法:通过给学生提供一些有趣的数学问题,让学生自主探究、发现数学规律和方法,从而激发学生的学习兴趣和积极性。

在教学中,通过给学生提供一些有趣的数学游戏,让学生发现其中的数学规律,并从中得到启示。

数学思想方法是在小学数学教学中培养学生主动思考、发现问题、解决问题的能力的重要途径。

教师需要在教学中注重培养学生的观察力、归纳总结能力、抽象思维能力、逻辑推理能力和问题解决能力等各方面的数学思维方法,以提高学生的数学素养和综合能力。

教师还应根据学生的实际情况,采取不同的教学手段和方法,灵活运用各种数学思想方法,激发学生的学习兴趣,促进学生的数学思维能力的发展。

小学数学教学中渗透数学思想方法8篇

小学数学教学中渗透数学思想方法8篇

小学数学教学中渗透数学思想方法8篇第1篇示例:小学数学教学中渗透数学思想方法我们要注重启发式教学。

启发式教学是指通过引导学生自己发现问题、解决问题的方法,培养学生的主动学习兴趣和能力。

在小学数学教学中,我们可以通过设置各种问题情境,让学生自己去探索、发现并解决问题。

通过教学实例让学生自己总结规律,而不是直接告诉学生规律;通过提供多种解题方法,让学生思考和选择最合适的方法等。

这样不仅可以让学生在实践中理解和掌握数学知识,也能够培养学生的发散思维和思维方式。

我们要注重引导学生运用数学知识解决实际问题。

数学是一种实用的学科,它不仅存在于教科书中,更贴近生活,与实际问题联系紧密。

在小学数学教学中,我们可以引导学生将所学的数学知识应用到日常生活中,比如用数学知识解决购物问题、旅行问题,甚至家庭生活中的一些问题。

通过这样的方式,可以让学生更加深入地理解数学知识,认识到数学在实际生活中的重要作用,激发学生学习数学的兴趣和动力。

我们要注重培养学生的数学思维方式。

数学思维方式是指在解决问题时使用的逻辑思维方式和解决问题的方法。

在小学数学教学中,我们可以通过引导学生多进行逻辑推理、事物分类、抽象思维等活动,培养学生的数学思维方式。

可以通过故事、游戏等方式培养学生的逻辑思维能力;通过实践活动培养学生的分类认识能力;通过数学问题讨论培养学生的抽象思维能力等。

这样可以帮助学生建立起正确的数学思维方式,为学习更高级的数学知识打下良好的基础。

在小学数学教学中,渗透数学思想方法是非常重要的。

通过启发式教学、引导学生运用数学知识解决实际问题、培养学生的数学思维方式和解决问题能力等方法,可以让学生更好地掌握和运用数学知识,培养学生良好的数学思维方式,为学生今后更深入地学习数学打下良好的基础。

希望广大小学数学教师在教学中能够注重渗透数学思想方法,让学生在学习数学的过程中获得更多的乐趣和收获。

第2篇示例:小学数学教学中渗透数学思想方法小学数学教学中渗透数学思想方法的重要性体现在培养数学思想方面。

一小学数学教学中应渗透哪些数学思想方法

一小学数学教学中应渗透哪些数学思想方法

一小学数学教学中应渗透哪些数学思想方法小学数学教学应渗透以下数学思想方法:1.抽象思维:培养学生的抽象思维能力,让他们能够看到问题的本质,理解概念和规律,并将其应用到解决问题中。

教师可以通过引导学生进行模式发现,分类归纳等活动来培养学生的抽象思维。

2.推理思维:培养学生的推理能力,让他们能够根据已知的条件进行推理,分析问题,找到解决问题的方法。

教师可以通过给学生出一些有关推理的问题,引导他们进行推理,培养他们的推理思维。

3.创造思维:培养学生的创造能力,让他们能够灵活运用数学知识,提出新的解决方法或创造新的问题。

教师可以给学生提供一些开放性的问题,鼓励他们进行独立思考和探索,培养他们的创造思维。

4.归纳思维:培养学生的归纳能力,让他们能够通过观察和总结,找到规律,并将其应用到解决问题中。

教师可以通过给学生提供一些序列等问题,引导他们进行观察和归纳,培养他们的归纳思维。

5.问题解决思维:培养学生的问题解决能力,让他们能够在实际问题中应用数学知识,找到解决问题的方法。

教师可以给学生提供一些实际问题,引导他们进行分析和解决,培养他们的问题解决思维。

6.模型建立思维:培养学生的模型建立能力,让他们能够将实际问题转化为数学问题,建立数学模型,并运用数学知识解决问题。

教师可以给学生提供一些实际问题,引导他们建立数学模型,培养他们的模型建立思维。

7.概率思维:培养学生的概率思维能力,让他们能够理解和运用概率知识,进行概率推理和问题求解。

教师可以通过给学生提供一些概率问题,引导他们进行推理和求解,培养他们的概率思维。

8.探究思维:培养学生的探究能力,让他们能够主动去发现问题,从实践中获取知识,通过实验和观察得出结论。

教师可以通过给学生提供一些探究性的数学问题,引导他们进行实践和观察,培养他们的探究思维。

9.计算思维:培养学生的计算能力,让他们能够灵活运用数学计算方法,进行正确的计算和推理。

教师可以通过对学生进行大量的口算训练,培养他们的计算思维。

小学数学教学中数学思想方法的指导8篇

小学数学教学中数学思想方法的指导8篇

小学数学教学中数学思想方法的指导8篇第1篇示例:小学数学教学是培养学生数学思想和方法的重要阶段,在教学中如何有效引导学生运用数学思想方法解决问题,是提高学生数学能力的关键。

本文将从数学思想和方法的特点以及教学中的指导方法等方面进行探讨,希望能为小学数学教师提供一些实用的指导。

一、数学思想和方法的特点1. 抽象性:数学是一门抽象的学科,要求学生将具体问题抽象为符号和公式进行运算和推理。

培养学生的抽象思维是数学教学的重点之一。

3. 推理性:数学是一门推理性强的学科,要求学生通过推理和证明来解决问题。

培养学生的推理能力是数学教学的重要任务。

1. 培养抽象思维:在教学中要引导学生从具体问题中抽象出规律和模式,帮助他们建立起抽象思维的能力。

可以通过具体问题的范例和反例,引导学生总结规律和形成模式。

2. 强化逻辑推理:在教学中要注重培养学生的逻辑推理能力,引导他们遵循数学规律进行推理和演绎。

可以通过数学证明和实例分析等方式,帮助学生理清逻辑关系,提高他们的逻辑思维能力。

3. 培养问题解决能力:在教学中要鼓励学生主动提出问题、探索解决问题的方法,培养他们的问题解决能力。

可以通过开放性问题和实践性问题激发学生的求知欲和探索精神,引导他们灵活运用已有知识解决新问题。

4. 提倡合作学习:在教学中要注重学生之间的合作交流,激发团队合作精神,培养学生彼此协作和相互理解的能力。

可以通过小组讨论、互助学习等形式,激发学生的学习兴趣和参与度,提高他们的数学学习效果。

5. 注重实践应用:在教学中要注重将数学知识与实际生活相结合,帮助学生理解数学的应用价值。

可以通过数学游戏、实践探究等方式,让学生在实际操作中体验和感悟数学知识的意义和价值。

通过以上几点指导,相信可以有效提高小学生数学思想和方法的应用能力,培养他们的数学兴趣和学习潜力,为他们未来的学习和生活打下坚实的数学基础。

希望小学数学教师们能够根据学生的特点和实际情况,灵活运用这些指导方法,不断探索和创新数学教学的路径,为学生成长成才贡献自己的力量。

小学数学思想方法有哪些

小学数学思想方法有哪些

小学数学思想方法有哪些小学数学是培养学生数学思维能力和逻辑推理能力的重要阶段。

为了帮助学生培养正确的数学思想和方法,我们可以运用以下几种思想方法。

一、观察与发现思想方法二、综合思想方法综合思想方法强调把多种知识和方法进行综合运用,从而解决复杂的问题。

例如,在解决一个应用题时,学生可以结合整数、分数、小数等数的知识,运用四则运算的基本法则进行综合计算。

三、抽象思维方法抽象思维方法是指学生通过抽象事物的共同特点和规律,将问题进行归纳和概括,从而进行类比和推理。

例如,学生可以通过观察和比较三角形、四边形、五边形等多边形的特点,得出它们的共同规律,然后解决一些有关多边形的问题。

四、归纳与演绎思想方法归纳与演绎思想方法是指学生通过归纳和总结大量的具体事例和数据,从而发现其中的共同规律。

例如,学生可以通过观察和总结两个数之间的运算特点,得出数的运算规律,然后根据这个规律解决一些计算问题。

五、借助工具思想方法借助工具思想方法是指学生可以通过使用具体的工具,如尺子、天平等来帮助解决问题。

例如,在学习长度的比较时,学生可以使用尺子来测量和比较两个物体的长度,以便更直观地理解大小关系。

六、探究与实践思想方法探究与实践思想方法是指学生通过实际操作和探索,从而获得数学知识和解决问题的能力。

例如,在学习几何形状时,学生可以通过剪纸、折纸等手工活动,来探索不同形状的特点和性质。

以上是小学数学常用的思想方法,通过合理运用这些方法,可以帮助学生更好地理解和掌握数学知识,提高解决问题的能力。

同时,在教学中也需要注意灵活运用这些方法,根据学生的实际情况和能力发展的要求,选择适合的思想方法进行教学。

小学数学常见的数学思想方法

小学数学常见的数学思想方法

小学数学常见的数学思想方法在小学数学中,有一些常见的数学思想方法,这些方法不仅帮助学生理解和解决数学问题,还培养了他们的逻辑思维和问题解决能力。

本文将介绍一些常见的小学数学思想方法。

第一、归纳法归纳法是一种从特殊到一般的思维方法。

通过观察和分析特殊情况,再总结规律,推广到一般情况。

例如,学习排列组合时,可以先从2个数字的排列开始归纳,然后推广到更多数字的排列。

这样做可以帮助学生理解和记忆更抽象的概念。

第二、类比法类比法是通过寻找事物之间的共同特征,把问题转化为已知问题的方法。

例如,在学习解方程时,可以把方程看作一个天平,通过移项和化简,使方程两边平衡。

这种类比可以帮助学生把抽象的数学问题转化为更具体和易于理解的形式。

第三、分解法分解法是将复杂的问题分解为若干简单的子问题来解决的思维方法。

例如,在学习长除时,可以将被除数分解成各个位的数字,并逐位进行计算。

这种分解的思维方法可以帮助学生理清思路,简化问题,更容易得到答案。

第四、逆向思维法逆向思维法是从问题的结果出发,逆向推导出解决问题的方法。

例如,在学习排序时,可以先思考如何将数字从大到小排列,然后将步骤反转,即可得到从小到大排列的方法。

逆向思维法可以培养学生的逻辑思维和反向推理能力。

第五、模型法模型法是通过建立数学模型,把实际问题转化为数学问题来解决的思维方法。

例如,在学习面积时,可以通过绘制图形模型来计算面积。

这种方法可以帮助学生理解数学概念,并将数学应用于实际问题中。

第六、试错法试错法是通过尝试不同的方法和策略,找到解决问题的最优解的思维方法。

例如,在学习解方程时,可以尝试不同的代入法或变形法,直到找到满足方程的解。

试错法可以培养学生的探索精神和自主解题能力。

小学数学常见的数学思想方法多种多样,每种方法都有其独特的特点和适用范围。

学生在学习数学时,可以根据问题的性质和自己的思维特点选择合适的方法,培养灵活运用数学思想方法的能力。

通过不断练习和思考,学生可以提高数学思维能力,更好地理解和应用数学知识。

小学十大数学思想方法

小学十大数学思想方法

小学十大数学思想方法数学是一门抽象而又具体的学科,它是一种思维方式,也是一种解决问题的工具。

在小学阶段,数学思想方法的培养尤为重要,它不仅能够帮助学生更好地理解数学知识,还能够培养学生的逻辑思维能力和解决问题的能力。

下面,我们就来介绍小学十大数学思想方法。

1. 观察法。

观察是数学思维的起点,通过观察,学生可以发现问题的规律和特点,从而更好地解决问题。

例如,通过观察不同形状的图形,学生可以总结出它们的特点和性质,从而更好地理解几何知识。

2. 比较法。

比较是一种重要的思维方式,通过比较不同的数学对象,学生可以找出它们的相同点和不同点,从而更好地理解数学概念。

例如,比较不同大小的数值,可以帮助学生理解数值的大小关系。

3. 分类法。

分类是整理和归纳的一种重要方式,通过分类,学生可以将问题进行归类,找出其中的规律和特点。

例如,将不同形状的图形进行分类,可以帮助学生更好地理解图形的性质和特点。

4. 推理法。

推理是数学思维的核心,通过推理,学生可以从已知的条件出发,得出未知的结论。

例如,通过已知的几何定理,可以推导出一些未知的几何性质。

5. 归纳法。

归纳是从具体到一般的思维方式,通过归纳,学生可以从具体的事例中总结出一般的规律和结论。

例如,通过观察一系列数列的规律,学生可以总结出数列的通项公式。

6. 演绎法。

演绎是从一般到具体的思维方式,通过演绎,学生可以从一般的规律出发,得出具体的结论。

例如,通过已知的数学定理,可以推导出一些具体的数学问题的解法。

7. 抽象法。

抽象是数学思维的重要特点,通过抽象,学生可以将具体的问题转化为符号或者图形,从而更好地进行推理和计算。

例如,将实际问题转化为代数方程式,可以帮助学生更好地解决问题。

8. 反证法。

反证是一种重要的证明方法,通过反证,学生可以通过假设反命题,从而推导出矛盾,从而证明原命题的正确性。

例如,通过反证法可以证明平行线的性质。

9. 递归法。

递归是数学思维的一种重要方式,通过递归,学生可以通过递推关系得出数列的通项公式。

小学十大数学思想方法

小学十大数学思想方法

小学十大数学思想方法
1. 预测和推论:预测和推论是数学思想方法的重要部分。

小学生可以通过观察数据和图表来做出预测,并据此推断出结果。

2. 抽象和分类:数学思维可以通过分类和抽象来提高。

小学生可以按照特定的属性将事物分组,并将它们视为一个整体。

3. 排列和组合:排列和组合是掌握初级数学思维的重要步骤。

小学生可以利用排列和组合来解决问题,从而提高他们的思维能力。

4. 逻辑推理:数学思维方法中的逻辑推理是使小学生思考的关键。

通过逻辑推理,小学生可以理解和解决问题的思考逻辑。

5. 连续性和平滑性:在数学思维中,连续性和平滑性很重要。

小学生应能够察觉到不同形状和尺寸之间的变化。

6. 比较与对比:比较和对比可让小学生看到不同事物之间的共性和差异。

这种思维方式可以在计算能力和问题解决方面帮助他们。

7. 建模与测量:建模以及测量纪录对于小学生的数学思维发展也是至关重要的。

他们可以用模型来表示数学规律,并通过测量和比较得出结论。

8. 模式发现:模式发现是小学生学习数学的关键之一。

他们应该能够看到形式之间的关系,并识别出有规律的模式。

9. 变化和变形:变化和变形是数学思维方法中的关键。

小学生应该能够理解数学概念和数据之间的变化和变形。

10. 探索和发现:小学生应该主动去探索和发现,发现新的数学规律和规则。

在探索和发现过程中,他们可以更好地理解数学规律并得到更深刻的体验。

小学数学教学中数学思想的渗透方法6篇

小学数学教学中数学思想的渗透方法6篇

小学数学教学中数学思想的渗透方法6篇第1篇示例:小学数学教学中数学思想的渗透方法,是指在数学教学过程中,通过巧妙的方式将数学思想融入教学中,帮助学生在学习数学的过程中不仅掌握数学知识,更重要的是培养学生的数学思维能力和解决问题的能力。

在小学数学教学中,数学思想的渗透方法尤为重要,因为小学阶段是学生打好数学基础的关键时期,如何有效地渗透数学思想,激发学生对数学的兴趣,对于学生的数学发展具有重要的意义。

一、培养学生对数学的兴趣在小学数学教学中,培养学生对数学的兴趣是十分重要的。

只有学生对数学感兴趣,才能更主动地学习数学知识,同时也更容易接受和理解数学思想。

为了培养学生对数学的兴趣,教师可以通过一些生动有趣的教学方法,如数学游戏、数学竞赛等,让学生在愉快的氛围中学习数学,从而激发学生对数学的热爱。

教师还可以通过展示一些有趣的数学应用场景,让学生感受到数学的魅力,从而激发学生对数学的好奇心和求知欲。

二、注重数学思想的引导和训练在小学数学教学中,除了掌握基本的数学知识和运算技巧外,更重要的是培养学生的数学思维能力和解决问题的能力。

教师在教学中应注重数学思想的引导和训练,帮助学生建立正确的数学思维模式,培养学生的逻辑推理能力和综合分析能力。

在教学中,教师可以通过提出有趣的问题,引导学生进行思考和探讨,让学生从实际问题中感受数学的魅力,从而培养学生的数学思维能力。

还可以通过让学生参与一些数学探究活动,让学生在实践中体会数学思想的应用,从而提高学生的解决问题的能力。

三、培养学生的自主学习能力四、利用多种教学资源和技术第2篇示例:要将数学思想融入到教学内容中。

数学思想是指那些贯穿于整个数学学科的基本思维方式,包括抽象、逻辑、推理、系统等。

在教学中,教师可以通过设计一些有趣而具有启发性的数学问题和活动,让学生在实践中感受到数学思想的魅力。

在教学中可以引导学生思考“为什么”、“怎么证明”等问题,培养学生的逻辑推理能力和问题解决能力。

小学数学课堂中渗透的数学思想方法

小学数学课堂中渗透的数学思想方法

小学数学课堂中渗透的数学思想方法一、抽象思维:抽象思维是指孩子从具体的事物中抽离出共同特征,形成概念的思维方式。

在数学课堂中,老师可以通过举例子、比喻等方式,引导学生从具体的问题中抽象出数学概念,培养学生的抽象思维能力。

在学习几何图形的时候,老师可以引导学生观察不同形状的图形,比如圆形、正方形、长方形等,然后引导学生总结出每个形状的共同特征,形成相应的几何概念。

二、逻辑思维:逻辑思维是指按照一定的推理规则进行思考和分析的思维方式。

在数学课堂中,学生需要学会运用逻辑思维解决问题,培养他们的推理能力。

在学习数学运算时,老师可以给学生出一些逻辑题,让他们通过推理和分析找到解题的规律。

老师还可以通过游戏的形式,培养孩子的逻辑思维能力,锻炼他们的反应速度和解决问题的能力。

三、探究思维:探究思维是指通过观察、实验、猜想等方式主动地积极学习和探索问题的思维方式。

在数学课堂中,老师可以鼓励学生提出问题、展开探究,培养他们的独立思考能力。

在学习分数的概念和运算规则时,老师可以设计一些实践活动,让学生亲自动手操作、观察、探索,从中发现规律和解决问题的方法。

通过这种方式,学生能够更加深入地理解数学概念和运算规则。

四、问题解决思维:问题解决思维是指通过分析问题、寻找解决方案、评估和调整解决方案的思维方式。

在数学课堂中,老师可以引导学生运用问题解决思维解决实际问题,培养他们的问题解决能力。

在学习应用题时,老师可以给学生一些实际问题,让他们自己分析问题、寻找解决方案,并进行实际操作和计算。

通过这种方式,学生能够将数学知识应用到实际生活中,提高他们解决实际问题的能力。

通过渗透这些数学思想方法,可以使学生在数学课堂中更加主动、积极地参与学习,培养他们的数学思维能力和解决问题的能力,提高他们的学习效果和综合素质。

这些数学思想方法也能够增强学生的学习兴趣,培养他们对数学的理解和热爱。

小学数学课堂中渗透的数学思想方法6篇

小学数学课堂中渗透的数学思想方法6篇

小学数学课堂中渗透的数学思想方法6篇第1篇示例:在小学数学课堂中,教师不仅仅是传授知识,更重要的是要培养学生的数学思想和方法。

数学思想方法是指数学知识的理解、运用、推理和解决问题的方式和方法。

只有通过培养学生正确的数学思想方法,才能使他们真正掌握数学知识,提高数学学习的效率。

在小学数学课堂中,教师可以通过一些渗透式的教学方法来培养学生的数学思想和方法:教师可以在教学中强调问题的发现和提出。

在解决数学问题时,学生需要首先发现问题,并提出相应的解决方法。

教师可以在课堂上设计一些富有启发性的问题,引导学生思考,帮助他们发现问题的本质。

通过这种方式,学生可以逐渐培养自己的问题意识和解决问题的能力。

教师可以在教学中注重数学概念的建立和理解。

数学是一门抽象而严谨的学科,理解数学概念对于学生来说至关重要。

教师可以通过具体的例子和实际问题,帮助学生建立起数学概念的意义和内涵,让他们深刻理解数学概念的本质和联系。

在教学中,教师还可以引导学生注重数学方法的选择和运用。

在解决数学问题时,学生需要根据具体情况选择合适的解题方法,并灵活运用。

教师可以通过一些案例分析和练习,引导学生学会分析问题,选择合适的方法,并熟练运用,从而提高他们的问题解决能力。

教师还可以在教学中激发学生的学习兴趣和思维方法。

数学是一门需要逻辑思维和创造性思维的学科,教师可以通过一些趣味性的数学问题和活动,激发学生的学习兴趣,培养他们的思维能力。

通过培养学生的主动学习和探索精神,可以逐步提高他们的数学综合素养,使他们在学习和生活中都能够灵活运用数学知识和方法。

在小学数学课堂中,教师要通过渗透式的教学方法,培养学生的数学思想和方法。

只有注重问题的发现和解决、建立数学概念的理解、选择和运用数学方法、激发学生的兴趣和思维,才能真正培养学生的数学素养,使他们在数学学习中不仅能够掌握知识,更能够发展自己的批判性思维和创造性思维,提高解决问题的能力和水平。

通过这样的教学方法,可以让学生爱上数学,享受数学,更好地发挥数学的作用,成为具有数学素养的终身学习者。

小学数学教学中数学思想方法的渗透7篇

小学数学教学中数学思想方法的渗透7篇

小学数学教学中数学思想方法的渗透7篇第1篇示例:小学数学教学中数学思想方法的渗透数学思想方法的渗透应从提出问题的角度入手。

在教学中,老师可以引导学生通过提出问题的方式激发学生的求知欲和思考能力。

老师可以设计一些富有启发性的问题,让学生在思考问题的过程中逐渐领会到数学的思维方法。

通过这种方式,学生不仅能够理解数学知识,更能够在解决问题的过程中培养出对数学的兴趣和热爱。

数学思想方法的渗透应注重培养学生的逻辑推理能力。

在小学数学教学中,逻辑推理是一个非常重要的环节。

老师可以通过一些适当的案例和练习来帮助学生培养逻辑推理能力。

老师可以设计一些逻辑推理题目,让学生通过分析、比较、归纳等方式来解决问题,从而提高他们的逻辑思维能力。

通过这种方式,学生可以在实际生活中更好地运用数学思维方法解决问题,提高自己的思维能力。

小学数学教学中数学思想方法的渗透对学生的发展起着至关重要的作用。

通过引导学生提出问题、培养逻辑推理能力、锻炼问题解决能力等方式,可以有效地培养学生的数学思维能力和解决问题的能力。

希望在今后的小学数学教学中,教师们能够更加重视数学思想方法的渗透,为学生的综合素质提升打下坚实的基础。

【本文2000字,仅供参考】。

第2篇示例:在小学数学教学中,数学思想方法的渗透是非常重要的。

数学思想方法是指在解决数学问题时所运用的思维方式和方法论,它是数学学习的核心,也是培养学生数学素养和数学能力的关键。

在小学数学教学中,教师应该注重数学思想方法的渗透,引导学生掌握正确的数学思考方式,培养学生的逻辑思维能力和数学解决问题的能力。

在教学中应该注重引导学生运用多种数学思想方法解决问题。

数学思想方法有很多种,比如归纳法、演绎法、直观法、实证法等,每一种方法都有其独特的优点和适用范围。

教师在教学中应该灵活运用不同的数学思想方法,引导学生灵活运用各种数学方法解决问题。

通过多种数学思想方法的渗透,可以提高学生的数学解决问题的能力,增强他们的数学思维能力。

一小学数学教学中应渗透哪些数学思想方法

一小学数学教学中应渗透哪些数学思想方法

一小学数学教学中应渗透哪些数学思想方法在小学数学教学中,应渗透以下数学思想和方法:1.抽象思维:培养学生从具体事物中抽象出数学概念和规律的能力。

通过引导学生观察、比较、分类、归纳、推理等活动,帮助他们从实际问题中提取数学本质。

2.探究精神:激发学生主动探究、解决问题的兴趣和能力。

引导学生通过观察、实验、思考等探究活动,培养他们发现问题、分析问题、解决问题的能力。

此外,鼓励学生提出问题,并引导他们发散性思维,展开多种解法的探讨。

3.归纳与演绎:在教学中,鼓励学生通过比较、归纳,总结出数学规律和定理,从而培养他们的归纳推理能力。

同时,引导学生从已知事实出发,运用逻辑推理,进行演绎推理,培养他们的逻辑思维能力。

4.分类整理:在教学中,引导学生将问题和概念进行分类整理,从而帮助他们理清思路,形成系统的数学知识体系。

这样的整理和分类可以使学生更好地理解数学概念,记忆和应用知识。

5.反思与自主学习:鼓励学生在学习过程中进行反思和总结,培养他们对学习方法和策略的认识和评价能力。

同时,引导学生形成自主学习的意识和能力,提高他们的学习主动性和自律性。

7.创新思维:鼓励学生思考与数学相关的问题,提出新的观点和解决方法,激发他们的创新思维。

通过开展数学探究活动、拓展性任务等,培养学生的创造性思维和发散性思维。

8.可视化和图像化:运用可视化和图像化手段,如图表、模型等,帮助学生理解数学概念和思想。

通过可视化的方式呈现数学问题,可以激发学生的感性认识和兴趣,并提高他们的思维能力。

需要注意的是,数学思想和方法是相互关联的,这些思想和方法不是独立存在的,而是相互渗透、相互作用的,只有将它们融合在教学中,并灵活运用,才能更好地培养学生的数学思维能力。

小学数学中常用的数学思想方法

小学数学中常用的数学思想方法

小学数学中常用的数学思想方法在小学数学教学中,常用的数学思想方法有以下几种:1.查找规律法:通过观察一系列数的特点,总结出它们之间的规律和规则。

例如,观察一个数列的每个项与前一项之间的关系,推理出数列的通项公式。

2.分类讨论法:对于一个问题,将其分为几种情况进行讨论,然后分别解决。

例如,求解一个实际问题中的数字运算题,可以将问题中的数字进行分类,分别计算后再进行合并。

3.反证法:当问题较难解决时,可以通过假设结论不成立,再推导出矛盾的结论,证明原结论一定成立。

例如,证明一个数是素数时,可以先假设该数是合数,然后推导出矛盾的结论。

4.归纳法:通过寻找一个问题的基本情况和递推关系,进行逐步推导,从而得出结论。

例如,通过归纳法可以证明等差数列的通项公式。

5.求同法:将问题中的数学关系与其他几个问题中的数学关系进行对比,从而找出相似之处。

例如,解决一个数学问题时,可以将其与类似的已解决问题进行比较,找到解决问题的方法。

6.分析法:将一个复杂的问题拆解成多个简单的部分,然后逐个分析解决。

例如,解决一个几何问题时,可以将其分解成多个几何图形,逐个进行研究和解决。

7.探究法:鼓励学生自主探索,通过实际操作和观察,发现问题的规律和解决方法。

例如,通过实际测量和比较,学生可以探究出相似三角形的性质。

8.逆向思维法:从问题的目标出发,反向思考解决问题的方法。

例如,当一个问题无法直接求解时,可以考虑从目标得出的信息反向推导,从而找到解决问题的线索。

9.列出方程法:通过将问题中的数学关系用方程式表示,转化为代数问题进行求解。

例如,解决一个关于两个未知数的问题时,可以先列出方程组,然后求解方程组得出结果。

10.图形化表示法:通过绘制图形来表示问题,直观地观察和推理问题的特点。

例如,在解决一个几何问题时,可以先绘制出对应的图形,再进行推理和求解。

以上是小学数学教学中常用的一些数学思想方法,帮助学生更好地理解和解决数学问题。

小学数学思想方法有哪些

小学数学思想方法有哪些

小学数学思想方法有哪些1、对应思想方法:对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、比较思想方法:比较思想是数学中常见的思想方法之一,也是促进同学思维发展的手段。

在教学分数应用题中,〔教师〕善于引导同学比较题中已知和未知数量变化前后的状况,可以帮助同学较快地找到解题途径。

3、符号化思想方法:用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

2思维训练方法转化型:这是解决问题碰到障碍受阻时把问题由一种形式转换成另一种形式,使问题变得更简单、更清楚,以利解决的思维形式。

在教学中,通过该项训练,可以大幅度地提升同学解题能力。

如:某一卖鱼者规定,凡买鱼的人必须买筐中鱼的一半再加半条。

照这样卖法,4 人买了后,筐中鱼尽,问筐中原有鱼多少条?该题对一些没有受过转化思维训练的同学来说,会感到一筹莫展。

即使基础较好的同学也只能复杂的方程。

但经过转化思维训练后,同学就变得聪慧起来了,他们知道把买鱼人转换成1人,显然鱼1条;然后转换成2人,则鱼有3条;再3人,则7条;再4人,则15条。

系统型:这是把事物或问题作为一个系统从不同的层次或不同的角度去合计的高级整体思维形式。

在高年级除结合综合应用题以外还可编制许多智力训练题来培养同学系统思维能力。

如:1 2 3 4 5 6 7 8 9在不改变顺序前提下(即可以将几个相邻的数合在一起成为一个数,但不可以颠倒),在它们之间划加减号,使运算结果等于1OO。

象这道题就牵涉到系统思维的训练。

教师可引导同学把10 个数看成一个系统,从不同的层次去合计、第一层次:找100 的最接近数,即89 比100 仅少11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学教学中思想方法《数学课程标准》中明确提出:“让学生通过学习,能够获得适合未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。

”为了有效落实这个总体目标,我们应该系统而有步骤地向学生渗透数学思想方法,把重要的数学思想方法通过学生能够理解的简单形式,采用生动有趣的事例表现出来。

作者在研读《数学课程标准》及小学数学教材,对教材体系实行梳理、分析与解读基础上,认为应该把握数学教学的灵魂,即数学思想方法。

下面结合课堂实践,谈谈数学思想方法的渗透。

一、小学数学教学为什么要渗透数学思想方法?1、基本数学思想方法对学生的发展具有重要意义。

日本著名数学教育家米山国藏指出:“作为知识的数学出校门不到两年可能就忘了,惟有深深铭记在头脑中的是数学的精神和数学的思想、研究方法、着眼点等,这些随时随地发生作用,使学生终身受益。

”数学的思想方法是数学的灵魂和精髓,掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其他学科的学习,乃至学生的终身发展有十分重要的意义。

在小学数学教学中有意识地渗透一些基本数学思想方法,是增强学生数学观点,形成良好思维素质的关键。

不但能使学生领悟数学的真谛,懂得数学的价值,学会数学地思考和解决问题,还能够把知识的学习与水平的培养、智力的发展有机地统一起来。

2、渗透基本数学思想方法是落实新课标精神的需求。

数学课程标准修订稿把“四基”:基本知识、基本技能、基本思想、基本活动经验作为目标体系。

基本思想是数学学习目标之一,其重要性不言而喻。

新教材是把一些重要的数学思想方法通过学生日常生活中最简单的事例表现出来,并使用操作、实验、猜想等直观手段解决这些问题。

从而加深学生对数学概念、公式、定理、定律的理解,提升学生数学水平和思维品质,这是数学教育实现从传授知识到培养学生分析问题、解决问题水平的重要途径,也是小学数学新课程改革的真正内涵之所在。

二、新教材渗透了哪些数学思想方法?1、教材内容与蕴含的数学思想方法2、教材中渗透数学思想的内在联系通过梳理整套教材,我们能够更深入准确地把握体系中各个知识点之间的联系,从中不难发现:教材编排的特点是从注重具体形象思维逐步过渡到注重抽象思维,很多数学思想方法也是螺旋上升、逐步深入的。

首先,各个内容之间存有一定的联系,准确把握各册教材的联结点有助于解读教材。

譬如,第七册的合理安排、第十册的找次品问题以及第十二册的抽屉原理,解决问题时都要考虑“至少”的问题,都是在多种解决策略中寻找最优的策略,都要使用推理和渗透优化思想。

解决“封闭方阵中的植树问题”时需要用“重叠问题”来诠释;植树问题和鸡兔同笼问题都很注重数学模型的构建,一般都得经历“问题情境——构建模型——解释应用模型”的学习过程……其次,很多教学内容都强调数学文化的渗透。

如鸡兔同笼、抽屉原理等问题都需要介绍相关数学知识背景,提升学生学习数学的兴趣。

在教学过程中,需要时刻注重情感态度价值观的体现。

三、如何有效地渗透数学思想方法?1、以数学思想方法渗透为核心,把握目标定位教学目标是课堂教学的灵魂,它既是教学的出发点,又是教学的归宿。

所以,教学目标的制定是否恰当,直接决定着教学过程中目标的达成度,也将直接决定一堂课的教学效果。

《标准》指出:“重要的数学概念与数学思想宜逐步深入。

”数学思想方法属于默会知识,学生在短时间内,是不可能全部掌握的。

需要长期的渗透和持续的体验来感悟。

所以,教师要根据学生的年龄特征与认知规律,分段加以落实,有机实行渗透,不能过高地定位教学目标。

那么如何准确地实行教学目标定位呢?首先,从教学目标的把握来看,应定位于通过数学教学活动,让学生感受基本数学思想方法,学会使用数学思想方法尝试解决问题,体验解决问题的策略、方法。

因为数学课堂教学是面向全体学生的,意图是让每一个学生受到数学思维训练的同时,逐步形成探索数学问题的兴趣与欲望,发现、欣赏数学美的意识。

其次,从教学目标的分解上看,还要照顾到个别差异,体现教学目标的层次性。

学生学习起点、个性差异的不同,要求我们在教学中处理好面向全体与注重差异的关系,确保每个学生都有所收获,真正做到“下要保底,上不封顶”。

显然,立足于数学思想方法的目标定位,必然要求教师充分地挖掘和理解教材中所体现的数学思想方法,在教学时注重让学生通过观察、比较、分析,感悟数学思想方法的魅力。

例如,六年级上册《鸡兔同笼》,为了落实渗透数学思想的教学目标,教师应注意以下几点:(1)重点渗透假设思想。

沟通直观图示法、列表推算法、假设置换法、金鸡独立法、鸡翅变脚法等方法背后的假设思想。

(2)渗透化繁为简的数学思想。

《孙子算经》中的“鸡兔同笼”问题数据较大,不利于首次接触该类问题的学生探究,所以教材先从数据较小的例1入手,让学生探索出解决该类问题的一般方法后,再解决数据较大的原题,从而渗透化繁为简的思想。

(3)渗透建模思想。

可通过“假设——检验——提炼——应用”的过程引导学生掌握“鸡兔同笼”问题的数量关系和方程求解模型,并引导学生应用这个模型解决其他问题。

(4)渗透化归思想。

让学生意识到很多问题都能够化归为“鸡兔同笼”问题,拓宽对问题的理解,让学生进一步体会到这类问题在日常生活中的广泛应用。

2、以数学思想方法引路,整合教学资源。

作为课程资源的开发者,教师应合理取舍教学素材,整合教学资源。

即结合教学内容和课程目标自觉地选择和整合课程资源,使课程内容与学生的数学教学活动结合得更加紧密,更能体现数学思想方法的渗透和熏陶。

(1)注重“教材”是否适合于你的课堂教材不可能把所有的问题都设计得十全十美,也不可能考虑到所有学生的情况,难免有些题材脱离学生的实际。

所以,教师要突破教材的束缚,创造性地使用教材,挖掘其中潜在的价值,要善于从学生的实际出发对教材内容的表现方式、编排顺序等方面实行适当的调整和改变,变“教教材”为“用教材教”。

例如,在二年级下册“找规律”主题图的处理上,作者把教材第2幅地板图案作为主要素材来教学,分步表现主题图,而且对主题图实行二次利用。

这样安排,给了学生充分的探究空间,将原先处于同一层次上的两幅图,变为不同层次,有利于学生进一步发现规律,巩固规律。

(2)注重“人材”意识是否到位“人材”意识主要表现在教师注重学生的知识基础、认知特点、兴趣爱好、情感态度等因素,围绕渗透数学思想方法的主线,从达成教学目标的角度去搜寻“素材”,善于观察学生,读懂学生,从学生的角度去研读教材,把握好处理教材的“度”。

例如教学《重叠问题》一课,为了重组教材,从学生的生活实际和兴趣出发,能够把“你最喜欢的运动项目”“你喜欢的电视节目”等素材的调查结果作为研究材料。

(3)注重“素材”是否实行梳理提升同样的素材,如果平均使用力量,或者缺少提炼,教学价值可能不能得到充分体现。

学习材料应该体现层次性与发展性,需要有序组合,需要在巩固使用中梳理提升,提炼数学思想方法,这样才能充分发挥数学教材的教育价值。

例如:人教版三上“搭配的学问”练习设计,安排了“午餐问题”、“游园路线问题”、“破译密码”等情境。

梳理教材练习,每一个问题情境均有目标重心,如:午餐问题从原来的“二三搭配”拓展为“三三搭配”,起到举一反三的作用。

游园路线问题则侧重于“符号思想”的应用,让学生思考“如何能够更清楚地表达路线”。

“破译密码”问题由“这密码是由三个数字7、8、9组成的一个三位数,猜一猜可能是哪个密码”入手,突出“有序思考”解决问题的意识。

可见,教学中始终把培养学生有序思考的习惯、渗透符号化思想放在首位,发挥每个素材的独特功能,促动学生实现知识的完整建构与学习水平的有效提升。

3、以活动体验为基本形式,感悟数学思想数学思想方法是一种基于数学知识又高于数学知识的隐性知识,它比数学知识更抽象。

所以,需要为学生设计一些生动、有趣的数学活动,在活动中展开观察、操作、实验、猜测、推理与交流,充分感悟数学思想方法的奇妙与作用。

那么,我们在设计活动时该如何注重数学思考呢?首先,注重体验感悟,逐步抽象。

数学教材中的教学难点在于如何让学生在直观的问题解决中感悟其中抽象的数学思想方法。

解决这个难点的关键就是让学生主动参与,因为没有主动参与就不可能对数学知识、数学思想方法产生体验;没有了体验,那数学思想方法的渗透只能是一句空话。

所以,在教学过程中,我们应该创设学生感兴趣的各种情境,让他们以一种积极的状态,主动参与到数学教学过程中来,让学生根据自己的体验,逐步领悟数学思想方法。

例如三年级“穿衣服问题”的教学片段:(1)尝试猜想。

(课件出示主题图)师:现在我们挑选了7位小小志愿者,为他们准备了2种颜色的上衣和3种颜色的裤子。

要使每人穿得不一样,能做到吗?请你猜一猜。

(2)思考讨论。

用上衣和裤子搭配,到底能够有多少种不同的搭配方法?请大家用简便的方法把各种穿法快速记录下来。

学生独立思考,小组交流。

(3)展示汇报。

师:你们怎么想的?用什么方法记录的?学生展示汇报……(4)观察比较。

经过刚才的讨论我们发现了哪几种记录的方法?(媒体演示两种思考过程和不同的记录方法)小结:你认为哪一种记录方法能既快速又方便地表示出来?学生说出自己的选择,绝大部分认为连线或编号较好。

(5)拓展延伸。

要使每人穿得不同,请你增加一种颜色的上衣或裤子,想一想有几种不同的搭配方法?用最简便的方法把各种穿法快速记录下来。

本案例通过“尝试猜想——思考讨论——展示汇报——观察比较——拓展延伸”等环节,给学生提供自主体验、感悟的时空,让学生充分经历“有序思考”的过程,激励和尊重学生多样化的思维方式,体现出解决问题策略的多样化和个性化。

所以,在教学过程中我们要避免只有直观、没有抽象或者在直观和抽象之间没有阶梯、没有过渡,缺少递进的过程。

而应引导学生主动参与,通过观察、操作、实验、猜测、推理与交流等活动来体验感悟,从直观的问题解决达到渗透抽象的数学思想方法之目的。

其次,利用数形结合,发展思维。

著名数学家华罗庚说过:“数缺形时少自觉,形缺数时难入微,数形结合百般好,隔断分家万事难”。

数形结合的思想能够使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。

由此可见,教师在教学过程中要经常利用实物、教具、图表、生活经验、幽默语言等直观教学手段来协助学生理解数学思想方法,提升学习效率。

例如:第十册“找次品”,利用列表、画图等方式协助学生形象地分析如何找次品等。

如果用语言描述和绘制简单天平示意图的方式表示找次品过程,当遇到使用天平次数较多时,表述起来十分麻烦。

“繁”则思变,作者引导学生采用以下树形图来表示(图1)。

用小括号代替了“把物品分成几份,每份分别是几”的叙述;同时还吸收了箭头示意图的优点,用两个分支表示称得的不同结果;在两个数字下以划线的方式代表“将这两堆物品分别放在天平两边”,这样既减少了文字,又方便最后统计次数。

相关文档
最新文档