浙江专升本《高数二》试卷及答案

合集下载

浙江专升本《高数二》试卷及答案

浙江专升本《高数二》试卷及答案

2005年浙江省普通高校“专升本”联考《高等数学(二)》试卷1.函数x e x x xy --=)1(sin 2的连续区间是____________________.2.___________________________)4(1lim 2=-+-∞→x x x x .3.写出函数的水平渐近线和垂直渐近线4.设函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<+=>+=--1 ,1b 1 ,1,)1(1)(2)1(12x x x a x e x x f x ,当_________,==b a 时,函数)(x f 在点x=1处连续.5.设参数方程⎩⎨⎧==θθ2sin 2cos 32r y r x , (1)当r 是常数,θ是参数时,则_______________=dx dy .(2)当θ是常数,r 是参数时,则=dxdy_____________.二.选择题. (本题共有5个小题,每一小题4分,共20分,每个小题给出的选项中,只有一项符合要求)1.设函数)(x f y =在b], [a 上连续可导,),(b a c ∈,且0)('=c f ,则当( )时,)(x f 在c x =处取得极大值.)(A 当c x a <≤时,0)('>x f ,当b x c ≤<时,0)('>x f , )(B 当c x a <≤时,0)('>x f ,当b x c ≤<时,0)('<x f , )(C 当c x a <≤时,0)('<x f ,当b x c ≤<时,0)('>x f , )(D 当c x a <≤时,0)('<x f ,当b x c ≤<时,0)('<x f . 2.设函数)(x f y =在点0x x =处可导,则). ()2()3(lim000=--+→hh x f h x f h).(5)( ),( 4)( ),(x 3)( ),()(0'0'0'0'x f D x f C f B x f A3.设函数⎪⎩⎪⎨⎧<-=>=--0,00,0x ,)(22x e x e x f x x ,则积分⎰-11)(dx x f =( ). .2)( ,e1)( 0)( ,1)(D C B A -4.可微函数在点处有是函数在点处取得极值的 ()。

2024浙江专升本高数模拟卷2

2024浙江专升本高数模拟卷2

2024浙江•专升本高数•模拟卷2考试时间: 120分钟 班次: ____________姓名:___________一、单选题 (共5小题20分)1.x =0是f(x)={e x +1x <0,2x =0ln(1+x)x >0的( )A.可去间断点B.跳跃间断点C.连续点D.无穷间断点2.设a 1=x(cos √x −1),a 2=√xln(1+√x 3),a 3=√x +13−1, 当x →0+时,以上3个无穷小量按照从低阶到高阶的排序是( ) A.a 1,a 2,a 3 B.a 2,a 3,a 1 C.a 2,a 1,a 3D.a 3,a 2,a 13.设f(x)在(−∞,+∞)连续,下列说法正确的是( ) A.dd x [∫f(x)d x]=f(x)+C,C 为任意常数B.若f(x)在[a,b]上连续, 则f(x)在(a,b)上必有最大值和最小值C.对任意常数a,b , 总有∫a bf(x)d x =∫a bf(a +b −x)d x 成立 D.若f(x)为偶函数, 则f(x)的原函数一定是奇函数4.级数∑n=1∞(−1)n (1−cos βn )(β为常数且大于0)( )A.发散B.条件收敛C.绝对收玫D.收敛性与β有关5.设P =∫−1212cos 2x ∙ln 1−x1+x d x,N =∫−1212[cosx 2+ln 1−x1+x ]d x,M =∫−1212[xsin 2x −cos 2x ]d x , 则有( ) A.N <P <M B.M <P <N C.N <M <PD.P <M <N二、填空题 (共10小题40分)6.已知函数f(x)={x,x <0,0,x =0e x −2,x >0,则f[f(1)]=________.7.lim x→+∞x 3+x 2+12x+x 3sinx =_______ . 8.函数f(x)=13x 3−3x 2+9x 在区间[0,4]上的最大值为________.9.设y =f(x)由方程xy +2lnx =y 4确定,则曲线y =f(x)在点(1,1)处的切线方程为_______.10.极限lim n→∞1n (ln 2πn +ln 22πn +⋯+ln 2nπn )用定积分表示为________.11.lim x→0+(sinx x )11−cosx =_______.12.已知f(x)在x =1处可导, 且limΔx→0f(1+2Δx)−f(1)4Δx =2, 则f ′(1)=________.13.已知y =cos (x +lnx 2), 则d y =_______.14.设函数f(x)在(−∞,+∞)上连续, 且∫01f(x)d x =3, 则∫0π2cosxf(sinx)d x=__________.15.位于曲线y =1x (1+ln 2x )(e ⩽x <+∞)下方以及x 轴上方的无界区域的面积为_________.三、计算题 (共8小题60分)16.求极限limx→0e x2−e 2−2cosx x 4. 17.设f(x)={x1+e 1x,x ≠0,0,x =0,判断f(x)在x =0处的连续性与可导性.18.设y =(2x+3)4∙√x−6√x+13, 求y ′.19.求∫xtan 2x d x .20.∫−11(sin 3x +x 2)e −|x|d x . 21.一平面经过直线l:x+53=y−21=z4,且垂直于平面x +y −z +15=0, 求该平面的方程.22.求xy ′−y =2023x 2满足y |x=1=2024的特解.23.已知定义在(−∞,0)∪(0,+∞)上的可导函数f(x)满足方程f(x)−4x∫1xf(t)d t =x 2,试求: 该函数的单调区间、极值. 四、综合题 (共3小题20分)24.求∑n=1∞(−1)n−1n(2n−1)x2n 的收敛区间及其和函数. 25.设直线y =ax(0<a <1)与拋物线y =x 2围成图形D 1面积记作A 1;由直线y =ax(0<a <1)、抛物线y =x 2及直线x =1围成图形D 2面积记作A 2.26.设函数f(x)在[0,2]连续,(0,2)可导, 且f(0)=0,∫02f(x)d x =2, 试证明: 至少存在ξ∈(0,2), 使得f ′(ξ)=f(ξ)−ξ+1.。

2023年浙江省杭州市成考专升本高等数学二自考测试卷(含答案)

2023年浙江省杭州市成考专升本高等数学二自考测试卷(含答案)

2023年浙江省杭州市成考专升本高等数学二自考测试卷(含答案)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.2.A.A.2,-1B.2,1C.-2,-1D.-2,13.4.下列结论正确的是A.A.B.C.D.5.6.7.()。

A.0B.1C.2D.38.9.已知f(x)=xe2x,,则f'(x)=()。

A.(x+2)e2xB.(x+2)e xC.(1+2x)e2xD.2e2x10.A.F(x)B.-F(x)C.0D.2F(x)11.设函数f(x)在区间[a,b]连续,且a<u<b,则I(u)A.恒大于0B.恒小于0C.恒等于0D.可正,可负12.13.设函数f(x)在点x0处连续,则下列结论肯定正确的是().A.A.B.C.当x→x0时, f(x)- f(x0)不是无穷小量D.当x→x0时, f(x)- f(X0)必为无穷小量14.15.A.A.(-∞,0)B.(-∞,1)C.(0,+∞)D.(1,+∞)16.A.A.-1B.-2C.1D.217.18.()。

A.0B.1C.2D.319.Y=xx,则dy=()•A.•B.•C.•D.20.3个男同学和2个女同学排成一列,设事件A={男女必须间隔排列},则P(A)=A.A.3/10B.1/10C.3/5D.2/521.22.23.24.A.A.-2B.-1C.0D.225.袋中有5个乒乓球,其中4个白球,1个红球,从中任取2个球的不可能事件是A.A.{2个球都是白球}B.{2个球都是红球}C.{2个球中至少有1个白球)D.{2个球中至少有1个红球)26.27.若f(u)可导,且y=f(e x),则dy=【】A.f’(e x)dxB.f(e x)exdxC.f(e x)exdxD.f’(e x)28.()。

A.0B.1C.cos1-2sin1D.cos1+2sin129.A.2x+3yB.2xC.2x+3D.30.已知?(x)在区间(-∞,+∞)内为单调减函数,且?(x)>?(1),则x的取值范围是().A.(-∞,-l)B.(-∞,1)C.(1,+∞)D.(-∞,+∞)二、填空题(30题)31.32.33.34.35.36.曲线y=x+e x在点(0,1)处的切线斜率k=______.37.38.设y=x2cosx+2x+e,则y’=___________.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53.54.55.56.57.58.59.60.三、计算题(30题)61.62.63.64.65.66.67.求二元函数f(x,y)=x2+y2+xy在条件x+2y=4下的极值.68.69.70.71.72.73.74.75.76.77.上半部为等边三角形,下半部为矩形的窗户(如图所示),其周长为12 m,为使窗户的面积A达到最大,矩形的宽l应为多少?78.已知函数f(x)=-x2+2x.①求曲线y=f(x)与x轴所围成的平面图形面积S;②求①的平面图形绕x轴旋转一周所得旋转体体积Vx.79.80.81.82.83.84.85.设函数y=x3+sin x+3,求y’.86.87.88.89.90.四、综合题(10题)91.92.93.94.95.96.97.98.99. 100.五、解答题(10题) 101.102.103.104.105.106.107.108.109.110.六、单选题(0题) 111.参考答案1.D2.B3.B4.D5.6.B解析:7.C8.A9.Cf'(x)=(xe2x)'=e2x+2xe2x=(1+2x)e2x。

2023年浙江省丽水市成考专升本高等数学二自考真题(含答案带解析)

2023年浙江省丽水市成考专升本高等数学二自考真题(含答案带解析)

2023年浙江省丽水市成考专升本高等数学二自考真题(含答案带解析) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.2.3.4.5.6.A.-2B.-1C.0D.27.曲线y=x3的拐点坐标是()。

A.(-1,-1)B.(0,0)C.(1,1)D.(2,8) 8.9.()。

A.B.C.D.10.11.()。

A.B.C.D.12.()。

A.B.C.D.13.14.15.16.17.18.19.20.21.()。

A.B.-1C.2D.-422.以下结论正确的是().A.函数f(x)的导数不存在的点,一定不是f(x)的极值点B.若x0为函数f(x)的驻点,则x0必为?(x)的极值点C.若函数f(x)在点x0处有极值,且fˊ(x0)存在,则必有fˊ(x0)=0D.若函数f(x)在点x0处连续,则fˊ(x0)一定存在23.24.A.A.7B.-7C.2D.325.26.A.单调递增且曲线为凹的B.单调递减且曲线为凸的C.单调递增且曲线为凸的D.单调递减且曲线为凹的27.()。

A.0B.1C.㎡D.28.29.30.A.A.4B.2C.0D.-2二、填空题(30题)31.32. 若f(x)=x2e x,则f"(x)=_________。

33.34.35.36.37.38.________.39.40.41.42.43.44.45.46.设y=sinx,则y(10)=_________.47.48.49.50.51.52.53.54.55.56. 曲线y=2x2+3x-26上点M处的切线斜率是15,则点M的坐标是_________。

57.58.59.60.三、计算题(30题)61.62.63.64.65.66.67.68.69.设函数y=x4sinx,求dy.70.71.72.73.74.75.76.77.78.设函数y=x3+sin x+3,求y’.79.80.81.82.83.已知曲线C为y=2x2及直线L为y=4x.①求由曲线C与直线L所围成的平面图形的面积S;②求曲线C的平行于直线L的切线方程.84.85.86.87.88.89.90.四、综合题(10题)91.92.93.94.95.96.97.98.99.100.五、解答题(10题) 101.计算102.103.104.105.欲用围墙围成面积216m2的一块矩形土地,并在中间用一堵墙将其隔成两块.问这块土地的长和宽选取多大的尺寸,才能使建造围墙所用材料最省?106.107.108.109.110.六、单选题(0题)111.参考答案1.C2.A3.D4.B5.B6.D根据函数在一点导数定义的结构式可知7.B8.B9.C10.C11.A12.A13.B14.C解析:15.A16.B17.D18.D19.C20.D解析:21.C根据导数的定义式可知22.C本题考查的主要知识点是函数在一点处连续、可导的概念,驻点与极值点等概念的相互关系,熟练地掌握这些概念是非常重要的.要否定一个命题的最佳方法是举一个反例,例如:y=|x|在x=0处有极小值且连续,但在x=0处不可导,排除A和D.y=x3,x=0是它的驻点,但x=0不是它的极值点,排除B,所以命题C是正确的.23.D24.B25.A26.C27.A28.D29.B30.A31.D32.(2+4x+x2)e x33.34.用复合函数求导公式计算可得答案.注意ln 2是常数.35.先求复合函数的导数,再求dy.36.应填2π.利用奇、偶函数在对称区间上积分的性质.37.38.39.40.41.42.43.44.45.46.-sinx47.48.49.250.51.(-∞2) (-∞,2)52.153.-esinxcosxsiny54.C55.56.(3 1)57.58.22 解析:59.-1/260.10!61.62.63.64.65.66.67.68.69.因为y’=4x3sinx+x4cosx,所以dy=(4x3sinx+x4cosx)dx70.71.72.73.=1/cosx-tanx+x+C=1/cosx-tanx+x+C74.75.76.77.78.y’=(x 3) ’+(sinx) ’+(3) ’=3x 2+cosx .79.80.81.82.83.画出平面图形如图阴影所示84.85.86.87.88.89.90.91.92.93.94.95.96.97.所以又上述可知在(01)内方程只有唯一的实根。

2022-2023学年浙江省金华市成考专升本高等数学二自考真题(含答案带解析)

2022-2023学年浙江省金华市成考专升本高等数学二自考真题(含答案带解析)

2022-2023学年浙江省金华市成考专升本高等数学二自考真题(含答案带解析) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.2.3.4.A.A.B.C.D.5.A.A.3f'(0)B.-3f'(0)C.f'(0)D.-f'(0) 6.7.8.A.A.B.C.D.9.10.11.()。

A.2e2B.4e2C.e2D.012.()。

A.-2/3B.2/3C.1D.3/213.设f(x)=xα+αx lnα,(α>0且α≠1),则f'(1)=A.A.α(1+lnα)B.α(1-lna)C.αlnaD.α+(1+α)14.15.16.17.A.A.B.C.D.18.两封信随机地投入标号为1,2,3,4的4个邮筒,则1,2号邮筒各有一封信的概率.等于A.1/16B.1/12C.1/8D.1/419.函数f(x)在[a,b]上连续是f(x)在该区间上可积的()A.必要条件,但非充分条件B.充分条件,但非必要条件C.充分必要条件D.非充分条件,亦非必要条件20.21.22.23.24.A.A.(-∞,-1)B.(-1,0)C.(0,1)D.(1,+∞)25.5人排成一列,甲、乙必须排在首尾的概率P=A.A.2/5B.3/5C.1/10D.3/1026.27.曲线y=x3的拐点坐标是()。

A.(-1,-1)B.(0,0)C.(1,1)D.(2,8)28.29.30.二、填空题(30题)31.32.33.34.35.36.37.38.39.40.41.42.43.44.45.46. 函数曲线y=xe-x的凸区间是_________。

47.48.49.50.51.52.曲线y=ln(1+x)的垂直渐近线是________。

53.54.55.56.57.58.59.60.三、计算题(30题)61.62.63.64.求函数f(x)=x3-3x-2的单调区间和极值.65.66.67.68.69.70.71.求函数f(x)=(x2-1)3+3的单调区间和极值.72.①求曲线y=x2(x≥0),y=1与x=0所围成的平面图形的面积S:②求①中的平面图形绕Y轴旋转一周所得旋转体的体积Vy.73.74.75.76.已知x=-1是函数f(x)=ax3+bx2的驻点,且曲线y=f(x)过点(1,5),求a,b的值.77.设函数y=x4sinx,求dy.78.79.80.81.82.83.84.85.86.87.88.89.90.四、综合题(10题)91.92.93.94.95.96.97.98.99.100.五、解答题(10题) 101.102.103.104.105.计算107.108.109.计算∫arc sinxdx。

2024专升本高数二试卷

2024专升本高数二试卷

2024专升本高数二试卷一、选择题(每题3分,共30分)1. 函数y = (1)/(ln(x - 1))的定义域为()A. (1,2)∪(2,+∞)B. (1,+∞)C. [1,2)∪(2,+∞)D. (2,+∞)2. 若f(x)=x^2+1,则f(f(1))=()A. 3.B. 2.C. 5.D. 1.3. 当x→0时,sin x是x的()A. 高阶无穷小。

B. 低阶无穷小。

C. 同阶但不等价无穷小。

D. 等价无穷小。

4. 函数y = x^3-3x^2+1的单调递增区间是()A. (-∞,0)∪(2,+∞)C. (-∞,1)∪(1,+∞)D. (1,+∞)5. ∫ xcos xdx=()A. xsin x+cos x + CB. xsin x - cos x + CC. -xsin x+cos x + CD. -xsin x - cos x + C6. 下列函数中,在区间[-1,1]上满足罗尔定理条件的是()A. y = | x|B. y = x^2-1C. y=(1)/(x)D. y = x^37. 设y = e^xsin x,则y^′=()A. e^xsin x+e^xcos xB. e^xsin x - e^xcos xC. e^xcos xD. e^x(sin x+cos x)8. 定积分∫_0^1e^xdx=()A. e - 1C. eD. -e9. 二元函数z = x^2+y^2-2x + 4y + 5的驻点为()A. (1,-2)B. (-1,2)C. (1,2)D. (-1,-2)10. 级数∑_n = 1^∞(1)/(n(n + 1))的和为()A. 0.B. 1.C. 2.D. ∞二、填空题(每题3分,共15分)1. lim_x→1frac{x^2-1}{x - 1}=_2. 函数y = ln(x^2+1)的导数y^′=_3. 已知→a=(1,2),→b=(3,-1),则→a·→b=_4. 由曲线y = x^2与y = x所围成的图形的面积为_5. 微分方程y^′+y = 0的通解为y=_三、计算题(每题8分,共40分)1. 求极限lim_x→0(tan x - sin x)/(x^3)。

2024成人高考专升本高数二试卷

2024成人高考专升本高数二试卷

2024成人高考专升本高数二试卷一、选择题(本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1. 函数y = (1)/(ln(x - 1))的定义域为()A. (1,2)∪(2,+∞)B. (1,+∞)C. (2,+∞)D. [1,2)∪(2,+∞)2. 设函数y = f(x)在点x_0处可导,则limlimits_Δ x→0(f(x_0 - Δ x)-f(x_0))/(Δ x)=()A. f'(x_0)B. -f'(x_0)C. 0D. 不存在。

3. 设y = x^3sin x,则y'=()A. 3x^2sin x + x^3cos xB. 3x^2sin x - x^3cos xC. x^2(3sin x + xcos x)D. x^2(3sin x - xcos x)4. 函数y = ln(x + √(1 + x^2))的导数为()A. (1)/(√(1 + x^2))B. (1)/(x+√(1 + x^2))C. (1)/(x)-(1)/(√(1 + x^2))D. (1)/(x)+(1)/(√(1 + x^2))5. 设f(x)=∫_0^x(t^2 - 1)dt,则f'(x)=()A. x^2-1B. 2xC. (1)/(3)x^3 - xD. x^26. 下列定积分中,值为0的是()A. ∫_-1^1x^3dxB. ∫_-1^1(x^2 + 1)dxC. ∫_-1^1sin xdxD. ∫_-1^1(1)/(x)dx7. 设z = x^2y + 3y^2,则(∂ z)/(∂ y)=()A. x^2+6yB. 2xy + 6yC. x^2D. 2xy8. 二元函数z = ln(x + y)的定义域为()A. {(x,y)x + y>0}B. {(x,y)x + y≥0}C. {(x,y)x>0,y>0}D. R^29. 级数∑_n = 1^∞(1)/(n(n + 1))的和为()A. 1B. (1)/(2)C. 2D. 无穷大。

2023年浙江省衢州市成考专升本高等数学二自考测试卷(含答案带解析)

2023年浙江省衢州市成考专升本高等数学二自考测试卷(含答案带解析)

2023年浙江省衢州市成考专升本高等数学二自考测试卷(含答案带解析)学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.()。

A.-1/4B.-1/2C.1/4D.1/22.3.4.5.下列定积分的值等于0的是()。

A.B. C. D.6.7.8.9.10.11.函数y=lnx在(0,1)内()。

A.严格单调增加且有界B.严格单调增加且无界C.严格单调减少且有界D.严格单调减少且无界12. 设?(x)=In(1+x)+e2x, ?(x)在x=0处的切线方程是().A.3x-y+1=0B.3x+y-1=0C.3x+y+1=0D.3x-y-1=013.14.A.A.-1B.-2C.1D.215.16.下列结论正确的是A.A.B.C.D.17.()。

A.0B.1C.2D.318.19.A.0B.e-1C.2(e-1)D.20.A.A.B.C.D.21.已知事件A和B的P(AB)=0.4,P(A)=0.8,则P(B|A)=A.A.0.5B.0.6C.0.65D.0.723.()。

A.B.C.D.24.25.A.A.有1个实根B.有2个实根C.至少有1个实根D.无实根26.27.()。

A.B.C.D.28.29.当x→0时,无穷小量x+sinx是比x的【】A.高阶无穷小B.低阶无穷小C.同阶但非等价无穷小D.等价无穷小30.A.2x+3yB.2xC.2x+3D.二、填空题(30题)31.32.33.34.35.36.37.38.39.40.41.42.43.44.45. 设y=3sinx,则y'__________。

46.47.48.49.50.51.52.53.54.设函数y=x n+2n,则y(n)(1)=________。

55.56.57.58.59.60.三、计算题(30题)61.62.63.64.65.66.67.68.69.70.71.72.73.74.75.76.77.78.79.80.81.82.83.84.85.86.87.88.89.90.四、综合题(10题)91.92.93.94.95.96.97.98.99.100.五、解答题(10题)101.102.103.104. (1)求曲线y=1-x2与直线y-x=1所围成的平面图形的面积A。

2006年浙江省普通高校“专升本”联考《高等数学(二)》试卷答案解析

2006年浙江省普通高校“专升本”联考《高等数学(二)》试卷答案解析

x
14. 解: lim x0
0
t an tdt x2

lim x0
tan x 2x
tan x~ x
lim x0
x 2x
1 2
15. 解:(方法一:对数求导法则)
两边取对数,可得: ln y 2ln x 1 ln(1 x) 1 ln(1 x)
2
2
两边同时对 x 求导,可得:
1 y
y
2 x
1 2(1
x
f (t)dt
x tf (t)dt ex
0
0
上式两边关于 x 求导数: f (x) x f (t)dt xf (x) xf (x) ex , 0 f (x) x f (t)dt ex , f (x) f (x) ex 0
记 y f (x) ,则上式是二阶常系数非齐次微分方程 ,即 y y ex (I)
n ln(1
1 n2
)
1 ,级数
1
n 1
3
n
ln(1
1 n2
)
和级
n2

n 1
1
3
n2
是同敛散性的,由于当 P
3 2
1是收敛,因此级数
n 1
n
ln(1
1 n2
)
是收敛的。
18. 解:令 t
x , x t2 , dx 2tdt ,则原式
1 t(1
t
2
)
2tdt
2
1 1t
2
dt
2 arct an
n0 n 1
f (x) ln1 (x 1) (1)n (x 1)n1 ,因为 1 x 11 x 0,2,故 n0 n 1

浙江省2020 年选拔优秀高职高专毕业生进入本科学习统一考试高等数学2

浙江省2020 年选拔优秀高职高专毕业生进入本科学习统一考试高等数学2

x
2n
,收敛域为:
x
0,4
四、综合题: 本大题共 3 小题, 每小题 10 分, 共 30 分。
24.解:设
f
(x)
tan x
x

x (0, ) ,所以 2
f
( x)
x sec2
x tan x2
x
x cos2
x x2
sin x cos x
x
sin x cos x2 cos2 x
x
x 1 sin 2
23.解:因 ln(1 x) (1)n1 xn ,收敛域为: ( 1,1] ,所以 ln x ln[2 (x 2)]
n1
n
ln2(1
x2 2)
ln2 ln(1
x 2) 2
ln2
n1
(1)n1 n
x 2n 2
,收敛域为:
1
x
2
2
1,
所以
ln
x
ln
2
n1
(1)n1 n 2n
e
e
e
e
【图 1】
13. y Cex ( C 为任意常数)解析:由微分方程 y y 0 ,可知 y y ,即 dy y ,
dx
所以可分离变量后得: dy dx ,两边同时积分,得: dy dx ,所以 ln y x A ,
y
y
y exA ex eA ,因此 y eA ex Cex ,其中 C e A ,所以通解为: y Cex ,
2

n
0

n
1,且
n
Z
时,极限为:
lim
xn
f
(x)
lim

浙江省专升本《高等数学》试卷

浙江省专升本《高等数学》试卷

浙江省专升本《高等数学》试卷一、选择题(每个小题给出的选项中,只有一项符合要求:本题共有5个小题,每小题4分,共20分)1.下列函数相等的是( )A .2,x y y xx==B.y y x==C.2 ,y x y == D.|| ,y x y ==2.曲线xe y x=()A .仅有水平渐近线B .既有水平又有垂直渐近线C .仅有垂直渐近线D .既无水平又无垂直渐近线3.设区域D 由直线,()x a x b b a ==>,曲线()y f x =及曲线()y g x =所围成,则区域D 的面积为()A .[()()]baf xg x dx−⎰B .|[()()]|ba f x g x dx −⎰C .[()()]bag x f x dx−⎰D .|()()|baf xg x dx−⎰4.若方程lnzx y=确定二元隐函数(,)z f x y =,则z x ∂=∂()A .1B .x eC .xyeD .y5.下列正项级数收敛的是()A .2131n n ∞=+∑ B .21ln n n n ∞=∑ C .221(ln )n n n ∞=∑ D.2n ∞=二、填空题(只需在横线上直接写出答案,不必写出计算过程,本题共有10个小题,每小题4分,共40分)1.当0x →时,2sin x a x +与x 是等价无穷小,则常数a 等于.2.设函数2sin 21, 0()0ax x e x f x xa x ⎧+−≠⎪=⎨⎪=⎩在(,)−∞+∞内连续,则a = .3.曲线1y x=在点(1,1)处的切线方程为.4.设()sin xf t dt x x =⎰,则()f x =. 5.设函数22ln()z x y =+,则11|x y dz === .6.定积分22(x −−⎰=.7.过点(1,2,0)−并且与平面23x y z ++=垂直的直线方程为.8.二重积分11sin x ydx dy y⎰⎰= .9.幂级数1!nn n n x n ∞=∑的收敛半径R = .10.微分方程20xy y '−=的通解是.三、计算题(本题共有10个小题,每小题6分,共60分) 1. 求011lim()1x x x e →−−.2.已知函数lnsin(12)y x =−,求dy dx. 3.求不定积分arctan x xdx ⎰.4.函数2, 0,()2, 0,x x f x x x +≤⎧=⎨−>⎩,计算11()f x dx −⎰的值.5.设函数(,)z z x y =是由方程22xy z e z e −+−=所确定,求212|x y dz ==−.6.设D 是由直线0,1x y ==及y x =围成的区域,计算2y DI e dxdy −=⎰⎰.7.设由参数方程2, 2,t x e y t t ⎧=⎨=+⎩所确定的函数为()y y x =,求212|t d ydx =, 8.求函数22(,)328f x y x y xy x =+−+的极值.9.求微分方程223xy y y e '''+−=的通解.10.将函数21()43f x x x =++展开成(1)x −的幂级数.四、综合题(本题3个小题,共30分,其中第1题12分,第2题12分,第3题6分) 1.设平面图形D 是由曲线xy e =,直线y e =及y 轴所围成的,求:⑴平面图形D 的面积;⑵平面图形D 绕y 轴旋转一周所成的旋转体的体积.2. 欲围一个面积为1502m 的矩形场地.所用材料的造价其正面是每平方米6元,其余三面是每平方米3元.问场地的长、宽各为多少时,才能使所用的材料费最少.3.设函数()f x 在闭区间[0,1]上连续,在开区间(0,1)内可导且(0)(1)0f f ==,1()12f =,证明:存在(0,1)ξ∈使()1f ξ'=.。

浙江专升本(高等数学)模拟试卷2(题后含答案及解析)

浙江专升本(高等数学)模拟试卷2(题后含答案及解析)

浙江专升本(高等数学)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.下列关于连续与间断的表述正确的是( )A.如果f(x)在x=a处连续,那么|f(x)|在x=a处连续.B.如果|f(x)|在x=a处连续,那么f(x)在x=a处连续.C.如果f(x)在R上连续,φ(x)在R上有定义,且有间断点,则φ(f(x))必有间断点.D.如果φ(x)在R上有定义,且有间断点,则φ2(x)必有间断点.正确答案:A解析:B选项,构造f(x)=,x=0处间断,但|f(x)|在x=0连续;C选项,构造φ(x)=sgnx,f(x)=ex,则φ(f(x))连续;D选项,构造φ(x)=,但φ2(x)在R上连续.通过排除法知:A正确.2.设,则f(x)在x=1处( )A.左、右导数都存在B.左导数存在,右导数不存在C.左导数不存在,右导数存在D.左、右导数都不存在正确答案:B解析:因f′(1)==2,f′+(1)==∞,故该函数的左导数存在,右导数不存在,可见选项B正确.3.下列等式中,正确的结果是:( )A.∫f′(x)dx=f(x)B.∫df(x)=f(x)C.∫f(x)dx=f(x)D.d∫f(x)=f(x)+c正确答案:C解析:由不定积分和原函数概念可知∫f′(x)dx=f(x)+c,∫df(x)=f(x)+C,∫f(x)dx=f(x),由微分与导数关系可知d∫f(x)dx=f(x)dx,可见选项C正确.4.已知向量=j+3k,则△OAB的面积是( )A.B.C.D.正确答案:A解析:根据向量叉积的几何意义得S△AOB===-3i-3j+k,所以,可见选项A正确.5.下列级数发散的是( )A.B.C.D.(a≠0常数)正确答案:D解析:发散,故D 正确.填空题6.设函数f(x)=,则其第一类间断点为__________.正确答案:x=1解析:==0.故x=1是函数f(x)的第一类跳跃间断点.7.设向量a与单位向量j成60°,与单位向量k成120°,且|a|=5,则a=___________.正确答案:a=(5,)解析:由题意设向量a的方向角为α,60°,120°,故由cos2α+cos260°+cos2120°=1.可得cos2α=,即a=8.设,g(x)=ex,则g[f(ln2)]=___________.正确答案:e解析:据题意知f(ln2)=1,所以g[f(ln2)]=g(1)=e1=e9.设y=ex(C1sinx+C2cosx)为某二阶常系数齐次线性微分方程的通解,则该方程为___________.正确答案:y″一2y′+2y=0解析:由通解可知该方程的特征根为r1=1+i,r2=1一i,从而可知特征方程为r2一2r+2=0,故此二阶常系数齐次线性微分方程为y″一2y′+2y=0.10.若一ax一ab)=2,则a=___________,b=___________.正确答案:a=1,b=-3解析:由一(ax+b+2)]=0直线y=ax+b+2可看成f(x)==1b+2==-1,故b=-3.11.已知f(0)=2,f(2)=3,f′(2)=4,则xf″(x)dx=___________.正确答案:7解析:f′(x)dx=2f′(2)一[f(x)]=2f′(2)一f(2)+f(0)=7.12.设y=(1+sinx)x,则dy|x=π=___________.正确答案:一πdx解析:对数求导法,lny=xln(1+sinx),则y=ln(1+sinx)+.所以y′=[ln(1+sinx)+|x=π=-π,因此,dy|x=π=-πdx.13.设f′(0)=1,f(0)=0,则=___________.正确答案:解析:14.设tetdt,则常数a=___________.正确答案:a=2解析:左边=ea,右边etdt=aea-et=(a-1)a,所以ea=(a-1)ea,故a=2.15.dx=___________.正确答案:+C解析:dx=+C解答题解答时应写出推理、演算步骤。

2009年浙江省普通高校“专升本”联考《高等数学(二)》试卷及答案

2009年浙江省普通高校“专升本”联考《高等数学(二)》试卷及答案
解 法 4 分 故 2. 因
3

dy dy dt 1. dx dx dt 2 2t sin t 2t. sin t 2

dx sin t 2 dt , dy 2t sin t 2dt
dy 2t. dx
6 分
7. 解 . 原 式


d 1 x 1 1 x
1 y x ' , x2
y
5 分
整 理 得
y'
(第 1 页,共 3 页)
x y . x y
6 分
5. 解 . 原 式 =

d 1 e x 1 ex
3 分 ln 1 e x c.
6 分
6. 解 法 1. 解 法

6 分
x
5. 函数 y sin x x 在区间 0, 上的最大值是 _____________________ .
6.若 2 为 f x 的一个原函数,则 f x __________________________.
x
7.
sin 1dx _______________________ . 4
得分
阅卷人
2.设曲线 y f x 在原点与曲线 y sin x 相切,求 lim n
n
2 f . n
解.
3.设函数 y 解.
x 1 x2
, 求 dy.
4.设 y y x 是由方程 x y e
2 2
arctan
y x
确定的隐函数,求
dy . dx
1.解.定义域 , 0 及 0,
y'
令 令

2022年浙江成人高考专升本高等数学(二)真题及答案

2022年浙江成人高考专升本高等数学(二)真题及答案

2022年浙江成人高考专升本高等数学(二)真题及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间150分钟.第Ⅰ卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设函数则( )2()sin ,(),f x x g x x ==(())f g x =A .是奇函数但不是周期函数B .是偶函数但不是周期函数C .既是奇函数又是周期函数D. 既是偶函数又是周期函数2. 若,则( )20(1)1lim2x ax x→+-=a =A. 1B. 2C. 3D. 43.设函数在处连续,在处不连续,则在处()()f x 0x =()g x 0x =0x = A. 连续 B. 不连续()()f x g x ()()f x g x C. 连续 D. 不连续()()f x g x +()()f x g x +4. 设,则()arccos y x ='y =A.B. C.D.5.设,则()ln()xy x e -=+'y =A. B. C.D. 1x xe x e --++1x xe x e---+11x e --1xx e-+6.设,则()(2)2sin n yx x -=+()n y =A.B.C. D.2sin x -2cos x -2sin x +2cos x +7.若函数的导数,则()()f x '()1f x x =-+A. 在单调递减()f x (,)-∞+∞B. 在单调递增()f x (,)-∞+∞C. 在单调递增()f x (,1)-∞D. 在单调递增 ()f x (1,)+∞8.曲线的水平渐近线方程为( )21xy x =-A. B. C.D.0y =1y =2y =3y =9.设函数,则()()arctan f x x ='()f x dx =⎰A. B.arctan x C +arctan x C -+C.D. 211C x++211C x-++10.设,则 ()x yz e+=(1,1)dz =A. B. C. D.dx dy +dx edy +edx dy +22e dx e dy +第II 卷(非选择题,共110分)二、填空题(11-20小题,每题4分,共40分)11. .lim2x x x e xe x→-∞+=-12.当 时,函数是的高阶无穷小量,则 .0x →()f x x 0()limx f x x→=13. 设,则.23ln 3y x =+'y =14.曲线在点(1,2)处的法线方程为.y x =+15..2cos 1x xdx x ππ-=+⎰16..=⎰17. 设函数,则 .()tan xf x u udu =⎰'4f π⎛⎫= ⎪⎝⎭18.设则.33,z x y xy =+2zx y∂=∂∂19.设函数具有连续偏导数,则.(,)z f u v =,,u x y v xy =+=zx∂=∂20.设A ,B 为两个随机事件,且则.()0.5,()0.4,P A P AB ==(|)P B A =三、解答题(21-28题,共70分。

2007年浙江省普通高校“专升本”联考《高等数学(二)》试卷答案解析

2007年浙江省普通高校“专升本”联考《高等数学(二)》试卷答案解析

2007年浙江省普通高校“专升本”联考《高等数学(二)》参考答案一、填空题: 本大题共8个空格,每一空格5分,共40分。

1. 11+=-x e y 解析:恒等变形可得:)1ln(1-=-x y 11-=⇒-x e y 11+=⇒-y e x ,故反函数为:11+=-x e y 2. 1=x解析:根据函数可列出不等式⎩⎨⎧≠+->02302x x x ,因此定义域为:),2()2,1()1,0(+∞ ,又因为1321lim 23ln lim 121-=-===+-→→x x x x xx x 洛,所以1=x 是函数的可去间断点,因为∞=+-→23ln lim 22x x xx ,所以2=x 是函数的无穷间断点,故应填:1=x3. )1(42+e π解析: 依题意可得:⎰⎰⎰===102102102)(2)(x xx x e xd dx xe dx e x V πππ)1(4)212(2)212(2)]21[(2])([22222122102102+=+=+-=-=-=⎰e e e e e e dx e xe x xx πππππ4. 0lim =∞→n n u 解析: 根据收敛级数的性质:级数∑∞=1n n u 收敛的必要条件为0lim =∞→n n u5.1=x ,1+=x y 解析:函数的定义域为:{}1≠x x 因为∞=-→1lim21x x x ,所以1=x 是函数的垂直渐近线 因为1)1(lim )(lim2=-==∞→∞→x x x xx f k x x ,1)1(1lim 1lim ])([lim 22----=--=-=∞→∞→∞→x x x x x x x x kx x f b x x x 11lim =-=∞→x x x ,所以1+=x y 是函数的斜渐近线6. 1 解析:1)1()ln 1(lim )ln 1()(ln ln 1ln 122=---=-==+∞→+∞∞+∞+⎰⎰xx x d x dx x x x e e e7. ]cos )(sin )[(x d cx x b ax e x +++ 解析:特征方程为:0222=++r r ,解得特征根为:i r ±-=1,自由项为:x xe x f x sin )(=,所构造出来的根2,11r i i ≠+=+ωλ,故0=k ,所以特解可以设为:]cos )(sin )[(x d cx x b ax e x +++二、选择题: 本大题共5小题,每小题4分,共 20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年浙江省普通高校“专升本”联考《高等数学(二)》试卷1.函数x e x x xy --=)1(sin 2的连续区间是____________________.2.___________________________)4(1lim 2=-+-∞→x x x x .3.写出函数的水平渐近线和垂直渐近线4.设函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<+=>+=--1 ,1b 1 ,1,)1(1)(2)1(12x x x a x e x x f x ,当_________,==b a 时,函数)(x f 在点x=1处连续.5.设参数方程⎩⎨⎧==θθ2sin 2cos 32r y r x , (1)当r 是常数,θ是参数时,则_______________=dx dy .(2)当θ是常数,r 是参数时,则=dxdy_____________.二.选择题. (本题共有5个小题,每一小题4分,共20分,每个小题给出的选项中,只有一项符合要求)1.设函数)(x f y =在b], [a 上连续可导,),(b a c ∈,且0)('=c f ,则当( )时,)(x f 在c x =处取得极大值.)(A 当c x a <≤时,0)('>x f ,当b x c ≤<时,0)('>x f , )(B 当c x a <≤时,0)('>x f ,当b x c ≤<时,0)('<x f , )(C 当c x a <≤时,0)('<x f ,当b x c ≤<时,0)('>x f , )(D 当c x a <≤时,0)('<x f ,当b x c ≤<时,0)('<x f . 2.设函数)(x f y =在点0x x =处可导,则). ()2()3(lim000=--+→hh x f h x f h).(5)( ),( 4)( ),(x 3)( ),()(0'0'0'0'x f D x f C f B x f A3.设函数⎪⎩⎪⎨⎧<-=>=--0,00,0x ,)(22x e x e x f x x ,则积分⎰-11)(dx x f =( )..2)( ,e1)( 0)( ,1)(D C B A -4.可微函数在点处有是函数在点处取得极值的()。

充分条件,必要条件, 充分必要条件,既非充分又非必要条件。

5.设级数∑∞=1n na和级数∑∞=1n nb都发散,则级数∑∞=+1)(n n nb a是( ).)(A 发散, )(B 条件收敛, )(C 绝对收敛,)( D 可能发散或者可能收敛.三.计算题:(计算题必须写出必要的计算过程,只写答案的不给分,本题共10个小题,每小题7分,共70分)1.求函数xx x y )1(2+-=的导数.2. 求函数1223+-=x x y 在区间(-1,2)中的极大值,极小值.3. 求函数xe x xf 2)(=的3阶导数33dx fd .4.计算极限)1sin()1(lim 1--+-→x x e e x x .5.计算积分⎰+dx e x211. 6.计算积分⎰-+12)2(dx e x x x .7.函数方程,其中变量是变量的函数,求和8.把函数11+=x y 展开成1-x 的幂级数,并求出它的收敛区间.9.求微分方程x y x dxdyxsin )(sin cos =+的通解.10.直线1=x 把圆422=+y x 分成左,右两部分,求右面部分绕y 轴旋转一周所得的旋转体体积.四.综合题: (本题共2个小题,每小题10分,共20分)1.设m n ,是整数,计算积分⎰πcos cos mxdx nx .2.已知函数d cx bx ax x f +++=234)(23, 其中常数0,,,,=+++d c b a d c b a 满足, (1)证明函数)(x f 在(0,1)内至少有一个根,(2)当ac b 832<时,证明函数)(x f 在(0,1)内只有一个根.2005年高数(二)答案(A 卷)一.填空题:(每空格5分,共40分)1.连续区间是),1()1,0()0,(+∞-∞ ,2.21, 3.(1)0y =, (2)2x =4.1,0-==b a ,5.(1)y x r 2-, (2)xy23.三.计算题:(计算题必须写出必要的计算过程,只写答案的不给分,每小题7分,共70分)1.解 :令)1ln(ln 2+-=x x x y , (3分)则x x x x x x x x x y )1)](1ln(1)12([222'+-+-++--= (7分) 2.解:)43(432'-=-=x x x x y ,驻点为34,021==x x (2分)(法一) 46''-=x y ,04)0(''<-=y , 1)0(=y (极大值), (5分)04)34(''>=y , 275)34(-=y (极小值). (7分)(5分)当0=x 时,1=y (极大值),当34=x 时,275-=y (极小值) (7分)3.解:(法一)利用莱布尼兹公式xe x x dxf d ]66[233++= (7分) (法二)xe x x xf )2()(2'+=, (3分) x e x x x f )24()(2''++=, x e x x x f)66()(2)3(++= (7分)4.解:)1sin()1(lim 1--+-→x x e e x x =)1cos(1lim 1-+→x e x x =1+=e5.解:⎰+dx e x 211==+-+⎰dx ee e xxx 22211 (3分) ++-=)1ln(212x e x C (7分)6.解:⎰-+12)2(dx e x x x ==+--+⎰dx e x ex x x x 10102)12()2( (3分)=2-⎰+1)12(dx e x x=2-)13(-e +102x e==e e e -=-+-12233。

(7分)7.解:()22,220F x y x xy y =++=2222222233422202(2)2()021()()(1)()()()220()()dy dy x y xy dx dxdyx y x y dxdy x y x dx x y x y x dy x y x x x x y x d y x y dx dx x y x y x y x x xy y x y x y ∴+++=⇒+++=+⇒=-=--+++-+++-++=-=-++++++=-=-=++ (3分)(7分)8.解:])21()1()21()21(211[21]2111[211132 +--++---+--=-+=+=nn x x x x x x y=∑∞=+--012)1()1(n n n n x , (5分) 收敛区间为(-1, 3). (7分)9.解:xxx y 2cos sin )'cos (=(5分)1cos +=x C y (其中C 为任意常数) (7分)10.解:直线1=x 与圆422=+y x 的交点是)3,1(),3,1(21-P P , (2分) 右面部分绕y 轴旋转一周的所得几何体的体积.⎰---=332]1)4[(dy y V π(5分) =ππ34)33(233=-y y (7分) 四.综合题:1.解:⎰π0cos cos mxdx nx =⎰-++π])cos()[cos(21dx x m n x m n (3分)=⎪⎪⎩⎪⎪⎨⎧≠==≠=m n m n m n ,00 ,0 ,2ππ(10分)2.证明:证明:(1)考虑函数dx cx bx ax x F +++=234)(, (2分))(x F 在[0,1]上连续,在(0,1)内可导,0)1()0(==F F , (4分)由罗尔定理知,存在)1,0(∈ξ,使得0)('=ξF ,即0)()('==ξξf F ,就是=)(ξf 023423=+++d c b a ξξξ,所以函数)(x f 在(0,1)内至少有一个根. (7分)(2)c bx ax x F x f 2612)()(2'''++==因为ac b 832<,所以0)83(129636)2)(12(4)6(222<-=-=-ac b ac b c a b ,)('x f 保持定号,)(x f 函数)(x f 在(0,1)内只有一个根. (10分)。

相关文档
最新文档