一元一次方程的解法(公开课)资料讲解

合集下载

一元一次方程的解法(公开课)ppt课件

一元一次方程的解法(公开课)ppt课件

2
4
15
下课了!
16
解方程:
3Hale Waihona Puke 1 x 1 153
“去分母”要注意什么?
①不漏乘不含分母的项; ②分子是多项式,应添括号.
17
去括号 先去小括号,再去中括号,最后去大括号
依据是去括号法则和乘法分配律
移项
把含有未知数的项移到一边,常数项移 到另一边.“过桥变号”依据是等式性 质一
合并同类项 将未知数的系数相加,常数项相加。
依据是乘法分配律
系数化为1 在方程的两边除以未知数的系数. 10
解下列方程: 3x 1 5
x 1 3
13
这堂课我的收获是:
1.一元一次方程的解法的一般步骤 2.解方程就是将方程转化为形如 x=a(a为常数)的过程(化归思想) 3.注意事项:
①去括号时不能漏乘; ②去分母时分子是多项式要记得添括号。
我的疑惑是???
14
解方程:
(1) 4x + 3(2x – 3) =12 - (x +4)
2 2x 3 x 2 0
分子是多项式,应添括号.
12
1.方程 2x 4
A.
2

3
2x


4
x7
6(x
去分母得( C
7)

B. 2(2x 4) x 7
C. 2(2x 4) (x 7)
D. (2x 4) (x 7)
2 、解方程 2(x 1) 4(x 2) 1
依据是等式性质二去括号先去小括号再去中括号最后去大括号依据是去括号法则和乘法分配律把含有未知数的项移到一边常数项移到另一边

解一元一次方程课件(共20张PPT)人教版初中数学七年级上册

解一元一次方程课件(共20张PPT)人教版初中数学七年级上册

x=20
(四)例题规范,巩固新知
1.解方程:2x- 5 x=6-8 2
解:合并同类项,得- 1 x=-2 2
系数化为1,得 x=4
(三)例题规范,巩固新知
2.解方程:7x-2.5x+3x-1.5x=-154-6 3. 解:合并同类项,得 6x= 78.
系数化为1,得 x= 13.
(四)基础训练,学以致用
还有不同的设法吗? 还可以列怎样的方程?
方法二:
方法三:
设去年购买计算机x台. 设今年购买计算机x台.
x +x+2x=140 2
x + x +x=140 42
(三)合作探究,归纳方法
如何将此方程转化为x=a(a为常数)的形式?
x+2x+4x=140
合并同类项
7 x=140
系数化为1
等式性质2 理论依据?
1. 什么是同类项?
2.计算:(1)3x-x (2)10x+0.5x (3)7xy-3xy+8ab-2xy-5ab
3.等式的基本性质有哪些?
二.新授
(一)介绍数学史,创设情境
约公元820年,中亚细亚数学家阿尔-花 拉子米写了一本代数书,重点论述怎样 解方程.这本书的拉丁文译本取名为 《对消与还原》.“对消”与“还原”是 什么意思呢?
1.解下列方程:
(1)5 x-2 x=9 (2)x + 3x =7
22 (3)-3 x+0.5 x=10
(4)7x-4.5x=2.5 3-5
例2 有一列数,按一定规律排列成1,-3,9,-27
81,-243,…。其中某三个相邻数的和-1701,这
三个数各是多少?
解:设所求三个数分别是x,-3x,9x. 由三个数的和是-1701,得

《一元一次方程的解法》PPT课件

《一元一次方程的解法》PPT课件
化简多项式交换两项位置时不改变项的符号;解方程移项时必须改变项的符号.
自学反馈3:
讲解点1:如何理解“移项”?
正确理解“移项”:将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项。
注意:(1)所移动的是方程中的项,并且是从方程一边移到另一边,而不是在方程的一边“交换”两项的位置;这里所说的“一边”和“另一边”,是指等号的左边或者右边;(2)移项时要变号(没有移项的不变号);(3)在解方程时,通常把含有未知数的项移到方程的左边,把常数项移到方程的右边,这样便于求出未知数的值。
例题:解方程
解:
移项,得
合并同类项,得
系数化为1,得
讲解点2:应用变形法则2正确进行“将未知数的系数化1”
在解方程时,经过移项、合并同类项后方程化为ax=b(a≠0)的形式,这时要求方程的解,只要将方程两边都除以未知数的系数a就可以得到方程的解x=b/a。
注意:因为除数不能为0,所以a≠0
例题:判断下列方程的解法对不对。如果不对错在哪里?应怎样等式.
性质1
导入课题:
等式两边都乘以(或除以)同一个数(除数不为零),所得的结果仍是等式.
性质2
1、利用等式的性质解下列方程:
(1) 5x – 2 = 8 .
(2)3x=2x+1
2、自学课本第159页(例1以前的)内容,独立完成下列各题:
移项
颗粒归仓
某航空公司规定:乘坐飞机普通舱旅客一人最多可免费托运20千克行李,超过部分每千克按飞机票价的1.5%购买行李票。一名旅客托运了35千克行李,机票连同行李费共付1323元,求该旅客的机票票价。
含有未知数的项
常数项
移项要变号
移项
合并同类项

解一元一次方程的算法去分母市公开课一等奖省优质课获奖课件

解一元一次方程的算法去分母市公开课一等奖省优质课获奖课件
知识回顾
解含有括号一元一次方程步骤:
去括号 要熟记去括号法则
移项
移项要变号。
合并同类项
即化简为方程标准形 式:ax=b(a≠0)
系数化为1
方程两边同除以未知数前 面系数,即
第2页
动脑筋
一件工作,甲单独做需要15天完成,乙单独做需 要12天完成,现在甲先单独做1天,接着乙又单独 做4天,剩下工作由甲、乙两人合做,问合做多少 天能够完成全部工作任务? 等量关系 :
ax=b(a≠0)
系数化为1
方程两边同除以未知数前面系数,即
第5页

第6页
判断下面解题过程是否正确并更正:
解方程 2 x 2 x 3
5
2
解:去分母,得 2(2-x)=2-5(x+3)
去括号,得 4-2x=2-5x-15
移项,得
-2x+5x=2-15-4 合并同类项,得
3x=-17 系数化为1,得
甲完成工作量+乙完成工作量=工作总量. 设工作总量为1,剩下工作两人合做需x天完成,
第3页
解方程
第4页
解含有分母一元一次方程步骤:
去分母
方程两边同乘以各分母最小公倍数.注意不可漏乘 某一项,尤其是不含分母项,分子是代数式要加括 号。
去括号 要熟记去括号法则
移项
移项要变号。
合并同类项 即化简为方程标准形式:
x 17 3
第7页
解以下方程
(1) x x 1 1 x 2
2
3
(2) 5x 1 3x 1 2 x
4
2
3
第8页
解含有分母一元一次方程步骤:
去分母
方程两边同乘以各分母最小公倍数.注意不可漏乘 某一项,尤其是不含分母项,分子是代数式要加括 号。

5.3 一元一次方程的解法(课件)青岛版(2024)数学七年级上册

5.3 一元一次方程的解法(课件)青岛版(2024)数学七年级上册

知4-练
感悟新知
知识点 5 解一元一次方程的一般步骤
知5-讲
1. 解一元一次方程的一般步骤 去分母、去括号、移项、合并同类项、系数化为1 . 通 过这些步骤可以使以x 为未知数的方程逐步向着x=a(a 为常数)的形式转化.
感悟新知
知5-讲
2. 解一元一次方程的具体方法、变形依据、注意事项列表
如下:
感悟新知
知1-讲
3. 用合并同类项解一元一次方程的步骤 第一步:合并同类项,即将等号同侧的含未知数的项和 常数项分别合并,把方程转化为ax=b(a ≠ 0)的形式. 第二步:系数化为1,即在方程两边同时除以一次项系
数a,将一次项系数化为1,得到x=ba.
感悟新知
知1-讲
特别解读 解方程中的合并同类项和整式加减中的合并同类
知5-练
感悟新知
(3)x-2 4-(3x+4)=-125; 解:去分母,得 x-4-2(3x+4)=-15.
去括号,得 x-4-6x-8=-15.
移项,得 x-6x=-15+4+8.
合并同类项,得-5x=-3. 系数化为 1,得 x=35.
知5-练
感悟新知
(4)3x+x-2 1=3-2x-3 1; 解:去分母,得 18x+3(x-1)=18-2(2x-1).
(2)两边都乘2,得3x-15(x+1)-2=2x . 两边都乘5,得15x-(x+1)-10=10x. 去括号,得15x-x-1-10=10x . 移项,得15x-x-10x=10+1 . 合并同类项,得4x=11.
系数化为1,得x=141.
知5-练
感5悟-新1. 解知下列方程:
(1)53(1-x+2 3)=-72x+1; 解:方程可化为53-5(x+ 6 3)=-72x+1.

湘教版数学七年级上册3.3 一元一次方程的解法课件(共25张PPT)

湘教版数学七年级上册3.3 一元一次方程的解法课件(共25张PPT)
6.清人徐子云《算法大成》中有一首诗: 巍巍古寺在山林, 不知寺中几多僧. 三百六十四只碗, 众僧刚好都用尽. 三人共食一碗饭, 四人共吃一碗羹. 请问先生名算者, 算来寺内几多增?
诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?
课后作业
1.从课后习题中选取;2.完成练习册本课时的习题。
同学们再见!
授课老师:
时间:2024年9月1日
去括号,得 2x +2+x-1 = 4,
去分母时,方程两边的每一项都要乘各个分母的最小公倍数.
做一做
解方程:.
去括号,得 15x -5+2x-4= 10x.
合并同类项,得 7x = 9.
移项,得 15x +2x-10x=5+4 .
例 3
例题讲解
B
解析:根据题意,得 .去分母,得 8x-10=2x-1.移项、合并同类项,得 6x=9.系数化为1,得 .
4(2x-1)=3(x+2)-12
去分母,得2(2x-1)=8-(3-x) =8-3+x
D
2.将方程=1-去分母后,正确的结果是( )A.2x-1=1-(3-x) B.2(2x-1)=1-(3-x)C.2(2x-1)=8-3-x D.2(2x-1)=8-3+x
5.已知方程与关于y的方程y+的解相同,求a的值.
6.火车用 26 s 的时间通过一个长 256 m 的隧道(即从车头进入入口到车尾离开出口),这列火车又以 16 s 的时间通过了长 96 m 的隧道,求火车的长度.
解:设火车的长度为x m,列方程:
解得 x =160. 答:火车的长度为160 m.
新课导入

5.2一元一次方程的解法(第2课时移项法解一元一次方程)(课件)-七年级数学上册(北师大版2024)

5.2一元一次方程的解法(第2课时移项法解一元一次方程)(课件)-七年级数学上册(北师大版2024)

5 x – 2 = 8.
5x = 8 + 2
概念归纳
把原方程中的某一项改变符号后,从方程的一边移
到另一边,这种变形称为移项.
因此,解方程的过程可以可以化简为:
移项,得
5x = 8 + 2
化简,得
5x = 10
方程两边都除以 5,得
x=2
课本例题
例3 解方程
(1)2x + 6 = 1;
解:(1)移项,得
解方程7 x +4 m =8 x +2得 x =4 m -2.
因为方程的解相同,
所以2-4 m =4 m -2.

所以 m = .



将 m = 代入 x =2-4 m ,得 x =0.
知识点3
移项法解一元一次方程的实际应用
7. 【新考向数学文化2024西安铁一中月考】《九章算术》中
“盈不足术”有这样的问题:“今有共买羊,人出六,不
整式 my3+ ny +1的值.
解:(3)把 y = a =7代入 my3+ ny +1=5,
得73 m +7 n +1=5,则73 m +7 n =4.
当 y =- a =-7时,
my3+ ny +1=(-7)3 m +(-7) n +1
=-(73 m +7 n )+1
=-4+1
=-3.
分层练习-拓展


- x=16

方程两边都除以- 得

x=-32


1- =3x+


(4)移项得


- -3x= -1


合并同类项得


- x=

一元一次方程的基础解法-讲义(学生版)

一元一次方程的基础解法-讲义(学生版)

一元一次方程的基础解法一、课堂目标1.掌握移项、去分母、去括号的依据,会用移项和合并同类项、去括号、去分母等手段解一元一次方程.2.掌握解一元一次方程的一般步骤,能熟练准确的解方程.二、知识引入前面我们学过等式的性质:等式性质——如果,那么.等式性质——如果,那么;如果(),那么.也能用等式的性质解简单的一元一次方程,例如,①解方程;②解方程.三、知识讲解1. 解方程——移项、合并同类项解方程解:两边加,得这个过程也可以看成把原方程左端的常数项移动到方程右端、得,此时这项在等号右端变成符号( →);像上面这样把等式一边某一项变号后移到另一边叫做移项,所以我们可以用移项这个手段来解形如的一元一次方程.【注意】移项要变号.解方程解:两边减 ,得这个过程也可以看成把原方程左端的未知数项 移动到方程右端、得 ,此时这项在等号右端变成符号( →).再比如,解方程 ,观察到这个方程两边都有含未知数项和常数项,因此【总结】解形如 的一元一次方程的一般步骤为:移项→合并同类项→系数化.经典例题11.已知关于的方程的解是,那么.思路梳理知识点:1、2、3、A. B.C.D.2.方程移项后,正确的是( ).思路梳理知识点:1、2、3、题目练习1A. B. C.D.1.对方程合并同类项正确的是().(1)(2)(3)(4)2.给下列各方程移项:: .:.: .:.A. B. C. D.3.若,则的值是().经典例题2解关于的方程:.思路梳理知识点:1、2、3、 题目练习21.解方程:.2.解方程:.(1)3.解方程:.4.当 时,代数式与的值互为相反数.2. 解方程——去括号接下来看这个方程.观察发现这个方程多了带括号的成分,因此【总结】解带括号的一元一次方程的一般步骤:去括号→移项→合并同类项→系数化.经典例题3阅读下列解方程的过程,回答问题:,去括号,得: ①,移项,得: ②,合并同类项,得: ③,系数化为, 得: ④,上述过程中,第 步计算出现错误,其错误原因是 ,第②步的数学依据是.思路梳理知识点:1、2、3、题目练习3A.由 得B.由 得C.由得 D.由得1.下列方程去括号正确的是().。

解一元一次方程去括号与去分母教学课公开课一等奖课件省赛课获奖课件

解一元一次方程去括号与去分母教学课公开课一等奖课件省赛课获奖课件

(2) 12 (x 4) =
8x ;
(3) 3x 7(x 1) = 4x 7 ;
(4) 2(x 4) 3(x 1)=
5x 11;
(一)提出问题,建立模型
问题1: 某工厂加强节能方法,去年下六个月与上六 个月
相比,月平均用电量减少2 000 kW·h(千瓦·时),
全年用电15 万 kW·h.这个工厂去年上六个月每月平 均
温馨提示:1 kW·h的电量是指1 kW的电器1 h的用电量.
用电是1.多题少目?中涉及了哪些量? 2.题目中的相等关系是什么?
上六个月的用电量+下六个月的用电量=全年的用电 量月平均用电量×n(月数)=n个月用电量
分析: 设上六个月每月平均用电量列出方程x kW·h,则 下 六个月每月平均用电为(x-2000) kW·h. 上六个月共用电为:6x kW·h; 上六个月共用电为:6(x-2000) kW·h.
列方程错
题目:一种两位数,个位上的数是2,十位
上的数是x,把2和x对调,新两位数的2倍
还比原两位数小18,你能想出x是几吗?
去括号错
小方: 解:(10x+2)-2( x+20)=18 移项错
去括号,得 10x+2-2x--420=18
移项,得 10x-2x=18++420+—2
合并同类项,得 系数化为1,得
x=13500
(三)熟悉解法,思考辨析
例题 解下列方程:
(1) 2x-( x+10)=5x+2( x-1)
去括号
解: 2x-x-10=5x+2x-2.
移项
2 x-x-5 x-2 x=-2+10.
合并同类项
6 x=8
系数化为1
x=- 4 3
(三)熟悉解法,思考辨析

一元一次方程及其解法公开课教教案

一元一次方程及其解法公开课教教案

一元一次方程及其解法公开课教案第一章:引言1.1 课程背景在初中数学中,方程是非常重要的内容。

通过学习一元一次方程,让学生初步了解方程的概念,掌握解方程的方法,为后续学习更复杂的方程打下基础。

1.2 教学目标(1) 了解一元一次方程的定义及特点;(2) 学会解一元一次方程;(3) 能够应用一元一次方程解决实际问题。

第二章:一元一次方程的定义及特点2.1 一元一次方程的定义(1) 概念:一元一次方程是只含有一个未知数(元),且未知数的最高次数为1的方程。

(2) 一般形式:ax + b = 0(a, b 为常数,且a ≠0)2.2 一元一次方程的特点(1) 线性:方程的图像为一条直线;(2) 单调性:随着未知数的增大,方程的解也增大或减小;(3) 有唯一解。

第三章:解一元一次方程的方法3.1 移项将方程中的常数项移到等号的一边,未知数项移到等号的另一边。

3.2 合并同类项将方程中同类项合并,简化方程。

3.3 系数化为1将方程中的系数化为1,便于求解。

第四章:应用一元一次方程解决实际问题4.1 问题的提出通过实际问题引出一元一次方程的解法。

4.2 问题的解决(1) 分析问题,找出未知数;(2) 列出方程;(3) 解方程;(4) 检验解。

第五章:总结与拓展5.1 总结回顾本节课所学的一元一次方程的定义、特点和解法。

5.2 拓展思考:如何判断一个方程是否为一元一次方程?作业:(1) 完成课后练习题;(2) 找一些实际问题,尝试用一元一次方程解决。

第六章:一元一次方程的解法案例分析6.1 案例一:购物问题问题描述:小明购买了一些苹果,每千克3元,一共花费了15元。

问小明购买了多少千克的苹果?解题步骤:(1) 设小明购买的苹果为x千克;(2) 根据价格列出方程:3x = 15;(3) 解方程得到:x = 15 / 3 = 5;(4) 检验解:5千克的苹果,每千克3元,总共15元,符合题意。

6.2 案例二:速度问题问题描述:甲乙两地相距120千米,甲车以60千米/小时的速度行驶,乙车以80千米/小时的速度行驶。

解一元一次方程PPT教学课件市公开课一等奖省优质课获奖课件

解一元一次方程PPT教学课件市公开课一等奖省优质课获奖课件

解 一元一次方 程
第12页
6.课堂小结,感悟收获
解 一元一次方 程
经过以上问题, 你以为本节课收 获是什么?
第13页
第7页
巩固练习一
解 一元一次方 程
⑴ 6+x=8,移项得 x =8+6

x=8-6
(2)3x=8-2x,移项得3x+2x=-8

3x+2x=8
(3) 5x-2=3x+7,移项得5x+3x=7+2

5x-3x=7+2
第8页
巩固练习二
解以下方程: (1)6x – 2 = 10
(2) 2x x 3
改变符号移到等号右边?
方程90x+22=30.1与90x=30.1-22差异在哪里?
第3页
2.合作质疑,探索新知
问题二:
1、解方程 4x-15=9.
解 一元一次方 程
2、解方程 2x=5x-21.
第4页
2.合作质疑,探索新知
问题二:
解 一元一次方 程
3、在解方程2x=5x-21时,能否直接把等号右边 5x改变符号移到等号左边?为何?
(3)5x+3=4x+7
解 一元一次方 程
第9页
练一练:
解以下方程:
1、2x-8=3x;
2、6x-7=4x-5;
3、4x-7=3x+7;
4、1 x 6 3 x
2
4
解 一元一次方 程
第10页
4.自主归纳,形成方法
解 一元一次方 程
学生自主归纳:怎样解一元一次方程?
第11页
5.反思设计,分组活动
第5页

《一元一次方程的解法》课件

《一元一次方程的解法》课件

(3)去分母,得2x+224=7 移项,得 2x=7-224 合并同类项,得 2x=-217 系数化为1,得 x=-108.5
(4)去分母,得3(3y+12)=48-8(5y-7) 去括号,得9y+36=48-40y+56 移项,得 9y+40y=48+56-36 合并同类项,得 49y=68
68
一元一次方程的解法
等式的基本性质1 等式两边同时加上(或
减去)同一个代数式,所得结果仍是等式.
符号语言
若 x=y,那么x+a = y+a(a为一代数式) 若 x=y,那么x-a = y-a(a为一代数式)
等式的基本性质2 等式两边同时乘一个数
(或除以同一个不为0的数), 所得结果仍是等式.
符号语言
3. (1) 解方程:
2x 11 x
3
6
x 1
解方程时,你 有没有注意到:
1.去分母时,方 程两边的每一项 都要乘同一个数,
(2) 解方程:
x 1 2
x3 3
1
不要漏乘某项. 2.移项时,要对
x 15
所移的项进行变 号.
想一想
4(x+0.5)+x=7
此方程又该如何解呢?
解:去括号,得: 4x+2+x=7 移项,得: 4x+x=7-2 化简,得: 5x=5
1.解方程: (1)x-3=-12;(2)1.5x+4.5=0; (3)5-2x=9; (4)-3y=-15.
解: (3)两边都减去5 ,得 -2x=4.
两边都除以-2,得 x=-2.
1.解方程: (1)x-3=-12;(2)1.5x+4.5=0; (3)5-2x=9; (4)-3y=-15.

1一元一次方程的解法(1) 公开课一等奖课件

1一元一次方程的解法(1)  公开课一等奖课件
解一元一次方程
问题:
天平左盘中放置两个小 球和一个1克的砝码,
右盘中放置一个5克的砝码, 天平处于平衡, 你能列出恰当的方程吗?
2x+1=5
做一

1
填表:
2 3 4 5
x
2x+1



9 11
2 当x=___时,方程 2x+1=5成立.
分别把0、1、2、3、4 代入下列方程,哪一个能使方程成立: ⑴ 2x-1=5
练一练
⑴ ⑶
1.解下列方程: ⑵ ⑷ -3x=3-4x -6x=2
x+2=-6
1 x3 2
2. 在公元前1600年左右遗留下来的 古埃及文献中,有这样一个问题:
“它的全部,它的
你能求出这个数吗?
1 ,和等于19”。 7
=19
解:设这个数为x,根据题意,列方程得:
x+
133 解得x= 8
x 7
小结:
-1 ,右边=___. 5 x=0时,方程的左边=___ 1 ,右边=___. 5 x=1时,方程的左边=___ 3 ,右边=___. x=2时,方程的左边=___ 5 5 ,右边=___. x=3时,方程的左边=___ 5 5 x=4时,方程的左边=___ 7 ,右边=___. 所以x=3时,能使方程成立. x=3是方程2x-1=5的解.
试一试

3x-2=4x-3呢?
能使方程左右两边相等的未知数的 值叫做 。
方程的解
方程2x-1=5的解是X=3 ___. 方程3x-2=4x-3的解是X=1 ___.
求方程的解的过程叫做
解方程。
试一试
判断对错:
⑴ x=2是方程x-10=4x的解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等式的性质2: 等式两边乘同一个数,或除 以同一个不为0的数,结果仍相等。
如果 a b , 那么 ac bc
如果a b(c 0) ,那么ac cb
知识回顾
什么是解方程?
解方程就是将方程转化为 形如x=a(a为常数)的过 程
x=a(a为常数):1、它仍然是方程. 2、未知数在等号一
边,常数项在等号另一边. 3、x的系数为1.
3) 3(x 1) x 1
5
5
变形名称 去分母
去括号
移项
解一元一次方程的一般步骤:
具体的做法 每一项乘所有的分母的最小公倍数. 依据是等式性质二 先去小括号,再去中括号,最后去大括号 依据是去括号法则和乘法分配律 把含有未知数的项移到一边,常数项移到另 一边.“过桥变号”依据是等式性质一
合并同类项 将未知数的系数相加,常数项相加。 依据是乘法分配律
约公元825年,中亚细亚 数学家阿尔—花拉子米写 了一本代数书,重点论述 怎样解方程。这本书的拉 丁译本为《对消与还原》。 “对消”与“还原”是什 么意思呢?
一元一次方程的解法
执教者:曾杨烨
知识回顾 等式的基本性质
等式的性质1: 等式两边加(或减)同一个 数(或式子),结果仍相等。
如果 a b, 那么 a c b c
程的另一边,对方程进行移项变形。
(1) 2x-3= 6
2x = 6 + 3
(2) 5x=3x-1
5x -3x = -1
(3) 2.4y+2= -2y
2.4y+2y = -2
⑷ 8- 5x=x+2
-5x-x=2-8
你能解以下一元一次方程吗?
1)3x 3 x 1
有括号
2)3(x 1) x 1
有分母
请你判断 下列方程变形是否正确?
⑴6-x=8,移项得x-6=8
错 -x=8-6
⑵6+x=8,移项得x=8+6
错 x=8-6
⑶3x=8-2x,移项得3x+2x=-8
错 3x+2x=8
(4)5x-2=3x+7,移项得5x+3x=7+2
错 5x-3x=7+2
抢答
将含未知数的项放在方程的一边,常数项放在方
2
4
下课了!
解方程:
3x 1 x 1 1
5
3
“去分母”要注意什么?
①不漏乘不含分母的项; ②分子是多项式,应添括号.
系数化为1 在方程的两边除以未知数的系数. 依据是等式性质二。
解下列方程: 3x 1 5
x 1 3
一定记得 加括号哦
解:去分母括号,得: 9x 3 5x 5
移项,得: 9x 5x 5 3 合并同类项,得: 4x 8
化系数为1,得: x 2
分数线有除号、括号、比的作用!!!
让我们一起来尝试解一元一 次方程
2x 5 x 68 2
2x 8 5 x 6 2
观察这两个 方程,你发 现了什么异 同?
把方程中的某一项改变符号后,从方程的一
边移到另一边,这种变形叫移项。
移项的依据是什么?
移项的依据是等式的基本性质1
移项时,应注意什么? 注意:移项要变号!
移项的目的是什么?
这堂课我的收获是:
1.一元一次方程的解法的一般步骤 2.解方程就是将方程转化为形如 x=a(a为常数)的过程(化归思想) 3.注意事项:
①去括号时不能漏乘; ②去分母时分子是多项式要记得添括号。
我的疑惑是???
解方程:
(1) 4x + 3(2x – 3) =12 - (x +4)
2 2x 3 x 2 0
去分母的方法: 将方程的两边同乘以分母的 最小公倍数 “去分母”要注意什么?
分子是多项式,应添括号.
1.方程 2x 4
A. 2 2x3
4
x7
6(x
去分母得(C
7)

B. 2(2x 4) x 7
C. 2(2x 4) (x 7)
D. (2x 4) (x 7)
2 、解方程 2(x 1) 4(x 2) 1
相关文档
最新文档