高中复数知识点及相关练习学习资料

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数

复数基础知识

一、复数的基本概念

(1)形如a + b i 的数叫做复数(其中);复数的单位为i ,它的平方等于-1,即.其中a 叫做复数的实部,b 叫做虚部 实数:当b = 0时复数a + b i 为实数 虚数:当时的复数a + b i 为虚数;

纯虚数:当a = 0且时的复数a + b i 为纯虚数 (2)两个复数相等的定义:

(3)共轭复数:z a bi =+的共轭记作z a bi =-;

(4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a b

(5)复数的模:对于复数z a bi =+

,把z =叫做复数z 的模; 二、复数的基本运算 设111z a b i =+,222z a b i =+

(1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-;

(3) 乘法:()()1212122112z z a a b b a b a b i ⋅=-++ 特别22z z a b ⋅=+。

(4)幂运算:1i i =21i =-3i i =-41i =5i i =6

1i =-⋅⋅⋅⋅⋅⋅

三、复数的化简

c di

z a bi

+=

+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22

ac bd ad bc i

c di c di a bi z a bi a bi a bi a b ++-++-==⋅=++-+ R b a ∈,1i 2-=0≠b 0≠b 00==⇔=+∈==⇔+=+b a bi a R

d c b a d b c a di c bi a )特别地,,,,(其中,且

对于()0c di z a b a bi +=

⋅≠+,当c d

a b =时z 为实数;当z 为纯虚数是z 可设为c di z xi a bi

+==+进一步建立方程求解

一、知识梳理

1、复数的有关概念

(1)复数的概念:形如(,)a bi a b R +∈的数叫做复数,其中,a b 分别是它的 。若 ,则a bi +为实数,若 ,则a bi +为虚数,若 ,则a bi +为纯虚数。

(2)复数相等:a bi c di +=+⇔ (,,,)a b c d R ∈。 (3)共轭复数:a bi +与c di +共轭⇔ (,,,)a b c d R ∈。

(4)复平面:建立直角坐标系来表示复数的平面,叫做复平面,x 轴叫做 ,y 轴叫做 。实轴上的点都表示 ;除原点外,虚轴上的点都表示 ;各象限内的点都表示 。

(5)复数的模:向量OZ uuu r

的模r 叫做复数z a bi =+的模,记作: ,即

z a bi =+= 。

2、复数的几何意义

(1)复数z a bi =+ 复平面上的点(,)(,)Z a b a b R ∈。

(2)复数z a bi =+ 复平面上的向量OZ uuu r

3、复数的运算 (1)复数的四则运算

设1z a bi =+,2z c di =+(,,,)a b c d R ∈,则 ①加法:12z z += ; ②减法:12z z -= ;

③乘法:12z z ⋅= = ;

一一对应 一一对应

④除法:

1

2

z z = = = (0c di +≠)。 (注:分母实数化) (2)复数的运算定律:

12z z += ;123z z z ++= ; 12z z ⋅= ;123()z z z += ;

m n z z ⋅= ;()n

m z = ;()12n

z z ⋅= 。

4、几个重要的结论

(1))|||(|2||||2221221221z z z z z z +=-++; (2)22||||z z z z ==⋅;

(3)若z 为虚数,则22||z z ≠。

复数最重要的一点就是:记住

例1:已知()14z a b i =++-,求 (1) 当,a b 为何值时z 为实数 (2) 当,a b 为何值时z 为纯虚数 (3) 当,a b 为何值时z 为虚数

(4) 当,a b 满足什么条件时z 对应的点在复平面内的第二象限。 例2:已知134z i =+;()()234z a b i =-+-,求当,a b 为何值时12=z z

例3:已知1z i =-,求z ,z z ⋅;

1i 2-=

变式:1是虚数单位,等于 ( ) A .i

B .-i

C .1

D .-1

变式2:已知i 是虚数单位,3

2i 1i

=- ( ) A1i + B1i -+ C1i - D.1i --

变式3:已知i 是虚数单位,复数131i

i

--= ( )

A 2i +

B 2i -

C 12i -+

D 12i --

变式4:已知i 是虚数单位,复数1312i

i

-+=+( )

(A)1+i (B)5+5i (C)-5-5i (D)-1-i

变式5:已知i 是虚数单位,则

()=-+1

13i i i ( ) (A)1- (B)1 (C)i - (D)i 变式6:已知

=2+i,则复数z=()(A )-1+3i (B)1-3i (C)3+i (D)3-i

变式7:i 是虚数单位,若

,则乘积的值是 (A )-15 (B )-3 (C )3 (D )15真题实战:

1.(2005)若i b i i a -=-)2(,其中a 、b ∈R ,i 是虚数单位,则22b a +=( )

A .0

B .2

C .

2

5

D .5

2.(2005)已知向量,//),6,(),3,2(x 且==则x = . 3.(2007)若复数(1+bi)(2+i)是纯虚数(i 是虚数单位,b 是实数),则b= A .-2 B .12-

C. 1

2

D .2 4.(2008)已知02a <<,复数z a i =+(i 是虚数单位),则||z 的取值范围是( )

A .(1

5),

B .(13), C

.(1

D .

5.(2009)下列n 的取值中,使n

i =1(i 是虚数单位)的是

A. n=2

B. n=3

C. n=4

D. n=5

i 4

1i ()1-i

+1i

Z

+17(,)2i

a bi a

b R i

+=+∈-ab

相关文档
最新文档