流体力学第一章 演示文稿

合集下载

[PPT模板]第一章流体力学

[PPT模板]第一章流体力学
13
1.2 流体流动能量平衡 1.2.1 稳定流动热力学体系的概念
热力体系:指某一由周围边界所限定的空间内的所有 物质。边界外部称为外界。
无交换时
封闭体系
物质交换时
开口体系
稳定流动:流体在各个截面上的状态对外热量交换、 功交换都不随时间改变,并且同时期内流过任何截面 上的流量均相等。
14
1.2.2 稳定流动体系的能量平衡
牛顿内摩擦定律(牛顿黏性定律)
适用于空气、水、大多数油、牛奶等稀溶液液体流体。
6
τ μ du dy
牛顿流体(Newtonian fluid)切应力与 速度梯度的关系完全符合牛顿黏性定律的流体。 黏度 μ τ 是常数,是流体的性质。
du/dy 非牛顿流体(non-Newtonian fluid)
设在一定时间内进出体系的液体质量为m,若忽略电 能和化学能,则输入和输出体系的能量有:
1.位能 mgz
2.动能 mu2/2
3.内能 单位质量流体所含的内能为e 则质量为m的流体内
能E=me
1`
4.流动功 (压力能) pv,mpv
z1 1
w
Q
2`
2 z2
15
5.外功
功的输入 功的输出
外界对体 系作功
39
u2
g(z1 z2 ) 2.1
9
.
8
1( 8 2.1

3
)

4.83m/s
qv

π 4
d 2u2
0.785 0.042 4.83
6.07103m3/s
(2) 若水的流量增加30% ,则
u2 1.3 4.83m/s 6.28m/s

流体力学完整1章PPT课件

流体力学完整1章PPT课件

第一阶段(16世纪以前):流体力学形成的萌芽阶段 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力
学成为一门独立学科的基础阶段 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个
方向发展——欧拉、伯努利 第四阶段(19世纪末以来)流体力学飞跃发展
返回
可编辑课件
4
第一阶段(16世纪以前):流体力学形成的萌芽阶段
1686年 牛顿——牛顿内摩擦定律
1738年 伯努利——理想流体的运动方程即伯努利方程
1775年 欧拉——理想流体的运动方程即欧拉运动微分 方程
返回
可编辑课件
8
帕斯卡
发现帕斯卡定律,指封闭容器中 的静止流体的某一部分发生的压 强变化,将毫无损失地传递至流 体的各个部分和容器壁压强等于 作用力除以作用面积。根据帕斯 卡原理,在水力系统中的一个活 塞上施加一定的压强,必将在另 一个活塞上产生相同的压强增量。 如果第二个活塞的面积是第一个 活塞的面积的10倍,那么作用 于第二个活塞上的力将增大为第 一个活塞的10倍,而两个活塞 上的压强仍然相等。水压机就是 帕斯卡原理的实例。它具有多种 用途,如液压制动等。
流体力学
建筑环境与设备工程专业 王浩 2010-8
可编辑课件
1
绪论
流体力学是研究流体机械运动规律及其 应用的科学,是力学的一个重要分支。
流体力学研究的对象——液体和气体。
可编辑课件
2
流体力学发展简史 流体力学的研究方法 作用在流体上的力 流体的主要力学性质 流体力学的模型
可编辑课件
3
流体力学发展简史
理论 1823年纳维,1845年斯托克斯分别提出粘性流体运
动方程组(N-S方程)
返回
可编辑课件

流体力学 1章讲稿

流体力学    1章讲稿

第一章 数学基础知识§1.1 场论一.物理量场: 充满物理量的空间。

充满流体的空间称为流场。

流体的物理量ρ、v 、p …构成密度、速度、压力场…, 如ρ、p 、浓度c 等构成标量场, 速度V 等构成矢量场,因此流场是复合参数场。

由时间t 、空间点及其对应的物理量确定的函数为场函数。

标量场、矢量场函数: φ=φ(r ,t)=φ(x,y,z,t)a =a (r ,t)=a (x,y,z,t) 定常场: 场函数与时间t 无关, 反之为非定常场φ=φ(r )=φ(x,y,z) a =a (r )=a (x,y,z) 0=∂∂t φ 0=∂∂ta均匀场: 场函数为常数, 反之为非均匀场。

流体的连续性模型认为,流场中各空间点充满流体,且各点、各物理参数存在连续的各阶导数。

二.Green-Gauss 公式(对于连续场)⎰⎰⎰⎰⎰⋅=∂∂+∂∂+∂∂A zy x dA d za y a x a a n ττ)(二维时 dL dA ya x a L yA x ⎰⎰⎰∙=∂∂+∂∂a n )(推广的Green-Gauss 公式有⎰⎰⎰⎰⎰=∂∂+∂∂+∂∂A dA d zy x φτφφφτn k j i )(⎰⎰⎰⎰⎰⨯=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂A x y z x y z dA d ya x a x az a z a y a a n k j i ττ)()()(三 梯度、散度与旋度1) 方向导数: 物理量φ场在M 点上沿L 方向的方向导数为L ∂∂φ=')()'(lim 0'MM M M MM φφ-→=)^cos(x L x ∂∂φ+)^cos(y L y ∂∂φ+)^cos(z L z ∂∂φ=(x ∂∂φI +y∂∂φj +z ∂∂φk )·l式中l 为沿L 方向的单位矢量。

2) 标量场的梯度grad φ: 标量场φ的梯度为上式括号中的矢量微分算式,为确定的矢量。

流体力学第1章绪论幻灯片PPT

流体力学第1章绪论幻灯片PPT
流体力学第1章绪论幻灯片 PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
1.1 流体力学的研究对象及意义
1.1.1 研究对象 流体(Fluid),包括液体(Liquid)和气体(Gas)。
江苏科技大学
1.1.3 工程应用
流体力学已广泛用于国民经济的各个领域。
在水利建设中:如防洪、灌溉、航运、水力发电、河道整治等;
在航空航天中:如航天飞机、人造卫星等;
在国民经济的其他技术部门中:如机械工程中的润滑、液压传动; 船舶的行波阻力;市政工程中的通风、通水,高层建筑的受风作用; 铁路、公路隧道中的压力波传播、汽车的外形与阻力的关系;血液在 人体内的流动;污染物在大气中的扩散等。
得到很大发展,已形成专门的学科 ——计算流体力学。
1.1 流体力学的研究对象及意义
江 苏 科 技大 学
5)流体力学的发展史
流体力学的萌芽,是自距今约2200年希腊学者阿基米德的《论浮 体》一文开始的。他对静止流体的性质作了第一次科学总结。
流体力学的主要发展,是从牛顿时代开始的,1687年牛顿的名著 《原理》讨论了流体的阻力、波浪运动等问题,使流体力学开始变为力 学中的一个独立分支。此后,流体力学的发展主要经历了四个阶段:
4、二十世纪六十年代以后,由于计算机的发明与普及,出现了在理论 分析和实验观察的基础上拟定计算方案,利用计算机编程求解数值解的 流体力学研究方法,即“计算流体力学“。现代测量技术如激光测速仪 等的应用和计算机在实验数据的监测、采集等中的应用,都促进了工程 流体力学的发展。

流体力学基础 ppt课件

流体力学基础  ppt课件
➢流体介质是由连续的质点组成的;
➢质点运动过程的连续性。
流体的压缩性
不可压缩流体:流体的体积如果不随压力及温度变 化,这种流体称为不可压缩流体。
可压缩流体:流体的体积如果随压力及温度变化, 则称为可压缩流体。
实际上流体都是可压缩的,一般把液体当作不 可压缩流体;气体应当属于可压缩流体。但是,如 果压力或温度变化率很小时,通常也可以当作不可 压缩流体处理。
1.3 压强
垂直作用于流体单位面积上的力,称为流体的压强, 简称压强。习惯上称为压力。垂直作用于整个面上的 力称为总压力。
在静止流体中,从各方向作用于某一点的压强大小 均相等。
压强的单位: ❖ 帕斯卡, Pa, N/m2 (法定单位); ❖ 标准大气压, atm; ❖ 某流体液柱高度; ❖ bar(巴)或kgF/cm2等。
m v
(1-1)
式中 ρ —— 流体的密度,kg/m3;
m —— 流体的质量,kg;
v —— 流体的体积,m3。
不同的流体密度是不同的,对一定的流体,密度是压力p和 温度T的函数,可用下式表示 :
f(p,T)
(1-2)
液体的密度随压力的变化甚小(极高压力下除外),可忽略
不计,但其随温度稍有改变。气体的密度随压力和温度的变化
解: 首先将摄氏度换算成开尔文:
100℃=273+100=373K
1)求干空气的平均分子量:
Mm = M1y1 + M2y2 + … + Mnyn
=32 × 0.21+28 ×0.78+39.9 × 0.01
=28.96
气体的平均密度为:
T0p 0 Tp0

2 2..4 6 8 9 2 3 2 7 7 1 9 .8 3 3 .3 0 1 1 1 1 4 30 0 0 .9k2 /g m 3

流体力学(共64张PPT)

流体力学(共64张PPT)

1) 柏努利方程式说明理想流体在管内做稳定流动,没有
外功参加时,任意截面上单位质量流体的总机械能即动能、
位能、静压能之和为一常数,用E表示。
即:1kg理想流体在各截面上的总机械能相等,但各种形式的机
械能却不一定相等,可以相互转换。
2) 对于实际流体,在管路内流动时,应满足:上游截面处的总机械能大于下游截面
p g 1z12 u 1 g 2W g ep g 2z22 u g 2 2g hf
JJ
kgm/s2
m N
流体输送机械对每牛顿流体所做的功

HeW ge,
Hf ghf
p g 1z12 u 1 g 2H ep g 2z22 ug 2 2 H f
静压头
位压头
动压头 泵的扬程( 有效压头) 总压头
处的总机械能。
22
3)g式中z各、项 的2u 2物、理 意p 义处于g 某Z 个1 截u 2 1 面2上的p 1流 W 体e本 身g Z 所2具u 有2 22 的 能p 量2 ; hf
We和Σhf: 流体流动过程中所获得或消耗的能量〔能量损失〕;
We:输送设备对单位质量流体所做的有效功;
Ne:单位时间输送设备对流体所做的有效功,即有效功率;
u2 2
u22 2
u12 2
p v p 2 v 2 p 1 v 1
Ug Z 2 u2 pQ eW e
——稳定流动过程的总能量衡算式 18
UgZ 2 u2pQ eW e
2、流动系统的机械能衡算式——柏努利方程
1) 流动系统的机械能衡算式〔消去△U和Qe 〕
UQ'e vv12pdv热力学第一定律
26
五、柏努利方程应用
三种衡算基准

第1章流体力学基本知识-PPT精品

第1章流体力学基本知识-PPT精品
ρ1u1dω1dt=ρ2u2dω2dt 或 ρ1u1dω1=ρ2u2dω2
从元流推广到总流,得:
1u1d1 2u2d2
1
2
由于过流断面上密度ρ为常数,以
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv
ρ1ω1v 1=ρ2ω2v 2
(1-11) (1-11a)
单位时间内通过过流断面dω的液体体积为 udω =dQ
4.流量:单位时间内通过某一过流断面的流体 体积。一般流量指的是体积流量,单位是 m3/s或L/s。
5.断面平均流速:断面上各点流速的平均值。 通过过流断面的流量为
Qvud
断面平均流速为:
v

ud


Q
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
确定流体等压面的方法,有三个条件:
必须在静止状态;在同一种流体中; 而且为连续液体。
2.分析静止液体中压强分布:
静止液体中压强分布
分析铅直小圆柱体,作用于轴向的外力有: 上表面压力
分析铅直小圆柱体,作用于轴向的外力有: 下底面的静水压力
分析铅直小圆柱体,作用于轴向的外力有: 柱体重力
静压。 rv2/2g--工程上称动压。
p12vg12 p22vg22h12
p + rv2/2g--过流断面的静压与动 压之和,工程上称全压。

(新)第一章 流体力学(讲解教学课件)

(新)第一章  流体力学(讲解教学课件)

mgz 1 mu 2 m p
2
J
1kg流体的总机械能为: zg u 2 p
2
J/kg
1N流体的总机械能为: z u 2 p J/N
2g g
(新)第一章 流体力学(讲解教学课件)
压头:每牛顿的流体所具有的能量 静压头;
2、外加能量:1kg流体从输送机械所获得的机械能 。
符号:We;
单位:J/kg ;
和其深度有关。 (2)在静止的、连续的同一液体内,处于同一水平面
上各点的压力均相等。
(新)第一章 流体力学(讲解教学课件)
• (2) 当液体上方的压力有变化时,液体内 部各点的压力也发生同样大小的变化。
(新)第一章 流体力学(讲解教学课件)
三、静力学基本方程的应用 (1)测量流体的压力或压差
① U管压差计 对指示液的要求:指示液要与被测流体 不互溶,不起化学作用;其密度应大于 被测流体的密度。
• 如:4×103Pa(真空度)、200KPa (表压)。
(新)第一章 流体力学(讲解教学课件)
【例题1-1】 在兰州操作的苯乙烯精馏塔塔顶的真空度 为620mmHg。在天津操作时,若要求塔内维持相同 的绝对压力,真空表的读数应为多少?兰州地区的 大气压力为640mmHg,天津地区的大气压力为 760mmHg。
p1-p2=(指-)Rg
若被测流体是气体上式可简化为
p1-p2=指Rg
(新)第一章 流体力学(讲解教学课件)
• 通常采用的指示液有:着色水、油、四氯化碳、 水银等。
• U形管压差计在使用时,两端口与被测液体的 测压点相连接。
• U形管压差计所测压差,只与读数R、指示液 和被测液体的密度有关,而与U形管的粗细、 长短、形状无关,在此基础上又产生了斜管压 差计、双液柱微差计、倒U形管压差计等。

《流体力学》课件-(第1章 绪论)

《流体力学》课件-(第1章 绪论)

流体力学
流体
强调水是主要研究对象 比较偏重于工程应用 土建类专业常用
力学
宏观力学分支 遵循三大守恒原 理
水力学

力学
§1.1.1 流体力学的任务和研究对象
二、研究对象 流体 指具有流动性的物体,包括气体和 液体二大类。
流动性
•即 任 一 微 小 剪
切力都能使流体 发生连续的变形

流体的共性特征
基本特征:具有明显的流动性;气体的流动性大于液体。 流体只能承受压力,不能承受拉力,在即使是很小剪切力
二. 表面力 是指作用在所研究的流体表面上的力,它是相邻流 体之间或固体壁面与流体之间相互作用的结果。 它的大小与流体的表面积成正比; 方向可分解为切向和法向。
• 设 面 积 为 ΔA 的 流 体
nFLeabharlann 面元,法向为 n ,指 向表面力受体外侧, 所受表面力为 ΔF ,则 应力
F f n lim A0 A
第一阶段:古典流体力学阶段 奠基人是瑞士数学家伯努利(Bernoulli,D.)和他的 亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了著 名的伯努利方程,欧拉于1755年建立了理想流体运动微分 方 程 , 以 后 纳 维 (Navier,C .H.) 和 斯 托 克 斯 (Stokes , G.G.)建立了粘性流体运动微分方程。拉格朗日 (Lagrange)、拉普拉斯(Laplace)和高斯(Gosse)等人, 将欧拉和伯努利所开创的新兴的流体动力学推向完美的分 析高度。
第1章 绪论 第2章 流体静力学 第3章 一元流体动力学理论基础 第4章 流动阻力与能量损失 第5章 孔口、管嘴出流和有压管流 第6章 量纲分析与相似原理
第一章 绪论

流体力学课件第一章课件

流体力学课件第一章课件

其中: h——两平板间的距离,A——平板面积。 若对上板施加力 F ,并使上板以速度 U 保持匀速直线运 动,则内摩擦力T = F。通过牛顿平板实验得出:
因流体质点粘附于固体壁上,故下板上流体质点的速度 为零,紧贴上板的液体质点速度为 U。当 h及 U不太大时, 板间沿法线方向的点流速可看成线性分布,即:
3、假塑性流体
图(3)所示它的粘度
( η )随着速度梯度 du/dy 的增长而增大 。
本课程只讨论牛顿流体,牛顿内摩擦定律 只适用于牛顿流体,不适用于非牛顿流体。非 牛顿流体是流变学的研究对象。
的又一特征,即流体的压缩性和膨胀性。
一、流体的压缩性
1.体积压缩系数βp
βp反映流体的压缩性,当温度不变时βp为:

V / V V p p V p
即单位压强变化所引起的流体体积的相对变化率,
βp的单位是m2/N, 是压力单位的倒数。
上式表明,对于同样的压力增量, βp 大的流体,
二、流体的膨胀性
流体膨胀性用单位温升所引起的体积变化率表 温度膨胀系数由下式确定:
示。称为温度膨胀系数,用βT表示。当压力不变时,

T
V / V V T VT
式中 δT 为温度的增量, δV/V 是流体的体积相 对变化率。由于温度升高,体积膨胀,故 δT 与 δV 同号。βT的单位是1/K或1/℃。
类型:
1.塑性流体,(图(2)所示)在 产生连续变形前有一屈服应力, 在屈服应力后的应力与速度梯度 du/dy间存在线性关系。 ( 即η=μ,K=τ0 )牙膏的变形就属 于这种性质。
2、胀塑性流体(图(4)所示)它
的粘度( η )随着速度梯度 du/dy 的增长而降低,粘土浆和纸浆都 属于这类流体。

第一章 流体力学基础ppt课件(共105张PPT)

第一章 流体力学基础ppt课件(共105张PPT)


力〔垂直于作用面,记为 ii〕和两个切向 应力〔又称为剪应力,平行于作用面,记为

ij,i j),例如图中与z轴垂直的面上受
到的应力为 zz〔法向)、 zx和 zy〔切
电 向),它们的矢量和为:


件 τ zzix zjy zkz
返回
前页
后页
主题
西
1.1 概述

交 • 3 作用在流体上的力
大 化
子 课 件
返回
前页
后页
主题
西
1.2.3 静力学原理在压力和压力差测量上的应用


大 思索:若U形压差计安装在倾斜管路中,此时读数 R反
化 映了什么?
工 原
理 p1p2
p2
p1 z2
电 子
(0)gR(z2z1)g z1

R

A A’
返回
前页
后页
主题
西 1.2.3 静力学原理在压力和压力差测量上的应用

交 大

2.压差计
化 • (2〕双液柱压差计
p1
p2
工•
原•

电•
子•


又称微差压差计适用于压差较小的场合。
z1
1
z1
密度接近但不互溶的两种指示
液1和2 , 1略小于 2 ;
R
扩p 大1 室p 内2 径与2 U 管1 内g 径之R 比应大于10 。 2
图 1-8 双 液 柱 压 差 计
返回

交 大

1.压力计
化 • (2〕U形压力计
pa
工 • 设U形管中指示液液面高度差为RA,1 指• 示液

流体力学学习课件第一章绪论(流体力学)

流体力学学习课件第一章绪论(流体力学)
流体力学
李传奇 土建与水利学院
教学基本内容
第一章 第二章 第三章 第四章
第六章 第七章 第八章
绪论 流体静力学 流体运动学 流体动力学基础
流动阻力与水头损失 孔口、管嘴和有压流 明渠流动
2020/1/27
2
第一章 绪论
第一节 流体力学及任务 第二节 作用在流体上的力 第三节 流体的主要物理性质 第四节 牛顿流体与非牛顿流体
(3)城市防洪工程中的应用。如堤、坝的作用力与渗流问题、防 洪闸坝的过流能力等。 (4)其它应用:气象,航空,动力工程,生物医学,体育等等。
2020/1/27
15
市政
London Sewer
交通
Culverts
岩土工程
Groundwater and Seepage
结构
Snow Load
结构
2020/1/27
26
(2)当流体处于绝对静止时:
有:
2020/1/27
fx= 0 fy= 0 fz= -g
z
o x
y g
27
1.3 流体的主要物理性质
1、惯性 2、粘性 3、可压缩性和热膨胀性
2020/1/27
28
1. 3.1 惯性
z
(1)密度(Density):是指单位体积流体的质量。
V
2020/1/27
3
1.1 流体力学及其任务
1.1.1 流体力学的研究对象
力学 基础学科,它同数、理、化、天、地、生并列
为七大基础学科。 流体力学
是力学的一个分支,流体力学是研究流体静止 或运动的力学规律及其在工程技术中的应用。
2020/1/27
4
• 流体最主要的物理特性

流体力学基本知识PPT课件

流体力学基本知识PPT课件

可编辑课件
6
一、流体静压强及其特性
表面压强为: p=△p/△ω (1-6)
点压强为: lim p=dp/dω ( Pa) 点压强就是静压强
可编辑课件
7
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。
(2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
(1)渐变流:流体运动中流线接近于平行线 的流动称为渐变流。
(2)急变流:流体运动中流线不能视为平行 直线的流动称为急变流。
可编辑课件
15
(五)元流、总流、过流断面、流量与断面 平均流速;
1.元流:流体运动时,在流体中取一微小面
积dω,并在dω面积上各点引出流线并形成
了一股流束称为元流。在元流内的流体不 会流到元流外面;在元流外面的流体亦不
热胀性:流体温度升高体积膨胀的性质。
液体的热胀性很小,在计算中可不考虑(热水循环系 统除外);
气体的热胀性不能忽略。
建筑设备工程中的水、气流体,可以认为是易于流动、
具有粘滞性、不可压缩的流体。
可编辑课件
5
第二节 流体静压强及其分布规律
流体静止是运动中的一种特殊状态。 由于流体静止时不显示其黏滞性,不存在 切向应力,同时认为流体也不能承受拉力, 不存在由于粘滞性所产生运动的力学性质。 因此,流体静力学的中心问题是研究流体 静压强的分布规律。
直(图中未绘出),在轴向投影为零。此铅直圆柱 体处于静止状态,故其轴向力平衡为:
pΔ Δ γh Δ p0Δ ω ω 0
化简后得:
p=p0 +γh
(1-8)
式中 p——静止液体中任意点的压强,kN/m2或kPa;
p0——表面压强,kN/m2或kPa;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1·1流体力学的性质任务与发展简史
在我国,水利事业的历史十分悠久:
4000多年前的 “大禹治水”的故事——顺水之性,治水须引 导和疏通。
流体力学的主要发展是从牛顿时代开始的,1687年牛顿在 名著《自然哲学的数学原理》中讨论了流体的阻力、波浪运动, 等内容,使流体力学开始成为力学中的一个独立分支。此后,流 体力学的发展主要经历了三个阶段:
1. 伯努利所提出的液体运动的能量估计及欧拉所提出的液体运动的 解析方法,为研究液体运动的规律奠定了理论基础,从而在此基 础上形成了一门属于数学的古典“水动力学”(或古典“流体力 学”)。
1·1·1、流体力学概念
流体力学是力学的一个独立分支,是一门研究
流体的平衡和流体机械运动规律及其实际应用的技
术科学。
流体力学所研究的基本规律,有两大组成部分。
一是关于流体平衡的规律,它研究流体处于静止
(或相对平衡)状态时,作用于流体上的各种力之
间的关系,这一部分称为流体静力学;二是关于流
体运动的规律,它研究流体在运动状态时,作用于
流体上的力与运动要素之间的关系,以及流体的运
动特征与能量转换等,这一部分称为流体动力学。
1·1流体力学的性质任务与发展简史
流体力学在研究流体平衡和机械运动规律时,要应用物理学
及理论力学中有关物理平衡及运动规律的原理,如力系平衡定理、
动量定理、动能定理,等等。因为流体在平衡或运动状态下,也
同样遵循这些普遍的原理。所以物理学和理论力学的知识是学习
1·1流体力学的性质任务与发展简史
2、在古典“水动力学”的基础上纳维和斯托克思提出了著名的 实际粘性流体的基本运动方程——纳维-斯托克思方程(N-S方 程)。 从而为流体力学的长远发展奠定了理论基础。但由于其 所用数学的复杂性和理想流体模型的局限性,不能满意地解决 工程问题,故形成了以实验方法来制定经验公式的“实验流体 力学”。但由于有些经验公式缺乏理论基础,使其应用范围狭 窄,且无法继续发展。
学科。
1.在流体力学已广泛用于土木工程的各个领域,如建筑工程和土建工程 中的应用。如基坑排水、路基排水、地下水渗透、地基坑渗稳定处理、 围堰修建、海洋平台在水中的浮性和抵抗外界扰动的稳定性等。
2.在市政工程中的应用。如桥涵孔径设计、给水排水、管网计算、 泵站 和水塔的设计、隧洞通风等,特别是给水排水工程中,无论取水、水处 理、输配水都是在水流动过程中实现的。流体力学理论是给水排水系统 设计和运行控制的理论基础。
1·1流体力学的性质任务与发展简史
1·1·2、流体力学在土木中的应用
流体是人类生活和生产中经常遇到的物质形式,因此许多科学技术
部门都和流体力学有关。例如水利工程、土木建筑、交通运输、机械制
造、石油开采、化学工业、生物工程等都有大量的流体问题需要应用流
体力学的知识来解决,事实上,目前很难找到与流体力学无关的专业和
1·1流体力学的性质任务与发展简史
主要的流体力学事件有
1738年瑞士数学家:伯努利在名著《流体动力学》中提出了伯努利方程。 1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立了
理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了 速度势的概念。 1781年拉格朗日首先引进了流函数的概念。 1823年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了著 名的N-S方程。 1876年雷诺发现了流体流动的两种流态:层流和紊流。 1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并 于1887年提出了脱体绕流理论。 19世纪末,相似理论提出,实验和理论分析相结合。 1904年普朗特提出了边界层理论。 20世纪60年代以后,计算流体力学得到了迅速的发展。流体力学内涵不断地 得到了充实与提高。
流体力学课程必要的基础。
另外,这门课还需要一些其他的基础知识:高等数学,数值
分析,边界条件的计算,土力学,工程力学等等 。
目前,根据流体力学在各个工程领域的应用,流体力学可分
为以下三类:
水利类流体力学:面向水工、水动、海洋等;
机械类流体力学:面向机械、冶金、化工、水机等;
土木类流体力学:面向市政、工民建、道桥、城市防洪等。
3、从19世纪末起,人们将理论分析方法和实验分析方法相结 合,以解决实际问题,同时古典流体力学和实验流体力学的内 容也不断更新变化,如提出了相似理论和量纲分析,边界层理 论和紊流理论等,在此基础上,最终形成了理论与实践并重的 研究实际流体模型的现代流体力学。在20世纪60年代以后, 由于计算机的发展与普及,流体力学的应用更是日益广泛。
本章主要阐述了流体力学的概念与发
展简史;流体力学的概述与应用;流体力学
课程的性质、目的、基本要求;流体力学的
研究方法及流体的主要物理性质。流体的连
续介质模型是流体力学的基础,在此假设的
基础上引出了理想流体与实际流体、可压缩
流体与不可压缩流体、牛顿流体与非牛顿流
体概念。
1·1流体力学的性质任务坝的作用力与渗流问题、防洪闸坝的 过流能力等。
4.在建筑环境与设备工程中的应用。如供热、通风与空调设计,以及设 备的选用等。
1·1流体力学的性质任务与发展简史
1·1·3、流体力学课程的性质与目的
性质:流体力学是研究流体机械运动规律及其应用的学科,
是土木、水利类专业的一门必修的专业基础课程。研究对象以
筑设备等多门基础课和专业课程阐释所涉及的流体力学原理,
帮助学生进一步认识土木工程与大气和水环境的关系。
1·1流体力学的性质任务与发展简史
1·1·4、 流体力学的发展历史
流体力学的萌芽,是自距今约2200年以前,西西里岛的希 腊学者阿基米德写的“论浮体”一文开始的。 他对静止时的液 体力学性质作了第一次科学总结。
水为主体,旁及气体与可压缩流体;研究内容:机械运动规律
和工程应用。
目的:通过各教学环节,使学生掌握流体运动的基本概念,
基本理论,基本计算方法与实验技能,培养分析问题的能力和
创新能力,为学习专业课程,并为将来在土木工程各个领域从
事专业技术工作打下基础。
地位:为水文学、土力学、工程地质、土木工程施工、建
相关文档
最新文档