最新实数综合应用(二(人教版
(新人教版)七年级数学下册第二章 实数 章节辅导
(新人教版)七年级数学下册第二章实数章节辅导导语:数的扩展是初中数学的一项重要内容,先是扩展到负数,再扩展到无理数,这样,就达到初中所学习的数系--实数。
初中所涉及到的无理数,一项就是π,一项是开方不尽的数,还有一类是人为构造的有规律却不循环的数。
这一章,我们主要学习开方,明确平方根、算术平方根、立方根的概念,能够根据概念,进行双向计算是学习的基本要求;解决实际问题也是考查的一个方面,希望同学们培养良好的转化能力,准确解决问题。
专题一:明确概念很关键例1.有下列说法:①﹣3是的平方根;②﹣7是(﹣7)2的算术平方根;③25的平方根是±5;④﹣9的平方根是±3;⑤0没有算术平方根;⑥的平方根为;⑦平方根等于本身的数有0、1.其中,正确的有()A.1个B.2个C.3个D.4个专题二:利用特征巧计算例2.若一个正数的平方根是3x﹣2和5x+10,则这个数是.例3.观察思考下列计算过程:因为112=121,所以=11;同样,因为1112=12321,所以=111,则=,可猜想=.同步训练14.若一个正数a的两个平方根分别是m+1和m﹣1,则m=,a=.5.求下列各数的算术平方根及平方根:(1)2.25的算术平方根是,平方根是;(2)289的算术平方根是,平方根是;(3)的算术平方根是,平方根是;(4)56的算术平方根是,平方根是;(5)的算术平方根是,平方根是;(6)104的算术平方根是,平方根是.6.填表:按表格顺序填入为,,,,,,,.专题三:反向求被开方数例7.2x﹣9立方根等于﹣3,﹣x+7的平方根是.同步训练28.如果一个非负数的平方根是2a﹣1和a﹣5,求这个非负数的值.9.已知某正数的两个平方根分别是m+4和2m﹣16,n的立方根是﹣2,求﹣n﹣m的算术平方根.10.已知2a﹣1的平方根是±3,3a+b﹣1的立方根是2,求2a﹣b的平方根.11.已知2a﹣3的平方根是±5,2a+b+4的立方根是3,求a+b的平方根.专题四:实际问题来了,看看你的转化能力12.如图,这是由8个同样大小的立方体组成的魔方,体积为64cm3.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形,求出阴影部分的面积及其边长.13.如图甲,这是由8个同样大小的立方体组成的魔方,总体积为Vcm3.(1)用代数式表示这个魔方的棱长.(2)当魔方体积V=64cm3时,①求出这个魔方的棱长.②图甲中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.③把正方形ABCD放置在数轴上,如图乙所示,使得点A与数1重合,则D在数轴上表示的数为.专题四:无理数的估算14.【阅读材料】∵<<,即2<<3,∴1<﹣1<2.∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2【解决问题】(1)填空:的小数部分是;(2)已知a是﹣4的整数部分,b是﹣4的小数部分,求代数式(﹣a)3+(b+4)2的值.15.阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:(1)你能帮我求一下的整数部分和小数部分.(2)已知:,其中x是整数,且0<y<1,请你帮我确定一下x﹣y的相反数的值.专题五:直接的计算题,要求准确例16.计算(1)(2)能力提升训练17.解方程:①(2x﹣1)2﹣169=0;②.参考答案与试题解析(新人教版)七年级数学下册第二章实数章节辅导1.【解答】解:①﹣3是的平方根;故①正确,②7是(﹣7)2的算术平方根;故②错误,③25的平方根是±5;正确④﹣9的平方根是±3;负数没有平方根,故④错误,⑤0没有算术平方根;错误,⑥的平方根为;正确,⑦平方根等于本身的数有0、1.只有0,故错误.正确的有①③⑥,故选:C.2.【解答】解:∵一个正数的两个平方根互为相反数,∴3x﹣2+5x+10=0.解得:x=﹣1.∴5x=5×(﹣1)=﹣5.∵(﹣5)2=25,∴这个数是25.故答案为:25.3.【解答】解:∵11112=1234321,∴=1111,∵111111112=123456787654321,∴=11111111,故答案为:1111;11111111.4.【解答】解:∵一个正数的平方根是m+1和m﹣1,∴m+1+m﹣1=0,解得m=0,∴a=1,故答案为:0,1.5.【解答】解:(1)∵(±1.5)2=2.25,∴2.25的算术平方根是1.5,平方根是±1.5.(2)∵(±17)2=289,∴289的算术平方根是17,平方根是±17.(3)∵(±)2=,∴的算术平方根是,平方根是±.(4)∵(±125)2=56,∴56的算术平方根是125,平方根是±125.(5)∵(±)2=(﹣)2,∴(﹣)2的算术平方根是,平方根是±.(6))(±100)2=104,∴104的算术平方根是100,平方根是±100.故答案为:1.5,±1.5;17,17;,±;125,125;,±;100,±100.6.【解答】解:依次填的数是11,12,13,14,15,16,17,18,19,20.故填11,12,13,14,15,16,17,18,19,20.7.【解答】解:依题意有2x﹣9=﹣27,解得x=﹣9,﹣x+7=16,16的平方根是±4.故答案为:±4.8.【解答】解:∵一个非负数的平方根是2a﹣1和a﹣5,∴(2a﹣1)+(a﹣5)=0,解得a=2,∴2a﹣1=2×2﹣1=3,∴这个非负数是32=9,9.【解答】解:∵某正数的两个平方根分别是m+4和2m﹣16,可得:m+4+2m﹣16=0,解得:m=4,∵n的立方根是﹣2,∴n=﹣8,把m=4,n=﹣8代入﹣n﹣m=8﹣4=4,所以﹣n﹣m的算术平方根是2.10.【解答】解:∵2a﹣1的平方根是±3,∴2a﹣1=9,a=5,∵3a+b﹣1的立方根是2,∴3a+b﹣1=8,∴b=﹣6,∴2a﹣b=16,∴2a﹣b的平方根是±4.11.【解答】解:∵2a﹣3的平方根是±5,∴2a﹣3=52=25,解得a=14;∵2a+b+4的立方根是3,∴2a+b+4=33=27,∴2×14+b+4=27,解得b=﹣5;∴a+b=14﹣5=9,∴a+b的平方根是±3.12.【解答】解:(1)(cm).(2)∵魔方的棱长为4cm,∴小立方体的棱长为2cm,∴阴影部分面积为:×2×2×4=8(cm2),边长为:=(cm).13.【解答】解:(1)这个魔方的棱长为(cm);(2)①这个魔方的棱长=4(cm);②∵魔方的棱长为4cm,∴小立方体的棱长为2cm,∴阴影部分面积为:×2×2×4=8(cm2),阴影部分的边长=(cm);③D在数轴上表示的数为﹣2+1.故答案为:﹣2+1.14.【解答】解:(1)∵81<91<100,∴的整数部分是9,∴的小数部分是﹣9;(2)∵a是﹣4的整数部分,b是﹣4的小数部分,∴a=4﹣4=0,b=﹣4,∴(﹣a)3+(b+4)2=0+21=21.故答案为:﹣9.15.【解答】解:(1)∵4<5,∴2<,∴的整数部分是2,小数部分是﹣2,∴+2的整数部分是2+2=4,小数部分是﹣2;(2)∵的整数部分是1,小数部分是﹣1,∴10+的整数部分是10+1=11,小数部分是﹣1,∴x=11,y=﹣1,∴x﹣y的相反数y﹣x=﹣12.16.【解答】解:(1)原式=﹣6﹣﹣(3﹣)=﹣6﹣﹣3+=﹣9;(2)原式=﹣2+5+2=5.17.【解答】解:①(2x﹣1)2﹣169=0;移项得①(2x﹣1)2=169;开平方得2x﹣1=±13,移项得2x=1±13,解得x1=7,x2=﹣6.②.移项得(x﹣4)2=4两边同时乘2得(x﹣4)2=8,开平方得x﹣4=±2移项x=4±2,解得x1=4+2,x2=4﹣2.。
人教版《实数》优秀课件初中数学ppt
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
人教版初1数学7年级下册 第6章(实数)综合练习题(含解析)
人教版初1数学7年级下册第6章(实数)综合练习题一.选择题(共10小题)1.(2020秋•沙坪坝区校级期末)边长为1的正方形从如图所示的位置开始在数轴上顺时针滚动,当正方形某个顶点落在数字2023时停止运动,此时与2023重合的点是( )A.点A B.点B C.点C D.点O2.(2021•霍邱县一模)数轴上A,B,C,D四点中,两点之间的距离最接近于+1的是( )A.点A和点B B.点B和点C C.点C和点D D.点A和点C 3.(2021春•郾城区期末)下列说法错误的是( )A.﹣1的立方根是﹣1B.3的平方根是C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和14.(2021•福州模拟)若实数a,b,c,d在数轴上的对应点的位置如图所示,则①a>﹣4;②b+d<0;③|a|<c2;④c<的结论中,正确的是( )A.①②B.①④C.②③D.③④5.(2021•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.a>﹣2B.|a|>b C.a+b>0D.b﹣a<0 6.(2021春•仓山区校级期中)下列说法正确的是( )A.等于±2B.2和﹣都是实数C.无理数和数轴上的点一一对应D.7.(2021•东莞市二模)如图所示,数轴上A,B两点表示的数分别1,,则⊙A的直径长为( )A.﹣1B.1﹣C.2﹣2D.2﹣28.(2021春•荣昌区校级月考)对于实数a、b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,当b<a时,min{a,b}=b,例如:min{1,﹣2}=﹣2.已知min{,a}=a,min{,b}=,且a和b为两个连续正整数,则a﹣b的立方根为( )A.﹣1B.1C.﹣2D.29.(2021春•福田区校级期中)对于实数a和b,定义两种新运算:①a*b=(|a﹣b|+a+b),②a⊗b=a11b,则(5⊗3)*(3⊗5)=( )A.355B.533C.533﹣355D.533+35510.(2021春•武昌区期中)已知≈0.5981,≈1.289,≈2.776,则≈( )A.27.76B.12.89C.59.81D.5.981二.填空题(共10小题)11.(2021•福州模拟)已知a是整数,且a<<a+1,则a的值是 .12.(2019秋•鹿邑县期末)已知A,B,C是数轴上的三个点,且C在B的左侧.点A,B 示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是 .13.(2019秋•东台市期末)在,3.14,0,0.101 001 000 1…,中,无理数有 个.14.(2020秋•朝阳区校级期中)若的小数部分为 .15.(2020秋•淮阴区期中)如图,正方形OABC的边OC落在数轴上,点C表示的数为1,点P表示的数为﹣1,以P点为圆心,PB长为半径作圆弧与数轴交于点D,则点D表示的数为 .16.(2020春•西城区校级期中)已知4a+1的算术平方根是3,则a﹣10的立方根是 .17.(2018秋•平谷区期末)已知,a,b是正整数.(1)若是整数,则满足条件的a的值为 ;(2)若是整数,则满足条件的有序数对(a,b)为 .18.(2015秋•萧山区期末)一个长为3,宽为2的长方形从表示﹣1的点开始绕着逆时针翻转90°到达E点,则E点所表示的数是 .19.(2009•连云港模拟)元宵联欢晚会上,魔术师刘谦表演了一个魔术,用几个小正方形拼成一个大的正方形,现有四个小正方形的面积分别为a、b、c、d,且这四个小正方形能拼成一个大的正方形,则这个大的正方形的边长为 .20.已知a、b是有理数,x是无理数,如果是有理数,则等于 .三.解答题(共10小题)21.(2020秋•北碚区校级期末)众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(a<b).定义:若数m=b3﹣a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.【提示:b3﹣a3=(b﹣a)(b2+ab+a2).】(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;(2)已知两个“复合数”的差是42,求这两个“复合数”.22.(2021春•西城区校级期中)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1.(1)对10进行1次操作后变为 ,对200进行3次操作后变为 ;(2)对实数m恰进行2次操作后变成1,则m的取值范围是 .(3)恰需要进行3次操作后变为1的所有正整数中,最大的是 .23.(2021春•黄埔区期中)已知一个正数m的两个不同的平方根是2a+3和1﹣3a,求m的值.24.(2021春•长白县期中)判断下面各式是否成立①;②;③.探究:(1)你判断完上面各题后,发现了什么规律?并猜想:= (2)用含有n的代数式将规律表示出来,说明n的取值范围,并给出证明.25.(2020秋•未央区期中)若含根号的式子a+b可以写成式子m+n的平方(其中a,b,m,n都是整数,x是正整数),即a+b=(m+n)2,则称a+b为子母根式,m+n为a+b的子母平方根,例如,因为3+2=(1+)2,所以1是3+2的子母平方根.(1)已知2+是a+b的子母平方根,则a= ,b= .(2)若m+n是a+b的子母平方根,用含m,n的式子分别表示a,b.(3)已知21﹣12是子母根式,直接写出它的一个子母平方根.26.(2020秋•越秀区期末)如图,数轴上点A,C对应的实数分别为﹣4和4,线段AC=8cm,AB=2cm,CD=4cm,若线段AB以3cm/秒的速度向右匀速运动,同时线段CD以1cm/秒的速度向左匀速运动.(1)问运动多少秒时BC=2cm?(2)线段AB与线段CD从开始相遇到完全离开共经过多长时间?(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式BD﹣AP=3PC.若存在,求线段PD的长;若不存在,请说明理由.27.(2020秋•吉安期中)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而1<<2于是可用﹣1来表示的小数部分.请解答下列问题:(1)的整数部分是 ,小数部分是 ;(2)如果5+的小数部分为a,5﹣的整数部分为b,求a+b的值.28.(2020秋•广安期末)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离 .(2)若数轴上表示点x的数满足|x﹣1|=3,那么x= .(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|= .29.(2021春•硚口区期中)某同学想用一块面积为400cm2的正方形纸片,(如图所示)沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2,请你用所学过的知识来说明能否用这块纸片裁出符合要求的纸片.30.(2019秋•锦江区校级期末)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;如图3,当点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,当点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|.回答下列问题:(1)数轴上表示1和6的两点之间的距离是 数轴上表示2和﹣3的两点之间的距离是 .(2)数轴上若点A表示的数是x,点B表示的数是﹣4,则点A和B之间的距离是 ,若|AB|=3,那么x为 .(3)当x是 时,代数式|x+2|+|x﹣1|=7.(4)若点A表示的数﹣1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q 同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒个单位长度,求运动几秒后,B、P、Q三点中,有一点恰好是另两点所连线段的中点?(请写出必要的求解过程).参考答案一.选择题(共10小题)1.(2020秋•沙坪坝区校级期末)边长为1的正方形从如图所示的位置开始在数轴上顺时针滚动,当正方形某个顶点落在数字2023时停止运动,此时与2023重合的点是( )A.点A B.点B C.点C D.点O【考点】实数与数轴.【专题】数形结合;数与式;应用意识.【分析】滚动四次一个循环,用2023除以4,商即是循环的次数,由余数即可得到与2023重合的点.【解答】解:∵2023÷4=504......3,∴与2023重合的点即是滚动后与3重合的点,而与1重合的是C,与2重合的是B,与3重合的是A,∴与2023重合的是A,故选:A.【点评】本题考查数轴上点表示的数,解题的关键是理解与2023重合的点即是与3重合的点.2.(2021•霍邱县一模)数轴上A,B,C,D四点中,两点之间的距离最接近于+1的是( )A.点A和点B B.点B和点C C.点C和点D D.点A和点C 【考点】实数与数轴;估算无理数的大小.【专题】实数;二次根式;应用意识.【分析】先估算+1的大小,然后根据选项即可判断.【解答】解:∵.∴.AB=﹣1﹣(﹣2.5)=1.5,BC=1﹣(﹣1)=2、CD=3.5﹣1=2.5、AC=1﹣(﹣2.5)=3.5.故+1最接近的是点C和点D之间的距离.故选:C.【点评】本题考查无理数的估算大小、实数与数轴的关系.关键在于利用数轴,找到点之间的距离.3.(2021春•郾城区期末)下列说法错误的是( )A.﹣1的立方根是﹣1B.3的平方根是C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和1【考点】平方根;算术平方根;立方根.【专题】运算能力.【分析】根据立方根的定义和求法,平方根的定义和求法,以及算术平方根的定义和求法,逐项判定即可.【解答】解:A、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;B、3的平方根是±,原说法错误,故此选项符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.故选:B.【点评】此题考查了立方根、平方根、算术平方根.解题的关键是熟练掌握立方根的定义,平方根的定义,以及算术平方根的定义.4.(2021•福州模拟)若实数a,b,c,d在数轴上的对应点的位置如图所示,则①a>﹣4;②b+d<0;③|a|<c2;④c<的结论中,正确的是( )A.①②B.①④C.②③D.③④【考点】实数与数轴.【专题】实数;运算能力.【分析】①根据在数轴上,右边的点表示的数比左边的大即可判断;②根据异号两数的加法法则判断;③注意到c是一个真分数,所以c2<1,而|a|>3,从而作出判断;④先判断c2与d的大小,再开方即可.【解答】解:①根据在数轴上,右边的点表示的数比左边的大可知:a>﹣1,符合题意;②异号两数相加,取绝对值较大数的符号,取d的符号正号,所以b+d>0,不符合题意;③∵|a|>3,c2<1,∴|a|>c2,不符合题意;④∵c2<1,d>2,∴c2<d,∴c<,符合题意;故选:B.【点评】本题考查了实数与数轴,解题的关键是注意到c是一个真分数,所以c2<1.5.(2021•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.a>﹣2B.|a|>b C.a+b>0D.b﹣a<0【考点】绝对值;实数与数轴.【专题】实数;运算能力;推理能力.【分析】根据图象逐项判断对错.【解答】解:A.由图象可得点A在﹣2左侧,∴a<﹣2,A选项错误,不符合题意.B.∵a到0的距离大于b到0的距离,∴|a|>b,B选项正确,符合题意.C.∵|a|>b,a<0,∴﹣a>b,∴a+b<0,C选项错误,不符合题意.D.∵b>a,∴b﹣a>0,D选项错误,不符合题意.故选:B.【点评】本题考查数轴与绝对值,解题关键是掌握数轴上点的意义及绝对值的含义.6.(2021春•仓山区校级期中)下列说法正确的是( )A.等于±2B.2和﹣都是实数C.无理数和数轴上的点一一对应D.【考点】算术平方根;实数与数轴;实数大小比较.【专题】实数;推理能力.【分析】A,根据算术平方根的定义判断.B,根据实数的定义判断.C,根据实数与数轴的对应关系判断.D,根据无理数比较大小判断.【解答】解:=2,A选项错误,不符合题意.2和﹣都是实数,B选项正确,符合题意.实数和数轴上的点一一对应,C选项错误,不符合题意.>1,D选项错误,不符合题意.故选:B.【点评】本题考查实数的大小比较与算式平方根,解题关键是掌握实数与平方根,算术平方根的意义.7.(2021•东莞市二模)如图所示,数轴上A,B两点表示的数分别1,,则⊙A的直径长为( )A.﹣1B.1﹣C.2﹣2D.2﹣2【考点】实数与数轴.【专题】数形结合;应用意识.【分析】根据已知条件可以求出线段AB的长度,然后根据直径等于2倍的半径,即可解答.【解答】解:∵数轴上A、B两点表示的数分别为1和,∴AB=﹣1,∵⊙A的直径为2AB=2﹣2.故选:C.【点评】本题考查知识点为求数轴上两点间的距离,解本题关键,求两点间的距离用大数减去小数,圆的直径等于2倍的半径.8.(2021春•荣昌区校级月考)对于实数a、b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,当b<a时,min{a,b}=b,例如:min{1,﹣2}=﹣2.已知min{,a}=a,min{,b}=,且a和b为两个连续正整数,则a﹣b的立方根为( )A.﹣1B.1C.﹣2D.2【考点】算术平方根;立方根;实数大小比较.【专题】数与式;运算能力.【分析】根据a,b的范围即可求出a﹣b的立方根.【解答】解:∵min{,a}=a,min{,b}=.∴a<,b.∵a,b是两个连续的正整数.∴a=5,b=6.∴a﹣b=﹣1.∴a﹣b的立方根等于﹣1.故选:A.【点评】本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键.9.(2021春•福田区校级期中)对于实数a和b,定义两种新运算:①a*b=(|a﹣b|+a+b),②a⊗b=a11b,则(5⊗3)*(3⊗5)=( )A.355B.533C.533﹣355D.533+355【考点】实数的运算.【专题】实数;运算能力.【分析】直接利用根据新定义进而将原式变形得出答案.【解答】解:(5⊗3)*(3⊗5)=533*355=(|533﹣355|+533+355)=(355﹣533+533+355)=×2×355=355.故选:A.【点评】此题主要考查了实数运算,正确将原式变形是解题关键.10.(2021春•武昌区期中)已知≈0.5981,≈1.289,≈2.776,则≈( )A.27.76B.12.89C.59.81D.5.981【考点】立方根.【专题】实数;运算能力.【分析】先将化简成含有的式子再计算.【解答】解:==×=10≈2.776×10=27.76.故选:A.【点评】本题考查求立方根的计算,解题关键是熟练掌握根式运算方法.二.填空题(共10小题)11.(2021•福州模拟)已知a是整数,且a<<a+1,则a的值是 3 .【考点】估算无理数的大小.【专题】实数;运算能力.【分析】由27<36<64可得<<,从而得出a的值.【解答】解:∵<<,∴3<<4,∴a=3.故答案为3.【点评】本题考查无理数的估算,解题关键是将a与a+1转化与进行比较.12.(2019秋•鹿邑县期末)已知A,B,C是数轴上的三个点,且C在B的左侧.点A,B 示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是 ﹣1 .【考点】实数与数轴.【专题】数形结合.【分析】先利用点A、B表示的数计算出AB,再计算出BC,然后计算点C到原点的距离即可得到C点表示的数.【解答】解:∵点A,B表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=BC﹣OB=4﹣3=1,∵C在B的左侧,∴点C表示的数是﹣1.故答案为:﹣1.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)13.(2019秋•东台市期末)在,3.14,0,0.101 001 000 1…,中,无理数有 2 个.【考点】无理数.【专题】常规题型.【分析】根据无理数的定义求解即可.【解答】解:在,3.14,0,0.101 001 000 1…,中,,0.101 001 000 1…是无理数,无理数有2个.故答案为:2.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.14.(2020秋•朝阳区校级期中)若的小数部分为 ﹣3 .【考点】估算无理数的大小.【分析】先估算出的范围,再得出答案即可.【解答】解:∵3<<4,∴的整数部分为3,小数部分为﹣3,故答案为:﹣3.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.15.(2020秋•淮阴区期中)如图,正方形OABC的边OC落在数轴上,点C表示的数为1,点P表示的数为﹣1,以P点为圆心,PB长为半径作圆弧与数轴交于点D,则点D表示的数为 ﹣1 .【考点】实数与数轴;勾股定理.【分析】根据勾股定理求出PB的长,即PD的长,再根据两点间的距离公式求出点D 对应的数.【解答】解:由勾股定理知:PB===,∴PD=,∴点D表示的数为﹣1.故答案是:﹣1.【点评】此题考查了正方形的性质,勾股定理和实数与数轴,得出PD的长是解题的关键.16.(2020春•西城区校级期中)已知4a+1的算术平方根是3,则a﹣10的立方根是 ﹣2 .【考点】算术平方根;立方根.【分析】根据算术平方根定义得出4a+1=9,求出a=2,求出a﹣10的值,再根据立方根定义求出即可.【解答】解:∵4a+1的算术平方根是3,∴4a+1=9,∴a=2,∴a﹣10的立方根是﹣2,故答案为:﹣2.【点评】本题考查了平方根,立方根,算术平方根的应用,解此题的关键是能关键题意求出a的值,难度适中.17.(2018秋•平谷区期末)已知,a,b是正整数.(1)若是整数,则满足条件的a的值为 3 ;(2)若是整数,则满足条件的有序数对(a,b)为 (3,7)或(12,28) .【考点】估算无理数的大小.【专题】实数.【分析】(1)依据是整数,可得=1,即可得出满足条件的a的值为3;(2)依据若是整数,分两种情况即可得出满足条件的有序数对(a,b)为(3,7)或(12,28).【解答】解:(1)若是整数,则=1,∴满足条件的a的值为3,故答案为:3;(2)若是整数,则①当a=3,b=7时,=+=2;②设a=3×n2,则=,∴=,∴,∴b=,∵b是正整数,∴(n﹣1)2=1,即n=2,∴当a=12,b=28时,=+=+=1,满足条件的有序数对(a,b)为:(3,7)或(12,28),故答案为:(3,7)或(12,28).【点评】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,分情况讨论是解决第(2)问的难点.18.(2015秋•萧山区期末)一个长为3,宽为2的长方形从表示﹣1的点开始绕着逆时针翻转90°到达E点,则E点所表示的数是 ﹣3 .【考点】实数与数轴.【分析】根据两点间的距离公式可求E点所表示的数.【解答】解:﹣1﹣2=﹣3.故E点所表示的数是﹣3.故答案为:﹣3.【点评】此题考查了实数与数轴,关键是熟练掌握两点间的距离公式.19.(2009•连云港模拟)元宵联欢晚会上,魔术师刘谦表演了一个魔术,用几个小正方形拼成一个大的正方形,现有四个小正方形的面积分别为a、b、c、d,且这四个小正方形能拼成一个大的正方形,则这个大的正方形的边长为 .【考点】算术平方根.【专题】应用题;压轴题.【分析】利用正方形的面积公式计算即可求解.【解答】解:设大正方形的边长为x,则它的面积为x2,在本题中大正方形的面积为四个小正方形面积的和有x2=a+b+c+d,∴x=故答案为:.【点评】本题主要考查了利用算术平方根的定义解决实际问题,主要利用了正方形的面积公式和算术平方根的概念求解.20.已知a、b是有理数,x是无理数,如果是有理数,则等于 ﹣ .【考点】无理数.【专题】创新题型.【分析】先对分式进行化简,由于分式的结果是有理数,设分式的结果为m,得到关于m的方程,由m、a、b是有理数,x是无理数,确定m的系数和结果均为0,求出m和的值.【解答】解:==∵x是无理数,∴x﹣2≠0,所以原式=∵是有理数,设=m,则4bmx+2017m=3ax﹣2018整理,得3a﹣4mb=因为m、a、b是有理数,x是无理数,∴解得m=﹣,==﹣=﹣【点评】本题考查了分式的化简、及无理数、有理数的相关知识,题目难度较大,掌握有理数除以无理数若等于有理数,则该有理数一定为0是解决本题的关键.三.解答题(共10小题)21.(2020秋•北碚区校级期末)众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(a<b).定义:若数m=b3﹣a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.【提示:b3﹣a3=(b﹣a)(b2+ab+a2).】(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;(2)已知两个“复合数”的差是42,求这两个“复合数”.【考点】实数与数轴.【专题】数与式;推理能力.【分析】(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.【解答】解:(1)∵133﹣113≠12,∴12不是复合数,设“正点”P所表示的数为x(x为正整数),则a=x﹣1,b=x+1,∴(x+1)3﹣(x﹣1)3=(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)=2(3x2+1)=6x2+2,∴6x2+2﹣2=6x2一定能被6整除.(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),∵两个“复合数”的差是42,∴(6m2+2)﹣(6n2+2)=42,∴m2﹣n2=7,∵m,n都是正整数,∴,∴,∴6m2+2=98,6n2+2=56,这两个“复合数”为98和56.【点评】本题是新定义题,主要考查学生的阅读理解能力,解决本题的关键是掌握“复合数”的定义.22.(2021春•西城区校级期中)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1.(1)对10进行1次操作后变为 3 ,对200进行3次操作后变为 1 ;(2)对实数m恰进行2次操作后变成1,则m的取值范围是 4≤m<16 .(3)恰需要进行3次操作后变为1的所有正整数中,最大的是 255 .【考点】估算无理数的大小.【专题】创新题型;能力层次.【分析】(1)根据[a]的含义和无理数的估计可求.(2)根据[a]的含义倒推m的范围.(3)根据[a]的含义求出这个数的范围,再求最大值.【解答】解:(1)[]=3.200进行第一次操作:[]=14,第二次操作后:[]=3.第三次操作后:[]=1.故答案为:3,1.(2)∵[x]=1.∴1≤x<2.∴1≤<4.∴1≤m<16.∵操作两次.∴≥2.∴m≥4.∴4≤m≤16.故答案为:4≤m<16.(3)设这个数是p,∵[x]=1.∴1≤x<2.∴1≤<2.∴1≤m<4.∴1≤<16.∴1≤p<256.∵3次操作,故p≥16.∴16≤p<256.∵p是整数.∴p的最大值为255.故答案为:255.【点评】本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键.23.(2021春•黄埔区期中)已知一个正数m的两个不同的平方根是2a+3和1﹣3a,求m的值.【考点】平方根.【专题】二次根式;运算能力.【分析】一个正数的两个平方根互为相反数,根据它们的和为0,求出a的值,然后求出平方根,最后根据平方根的平方求出m的值.【解答】解:根据题意得:(2a+3)+(1﹣3a)=0,2a+3+1﹣3a=0,﹣a=﹣4,a=4,∴2a+3=2×4+3=11,∴m=112=121.【点评】这道题考查平方根的定义,一个正数的两个平方根之间的关系,一个正数和它的平方根的关系,解题的关键是这两个平方根互为相反数,它们的和为0.24.(2021春•长白县期中)判断下面各式是否成立①;②;③.探究:(1)你判断完上面各题后,发现了什么规律?并猜想:= 5 (2)用含有n的代数式将规律表示出来,说明n的取值范围,并给出证明.【考点】算术平方根.【专题】规律型.【分析】(1)利用已知得出=,即可得出命题正确,同理即可得出其他正确性;(2)利用(1)的方法,可以得出规律,并加以证明即可.【解答】解:(1)①;==2;②;==3;③,==4;∴=5;(2)∴=n,证明:===n.∴=n(n≥2).【点评】此题主要考查了平方根的性质,利用已知得出数字之间的规律是解决问题的关键.25.(2020秋•未央区期中)若含根号的式子a+b可以写成式子m+n的平方(其中a,b,m,n都是整数,x是正整数),即a+b=(m+n)2,则称a+b为子母根式,m+n为a+b的子母平方根,例如,因为3+2=(1+)2,所以1是3+2的子母平方根.(1)已知2+是a+b的子母平方根,则a= 7 ,b= 4 .(2)若m+n是a+b的子母平方根,用含m,n的式子分别表示a,b.(3)已知21﹣12是子母根式,直接写出它的一个子母平方根.【考点】平方根.【专题】新定义;实数;符号意识;运算能力.【分析】(1)由(2+)2=a+b,即7+4=a+b,从而得出答案;(2)由(m+n)2=a+b,即(m2+6n2)+2mn=a+b,从而得出答案;(3)由21﹣12=32﹣2×2×3+(2)2=(3﹣2)2,根据子母平方根的定义可得答案.【解答】解:(1)根据题意知(2+)2=a+b,∴4+4+3=a+b,即7+4=a+b,∴a=7,b=4,故答案为:7,4;(2)根据题意知(m+n)2=a+b,则m2+2mn+6n2=a+b,即(m2+6n2)+2mn=a+b,∴a=m2+6n2,b=2mn;(3)∵21﹣12=32﹣2×2×3+(2)2=(3﹣2)2,∴3﹣2是21﹣12的子母根式.【点评】本题主要考查平方根,解题的关键是掌握子母平方根的定义和完全平方公式.26.(2020秋•越秀区期末)如图,数轴上点A,C对应的实数分别为﹣4和4,线段AC=8cm,AB=2cm,CD=4cm,若线段AB以3cm/秒的速度向右匀速运动,同时线段CD以1cm/秒的速度向左匀速运动.(1)问运动多少秒时BC=2cm?(2)线段AB与线段CD从开始相遇到完全离开共经过多长时间?(3)P是线段AB上一点,当B点运动到线段CD上时,是否存在关系式BD﹣AP=3PC.若存在,求线段PD的长;若不存在,请说明理由.【考点】实数与数轴;一元一次方程的应用.【专题】数与式;几何直观;推理能力.【分析】(1)设运动t秒时,BC=2cm,然后分点B在点C的左边和右边两种情况讨论,根据题意列出方程求解即可;(2)根据时间=路程和÷速度和,进行计算即可求解;(3)随着点B的运动,分别讨论当点B和点C重合、点C在点A和B之间及点A与点C重合时的情况.【解答】解:(1)设运动t秒时,BC=2cm,①当点B在点C的左边时,由题意得:3t+2+t=6,解得:t=1;②当点B在点C的右边时,由题意得:3t﹣2+t=6,解得:t=2.∴t的值是1或2.(2)(2+4)÷(3+1)=1.5(秒).答:线段AB与线段CD从开始相遇到完全离开,共经过1.5秒的时间.(3)存在关系式BD﹣AP=3PC.设运动时间为t秒,①当t=3时,点B和点C重合,点P在线段AB上,0<PC≤2,且BD=CD=4,PA+3PC=AB+2PC=2+2PC,当PC=1时,BD=AP+3PC,即BD﹣AP=3PC;②当3<t<时,点C在点A和点B之间,0<PC<2;当点P在线段BC上时,BD=CD﹣BC=4﹣BC,AP+3PC=AC+4PC=AB﹣BC+4PC=2﹣BC+4PC当PC=时,有BD=AP+3PC,即BD﹣AP=3PC.③当t=时,点A与点C重合,0<PC≤2,BD=CD﹣AB=2AP+3PC=4PC,当PC=时,有BD=AP+3PC,即BD﹣AP=3PC,∵P在C点左侧或右侧∴PD的长有2种可能,即5或3.5.【点评】本题考查两点间的距离,并综合了数轴、一元一次方程和线段长短的比较,难度较大,注意对第三问进行分情况讨论,不要漏解.27.(2020秋•吉安期中)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而1<<2于是可用﹣1来表示的小数部分.请解答下列问题:(1)的整数部分是 5 ,小数部分是 ﹣5 ;(2)如果5+的小数部分为a,5﹣的整数部分为b,求a+b的值.【考点】估算无理数的大小.【专题】实数;数感.【分析】(1)估算的近似值,即可得出的整数部分和小数部分;(2)求出a、b的值,再代入计算即可.【解答】解:(1)∵<<,∴5<<6,∴的整数部分为5,小数部分为﹣5,故答案为:5,﹣5;(2)∵2<<3,∴7<5+<8,∴5+的小数部分a=5+﹣7=﹣2,∵2<<3,∴﹣3<﹣<﹣2,∴2<5﹣<3,∴5﹣的整数部分为b=2,∴a+b=﹣2+2=3﹣2.【点评】本题考查无理数的估算,掌握算术平方根的意义是正确估算的前提.28.(2020秋•广安期末)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离 7 .(2)若数轴上表示点x的数满足|x﹣1|=3,那么x= ﹣2或4 .(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|= 6 .【考点】绝对值;实数与数轴.【专题】计算题;实数.【分析】(1)根据两点间的距离公式计算可得;(2)由|x﹣1|=3表示的意义为:在数轴上到表示1和x的点的距离为3,据此解答可得;(3)由|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,据此解答可得.【解答】解:(1)根据题意知数轴上表示﹣2和5两点之间的距离为5﹣(﹣2)=7,故答案为:7;(2)∵|x﹣1|=3,即在数轴上到表示1和x的点的距离为3,∴x=﹣2或x=4,故答案为:﹣2或4;(3)∵|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,∴|x﹣2|+|x+4|=2﹣x+x+4=6,故答案为:6.【点评】本题考查了整式的加减,数轴,利用了两点间的距离公式,线段上的点到线段的两端点的距离的和等于线段的距离.29.(2021春•硚口区期中)某同学想用一块面积为400cm2的正方形纸片,(如图所示)沿着边的方向裁出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2,请你用所学过的知识来说明能否用这块纸片裁出符合要求的纸片.【考点】算术平方根.【分析】先设长方形纸片的长为3x(x>0)cm,则宽为2x cm,根据长方形的面积公式有3x⋅2x=300,解得x=5(负数舍去),易求长方形纸片的长是15,再去比较15。
实数(挑战综合(压轴)题分类专题)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题6.15 实数(挑战综合(压轴)题分类专题)(专项练习)【类型一】实数✭✭平方根✭✭立方根【类型①】实数➼➻平方根✭✭立方根➼➻解方程(两个题)1.求下列x 的值(1) ()2251360x +-=(2) ()3218x -=-2.求下列各式中x 的值:(1) 225640x -=;(2) ()33433270x ++=;(3) 2(21)16x +=【类型②】实数➼➻平方根✭✭立方根➼➻运算求值(两个题)3.计算: (1) 33(1)128-+ (2) 3223(5)(3)2532(3)--+.4.计算 (1)310.0184- (2) 332【类型③】实数➼➻平方根✭✭立方根➼➻综合化简与运算(四个题) 5.如图,有一只蚂蚁从点B 沿数轴向左爬了2个单位长度到达点A ,若点B 3设点A 所表示的数为m .(1) 实数m 的值是_________;(2) 求()221m m +++的值.(3) 在数轴上还有C 、D 两点分别表示实数c 和d ,且有24c +4d -求238c d ++的平方根.6.已知:x 的平方根是3a +与215a -213b -.(1) 求a ,b 的值;(2) 求x 的值;(3) 求1a b +-的立方根.7.已知235,4,8a b c ===-.(1) 若,a b <求a b +的值;(2) 若0abc >,求32a b c --的值.8.计算: (1) 239(6)27--(2) 51的整数部分为a 51的小数部分为b ,求23a b +的值.【类型二】实数✭✭平方根✭✭立方根【类型①】实数➼➻混合运算(四个题)9.计算(1) ()29234--; (2) 223184(3)2⎛⎫- ⎪⎝⎭.10.计算: (1)23327(3)1--- (2) 23164(2)9-+-11.(1)用“<”“>”或“=”填空: 1 22 3(2)由以上可知:①|12= , 23= .(3)计算:12233420212022++.(结果保留根号)12.知识链接:①对于任意两个实数a ,b ,如果0a b ->,那么a b >;如果0a b -=,那么a b =;如果0a b -<,那么a b <;①任意实数a 的平方都是非负数,即20a ≥.知识运用:(1) 7______53; (2) 已知a 为实数,2(32)A a =-,()()21432B a a a =---,请你比较A 、B 的大小;(3) 已知x 、y 均为正数,比较2x y +与82xy x y+的大小.【类型②】实数➼➻大小比较✭✭估算✭✭整数部分与小数部分(两个题) 13.已知21a -的平方根是3±,9b -的立方根是2,c 12(1) 求a 、b 、c 的值; (2) 若x 12的小数部分,求1212x 的值.14.阅读材料,解答下面的问题: 479<273<<,7272.(1) 6的整数部分.(2) 已知56a ,56的小数部分是b ,求2021()a b +的值.【类型③】实数➼➻运算✭✭化简✭✭规律(三个题)15.观察下列等式,并回答问题: ①1221=; 2332= 3443= 4554=……(1) 请写出第①个等式:______356=______;(2) 写出你猜想的第n 个等式:______;(用含n 的式子表示) (3) 241-1的大小.16.观察下列各等式及验证过程:11122323-=211121223232323-==⨯⨯ 11113()23438-=21111313()23423423843-===⨯⨯⨯⨯ 11114()345415-=21111414()345345534541-==⨯⨯⨯⨯ 针对上述各式反映的规律,写出用n (n 为正整数)表示的等式_____.17.观察表格,回答问题:a…0.00010.01110010000…a…0.01x1y100…(1)表格中x=________,y=________;(2)从表格中探究a a①10 3.16≈1000≈________;①8.973b=,用含m的代数式表示b,则b=________;m897.3(3)a a的大小.当________a a>;当________a a=;当________a a.【类型四】实数✭✭平方根(算术平方根)✭✭立方根➽拓展与应用【类型①】实数➼➻应用➼➻化简✭✭求值(四个题)18.如图,纸上有五个边长为1的小正方形组成的图形纸(图1),我们可以把它剪开拼成一个正方形(图2).(1)图中拼成的正方形的面积是___________;边长是___________;(2)你能把十个小正方形组成的图形纸(图3),剪开并拼成正方形吗?若能,请仿照图的形式把它重新拼成一个正方形.并求出这个正方形的边长是___________.19.如图,长方形内有两个相邻的正方形,面积分别为9和6,(1)小正方形边长的值在哪两个连续的整数之间?与哪个整数较接近?(直接写结果)(2)求图中阴影部分的面积.(3)若小正方形边长的值的整数部分为x,小数部分为y,求(y6)x的值.20.综合与实践如图是一张面积为2400cm的正方形纸片.(1)正方形纸片的边长为______;(直接写出答案)(2)若用此正方形纸片制作一个体积为3216cm的无盖正方体,请在这张正方形纸片上画出无盖正方体的平面展开图的示意图,并求出该正方体所用纸片的面积.21.“2”探究活动,根据各探究小组的汇报,完成下列问题.(1) 22我们知道面积是222 1.4=+,画出如下示意图.>.2 1.4x由面积公式,可得2x+______2=.因为x值很小,所以2x更小,略去2x,得方程______,解得x≈____(保留到0.001),2≈_____.(2) 22过程.现有2个边长为1的正方形,排列形式如图(1),请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.x x>.依题意,割补前后图形的面积相等,小敏同学的做法是:设新正方形的边长为()0有22x =,解得2x 1)如图所示进行分割,请在图(2)中用实线画出拼接成的新正方形.请参考小敏做法,现有5个边长为1的正方形,排列形式如图(3),请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(4)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.【类型②】实数➼➻综合➼➻拓展✭✭提升(三个题)22.先阅读然后解答提出的问题:设a 、b 是有理数,且满足2322=-a b b a 的值.解:由题意得(3)(2)20-++a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数,2是无理数,所以a -3=0,b+2=0,所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足225y 1035x y -=+x+y 的值.23.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小白在草稿纸上画了一条数轴进行操作探究:操作一:(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与表示的点重合;操作二:(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题:3表示的点与数表示的点重合;①若数轴上A、B两点之间距离为8(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是__________________;操作三:(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.24.探索与应用.先填写下表,通过观察后再回答问题:(1)表格中x=;y= ;(2)从表格中探究a a①101000≈ ;① 3.24 1.8a 180,则a = ;(3) 312 2.289≈30.2289z =,则z= .参考答案1.(1)10.2x =,2 2.2x =-(2)12x =-【分析】(1)首先移项,然后利用直接开平方,即可求出答案; (2)先直接开立方,即可求出答案. 解:(1)()2251360x +-=,∴()225136x +=,∴()236125x +=, ∴10.2x =,2 2.2x =-.(2)()3218x -=-,∴212x -=-,∴12x =-.【点拨】本题主要考查了解方程,熟练掌握求平方根和求立方根的方法是解本题的关键. 2.(1)x =85±(2)x =247-(3)121322x x ==-,【分析】(1)移项,系数化为1后求平方根即可; (2)移项,系数化为1后求立方根即可解题; (3)先求平方根,然后解一元一次方程解题. 解:(1)225640x -=, 22564x =,26425x =, x =85±;(2)()33433270x ++=, ()3343327x +=-,327(3)343x +=-, 3x +=-37, x =247-; (3)2(21)16x +=212x +=±,212x +=,212x +=-,①121322x x ==-,.【点拨】本题考查平方根,立方根,注意一个正数的平方根有两个,它们互为相反数. 3.2(2)43【分析】(1)先计算立方值、绝对值、立方根,再把有理数和无理数分别计算即可; (2)先计算立方根、平方值、平方根、绝对值,再把有理数和无理数分别计算即可. (1)解:原式=12122-+2 (2)解:原式=595233-+-+=43【点拨】本题考查实数的运算,熟练掌握立方根、立方值、平方值、平方根、绝对值的计算方法是解题关键.4.(1) 2.4- (2)2【分析】(1)根据算术平方根、立方根的定义及性质分别计算后再根据有理数加减运算法则求解即可;(2)根据相反数的定义及性质直接运算即可得到答案.(1310.0184-()1=0.1+22--0.120.5=-- 2.4=-;(23322=-【点拨】本题考查有理数的运算,涉及到算术平方根、立方根的定义及性质和相反数的定义及性质,熟练掌握相关运算法则及性质是解决问题的关键.5.32;(2)23 (3)4±【分析】(1)根据两点间的距离公式,直接右边的数减去距离即得左边的数; (2)代入m 求值即可;(3)根据非负数的性质,求得c,d 的值,代入即可求解. (1)解:(1)32m =, 32; (2)解:()221m m +++=)2322321++=313+ =23+故答案为:23+(3)解:①24c + 4d -, ①|24|c + 4d -, ①24|0|c ≥+ 4d -, ①|2|40c += 4d -, ①24c d -=,=,①()2382234816c d ++=⨯-+⨯+=, ①164±=±.【点拨】本题考查的是两点间的距离公式、非负数的性质,关键是要会理解两点间的距离,最后求的平方根有两个.6.(1) 4a =,5b =(2)49(3)2【分析】(1)根据一个数的两个平方根互为相反数可得答案; (2)求出3a +或者215a -的平方即可得出答案; (3)将,a b 的值代入1a b +-中,求其立方根即可. (1)解:x 的平方根是3a +与215a -,(3)(215)0a a ∴++-=,解得4a =, 213b -=,5b ∴=;(2)x 的平方根是3a +与215a -,22(3)(43)49x a ∴=+=+=;(33314512a b +-+-=.【点拨】本题考查了平方根以及立方根,熟知一个数的两个平方根互为相反数是解本题的关键.7.(1)3-或7-(2)15 或7-【分析】(1)利用绝对值的定义求出a 的值,利用平方根的定义求出b 的值,利用立方根的定义求c 的值,代入即可求出a +b 的值;(2)根据ab 小于0,得到ab 异号,求出a 与b 的值,代入所求式子中计算即可求出值.(1)解:①235,4,8a b c ===-.①5,2,2a b c =±=±=-, ①a b <, ①5,2a b =-=±,①523a b +=-+=-或527a b +=--=-, 即a b +的值为3-或7-; (2)①0,2abc c =->, ①0ab <,①5,2==-a b 或 5,2a b =-=, ①当5,2,2a b c ==-=-时,()()3253222a b c --=-⨯--⨯-5+64=+15.=当5,2,2a b c =-==-时,()3253222a b c --=--⨯-⨯-564=--+ 7.=-①3215a b c --=或7-.【点拨】本题考查了代数式求值,涉及的知识有:绝对值及平方根、立方根的定义,求出a 与b 的值是解本题的关键.8.(1)0 (2)35【分析】(1)根据算术平方根和立方根的定义计算即可;(25151介于那两个连续整数之间,从而确定它们的整数部分和51的小数部分,继而求出23a b +的值.(1)解:原式()3630=---=(2)①459①253<<①3514<<,1512<<51的整数部分3a =51的整数部分为1, 51的小数部分)51152b =-,①)232335235a b +=⨯+⨯=【点拨】本题考查算术平方根与立方根,算术平方根有关的整数部分和小数部分问题,掌握算术平方根和立方根的定义,会估算无理数的范围是解题的关键。
数学七级人教版下册 6.3.2实数(二) 优秀课件
14、许多年轻人在学习音乐时学会了爱。——莱杰 15、学习是劳动,是充满思想的劳动。——乌申斯基 16、我们一定要给自己提出这样的任务:第一,学习,第二是学习,第三还是学习。——列宁 17、学习的敌人是自己的满足,要认真学习一点东西,必须从不自满开始。对自己,“学而不厌”,对人家,“诲人不倦”,我们应取这种态度。——毛泽东
15、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要在路上,就没有到不了的地方。 16、你若坚持,定会发光,时间是所向披靡的武器,它能集腋成裘,也能聚沙成塔,将人生的不可能都变成可能。 17、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者
3.实数的分类 (1)按定义分类:
实数
有理数:有限小数或无限循环小数 无理数:无限不循环小数
(2)按性质分类:
正实数
正有理数 正无理数
ቤተ መጻሕፍቲ ባይዱ实数
0
负实数
负有理数 负无理数
4.实数与数轴上的点的对应关系
(1)实数与数轴上的点是_一__一__对__应_的. 即每个实数都可以用数轴上的一个__点__来表示; 反过来,数轴上的每一个点都表示一个__实__数__. (2)在数轴上的两个点,右边的点表示的实数总比左边的点 表示的实数大.
6.两个无理数之积不一定是无理数。( ) 7.两个无理数之和一定是无理数。( ×)
课堂小结
《实数》 教案 (公开课)2022年人教版数学
6.3 实 数第1课时 实 数1.经历无理数的探究过程,理解无理数的概念,会判断一个数是否为无理数;(重点)2.进一步理解有理数和无理数的概念,会把实数进行分类;(重点)3.理解实数与数轴的关系,并进行相关运用.(难点)一、情境导入为了美化校园,学校打算建一个面积为225平方米的正方形植物园,这个正方形的边长应取多少?你能计算出来吗?如果把“225〞改为其他数字,如“200〞,这时怎样确定边长?二、合作探究探究点一:实数的相关概念及分类【类型一】 无理数的识别在以下实数中:157,3.14,0,9,π,5,…,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个 解析:根据无理数的定义可以知道,上述实数中是无理数的有:π,5,….应选C. 方法总结:常见无理数有三种形式:第一类是开方开不尽的数;第二类是化简后含有π的数;第三类是无限不循环的小数.【类型二】 实数的分类把以下各数分别填到相应的集合内:,27,4,5,3-7,0,π2,-3125,227…. (1)有理数集合{ …};(2)无理数集合{ …};(3)整数集合{ …};(4)负实数集合{ …}.解析:实数分为有理数和无理数两类,也可以分为正实数、0、负实数三类.而有理数分为整数和分数. 解:,4,5,0,-3125,227,3.14,…}; (2)无理数集合{27,3-7,π2…,…}; (3)整数集合{4,5,0,-3125,…};,3-7,-3125,…}.方法总结:正确理解实数和有理数的概念,做到分类不遗漏不重复.探究点二:实数与数轴上的点【类型一】 求数轴上的点对应的实数如以下列图,数轴上A ,B 两点表示的数分别是-1和3,点B 关于点A 的对称点为C ,求点C 所表示的实数.解析:首先结合数轴和条件可以求出线段AB 的长度,然后利用对称的性质即可求出点C 所表示的实数.解:∵数轴上A ,B 两点表示的数分别为-1和3,∴点B 到点A 的距离为1+ 3.那么点C 到点A 的距离也为1+ 3.设点C 表示的实数为x ,那么点A 到点C 的距离为-1-x ,∴-1-x =1+3,∴x =-2- 3.∴点C 所表示的实数为-2- 3.方法总结:此题主要考查了实数与数轴之间的对应关系,两点之间的距离为两数差的绝对值.【类型二】 利用数轴进行估算如以下列图,数轴上A ,B 两点表示的数分别是3,那么A ,B 两点之间表示整数的点共有( )A .6个B .5个C .4个D .3个 解析:∵3≈,∴3,3,4,5,∴A ,B 两点之间表示整数的点共有4个.应选C. 方法总结:要确定两点间的整数点的个数,也就是需要比较两个端点与邻近整点的大小,牢记数轴上右边的点表示的实数比左边的点表示的实数大.三、板书设计实数⎩⎪⎨⎪⎧实数的分类⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧整数分数无理数实数与数轴——实数与数轴上的点一一对应本节课学习了实数的有关概念和实数的分类,把我们所学过的数在有理数的根底上扩充到实数.在学习中,要求学生结合有理数理解实数的有关概念.本节课要注意的地方有两个:一是所有的分数都是有理数,如227;二是形如π2,π3等之类的含有π的数不是分数,而是无理数4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下列图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。
专题05 实数压轴四大类型(原卷版) 2023-2024学年七年级数学下册
专题05实数压轴四大类型考点一:利用数轴化简根式考点二:比较大小与实数估算考点三:新定义问题考点四:实数综合应用【考点一:利用数轴化简根式】【典例1】(2023春•白城期中)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示﹣,设点B所表示的数为m.(1)实数m的值是2﹣;(2)求|m+1|+|m﹣1|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+d|与互为相反数,求2c﹣3d的平方根.【变式1-1】(2023春•海林市期末)已知实数a,b,c在数轴上的位置如图,化简|a﹣c|﹣|a ﹣b|的结果是()A.2a﹣b﹣c B.b﹣c C.﹣b﹣c D.﹣2a﹣b+c【变式1-2】(2023秋•济宁期末)实数a,b在数轴上的位置如图,则|a﹣b|﹣|a+b|=.【变式1-3】(2022春•南通期末)如图,a,b,c是数轴上三个点A、B、C所对应的实数.试化简:+|a+b|+﹣|b﹣c|.【变式1-4】(2022秋•农安县期中)已知:表示a、b两个实数的点在数轴上的位置如图所示,请你化简.【考点二:比较大小与实数估算】【典例2】(2023秋•岳阳楼区期末)大家知道的小数部分我们不可能全部地写出来,于是可以用﹣1来表示的小数部分(因为的整数部分是1,将这个数减去其整数部分,差就是小数部分).(1)如果的小数部分为a,的整数部分为b,求a+b﹣的值.(2)已知:21+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.【变式2-1】(2023秋•华容县期末)下列整数中,与最接近的是()A.7B.6C.5D.4【变式2-2】(2022秋•驿城区期末)已知的小数部分为a,的小数部分为b,则(a+b)2023的值是()A.1B.﹣1C.10D.36【变式2-3】(2023秋•昌黎县期末)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来.将这个数减去其整数部分,差就是小数部分,因为的整数部分是1,于是用来表示的小数部分.又例如:∵,即,∴的整数部分是2,小数部分为.(1)的整数部分是,小数部分是;(2)若m,n分别是的整数部分和小数部分,求3m﹣n2的值.【典例3】(2023秋•顺德区校级月考)比较大小, 2.5;(填“>”或“<”).【变式3-1】(2023春•大洼区校级期末)比较大小:.【变式3-2】(2023秋•裕华区校级期中)若a=2,b=3,c=+2,则a,b,c之间的大小关系是()A.c>b>a B.a>c>b C.b>a>c D.a>b>c【变式3-3】(2023春•益阳期末)2、、15三个数的大小关系是()A.2<15<B.<15<2C.2<<15D.<2<15【考点三:新定义问题】【典例4】(2023秋•碑林区校级月考)对于整数n,定义为不大于的最大整数,例如:,,.对72进行如下操作:,即对72进行3次操作后变为1,对整数m进行3次操作后变为2,则m的最大值为()A.80B.6400C.6560D.6561【变式4-1】(2023春•青秀区校级期末)定义一种新运算“△”,a△b=a2﹣ab,则△1的值为()A.B.C.D.【变式4-2】(2023春•清丰县校级期末)对于实数a、b,定义min{a,b}的含义为:当a<b 时,min{a,b}=a;当a>b时,min{a,b}=b,例如:min{1,﹣2}=﹣2.已知min{,a}=a,min{,b}=,且a和b为两个连续正整数,则2a﹣b的值为()A.1B.2C.3D.4【考点四:实数综合应用】【典例5】(2023秋•市中区校级期中)如图,长方形内有两个相邻的正方形,面积分别为6和9.(1)小正方形的边长为,它在和这两个连续整数之间;(2)请求出图中阴影部分的面积.(结果保留根号)【变式5-1】(2023•丰南区一模)如图①是由8个同样大小的立方体组成的魔方,体积为8.(1)求出这个魔方的棱长;(2)图①中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图②,使得点A与﹣1重合,那么点D在数轴上表示的数为.【变式5-2】(2023春•无为市期末)(1)在数学活动课上,老师要求同学利用手中纸片剪出一块面积为25cm2的正方形,试求出这个正方形的边长;(2)小强的手中有两块边长都为4cm的正方形纸片,他想将这两块正方形纸片沿对角线剪开,拼成如图所示的一个大正方形,请求出这个大正方形的面积.它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间.【变式5-3】(2023春•鄂城区期中)观察:∵4<7<9,∴2<<3∴的整数部分为2,小数部分为﹣2.(1)的整数部分是,10﹣的小数部分是;(2)小明将一个长为10cm,宽为8cm的长方形纸片按与边平行的方向进行裁剪,裁剪出两个大小不一的正方形,使它们的边长之比为4:3,面积之和为75cm2,小明能否裁剪出这两个正方形?若能,请说明理由并求出这两个正方形的面积;若不能,也说明理由.一.选择题(共6小题)1.如图,点A,C都是数轴上的点,AB=AC,则数轴上点C所表示的数为()A.B.C.D.2.实数a,b,c在数轴上的对应点的位置如图所示,若|b|=|c|,则下列结论错误的是()A.a+c<0B.a﹣b<0C.ab<0D.3.正方形纸板ABCD在数轴上的位置如图所示,点A,D对应的数分别为1和0,若正方形纸板ABCD绕着顶点顺时针方向在数轴上连续无滑动翻转,则在数轴上与2022对应的点是()A.D B.C C.B D.A4.已知a、b是表中两个相邻的数,且,则a=()x1919.119.219.319.419.519.619.719.819.920x2361364.81368.64372.49376.36380.25384.16388.09392.04396.01400 A.19.4B.19.5C.19.6D.19.75.已知a是(﹣2)2的负的平方根,b=,c=,则a,b,c中最大的实数与最小的实数的差是()A.﹣2B.6C.﹣8D.﹣6.定义一种新运算“△”,a△b=a2﹣ab,则△1的值为()A.B.C.D.二.填空题(共3小题)7.对于实数P,我们规定:用表示不小于的最小整数.例如:,,现在对72进行如下操作:,即对72只需进行3次操作后变为2.类比上述操作:对36只需进行次操作后变为2.8.如图,面积为a(a>1)的正方形ABCD的边AB在数轴上,点B表示的数为1.将正方形ABCD沿着数轴水平移动,移动后的正方形记为A'B'CD',点A、B、C、D的对应点分别为A'、B'、C、D',移动后的正方形A'B'C'D'与原正方形ABCD重叠部分图形的面积记为S.当S=时,数轴上点B'表示的数是(用含a的代数式表示).9.定义[x]为不大于x的最大整数,如[2]=2,,[4.1]=4,则满足,则n 的最大整数为.三.解答题(共6小题)10.阅读理解∵<<,即2<<3.∴的整数部分为2,小数部分为﹣2∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2解决问题:已知:a是﹣3的整数部分,b是﹣3的小数部分,求:(1)a,b的值;(2)(﹣a)3+(b+4)2的平方根.11.已知2a+4的立方根是2,3a+b﹣1的算术平方根是4,的整数部分是c,求3a﹣b+c 的值.12.已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a﹣b+c的平方根.13.化简求值:(1)已知a是的整数部分,=3,求的平方根.(2)已知:实数a,b在数轴上的位置如图所示,化简:+2﹣|a﹣b|.14.计算下列各题(1)﹣﹣+|1﹣|(2)﹣+.15.阅读材料:我们定义:如果一个数的平方等于﹣1,记作i2=﹣1,那么这个i就叫做虚数单位,虚数与我们学过的实数结合在一起叫做复数,一个复数可以表示为a+bi(a,b均为实数)的形式,其中a叫做它的实部,b叫做它的虚部.复数的加、减、乘的运算与我们学过的整式加、减、乘的运算类似.例如:计算(5+i)+(3﹣4i)=(5+3)+(i﹣4i)=8﹣3i.根据上述材料,解决下列问题:(1)填空:i3=,i4=;(2)计算:(6﹣5i)+(﹣3+7i);(3)计算:3(2﹣6i)﹣4(5﹣i).。
精品解析2022年最新人教版初中数学七年级下册 第六章实数综合练习试题(无超纲)
初中数学七年级下册 第六章实数综合练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、在﹣3,0,2, )A .B .﹣3C .0D .22、下列各数中,是无理数的是( )A B .3.141592 C .135 D 3、下列四个实数中,为无理数的是( )A .0B .πC .34 D 4、下列各数中,最小的数是( )A .0BC .π-D .﹣35、下列判断:①10的算术平方根是0.01;④3=a a 2.其中正确的有( )A .1个B .2个C .3个D .4个6 )A 是无理数B .面积为8C 的立方根是2D7、在 0,0.2,3π,227,6.1010010001…,13111 )个 A .1个 B .2个 C .3个 D .4个8、下列各数是无理数的是( )A .0B .πC .3.14 D90.2、﹣π、2270.101001中有理数的个数是( ) A .1B .2C .3D .410、在下列各数23,3.1415926,0.213,-2π2之间依次多1个0)中无理数的个数有( )A .1个B .2个C .3个D .4个二、填空题(5小题,每小题4分,共计20分)1、比较大小:213-_____.2、若一个正数的两个不同的平方根为2a +1和3a ﹣11,则a =___.3、若一个正数的平方根是2a -+和21a +,则a =_____.4、在实数12、2-_______.5、若22a -和3a --是一个正数的平方根;则这个正数是______.三、解答题(5小题,每小题10分,共计50分)1、计算:(1)(2)(1)---(22、解方程,求x 的值.(1)2232x =(2)()381-27x -=3、计算(1)2(2)1)(3)(4) 4、求下列各式中的x 的值:(1)2x 2-18=0;(2)33(129)x -=-. 5、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天.哪一种方法得到的钱数多?请说明理由.(1年按365天计算)---------参考答案-----------一、单选题1、B【分析】先确定3的大小,再确定四个数的大小顺序,由此得到答案.【详解】解:∵9>7,,∴-3<,∴-3<<0<2,故选:B.【点睛】此题考查了实数的估值,实数的大小比较,正确掌握实数的估值计算是解题的关键.2、A【分析】根据无理数定义与有理数定义即可求解.【详解】A符合题意;3.141592是有限小数是有理数,故选项B不符合题意;13分数是有理数,故选项C不符合题意;54D不符合题意.故选:A.【点睛】本题考查无理数,与实数分类,正确无理数定义是解题关键.3、B【分析】根据无理数的定义:“无限不循环的小数是无理数”,逐项分析判断即可【详解】A. 0是有理数,故该选项不符合题意;B. π是无理数,故该选项符合题意;C. 34是有理数,故该选项不符合题意;2=是有理数,故该选项不符合题意;故选B【点睛】本题考查了无理数,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4、C【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】 解:30π-<-< ∴所给的各数中,最小的数是π-.故选:C .【点睛】本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.5、C【分析】根据平方根和算术平方根的概念,对每一个答案一一判断对错.【详解】解:①10,正确;③0.13=a,正确;=a2,故错误;正确的是①②④,有3个.故选:C.【点睛】本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根.6、C【分析】根据实数的分类,平方根和立方根的性质,实数与数轴的关系逐项判断即可求解.【详解】解:AB、∵28=,所以面积为8C、8的立方根是2,该说法错误,故本选项符合题意;D项不符合题意;故选:C【点睛】本题主要考查了实数的分类,平方根和立方根的性质,实数与数轴的关系,熟练掌握实数的分类,平方根和立方根的性质,实数与数轴的关系是解题的关键.7、C【分析】根据无理数的定义“无理数就是无限不循环小数”找出题干中的无理数,即可选择.【详解】在这些实数中,无理数为3π,6.1010010001⋯,共有3个,故选:C.【点睛】本题考查了无理数,理解无理数的定义是解答本题的关键.8、B【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可得出答案.【详解】解:A.0是有理数,故本选项错误;B.π是无理数,故本选项正确;C .3.14是有理数,故本选项错误;D 12=是有理数,故本选项错误. 故选:B .【点睛】此题考查了无理数的定义,熟练掌握无理数的三种形式是解答本题的关键.9、D【分析】有理数是整数与分数的统称,或者说有限小数与无限循环小数都是有理数,据此求解.【详解】=3=,0.2、-π、2270.101001中,有理数有0.2、2270.101001,共有4个. 故选:D .【点睛】本题考查有理数的意义,掌握有理数的意义是正确判断的前提.10、C【分析】根据无理数的概念求解即可.【详解】解:-2π2之间依次多1个0)是无理数,其它是有理数, 故无理数一共有3个,故选:C .【点睛】此题考查了无理数的概念,解题的关键是熟练掌握无理数的概念.无理数:无限不循环小数.二、填空题1、>【解析】【分析】先求解两个实数的绝对值,再利用近似值比较它们绝对值的大小,利用两个负数绝对值大的反而小可得答案.【详解】 解:2211 1.67,33 1.73,33 而1.67 1.73, 21 3.3故答案为:>【点睛】本题考查的是实数的大小比较,掌握“两个负实数的大小比较的方法”是解本题的关键. 2、2【解析】【分析】根据一个正数的两个不同的平方根互为相反数列方程即可.【详解】解:∵一个正数的两个不同的平方根分别是2a +1和3a ﹣11,∴213110a a ++-=,解得2a =.故答案为: 2.【点睛】本题考查了平方根的意义和解一元一次方程,解题关键是明确一个正数的两个不同的平方根互为相反数,根据题意列出方程.3、3-【解析】【分析】根据一个正数的平方根有两个,且互为相反数可得2a -++21a +=0,解出a 即可.【详解】由题意得,2a -++21a +=0,解得:a =3-.故答案为:3-.【点睛】本题考查了正数的平方根的定义,互为相反数的两个数和为0的性质,理解平方根的定义是解题的关键.4【解析】【分析】根据比较实数大小的方法求解即可.【详解】解:∵4<5<9,,,【点睛】此题考查了比较实数大小,解题的关键是根据算数平方根的性质得到.5、64【解析】【分析】根据非负数的平方根的性质得到方程,解之得到a值,从而解决此题.【详解】解:由题意得:2a-2+(-a-3)=0.∴a=5,∴2a-2=8,∴这个数为64,故答案为:64.【点睛】本题主要考查非负数的平方根的性质,熟练掌握非负数的平方根的性质是解决本题的关键.三、解答题1、(1)3;(2)5【解析】【分析】(1)根据算术平方根,立方根的求法结合实数混合运算法则计算即可;(2)先根据绝对值的意义化简绝对值,然后根据算术平方根的求法以及实数混合运算法则计算即可.【详解】解:(1)原式=24(3)(1)+--⨯-=633-=;(255=【点睛】本题考查了实数的混合运算,算术平方根以及立方根的求法,绝对值等知识点,题目比较基础,熟练掌握基础知识点是关键.2、(1)4x =或4x =- ;(2)x =−12【解析】【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)把x −1可做一个整体求出其立方根,进而求出x 的值.【详解】解:(1)2232x =,216x = ,4x =或4x =- ; (2)8(x −1)3=−27,(x −1)3=−278, x −1=−32,x =−12.【点睛】本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.3、 (1)3; (2)-1;; (4) 6-【解析】【分析】(1)先化简各二次根式,再计算即可;(2)先利用平方差公式化简原式,再计算即可;(3)将除法变成乘法再计算即可;(4)先利用乘法分配律化简原式,再计算即可;【详解】(1)2=322-+=3(2)1)=212--=-1(3)=3⨯2=(4)==6-=6-【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握平方根、立方根等知识点的运算.4、(1)x =3±;(2)x =5【解析】【分析】(1)根据求平方根的方法求解方程即可;(2)根据求立方根的方法求解方程即可.【详解】解:(1)∵22180x -=,∴2218x =,∴29x =,∴3x =±;(2)∵()31293x -=-, ∴()3227x -=-,∴23x -=-,∴5x =.【点睛】本题主要考查了根据求平方根和立方根的方法解方程,解题的关键在于能够熟练掌握求平方根和立方根的方法.5、第二种,理由见解析【解析】【分析】根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n-1元钱.即可得总数,然后比较大小即可知哪种方案得到的多.【详解】解:第一种方法:1×10×365=3650元第二种方法:1+2+22+23+24+…+219=220-1=1048575分=10485.75元∵10485.75>3650∴第二种方法得到的钱多.【点睛】本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小.考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在.。
人教版七年级数学下册第六章第三节实数考试习题二(含答案) (88)
人教版七年级数学下册第六章第三节实数考试复习题二(含答案)我们已经学习过“乘方”和“开方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果a b=N(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作log a N=b.例如:因为53=125,所以log5125=3;因为112=121,所以log11121=2.(1)填空:log66= ,log381= .(2)如果log2(m﹣2)=3,求m的值.(3)对于“对数”运算,小明同学认为有“log a MN=log a M•log a N(a>0,a≠1,M>0,N>0)”,他的说法正确吗?如果正确,请给出证明过程;如果不正确,请说明理由,并加以改正.【答案】(1)1、4;(2)m=10;(3)不正确,理由见解析.【解析】【分析】(1)根据题目中所给对数的定义分别进行计算即可得解;(2)根据题目中所给对数的定义可得m﹣2=23,然后求解即可;(3)不正确,设a x=M,a y=N,根据对数的定义可得log a M=x,log a N=y(a>0,a≠1,M、N均为正数),又因a x•a y=a x+y,可得a x+y=M•N,所以log a MN=x+y,即log a MN=log a M+log a N.【详解】(1)∵61=6,34=81,∴log66=1,log381=4,故答案为:1、4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;(3)不正确,设a x=M,a y=N,则log a M=x,log a N=y(a>0,a≠1,M、N均为正数),∵a x•a y=a x+y,∴a x+y=M•N,∴log a MN=x+y,即log a MN=log a M+log a N.【点睛】本题是阅读理解题,读懂题目信息,理解对数的定义是解题的关键.72.对于有理数a,b,定义运算:a⊕b=ab-2a-2b+1.(1)计算5⊕4的值;(2)计算[(-2)⊕6]⊕3的值;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程.【答案】(1)3;(2)-24;(3)成立.【解析】【分析】(1)按照给定的运算程序,一步一步计算即可;(2)先按新定义运算,先计算(-2)⊕6、再将所得结果-19与3计算规定运算可得;(3)成立,按新定义分别运算即可说明理由.【详解】(1)5⊕4=5×4-2×5-2×4+1=20-10-8+1=2+1=3.(2)原式=[-2×6-2×(-2)-2×6+1]⊕3=(-12+4-12+1)⊕3=-19⊕3=-19×3-2×(-19)-2×3+1=-24.(3)成立.∵a⊕b=ab-2a-2b+1,b⊕a=ab-2b-2a+1,∴a⊕b=b⊕a,∴定义的新运算“⊕”交换律还成立.【点睛】此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.73.问题:如何快速计算1+2+3+…+n 的值呢?(1)探究:令s=1+2+3+…+n①,则s=n+n-1+…+2+1①①+①得2s=(n+1)(n+1)+…+(n+1)=n⨯(n+1)因此s=_________________.(2)应用:①计算:123200++++=________;①如图1,一串连续的整数1,2,3,4,…,自上往下排列,最上面一行有一个数,以下各行均比上一行多一个数字,若共有15行数字,则最底下一行最左边的数是_______;①如图2,一串连续的整数-25,-24,-23,…,按图1方式排列,共有14行数字,求图2中所有数字的和.【答案】(1)()12n n +;(2)①20100;①106;①2835. 【解析】【分析】(1)两边同时除以2即可;(2)①直接运用1+2+3+…+n =()12n n +进行计算;②第15行的最底下一行最左边的数即前14行的数子中最后一个加1即可. ③分情况讨论,0左边和右边两种情况分析.【详解】解:(1)2s= n ⨯(n+1),所以s=()12n n +; (2)①123200++++=200(2001)2+ =20100; ①∵前14行的数子中,最后一个数为:1+2+3+……+14=14(141)1052⨯+=, 所以第15行第一个数为:105+1=106;①图2中共有()141411052⨯+=个数,其中有25个负数、一个0、79个正数,①图2中所有数字的和为:()()122501279----+++++ ()()252517979122⨯+⨯+=-+ 3253160=-+2835=【点睛】考查数字的变化规律及整式的运算、解方程的能力,弄清题干中求和的方法、并熟练运用是解题的关键.74.定义一种新的运算符号“*”,规定:2*a b a b b +=.例如:23583*5525+==,求[]2*(2)*(3)--的值. 【答案】13-. 【解析】【分析】理解规则即可.【详解】()()2*2*3⎡⎤--⎣⎦=()()222*32---=0*(-3)=()()2033+-- = - 13【点睛】正确理解题意是解题的关键.75.计算:2(2)- 【答案】【解析】【分析】根据有理数的乘方、绝对值的意义、立方根的定义化简,然后合并即可.【详解】 原式44=+=【点睛】本题考查了实数运算,熟练掌握实数的混合运算法则是解题的关键.76.已知实数x y m 、、30x y m ++=,且y 是负数,求m 取值范围.【答案】6m >【解析】【分析】根据非负数的性质列出方程求出x 、y 的值,然后根据y 是负数即可得到一个关于m 的不等式,从而求得m 的范围.【详解】解:根据题意得:20{30x x y m +=++=, 解得:x 2{6y m=-=-, 则6-m <0,解得:m >6.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.77123-;【答案】32+【解析】【分析】首先计算负指数次幂,去掉绝对值符号,化简平方根,立方根,然后计算即可.【详解】解123- =3-12-3=32+【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值、平方根、立方根等考点的运算.78.计算:12033⎛⎫÷- ⎪⎝⎭【答案】2.【解析】【分析】先根据平方根、立方根的定义进行化简,然后再进行乘除运算,最后进行加减运算即可得解.【详解】原式=()()2203335⨯--+⨯- =839+-=2【点睛】本题考查了实数的运算,熟悉平方根、立方根是解题的关键.79.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,一般地,把n a a a a÷÷÷⋯(a ≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③=_____,(﹣12)⑤=_____. (2)关于除方,下列说法准确的选项有_________(只需填入正确的序号) ①.任何非零数的圈2次方都等于1; ①.对于任何正整数n ,1ⓝ=1; ①.3④=4③ ①.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如: 2④=2÷2÷2÷2=2×12×12×12=( )2 (幂的形式)试一试:将下列除方运算直接写成幂的形式.5⑥=_____;(﹣12)⑩=_____;a ⓝ=_____(a ≠0). 算一算:14⎛⎫- ⎪⎝⎭④÷23+(﹣8)×2③. 【答案】【初步探究】(1)12,-8; (2)① ②④;【深入思考】(1)1()54,28 或8(2)-, 1()a(n-2);(2)-2. 【解析】【分析】初步探究:(1)分别按公式进行计算即可;(2)根据定义依次判定即可;深入思考:把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果,将第二问的规律代入计算即可.【详解】初步探究:(1) 2③=12222÷÷=; (﹣12)⑤=1111()()()2228-÷-÷-=-; 故答案是:11,28-; (2)①任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项①正确;②因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1; 所以选项②正确;③3④=3÷3÷3÷3=19,4③=4÷4÷4=14,则3④≠4③;所以选项③错误; ④负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项④正确;所以正确的选项有:① ②④;故答案是:① ①①;深入思考:(1) 15⎛⎫ ⎪⎝⎭4, 28 或(-2)8 1a ⎛⎫ ⎪⎝⎭(n-2), (2)1(4-)④÷23+(﹣8)×2③ =16÷8+(-8)×12=2-4=-2【点睛】考查了新运算以及实数的运算.解决问题的关键是掌握新运算的法则,理解新运算的意义.在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.80.把下列各数表示在数轴上,并比较它们的大小(用“<”连接).2-, 0, 3-, π-<<<-<【解析】【分析】先在数轴上描出各点,再根据数轴上右边的数大于左边的数即可得出结论.【详解】-<<<-<203π【点睛】本题考查了利用数轴比较实数的大小.关键是利用数形结合,把抽象的问题转化成直观的问题处理即可.。
实数(知识讲解)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题6.7 实数(知识讲解)【学习目标】1. 了解无理数和实数的意义;2. 了解有理数的概念、运算法则在实数范围内仍适用 .【要点梳理】要点一、有理数与无理数有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数.特别说明:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….5.要点二、实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.要点三、实数大小的比较对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大. 正实数大于0,负实数小于0,两个负数,绝对值大的反而小.要点四、实数的运算有理数关于相反数和绝对值的意义同样适合于实数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用.【典型例题】类型一、实数➽➼概念的理解✬✬分类1. 把下列各数写入相应的集合内:12-,22,364-,0.26,7π,0.10,5.12,33-,327+.(1) 有理数集合:{ }; (2) 正实数集合:{ }; (3) 无理数集合:{ } 【答案】(1) 12-,364-,0.26, 0.10,5.12(2) 22,0.26,7π,0.10,5.12,33-,327+(3) (3) 22,7π, 33-,327+【分析】(1)根据有理数的定义进行作答即可; (2)根据正数的定义进行判断即可; (3)根据无理数的定义进行判断即可. 解:(1)有理数有:12-,3644-=-,0.26, 0.10,5.12故答案为:12-, 364-,0.26, 0.10,5.12(2)12-,3644-=-是负数,33-绝对值是正数正实数有:22,0.26,7π,0.10,5.12,33-,327+ 故答案为:22,0.26,7π,0.10,5.12,33-,327+ (3)无理数有:22, 7π, 33-,327+故答案为:22, 7π, 33-,327+【点拨】本题考查了实数的分类,即实数分为正实数,零,负实数;实数还可以分为有理数和无理数,有理数包括正数和分数,无理数是无线不循环小数,熟练掌握有理数、无理数的定义是解题的关键.举一反三:【变式1】 把下列各数填入相应的集合内.32π、-5222034905380.3737737773…(相邻两个3之间的7逐次加1个),(1)有理数集合{…}(2)无理数集合{…}(3)负实数集合{… }【答案】(1) -52,49,0,38-(2) 32,π,2,203,-5,0.3737737773(3)-52,-5,38-.【分析】(1)根据有理数的定义进行判定即可得出答案;(2)根据无理数的定义进行判定即可得出答案;(3)根据负实数的定义进行判定即可得出答案.解:(1)有理数集合:{-52,49,0,38-…}(2)无理数集合:{32,π,2,203,-5,0.3737737773……}(3)负实数集合:{-52,-538-【点拨】本题主要考查了实数的分类,熟练掌握实数的分类进行求解是解决本题的关键.把下列各数序号分别填入相应的集合内:32① 14,10,①π-,①52-,15203①6-①38-①0.979779777···(相邻两个9之间7的个数逐次增加1)【答案】有理数集合:①①①;无理数集合:①①①①①①①;负实数集合:①①①①【分析】根据实数的性质即可分类.解:有理数为14,52-,38-;无理数为32,10,π-,15,203,6-,0.979779777···(相邻两个9之间7的个数逐次增加1);负实数为π-,52-,38-,6-,①有理数集合:①①①;无理数集合:①①①①①①①;负实数集合:①①①①.【点拨】此题主要考查实数的分类,解题的关键是熟知实数的分类方法及特点.类型二、实数➽➼实数性质✬✬实数与数轴➽➼运算✬✬化简3 50.2-11-327825-3π-相反数倒数绝对值【分析】根据相反数、倒数、绝对值的定义依次即可得出答案.解:3 50.2-11-327825-3π-相反数350.21132-52-3π-倒数53-51111-2325--13π-绝对值350.2113252-3π-【点拨】本题考查实数的分类,立方根、分母有理化.对于分母中是二次根式的要分母有理化.举一反三:【变式1】实数a,b,c2a|a-b|+|c-a|.【答案】a b c --+【分析】先判断0a b c <<<,进而得到0a b -<,0c a ->,再化简即可. 解:由数轴上点的位置可得 0a b c <<<,①0a b -<,0c a ->, ①2a a b c a --+- a a b c a =-+-+-a b c =--+.【点拨】本题考查了求一个数的算术平方根,化简绝对值,整式的加减运算,实数与数轴,根据数轴及运算法则判断0a b -<,0c a ->是解本题的关键.【变式2】 我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A ”,请根据图形回答下列问题:(1) 线段OA 的长度是多少?(要求写出求解过程) (2) 这个图形的目的是为了说明什么?(3) 这种研究和解决问题的方式体现了 的数学思想方法(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳【答案】(1) OA =2;(2)数轴上的点和实数是一一对应关系;(3)A【分析】(1)首先根据勾股定理求出线段OB 的长度,然后结合数轴的知识即可求解; (2)根据数轴上的点与实数的对应关系即可求解; (3)本题利用实数与数轴的对应关系即可解答. 解:(1) OB 2=12+12=2①OB =2 ①OA =OB =2(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合.故选A【点拨】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.类型三、实数➽➼估算✬✬无理数的整数(小数)部分✬✬➽➼运算✬✬化简3.[阅读材料]459253,①151<251的整数部分为15152(1)91的小数部分是.(2)已知a21b21a)3+(b+4)2的值.【答案】(1)91﹣9 (2)-43【分析】(1)估算出91的范围99110<<,可得到91的整数部分,进而得到91的小数部分;(2)估算出21的范围4215<<,可得到21的整数部分,进而得到21的小数部分,从而得到a,b的值,再求代数式的值即可.<<,(1)解:①8191100①99110<<,①91的整数部分是9,①91的小数部分91﹣9,故答案为:91﹣9;<<,(2)解:①162125①4<21<5,①21的整数部分是4,小数部分是21﹣4, ①a =4,b =21﹣4,①原式=(﹣4)3+(21-4+4)2 =﹣64+21 =﹣43.∴代数式的值为43-.【点拨】本题考查了实数的大小比较,代数式求值,无理数估算知识.解题的关键在与正确的计算求值.举一反三:【变式1】 比较下列各组数的大小: (1356;(2325-3-;(3513 【答案】(1)356<;(2)3253->-;(3)3512-> 【分析】(1)直接化简二次根式进而比较得出答案; (2)直接估算无理数的取值范围进而比较即可; (3)直接估算无理数的取值范围进而比较即可. 解:(1)①366=,①356<; (2)①33252-<-<-,①3253->-; (3)①132<<,①13122<<, ①253<<, ①1512<-<, ①3512->. 【点拨】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.【变式2】2212221来表2(129的整数部分是,小数部分是;(2)如果55a,55b,求a5的值.【答案】(1)5,29﹣5;(2)35﹣2【分析】(1)估算29的近似值,即可得出29的整数部分和小数部分;(2)求出a、b的值,再代入计算即可.解:(1)①25<29<36,①5<29<6,①29的整数部分为5,小数部分为29﹣5,故答案为:5,29﹣5;(2)①2<5<3,①7<5+5<8,①5+5的小数部分a=5+5﹣7=5﹣2,①2<5<3,①﹣3<﹣5<﹣2,①2<5﹣5<3,①5﹣5的整数部分为b=2,①a+5b=5﹣2+25=35﹣2.【点拨】本题考查了无理数的估算,正确估算无理数的取值范围是解题的关键.类型四、实数➽➼实数的混合运算➼运算✬✬化简4.计算:(13325181276464 (23226511274⎛⎫-- ⎪⎝⎭【答案】(1)558;(2)112-. 【分析】直接利用立方根的性质及平方根的性质分别化简,然后根据实数的运算法则求得计算结果解:(1)原式=519384-⨯- ,=152988-- , =558(2)原式=3151274-+- , =1134-+ , =112-【点拨】此题主要考查了实数运算,正确化简各数是解题关键. 举一反三:【变式1】 计算题:(1)233111(2)2789⎛-+-⨯-- ⎝ (2238321253 【答案】(1)-3;(2)11【分析】(1)根据有理数的乘方,求一数的立方根和算术平方根进行计算; (2)根据求一数的立方根和算术平方根,化简绝对值,进行实数的混合运算. 解:(1)原式11183111383⎛⎫=--⨯+⨯-=---=- ⎪⎝⎭;(2)2383212538235311--+-=-++-=.【点拨】本题考查了实数的混合运算,求一数的立方根和算术平方根,掌握实数的运算法则是解题的关键.【变式2】 计算: (1)3112548(2) ()20223912712-【答案】(1)5 (2)22-【分析】对于(1),由1142=,255=,31182=,再计算即可;对于(2),由93=,(-1)2022=1,3273=,1221-=-,再计算即可. 解:(1)原式=115522+-=;(2)原式=3132122--+-=-.【点拨】本题主要考查了实数的运算,求出各数的平方根和立方根是解题的关键.类型五、实数➽➼实数的运算➼程序设计✬✬新定义5. 一个数值转换器,如图所示:(1) 当输入的x 为81时.输出的y 值是_________;(2) 若输入有效的x 值后,始终输不出y 值,请写出所有满足要求的x 的值; (3) 若输出的y 2,请写出两个满足要求的x 值.【答案】(1)3; (2)0x =,1; (3)4x =,2x =(答案不唯一) 【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,1的算术平方根是1即可判断; (3)根据运算法则,进行逆运算即可求得无数个满足条件的数. (1)解:当81x =时,取算术平方根81=9,不是无理数,继续取算术平方根93=,不是无理数,继续取算术平方根得3,是无理数,所以输出的y 值为3;(2)解:当0x =,1时,始终输不出y 值.因为0,1的算术平方根是0,1,一定是有理数;(3)解:4的算术平方根为2,2的算术平方根是2,①4x =,2x =都满足要求.【点拨】本题考查了算术平方根的计算和无理数的判断,正确理解给出的运算方法是关键.举一反三:【变式】思考与探究:(1)在如图所示的计算程序中,若开始输入的数值是4,则最后输出的结果是___________.(2)在如图所示的计算程序中,若最后输出的结果是58,则开始输入的数值是___________.(3)按下面的程序计算,若开始输入的值x为正数,最后输出的结果为1621,则满足条件的x的不同值最多有多少个?【答案】(1)17;(2)6或-10;(3)6个【分析】(1)根据程序运算图可得算式4×3+5,按运算顺序进行求解即可;(2)设输入的数字为m,根据题意可得关于x的方程,解方程即可求得答案;(3)根据最后输出的结果,可计算出它前面的那个数,依此类推,可将符合题意的正数求出.解:(1)由题意得:4×3+5=17,故答案为:17;(2)设输入的数字为m,则有(m+2)2-6=58,解得:m=6或m=-10,故答案为:6或--10;(3)①最后输出的数为1621,①4[(x+5)-(-2)2]-3=1621,解得:x=405>0,又①4[(x+5)-(-2)2]-3=405,解得:x=101>0,又①4[(x+5)-(-2)2]-3=101,解得:x=25>0,又①4[(x+5)-(-2)2]-3=25,解得:x=6>0,又①4[(x+5)-(-2)2]-3=6,解得:x=54>0, 又①4[(x+5)-(-2)2]-3=54, 解得:x=116>0, 又①4[(x+5)-(-2)2]-3=116, 解得:x=1564-<0,(不符合题意) ①符合题意的正数最多有6个.【点拨】本题考查了程序运算,涉及了一元一次方程,利用平方根的解方程等知识,正确审题,弄清程序运算中的运算顺序,熟练掌握相关和运算法则和解题方法是解此类问题的关键.6. 对于两个不相等的实数a 、b ,定义一种新的运算如下,(0)a b a b a b a b+*=+>-,如:323*2532+==-,求()654**的值. 【答案】1【分析】根据已知条件先求出5*4的值,再求出6*(5*4)的值即可求出结果. 解:①(0)a b a b a b a b +*=+>-, ①545*4354+==-, ①()636*5*46*3163+===-. 【点拨】此题主要考查实数的运算,解题的关键是根据新定义运算法则进行求解. 举一反三:【变式】 定义新运算:对于任意实数a ,b ,都有2a b a b =+※,例如2747423=+=※.(1)求54※的值.(2)求(712※※的平方根. 【答案】(1)21;(2)±4【分析】(1)根据定义新运算即可求54※的值;(2)根据定义新运算求()712※※的值,再计算平方根即可得出答案. 解:(1)由定义新运算得:2545451621=+=+=※;(2)由定义新运算得:()7127(12)737916=+==+=※※※※, ①()712※※的平方根为164±=±. 【点拨】本题考查新定义的有理数运算,掌握新定义的运算法则是解题的关键. 类型六、实数➽➼实数的运算➼实际运用✬✬规律7. 数学阅读是学生个体根据已有的知识经验,通过阅读数学材料建构数学意义和方法的学习活动,是学生主动获取信息,汲取知识,发展数学思维,学习数学语言的途径之一.请你先阅读下面的材料,然后再根据要求解答提出的问题:问题情境:设a ,b 是有理数,且满足2322+=-a b ab 的值.解:由题意得(3)(2)20-++a b ,①a ,b 都是有理数,①3,2a b -+也是有理数,2①30,20a b -=+=,①3,2a b ==-,①(2)36ab =-=-解决问题:设x ,y 都是有理数,且满足22585x y -+=+x y +的值.【答案】8或0【分析】根据题目中例题的方法,对所求式子进行变形,求出x 、y 的值,从而可以求得x +y 的值.解:①225845x y y -+=+,①(x 2-2y -8)+(y -4)5=0,①x 2-2y -8=0,y -4=0,解得,x =±4,y =4,当x =4,y =4时,x +y =4+4=8,当x=-4,y=4时,x+y=(-4)+4=0,即x+y的值是8或0.【点拨】本题考查实数的运算,解题的关键是明确题目中例题的解答方法,然后运用类比的思想解答所求式子的值.举一反三:【变式】如图1,有5个边长为1的小正方形组成的纸片,可以把它剪拼成一个正方形.(1)拼成的正方形的面积是,边长是;(2)仿照上面的做法,你能把下面这十个小正方形组成的图形纸,剪开并拼成一个大正方形吗?若能,在图2中画出拼接后的正方形,并求边长;若不能,请说明理由.【答案】(1)5;5(2)10【分析】(1)一共有5个小正方形,那么组成的大正方形的面积为5,边长为5的算术平方根;(2)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,在所给图形中截取两条长为10的且互相垂直的线段,进而拼合即可.解:(1)拼成的正方形的面积是:5,边长为:5.(2)如图所示,能,正方形的边长为10.【点拨】本题考查了图形的剪拼、勾股定理、正方形的面积和正方形的有关画图,巧妙地根据网格的特点画出正方形是解此题的关键.8. 阅读下列材料:设:0.30.333x ==,①则10 3.333x =.①由①-①,得93x =,即13x =. 所以10.30.3333==. 根据上述提供的方法.把0.7•和1.3•化成分数,并想一想.是不是任何无限循环小数都可以化成分数? 【答案】70.70.7779•=⋯=,41.33•=.任何无限循环小数都可以化成分数. 【分析】设0.70.777x ==⋯①则107.777x =⋯,①;由-②①,得97x =;由已知,得10.30.3333==,所以11.310.31.3=+=+任何无限循环小数都可以这样化成分数. 解:设0.70.777x ==⋯①则107.777x =⋯,①由①-①,得97x =,即79x =.所以70.70,7779=⋯=. 由已知,得10.30.3333==, 所以141.310.3133=+=+=. 任何无限循环小数都能化成分数.【点拨】考核知识点:无限循环小数和有理数.模仿,理解材料是关键.举一反三:【变式】(2020春·山西太原·八年级太原师范学院附属中学校考阶段练习)阅读下列解题过程:231111()4422-===; 254221()9933-=; 279331()161644-===;… (111136-=________. (2)按照你所发现的规律,请你写出第n 个等式:________.(335799(1)(1)(1)(1)49162500----【答案】(1)56;(2)2211(1)1n n n n +-=++;(3)150 【分析】(1)仿照已知等式确定出所求即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,仿照上式得出结果即可.解:(1)11255136366-==; 故答案为:56; (2)观察上面的解题过程,发现的规律为:2222221(1)211(1)(1)(1)1n n n n n n n n n ++---===++++, 故答案为:2211(1)1n n n n +-=++; (3)35799(1)(1)(1)(1)49162500---- 149240149162500=⨯⨯⨯⨯ 12500=150=. 【点拨】本题考查了实数的运算,规律型:数字的变化类,弄清题中的规律是解本题的关键.中考真题专练【1】(2020·重庆·统考中考真题)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14524÷=,14342÷=,所以14是“差一数”;19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.【答案】(1)49不是“差一数”,74是“差一数”,理由见分析;(2)314、329、344、359、374、389【分析】(1)直接根据“差一数”的定义计算判断即可;(2)解法一:根据“差一数”的定义可知被5除余4的数个位数字为4或9,被3除余2的数各位数字之和被3除余2,由此可依次求得大于300且小于400的所有“差一数”;解法二:根据题意可得:所求数加1能被15整除,据此可先求出大于300且小于400的能被15整除的数,进一步即得结果.解:(1)①49594÷=;493161÷=,①49不是“差一数”,①745144÷=;743242÷=,①74是“差一数”;(2)解法一:①“差一数”这个数除以5余数为4,①“差一数”这个数的个位数字为4或9,①大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399,①“差一数”这个数除以3余数为2,①“差一数”这个数的各位数字之和被3除余2,①大于300且小于400的所有“差一数”为314、329、344、359、374、389.解法二:①“差一数”这个数除以5余数为4,且除以3余数为2,①这个数加1能被15整除,①大于300且小于400的能被15整除的数为315、330、345、360、375、390,①大于300且小于400的所有“差一数”为314、329、344、359、374、389.【点拨】此题主要考查了带余数的除法运算,第(2)题的解法一是用逐步增加条件的方法依此找到满足条件的所有数;解法二是正确得出这个数加1能被15整除,明确方法是关键.【2】(2019·重庆·统考中考真题)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数—“纯数”.定义;对于自然数n ,在计算n+(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数. 【答案】(1)2019不是“纯数”,2020时“纯数”,见分析;(2)13个.【分析】(1)根据题目中的新定义可以解答本题,注意各数位都不产生进位的自然数才是“纯数”;(2)根据题意可以推出不大于100的“纯数”的个数,本题得以解决.解:(1)当2019n =时,12020n +=,22022n +=∵计算时,个位为90110++=,需要进位,∴2019不是“纯数”;当2020n =时,12021n +=,22022n +=∴个位为0123++=,不需要进位:十位为226++,不需要进位:百位为0000++=,不需要进位:千位为2226++=,不需要进位:∴2020是“纯数”;综上所述,2019不是“纯数”,2020时“纯数”.(2)由题意,连续的三个自然数个位不同,其他位都相同;并且,连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位;①当这个数为一位的自然数的时候,只能是0、1、2,共3个;②当这个数为二位的自然数的时候,十位只能为1、2、3,个位只能为0、1、2,共9个;③当这个数为100时,100是“纯数”;∴不大于100的“纯数”有39113++=个.【点拨】本题考查整式的加减、有理数的加法、新定义,解答本题的关键是明确题意,利用题目中的新定义解答.。
第二课时实数的性质及运算-七年级数学下册同步精品课件(人教版)
A.3与
3
B.2与(-2)2
3
C. ( − 1)2与 −1
D.5与/-5/
课堂练习
3.判断:
(1)
−=5
(× )
的绝对值是 −
(
×
)
(3) − 的相反数是
(
)
(2)
课堂练习
4.下列各组数中互为相反数的一组是( C )
A.3
与
C.
(−)
B.2与(-2)2
(2)指出 5 , 1 3 3 分别是什么数的相反数;
(3)求 −的绝对值
(4)已知一个数的绝对值是 3 ,求这个数.
解: (1)因为 ( 6) 6, (π 3.14) 3.14 π ,
所以 6, π 3.14 的相反数分别为 6, 3.14 π ;
(2)因为 ( 5) 5, ( 3 3 1) 1 3 3 ,
是
巩固练习
3.- 是 的相反数; - 的相反数
.
4.| -3|- |2- |的值是( C )
A.5
B.-1
C.5-2
-
D.2 -5
新知探究
实数的运算
ห้องสมุดไป่ตู้
判断下列等式是否成立.如果成立,这些等式用了什么运算律?这些运
算律在实数范围内能使用吗?
加法交换律
3 + 2= 2+ 3
乘法交换律
巩固练习
5.计算(-
)-
(-
【解析】原式=
)+
(-
(-
新人教版初中数学七年级数学下册第二单元《实数》测试题(有答案解析)(1)
一、选择题1.下列各式计算正确的是( )A B = ±2 C = ±2 D .2.有下列说法:①在1和2②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④ B .①②④ C .②④ D .②3.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 4.下列说法中,正确的是( ) A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .无理数都是无限不循环小数D .无理数加上无理数一定还是无理数5.定义运算:132x y xy y =-※,若211a =-※,则a 的值为( ) A .12- B .12C .2-D .2 6.下列说法中,错误的有( )①符号相反的数与为相反数;②当0a ≠时,0a >;③如果a b >,那么22a b >;④数轴上表示两个有理数的点,较大的数表示的点离原点较远;⑤数轴上的点不都表示有理数.A .0个B .1个C .2个D .3个7.下列命题中真命题的个数( )①无理数包括正无理数、零和负无理数;②经过直线外一点有且只有一条直线与已知直线平行;③和为180°的两个角互为邻补角;的算术平方根是7;⑤有理数和数轴上的点一一对应;⑥垂直于同一条直线的两条直线互相平行.A .4B .3C .2D .1 8.估计50的立方根在哪两个整数之间( )A .2与3B .3与4C .4与5D .5与6 9.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >-> B .1a a a >-> C .1a a a >>- D .1a a a->>10.若将2-,7,11分别表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .2-B 7C 11D .无法确定 11.下列等式成立的是( ) A .1±1B 4=±2C 3216- 6D 393 12.在0,3π5227,9 6.1010010001…(相邻两个1之间0的个数在递增)中,无理数有( ).A .1个B .2个C .3个D .4个二、填空题13.求出x 的值:()23227x +=14.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21a b a ab ⊕=--.求()23-⊕的值.15.若则2|1|2(3)0a b c -+-=,()c a b +=______.1681________,25的相反数是________.17.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b 时,a*b=a ,则当2时,()()1*-3*=x x x ______18.比较大小:312___________12 19.2(1)10a b -+=,则20132014a b +=___________.20.观察下面两行数:2,4,8,16,32,64…①5,7,11,19,35,67…②根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).三、解答题21.计算: (1)﹣12327-﹣(﹣2)9(2331)+32|22.(1223143)8-; (2)求 (x -1)2-36=0中x 的值.23.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)实数m 的值是___________;(2)求|1||1|m m ++-的值;(3)在数轴上还有C 、D 两点分别表示实数c 和d ,且有|2|c d +与4d +互为相反数,求23c d -的平方根.24.小明定义了一种新的运算,取名为⊗运算,按这种运算进行运算的算式举例如下:①(+4)⊗(+2)=+6;②(﹣4)⊗(﹣3)=+7;③(﹣5)⊗(+3)=﹣8;④(+6)⊗(﹣4)=﹣10;⑤(+8)⊗0=8;⑥0⊗(﹣9)=9.问题:(1)请归纳⊗运算的运算法则:两数进行⊗运算时, ;特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算, .(2)计算:[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]; (3)我们都知道乘法有结合律,这种运算律在有理数的⊗运算中还适用吗?请判断是否适用,并举例验证.25.(1)计算:231698(2)-3121125|63|6--.(2)求下列各式中x 的值:③22536x =;④3(1)64x --=.26.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.解:∵-1= 2= 2,,故只有A 计算正确;故选:A .【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.2.D解析:D【分析】根据无理数的定义与运算、实数与数轴逐个判断即可得.【详解】①在1和2之间的无理数有无限个,此说法错误;②实数与数轴上的点一一对应,此说法正确;③两个无理数的积不一定是无理数,如2=-,此说法错误; ④2π是无理数,不是分数,此说法错误; 综上,说法正确的为②,故选:D .【点睛】 本题考查了无理数的定义与运算、实数与数轴,熟练掌握运算法则和定义是解题关键. 3.C解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、=不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.4.C解析:C根据实数的概念和分类即可判断.【详解】A 、无理数包括正无理数和负无理数,则此项错误;B 、无限循环小数是有理数,无限不循环小数是无理数,则此项错误;C 、无理数都是无限不循环小数,则此项正确;D (0=,则此项错误;故选:C .【点睛】本题考查了实数的概念和分类,熟练掌握实数的概念是解题关键. 5.C解析:C【分析】根据新定义的运算得到关于a 的方程,求解即可.【详解】解:因为211a =-※, 所以132112a a ⨯-=-, 解得 2a =-.故选:C【点睛】本题考查了新定义的运算与一元一次方程,根据新定义运算得到一元一次方程是解题关键.6.D解析:D【分析】根据相反数、绝对值、数轴表示数以及有理数的乘法运算等知识综合进行判断即可.【详解】解:符号相反,但绝对值不等的两个数就不是相反数,例如5和-3,因此①不正确; a≠0,即a >0或a <0,也就是a 是正数或负数,因此|a|>0,所以②正确;例如-1>-3,而(-1)2<(-3)2,因此③不正确;例如-5表示的点到原点的距离比1表示的点到原点的距离远,但-5<1,因此④不正确; 数轴上的点与实数一一对应,而实数包括有理数和无理数,因此⑤正确;综上所述,错误的结论有:①③④,故选:D .【点睛】本题考查相反数、绝对值、数轴表示数,对每个选项进行判断是得出正确答案的前提. 7.D【分析】根据无理数、平行公理、邻补角、算术平方根、实数与数轴、平行线的判定逐个判断即可得.【详解】①无理数包括正无理数和负无理数,此命题是假命题;②经过直线外一点有且只有一条直线与已知直线平行,此命题是真命题;③和为180︒的两个角不一定互为邻补角,此命题是假命题;7=,此命题是假命题;⑤实数和数轴上的点一一对应,此命题是假命题;⑥在同一平面内,垂直于同一条直线的两条直线互相平行,此命题是假命题;综上,真命题的个数是1个,故选:D.【点睛】本题考查了无理数、平行公理、邻补角、实数与数轴等知识点,熟练掌握各定义与公理是解题关键.8.B解析:B【分析】,可得答案.【详解】,得34,所以,50的立方根在3与4之间故选:B.【点睛】本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系.9.C解析:C【分析】可以用取特殊值的方法,因为a>1,所以可设a=2,然后分别计算|a|,-a,1a,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a=,∵2>12>-2, ∴|a|>1a>-a ; 故选:C .【点睛】 此类问题运用取特殊值的方法做比较简单.10.B解析:B【分析】首先利用估算的方法分别得到间),从而可判断出被覆盖的数.【详解】 ∵221,23<<,34<<而墨迹覆盖的范围是1-3∴故选B.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.11.A解析:A【分析】分别根据算术平方根、立方根的定义逐一判断即可.【详解】A .书写规范,故本选项符合题意;B.算术平方根只能是正数不能是负数,故本选项不合题意;C.立方根与被开方数符号一致,故本选项符合题意;D.33=27,27的立方根才等于3,故本选项不合题意.故选:A .【点睛】本题主要考查了算术平方根与立方根的定义,熟练掌握算术平方根的性质是解答本题的关键.12.C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】22 3.1428577=小数点后142857是无限循环的,则227是有理数,3=-,则因此,题中的无理数有3π 6.1010010001(相邻两个1之间0的个数在递增),共有3个,故选:C .【点睛】本题考查了无理数、算术平方根,熟记无理数的定义是解题关键.二、填空题13.x =1或x =﹣5【分析】依据平方根的性质可得到x+2的值然后解关于x 的一元一次方程即可【详解】解:∵3(x+2)2=27∴(x+2)2=9∴x+2=±3解得:x =1或x =﹣5【点睛】本题主要考查的是解析:x =1或x =﹣5【分析】依据平方根的性质可得到x +2的值,然后解关于x 的一元一次方程即可.【详解】解:∵3(x +2)2=27,∴(x +2)2=9,∴x +2=±3,解得:x =1或x =﹣5.【点睛】本题主要考查的是平方根的性质,熟练掌握平方根的性质是解题的关键.14.1【分析】根据新运算的运算法则计算即可【详解】解:【点睛】本题考查新定义下的有理数运算通过阅读材料掌握新运算的运算法则是解题关键 解析:1【分析】根据新运算的运算法则计算即可.【详解】解:()()()2322231-⊕=⨯---⨯-()4614611=----=-+-=.【点睛】本题考查新定义下的有理数运算,通过阅读材料掌握新运算的运算法则是解题关键. 15.-1【分析】先根据绝对值算术平方根偶次方的非负性求出abc 的值再代入即可得【详解】解:∵∴a-1=0b+2=0c-3=0∴a=1b=-2c=3∴【点睛】本题考查了绝对值算术平方根偶次方的非负性的应用解析:-1【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】解:∵2|1|(3)0a c --=,∴a-1=0,b+2=0,c-3=0,∴a=1,b=-2,c=3,∴()3()12=1c a b +=--. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键.16.3;【分析】根据平方运算可得一个数的算术平方根根据相反数的性质在这个数前加一-化简即可【详解】解:∵;∴的算术平方根是3∵∴的相反数是故答案为:3;【点睛】本题考查了算术平方根和相反数的性质注意先求解析:2.【分析】根据平方运算,可得一个数的算术平方根,根据相反数的性质在这个数前加一“-”化简即可.【详解】解:∵9=3=;∴= ∴3,∵222--=-=, ∴22,故答案为:2.【点睛】9的算术平方根,熟悉相关性质是解题的关键. 17.【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时a*b=当a <b 时a*b=a ∴当x=时1*=13*=2∴(1*)-(3*)=故答案为:【点睛】本题是新定义的问题解决此类问题的关键是按2【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时,a*b=2b ,当a <b 时,a*b=a∴ 当=1,=2,∴) 2,2.【点睛】本题是新定义的问题,解决此类问题的关键是按题中的规定去运算即可;18.<【分析】利用作差法比较两个数的大小【详解】解:∵1<3<4∴1<<2∴1-1<-1<2-1∴0<-1<1∴<故答案为:<【点睛】本题考查了实数的大小比较此题的难点是利用夹逼法推知的取值范围解析:<【分析】利用作差法比较两个数的大小.【详解】解:∵1<3<4∴1<2∴1-1<2-1∴0<1∴12<12. 故答案为:<.【点睛】本题考查了实数的大小比较,此题的难点是利用“夹逼法” 19.2【分析】先根据算术平方根的非负性绝对值的非负性求出ab 的值再代入计算有理数的乘方运算即可得【详解】由算术平方根的非负性绝对值的非负性得:解得则故答案为:2【点睛】本题考查了算术平方根的非负性绝对值 解析:2【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=, 故答案为:2.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键.20.515【分析】由已知条件可得:①中各数都符合2n的形式②中各数比①中对应数字大3按此规律即可求得①②中第8个数的值再求和即可【详解】根据题意可知①中第8个数为28=256;②第8个数为28+3=25解析:515【分析】由已知条件可得:①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第8个数的值,再求和即可.【详解】根据题意可知,①中第8个数为28=256;②第8个数为28+3=259,故它们的和为256+259=515,故答案为:515.【点睛】考查了要求学生通过观察,分析、归纳发现其中的规律,解题关键是找出①②中各数间的规律.三、解答题21.(1)﹣9;(2)5.【分析】(1)先计算立方根和算术平方根,再进行加减运算即可;(2)先计算乘法和绝对值,再相加即可.【详解】解:(1)原式=﹣12+(﹣3)+2×3=﹣12﹣3+6=﹣9;(2)原式=32=5.【点睛】本题考查了实数的运算,掌握立方根和算术平方根的性质是解题关键.22.(1)12;(2)x的值为7或﹣5【分析】(1)分别进行算术平方根运算、立方根运算、算术平方根的定义即可解答;(2)利用平方根解方程的方法求解即可.【详解】解:(12=4﹣12﹣3=1﹣12 =12; (2)(x -1)2-36=0,移项得:(x -1)2=36,开平方得:x -1=±6,解得:x 1=7,x 2=﹣5,即(x -1)2-36=0中的x 值为7或﹣5.【点睛】本题考查算术平方根、立方根、利用平方根解方程,熟练掌握运算法则,会运用平方根解方程是解答的关键.23.(1);(2)2;(3)4±【分析】(1)根据两点间的距离公式可得答案;(2)由(1)可知10m +>、10m -<,再利用绝对值的性质化简绝对值号,继而求得答案;(3)根据非负数的性质求出c 、d 的值,再代入23c d -,进而求其平方根.【详解】解:(1)∵蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示∴点B 表示∴m =.(2)∵m = ∴12130m +=+=>,12110m -=-=< ∴11m m ++-()11m m =+--11m m =+-+2=.(3)∵2c d +∴20c d +=∴2040c d d +=⎧⎨+=⎩∴24c d =⎧⎨=-⎩∴()23223416c d -=⨯-⨯-=∴4==±,即23c d -的平方根是4±.【点睛】本题考查了实数与数轴、绝对值的性质、相反数的性质、非负数的性质、求一个数的平方根等,熟练掌握相关知识点是解题的关键.24.(1)同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)﹣17;(3)适用,举例验证见解析【分析】(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值; (2)根据⊗运算的运算法则进行计算即可;(3)举例即可做出结论.【详解】解:(1)根据示例得出,两数进行⊗运算时,同号得正,异号得负,并把绝对值相加; 特别地,0和任何数进行⊗运算,或任何数和0进行⊗运算,都得这个数的绝对值. 故答案为:同号得正,异号得负,并把绝对值相加;都得这个数的绝对值;(2)[(﹣2)⊗(+3)]⊗[(﹣12)⊗0]=(﹣5)⊗(+12)=﹣17;(3)结合律仍然适用.例如[(﹣3)⊗(﹣5)]⊗(+4)=(+8)⊗(+4)=+12,(﹣3)⊗[(﹣5)⊗(+4)]=(﹣3)⊗(﹣9)=+12,所以[(﹣3)⊗(﹣5)]⊗(+4)=12=(﹣3)⊗[(﹣5)⊗(+4).故结合律仍然适用.【点睛】本题考查了新定义下的有理数的加减运算,正确理解新定义运算法则是解题的关键.25.(1)①13;②9-2)③65x =±;④5x =. 【分析】①先计算根式,再加减计算.②先计算根式和绝对值,再加减计算.(2)③两边除以25,再开算术平方根.④先除以-1,再开立方根.【详解】(1)-+1322=-+13=|3|-1153=-+-9=-(2)③22536x =23625x =65x =± ④3(1)64x --=3(641)x -=-14x -=-5x =【点睛】本题考查根式的化简求值,关键在于化简. 26.(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答; (2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.。
新人教版初中数学七年级数学下册第二单元《实数》测试卷(答案解析)(6)
一、选择题1.下列各式计算正确的是( ) A .31-=-1B .38= ±2C .4= ±2D .±9=32.下列说法正确的是( ) A .2-是4-的平方根 B .2是()22-的算术平方根 C .()22-的平方根是2D .8的平方根是43.下列说法中,正确的是 ( ) A .64的平方根是8 B .16的平方根是4和-4 C .()23-没有平方根D .4的平方根是2和-24.在0.010010001,3.14,π,10,1.51,27中无理数的个数是( ).A .5个B .4个C .3D .2个5.如果32.37≈1.333,323.7≈2.872,那么32370约等于( ) A .287.2 B .28.72C .13.33D .133.36.估算481的值( )A .在7和8之间B .在6和7之间C .在5和6之间D .在4和5之间7.下列实数31,7π-,3.14,38,27,0.2-,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( ) A .5个 B .4个 C .3个 D .2个8.实数a 、b 在数轴上的位置如图所示,且||||b a >,则化简233||()a a b b -++-的结果是( )A .2aB .2bC .22a b +D .0 9.和数轴上的点一一对应的数是( ) A .自然数B .有理数C .无理数D .实数10.下列有关叙述错误的是( ) A 2B 2是2的平方根C .122<<D 2是分数 11.在 -1.414216π,3 3.212212221…,227,3.14这些数中,无理数的个数为( ) A .2B .3C .4D .512.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±9二、填空题13.已知一个正数的平方根是3a +和215a -. (1)求这个正数.(2)求12a +的平方根和立方根.14.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A 表示的数为________; (2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 35-+ 的点,并比较它们的大小.15.计算:(1)36 1.754⎛⎫--+ ⎪⎝⎭;(2)()()232524-⨯--÷; (3)()2253--. 16.实数2-2,227,π-327-中属于无理数的是________. 17.38642--. 18.定义一种新运算;观察下列各式;131437=⨯+= ()3134111-=⨯-=5454424=⨯+=()4344313-=⨯-=(1)请你想一想:a b = ;(2)若ab ,那么ab ba (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.19.定义一种新运算“”规则如下:对于两个有理数a ,b ,ab ab b =-,若()()521x -=-,则x =______20.规定一种关于a 、b 的新运算:2*2a b b ab a =+-+,那么()3*2-=______.三、解答题21.计算:2(3)2--22.已知(25|50x y -++-=.(1)求x ,y 的值; (2)求xy 的算术平方根.23.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)24.定义一种新运算,观察下列式子:212122128=⨯+⨯⨯=★; 2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★;()()213132133-=-⨯+⨯-⨯=★;;(1)计算:()32-★的值; (2)猜想:a b =★________; (3)若12162a +=-★,求a 的值. 25.初一年级某同学在学习完第二章《有理数》后,对运算产生了浓厚的兴趣.他借助有理数的运算,定义了一种新运算“⊕”,规则如下:21ab a ab ⊕=--.求()23-⊕的值. 26.计算.(1)3218433⎛⎫-⨯-+-⎪⎝⎭(2)178(4)4(5)-÷-+⨯-(316 3⎫-⎪⎪⎭(4)223232 23⎡⎤⎛⎫-⨯-⨯--⎢⎥⎪⎝⎭⎢⎥⎣⎦【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A计算正确;故选:A.【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.2.B解析:B【分析】根据平方根、算术平方根,即可解答.【详解】A选项:4-没有平方根,故A错误;B选项:()224-=,4的算术平方根为2,故B正确;C选项:()224-=,4的平方根为2±,故C错误;D选项:8的平方根为±,故D错误故选B.【点睛】本题考查了平方根、算术平方根,解决本题的关键是熟记平方根、算术平方根的概念.3.D解析:D【分析】根据平方根的定义与性质,结合各选项进行判断即可.【详解】A、64的平方根是±8,故本选项错误;=,4的平方根是±2,故本选项错误;B4-=,9的平方根是±3,故本选项错误;C、()239D、4的平方根是±2,故本选项正确.故选:D.【点睛】本题考查了平方根的知识,如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.4.D解析:D【分析】根据无理数的概念解题,找出无理数的个数即可,无限不循环小数称为无理数;【详解】中无理数有π共2个,在0.010010001,3.14,π,1.51,27故选D.【点睛】本题考查了无理数的概念,正确掌握无理数的概念是解题的关键;5.C解析:C【分析】【详解】==≈⨯=.1.3331013.33故答案为:C.【点睛】本题考查了立方根的定义,正确变形、熟练掌握立方根的概念是关键.6.C解析:C【分析】利用36<48<49得到6<7−1进行估算.【详解】解:∵36<48<49, ∴6<7,∴5-1<6. 故选:C . 【点睛】本题考查了估算无理数的大小:估算无理数大小要用逼近法.7.C解析:C 【分析】根据无理数的定义、算术平方根与立方根逐个判断即可得. 【详解】314.4285717=小数点后的428571是无限循环的,属于有理数,3=-属于有理数,=则无理数为π-⋯,共有3个, 故选:C . 【点睛】本题考查了无理数、算术平方根与立方根,熟记各定义是解题关键.8.A解析:A 【分析】根据数轴可得a>0,b<0,然后根据加法法则可得a +b <0,然后根据平方根的性质和绝对值的性质及立方根化简即可. 【详解】解:由数轴可得:a>0,b<0, ∵|a |<|b |, ∴a +b <0,∴||a b +=()a a b b ++- =2a 故选A . 【点睛】此题考查的是平方根的化简和绝对值的化简及开立方根,掌握利用数轴判断各字母的符号、加法法则、平方根的性质和绝对值的性质是解题关键.9.D解析:D【分析】根据实数与数轴上的点是一一对应关系,即可得出.【详解】解:根据实数与数轴上的点是一一对应关系.故选:D.【点睛】本题考查了实数与数轴的对应关系,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.10.D解析:D【分析】根据正数、平方根、无理数的估算与定义逐项判断即可得.【详解】AB是2的平方根,此项叙述正确;C、12<<,此项叙述正确;D故选:D.【点睛】本题考查了正数、平方根、无理数的估算与定义,熟练掌握各定义是解题关键.11.C解析:C【分析】先计算算术平方根,再根据无理数的定义即可得.【详解】=,422=小数点后的142857是无限循环的,3.1428577π+⋯,共4个,,2故选:C.【点睛】本题考查了算术平方根、无理数,熟记无理数的定义是解题关键.12.C解析:C 【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解. 【详解】由题意得:23522x -=, ∴29x =, ∵2(39)±=, ∴3x =±, 故选:C. 【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.二、填空题13.(1)441或49;(2)或【分析】(1)分情况讨论这两个平方根相等或互为相反数求出a 的值在算出这个正数;(2)由(1)的结果分情况讨论根据平方根和立方根的定义算出结果【详解】解:(1)若这两个平方解析:(1)441或49;(2)2±【分析】(1)分情况讨论,这两个平方根相等或互为相反数,求出a 的值,在算出这个正数; (2)由(1)的结果分情况讨论,根据平方根和立方根的定义算出结果. 【详解】解:(1)若这两个平方根相等,则3215a a +=-,解得18a =, 这个正数是:()2218321441+==;若这两个平方根互为相反数,则32150a a ++-=,解得4a =, 这个正数是:()2243749+==;(2)若18a ==若4a =4==,4的平方根是2±. 【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的定义以及计算方法.14.(1);(2)①见解析;②见解析【分析】(1)设正方形边长为a 根据正方形面积公式结合平方根的运算求出a 值则知结果;(2)①根据面积相等利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正解析:(1)2,2-;(2)①见解析;②见解析, 350.5-+<- 【分析】(1)设正方形边长为a ,根据正方形面积公式,结合平方根的运算求出a 值,则知结果; (2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,再把N 点表示出来,即可比较它们的大小. 【详解】解:设正方形边长为a , ∵a 2=2, ∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b , ∴b 2=5, ∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M ,则M 表示的数为-3+5,看图可知,表示-0.5的N 点在M 点的右方,∴比较大小:350.5-+<-. 【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.15.(1);(2)22;(3)-1【分析】(1)先去括号同时将小数化为分数再计算加减法;(2)先计算乘方再计算乘除法最后计算加减法;(3)先计算乘方和绝对值再计算加减法【详解】(1)==;(2)==20解析:(1)182;(2)22;(33-1 【分析】(1)先去括号,同时将小数化为分数,再计算加减法; (2)先计算乘方,再计算乘除法,最后计算加减法; (3)先计算乘方和绝对值,再计算加减法. 【详解】(1)36 1.754⎛⎫--+ ⎪⎝⎭=336144++ =182; (2)()()232524-⨯--÷ =()4584⨯--÷ =20+2 =22;(3)()225--=4-()= 【点睛】此题考查运算能力,掌握有理数的加减法计算法则,乘方的计算法则,实数的绝对值化简,有理数的混合运算法则是解题的关键.16.【分析】根据无理数的三种形式:①开方开不尽的数②无限不循环小数③含有π的数找出无理数的个数【详解】解:在这5个数中属于无理数的有这2个数故答案是:【点睛】本题考查了无理数的知识解答本题的关键是掌握无,π- 【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数. 【详解】3=-,在2-,227,π-5,π-,这2个数,π-. 【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.17.4【分析】原式利用平方根立方根定义及绝对值化简计算即可得到结果【详解】解:原式【点睛】本题考查了实数的运算熟练掌握平方根立方根定义是解本题的关键解析:4【分析】原式利用平方根、立方根定义及绝对值化简计算即可得到结果.【详解】解:原式282=-+-4=【点睛】本题考查了实数的运算,熟练掌握平方根、立方根定义是解本题的关键.18.(1)4a+b ;(2);(3)6a-3b-12【分析】(1)观察得到新运算等于第一个数乘以4加上第二个数据此列式即可;(2)根据新运算分别计算出与即可得到答案;(3)根据新运算分别化简再将ab 的值代解析:(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】(1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可;(2)根据新运算分别计算出a b 与b a 即可得到答案; (3)根据新运算分别化简再将a 、b 的值代入计算. 【详解】(1)ab =4a+b , 故答案为:4a+b ; (2)a b =4a+b ,b a =4b+a , ∵a b , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+ =4(a-b )+(2a+b )=4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键. 19.【分析】根据给定新运算的运算法则可以得到关于x 的方程解方程即可得到解答【详解】解:由题意得:(5x-x )⊙(−2)=−1∴-2(5x-x )-(-2)=-1∴-8x+2=-1解之得:故答案为【点睛】本解析:38【分析】根据给定新运算的运算法则可以得到关于x 的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x )⊙(−2)=−1,∴-2(5x-x )-(-2)=-1,∴-8x+2=-1,解之得:38x =, 故答案为38. 【点睛】 本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 .20.【分析】根据新定义将3与-2代入原式求解即可【详解】故答案为:【点睛】本题考查了新定义运算把新定义运算转换成有理数混合运算是解题关键 解析:3-【分析】根据新定义,将3与-2代入原式求解即可.【详解】()()()23*223232-=-+⨯--+461=-- 3=-.故答案为:3-.【点睛】本题考查了新定义运算,把新定义运算转换成有理数混合运算是解题关键.三、解答题21.1【分析】先计算乘方、算术平方根,然后计算乘法和减法,即可得到答案.【详解】解:2(3)2--924=-⨯98=-1=.【点睛】本题考查了算术平方根、乘方、有理数的加减乘除混合运算,解题的关键是掌握运算法则进行计算.22.(1)5x =5y =+2【分析】(1)根据非负数的性质求解即可;(2)先求出xy 的值,再根据算术平方根的定义求解.【详解】解:(1)(250x -+≥,50y -≥,(2550x y -++--=,50x ∴-=,50y --=,解得:5x =5y =+(2)(5525322xy =-=-=, xy ∴.【点睛】本题考查了非负数的性质,以及算术平方根的定义,根据非负数的性质求出x ,y 的值是解答本题的关键.23.3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm ,∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3), 即34363r ππ=,解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程. 24.(1)0;(2)22ab ab +;(3)5a =-【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法求解即可;(3)利用规定的运算方法得到方程,再进一步解方程即可.【详解】解:(1)∵212122128=⨯+⨯⨯=★; 2232322330=⨯+⨯⨯=★;()()()221212212-=⨯-+⨯⨯-=-★; ()()213132133-=-⨯+⨯-⨯=★;; ∴()()()232322320-=⨯-+⨯⨯-=★;(2)由(1)可得:22a b ab ab =+★.故答案为:22ab ab +.(3)2111222216222a a a +++=⨯+⨯⨯=-★, 解得:5a =-.【点睛】此题考查有理数的混合运算以及解一元一次方程,理解运算方法是解决问题的关键. 25.1【分析】根据新运算的运算法则计算即可.【详解】解:()()()2322231-⊕=⨯---⨯-()4614611=----=-+-=.【点睛】本题考查新定义下的有理数运算,通过阅读材料掌握新运算的运算法则是解题关键. 26.(1)354;(2)-1;(3)1-;(4)9. 【分析】(1)运用乘法分配律去括号,再进行乘法运算,最后进行加减运算即可得到答案; (2)原式首先计算乘除法选辑减去息怒可;(3)原式首先化简算术平方根和立方根,再进行加减运算即可得到答案; (4)首先计算乘方运算,再计算括号内,最后算乘法即可得到答案.【详解】解:(1)3218433⎛⎫-⨯-+- ⎪⎝⎭ =33231(8)()()()44343-⨯-+-⨯+-⨯- =11624-+ =354; (2)178(4)4(5)-÷-+⨯-=17+2-20=-1;(316 3⎫-⎪⎪⎭=115+()633-+-=5+0-6 =-1;(4)223232 23⎡⎤⎛⎫-⨯-⨯--⎢⎥⎪⎝⎭⎢⎥⎣⎦=34(92) 29-⨯-⨯-=3(42) 2-⨯--=3(6) 2-⨯-=9.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键.。
实数(常考考点分类专题)(巩固篇)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题6.14 实数(常考考点分类专题)(巩固篇)(专项练习)【考点一】平方根与立方根➽➼➵概念的理解➻➼平方根✮✮立方根1.一个正数的两个平方根分别是25a -和1a -+,则a 的值为( )A .2B .3C .4D .92.下列说法正确的是( )A .1的平方根是1B .3次方根是本身的数有0和1C .m -的3次方根是3m -D .a<0时,a -的平方根为a 【考点二】实数➽➼➵概念的理解✮✮分类3.下列命题:①无理数都是实数;①实数都是无理数;①无限小数都是无理数:①带根号的数都是无理数;①不带根号的数都是有理数,其中错误的命题的个数是( )A .1B .2C .3D .4 4.实数227,2-21,2π,(333,3-中,无理数的个数是( )个. A .2 B .3 C .4 D .5【考点一】平方根✮✮算术平方根✮✮立方根➽➼➵求一个数的平方根与算术平方根和立方根515n -n 不可能是( )A .6B .9C .11D .146.下列说法中,正确的是 ( )A .64的平方根是8B .4的平方根是2或-2C .(-3)2没有平方根D 164和-4 7.若()235270a b -+-=,则a b -的值为( )A.2B.-2C.5D.8【考点二】平方根与立方根➽➼➵已知平(立)方根,求原数8.如果一个正数的平方根是a+3及2a﹣15,那么这个正数是()A.441B.49C.7或21D.49或4419.若a的算术平方根为17.25,b的立方根为8.69-;x的平方根为 1.725±,y的立方根为86.9,则()A.1,1000100x a y b==-B.1,100100x a y b==C.1100,100x a y a==D.1,1001000x a y b==-【考点三】算术平方根➽➼➵非负性✮✮估算✮✮取值范围10.已知x为实数,且2120y x++-=(),则x y的值为()A.-1B.1C.2D.12 11224)A.7到8之间B.6到7之间C.5到6之间D.4到5之间【考点四】平方根✮✮立方根➽➼➵解方程12.已知:有理数满足22404nm n⎛⎫++-=⎪⎝⎭,则33m n的值为()A.1B.1-C.1±D.2±13.如果一个比m小2的数的平方等于2(4)-,那么m等于()A.4-B.4±C.2-D.2-或6【考点五】平方根✮✮算术平方根✮✮立方根➽➼➵实际应用14.23.6 4.858 2.36 1.536236000)A.﹣485.8B.﹣48.58C.﹣153.6D.﹣1536 15.体积为5的正方体棱长为()A5B35C.5D.5 2【考点六】平方根✮✮算术平方根✮✮立方根➽➼➵综合应用16.下列说法正确的是()A .4的算术平方根是2B .0.16的平方根是0.4C .0没有立方根D .1的立方根是±1 17.若a 16b 64a+b 的值是( )A .4B .4或0C .6或2D .6【考点一】实数性质✮✮数轴➽➼➵运算✮✮化简18.下列各组数中,互为相反数的是( )A .-33B .3-和13-C .3-与3-D .3()23-19.如图,若2a =-,则32810a a --的值所对应的点可能落在( )A .点A 处B .点B 处C .点C 处D .点D 处【考点二】实数大小比较➽➼➵运算✮✮化简20.下列实数中,最小的数是( )A .0B .1-C .3-D 521.下列实数中最大的数是( )A 327B .πC 15D .4【考点三】实数➽➼➵无理数➽➼➵估算✮✮整数部分和小数部分22.已知m 与n 为两个连续的自然数,且满足377m n <<,则m n +的值为( ). A .1 B .3 C .5 D .723.若202013a,202113b,则a +b 的值为( )A .2021B .2020C .4041D .1【考点四】实数➽➼➵混合运算 24.计算2535 )A .-1B .1C .525-D .255253331632700.1251464--( ) A .114- B .114± C .154 D .134【考点五】实数➽➼➵混合运算➼➵程序设计✮✮新定义 26.按如图所示的程序计算,若开始输入的x 5 )A .55B .55C .24D .35115+27.规定不超过实数x 的最大整数称为x 的整数部分,记作[]x ,例如[]9.859=,[]33=,103⎡=⎣.下列说法:①422⎡⎤=⎣⎦;①123192054⎡⎤⎡⎤⎡⎡⎡⎤+++⋅⋅⋅++=⎣⎦⎣⎦⎣⎣⎣⎦;①11a a ⎡⎡+=+⎣⎣(a 为正整数);①若n 为正整数,且4545n n ⎡⎤=⎣⎦则n 的最小值为6,其中正确说法的个数是( )A .1B .2C .3D .4【考点六】实数➽➼➵混合运算➼➵实际运用✮✮规律问题28.把四张形状大小完全相同的小长方形卡片(如图①,卡片的长为a ,宽为b )不重叠地21,宽为4)的盒子底部(如图①),盒子底面未被卡片覆盖的部分用阴影表示,则图①中两块阴影部分的周长和是( )A .21B .16C .)2214D .)4214 29.有一列数按如下规律排列:2,314-,56,7则第10个数是( ) A .10 B 10 C .1011 D 11【考点一】平方根与立方根➽➼➵概念的理解➻➼平方根✮✮立方根30.已知两个不相等的实数,x y 满足:2x a =,2y a =x y +__________. 31.一个正数a 的两个平方根是21b -和4b +,则a b +的立方根为_______.【考点二】实数➽➼➵概念的理解✮✮分类32.下列说法:①无理数就是开方开不尽的数;①2x 5x 的整数有4个;①﹣381①不带根号的数都是有理数;①不是有限小数的不是有理数;①对于任意实数a 2a a .其中正确的序号是_____.33.在22311121,(1),3.14,|82|,,3,(),0,743π----------中,有理数有m 个,自然数有n 个,整数有p 个,分数有k 个,负数有t 个,则m -n -k +t +p =________.【考点一】平方根✮✮算术平方根✮✮立方根➽➼➵求一个数的平方根与算术平方根和立方根34.0.16的算术平方根是______25______.35()2460x y -+=,那么2x y -的平方根为_______.36.如果一个正数的两个平方根是24m -与31m -,那么这个正数的立方根是____________. 【考点二】平方根与立方根➽➼➵已知平(立)方根,求原数37.一个数的平方等于81,这个数是___________.38.已知x 没有平方根,且||27x =,则x 的立方根为________.【考点三】算术平方根➽➼➵非负性✮✮估算✮✮取值范围3910x x y --=,则20222022x y +的值为____________.40.已知221m <2m +m =_____.【考点四】平方根✮✮立方根➽➼➵解方程411y -0,则(y ﹣2)2021=________.42.已知3163x +=-,则x =_______【考点五】平方根✮✮算术平方根✮✮立方根➽➼➵实际应用43.已知3270x -=.(1)x 的值为_____;(2)x 的算术平方根为_____.44.已知21a -的平方根是3±,31a b --的算术平方根是4,那么2a b -的平方根是__________.【考点六】平方根✮✮算术平方根✮✮立方根➽➼➵综合应用45.已知271x y ++的算术平方根是6,83x y +的立方根是5,则+x y 的平方根为___________.46.已知4m +15的算术平方根是3,2﹣6n 的立方根是﹣264n m -___.【考点一】实数性质✮✮数轴➽➼➵运算✮✮化简472(81)-_____,127的立方根是_____2_____. 48.实数a ,b 在数轴上的对应点如图所示,化简:2233()()a a b b a --=____________.【考点二】实数大小比较➽➼➵运算✮✮化简49.比较大小:1232-“>”“<”“=”)50101-89.(填“>”或“<”) 【考点三】实数➽➼➵无理数➽➼➵估算✮✮整数部分和小数部分51.已知:23m ,小数部分为n ,则2m n -=_____.52.对于任何实数a ,可用[]a 表示不超过a 的最大整数,如[]44=,21⎡=⎣,则191⎡⎤=⎣⎦______.【考点四】实数➽➼➵混合运算53.已知x 、y 是有理数,且x 、y 满足22321462x y +=-x y +=______.543162527________.【考点五】实数➽➼➵混合运算➼➵程序设计✮✮新定义55.如图,程序运算器中,当输入-1时,则输出的数是______.56.对于任何实数a ,可用[]a 表示不超过a 的最大整数,如[]44,31⎡==⎣,现对72进行如下操作: 727288221⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦第一次第二次第三次,这样对72只需进行3次操作后变为1,类似地:(1)对64只需进行________次操作后变为1.(2)只需进行3次操作后变为1的所有正整数中,最大的是________.【考点六】实数➽➼➵混合运算➼➵实际运用✮✮规律问题57.如图,四边形ABCD CEFG 、均为正方形,其中正方形ABCD 面积为28cm .图中阴影部分面积为25cm ,正方形CEFG 面积为_________.58.a 是不为1的有理数,我们把11a -称为a 的差倒数....如:2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差的倒数,…,依此类推,2010a 的差倒数2011a =_____.参考答案1.C【分析】根据一个正数的两个平方根互为相反数得2a−5+(−a+1)=0,求解即可.解:①一个正数的两个平方根分别是2a−5、−a+1,①2a−5+(−a+1)=0,解得a=4.故选:C.【点拨】本题考查的是平方根,掌握“一个正数的平方根有两个,它们互为相反数”,是解题的关键.2.C【分析】根据平方根,立方根的概念理解分析选项即可.解:A. 1的平方根是1,①1的平方根是1±,故选项说法错误,不符合题意;B. 3次方根是本身的数有0和1,①3次方根是本身的数有0和1和1-,故选项说法错误,不符合题意;C. m -的3次方根是3m -D. a<0时,a -的平方根为a ①a<0时,a -的平方根为a -合题意;故选:C【点拨】本题考查平方根,立方根的相关概念,解题的关键是要熟练掌握相关概念.3.D【分析】根据无理数的定义,即无理数是无限不循环小数,结合各选项说法进行判断即可. 解:①无理数都是实数,正确;①错误,实数包括无理数和有理数;①错误,无限循环小数是有理数;①9①错误,不带根号的数不一定是有理数,如π等无限不循环小数,错误;故选:D .【点拨】本题主要考查实数,熟练掌握无理数的定义是解题的关键.4.B【分析】根据实数分类、无理数的性质,对各个实数逐个分析,即可得到答案. 解:实数227,2-21,2π,333,3-中,无理数为:2-21、2π,共3个;故答案为:B .【点拨】本题考查了实数分类的知识;解题的关键是熟练掌握实数分类、无理数的性质,从而完成求解.5.B 【分析】先确定n 15n -是整数,n 为正整数,确定n 的值即可. 15n -n 为正整数,∴15﹣n >0,解得:n <15,15n -∴n 的值为:6,11,14,故选:B .【点拨】本题考查了算术平方根,确定n 的取值范围是解题的关键.6.B【分析】根据平方根的相关定义对每个选项做出判断即可得到答案;解:A :64的平方根是8或-8,故该选项错误;B :4的平方根是2或-2,故该选项正确;C :2(3)=9,9的平方根是3或-3,故该选项错误;D 164,4的平方根是2或-2,故该选项错误;故选B ;【点拨】本题考查了平方根,掌握相关知识并熟练使用,同时注意解题中需注意的事项是本题的解题关键.7.A【分析】根据非负数性质求出a 、b 值,再代入a b -计算即可.解:①()235270a b -+-=, ①50a -=,3270b -=,5a ∴=,3b =,532a b -=-=∴.故选:A .【点拨】本题考查非负数性质,立方根,代数式求值,熟练掌握绝对值的非负性,偶次方的非负性,求立方根是解题的关键.8.B【分析】根据正数的平方根有两个,且互为相反数,由此可得a 的方程,解方程即可得到a 的值;进而可得这个正数的平方根,最后可得这个正数的值.解:①一个正数的平方根是a +3和2a ﹣15,①a +3和2a ﹣15互为相反数,即(a +3)+(2a ﹣15)=0;解得a =4,则a +3=﹣(2a ﹣15)=7;则这个数为27=49;故选:B .【点拨】本题考查了平方根的概念、解一元一次方程,注意一个正数有两个平方根,它们互为相反数.9.A【分析】根据平方根、算术平方根和立方根的定义求出a 、b 、x 、y 的值,再找出关系即可. 解:①a 的算术平方根为17.25,b 的立方根为-8.69,①a =297.5625,b =-656.234909.①x 的平方根为±1.725,y 的立方根为86.9,①x =2.975625,y =656234.909,①1,1000100x a y b ==-. 故选:A .【点拨】本题考查了对平方根、算术平方根和立方根的运用.解题的关键是掌握平方根、算术平方根和立方根的定义.10.B【分析】根据非负数的性质, 求出1y =-,2x =,即可计算x y 的值.解:()2120y x +-, 10y ∴+=,20x -=,1y ,2x =,()211x y ∴=-=,故选B .【点拨】本题考查了平方数的非负性,算术平方根的非负性,解题关键是掌握几个非负数的和等于0,则每一个算式都等于0.11.B4822448=364849<<648<<7, 2246和7之间,故选:B .【点拨】本题考查估算无理数的大小,二次根式的乘除法,掌握算术平方根的定义,二次根式乘除法的计算方法是正确解答的前提.12.B【分析】根据平方和绝对值的非负性可求出m 和n 的值,再代入33m n 中,求值即可.解:①22404n m n ⎛⎫++-= ⎪⎝⎭, ①20440n m n ⎧+=⎪⎨⎪-=⎩,解得:122m n ⎧=-⎪⎨⎪=⎩或122m n ⎧=⎪⎨⎪=-⎩. 当122m n =-=,时,33331212m n ⎛⎫=-⨯=- ⎪⎝⎭; 当122m n ==-,时,33331(2)12m n ⎛⎫=⨯-=- ⎪⎝⎭. 综上可知33m n 的值为1-.故选B .【点拨】本题考查非负数的性质,利用平方根解方程,代数式求值.掌握平方和绝对值的非负性是解题关键.13.D【分析】根据题意得出22(2)(4)m -=-,解方程即可.解:根据题意得:22(2)(4)m -=-,即2(2)16m -=,①24m -=±,①2m =-或6,故选:D .【点拨】本题考查了平方根,根据题意列出方程结合平方根的意义求解是关键.14.A【分析】根据平方根小数点的移动规律解答.解:236000是由23.6小数点向右移动4236000485.8;故选:A.【点拨】此题考查了平方根小数点的移动规律:当被开方数的小数点向右每移动两位,则平方根的小数点向右移动一位;当被开方数的小数点向左每移动两位,则平方根的小数点向左移动一位.15.B【分析】根据正方体体积公式进行计算即可.解:设正方体的棱长为a,则有:35a=解得,35a=35故选:B【点拨】本题主要考查了立方根的应用,正确掌握立方体的体积公式是解答本题的关键.16.A【分析】根据平方根和立方根的定义判断即可.解:①4的算术平方根是2,①A正确,符合题意;①0.16的平方根是±0.4,①B错误,不符合题意;①0的立方根是0,①C错误,不符合题意;①1的立方根是1,①D错误,不符合题意;故选A.【点拨】本题考查了平方根即如果一个数的平方等于a,称这个数为a的平方根,立方根如果一个数的立方等于a,称这个数为a的立方根,熟练掌握定义是解题的关键.17.C【分析】由a 16a=±2,由b 64b=4,由此即可求得a+b 的值.解:①a 16①a=±2,①b 64①b=4,①a+b=2+4=6或a+b=-2+4=2.故选C .【点拨】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、 b=4是解决问题的关键.18.C【分析】先依据相反数和绝对值的定义化简各数,然后再依据相反数的定义进行判断即可. 解:A 、-3的相反数是3,故A 不符合题意B 、|-3|=3,3的相反数是-3,故B 不符合题意;C 、3-333-C 符合题意;D ()23=|3|--=3,3的相反数是-3,故D 不符合题意.故选:C .【点拨】本题考查相反数定义,即相加为0的两个数互为相反数,要注意细心运算每个选项.19.C【分析】先将a 的值代入代数式计算出得数,然后再在数轴上找到对应的点即可.解:将2a =-代入32810a a --得:()()3228122183210⨯---==--- , ①12123<<,且接近1. 故选:C .【点拨】本题主要考查求代数式的值、数轴上的点与实数的对应等知识点,熟练掌握数轴与实数一一对应的关系是关键.20.C【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解:①315-0,①最小的是3故选:C .【点拨】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.21.D3273=,1543<<,后比较即可.解:① 3273=,1543<<,10154π<<<,①3154π<<<,故选D .【点拨】本题考查了无理数的估算,求立方根,实数大小的比较,正确进行无理数的估算,实数大小比较是解题的关键.22.A【分析】根据无理数的估算可得:6377<<,03771<,据此即可解答. 解:6377<,13770∴-<<, 03771∴<,0m ∴=,1n =,011m n ∴+=+=,故选:A .【点拨】本题考查了无理数的估算,绝对值,代数式求值问题,求得03771<<是解决本题的关键.23.D【分析】13再求出202013与202113的取值范围,从而求出a ,b 的值,即可求解.解:①91316<<,①3134<,①20201320242023<<,20201320172016<,①133a =,413b =①1334131a b +=+=.故选:D .【点拨】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分和小数部分.24.B【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案. 解:2535+(253525351-+-=,故选B .【点拨】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键.25.A【分析】根据算术平方根和立方根的意义分别进行计算,然后根据有实数的运算法则求解即可.解:原式311300.5264=---+ 11300.524=---++ 324=-; 故答案为:A.【点拨】本题考查了实数的混合运算,解题的关键是熟练掌握据算术平方根和立方根的意义.26.B【分析】把x 5x (x +1)得到结果,若大于7则输出,若结果不大于7再次代入,循环后满足条件即为所求结果.解:当x 5x (x +1))55155=,①4<5<9①253,①557①最后输出的结果为55故选:B .【点拨】此题考查了代数式求值,弄清题中的程序框图的意义是解本题的关键.27.B 【分析】根据取整函数的定义即可求解.解:①422⎡=⎣,故①正确; ①1231920⎡⎡⎡⎡⎡+++⋅⋅⋅++⎣⎣⎣⎣⎣31527354=⨯+⨯+⨯+⨯54=,故①正确;①若5a =时,12a ⎡⎤+=⎣⎦,13a ⎡+=⎣, 故11a a ⎡⎡+=+⎣⎣(a 为正整数)不一定成立,故①错误; ①若n 为正整数,且4545n n ⎡=⎣45n 是哪个开得尽方的正整数, 4535=,①n 的最小整数为5,故①错误;综上分析可知,正确的个数为2,故B 正确.故选:B .【点拨】本题主要考查了取整函数的定义,能够正确估算无理数的大小是解题的关键,难度不大.28.B【分析】分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案. 解:较大阴影的周长为:(42)22b a -⨯+⨯,较小阴影的周长为:(4)222a b -⨯+⨯,两块阴影部分的周长和为:[][](42)22(4)222b a a b -⨯+⨯+-⨯+⨯= 16,故两块阴影部分的周长和为16.故选B .【点拨】本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和较小阴影的周长是解题的关键.29.D【分析】将这列数据改写成:234567…,按照三步确定结果:一确定符号,二确定分子,三确定分母即可.解:2314-567可写出: 22-34567, ①第1011, 故选:D . 【点拨】本题考查数字类变化规律,解题的关键是把已知的一列数变形,找到变化规律. 30.0【分析】由题意可得x 、y 是a 的两个不相等的平方根,根据平方根的性质可得x +y =0即可解答解:①两个不相等的实数,x y 满足:2x a =,2y a =①x 、y 是a 的两个不相等的平方根①x +y =0x y +.故答案为0.【点拨】本题主要考查了平方根的性质,掌握一个数的两个不相等的平方根的和为0成为解答本题的关键.31.2【分析】根据一个正数的平方根互为相反数,将21b -和4b +相加等于0,列出方程,解出b ,再将b 代入任意一个平方根中,进行平方运算求出这个正数a ,将a b +算出后,求立方根即可.解:①21b -和4b +是正数a 的平方根,①2140b b -++=,解得1b ,将b 代入212(1)13b ,①正数2(3)9a , ①198a b +=-+=,①a b +3382ab , 故填:2.【点拨】本题考查正数的平方根的性质,求一个数的立方根,解题关键是知道一个正数的两个平方根互为相反数.32.①①【分析】根据有理数、无理数、实数的意义逐项进行判断即可.解:①开方开不尽的数是无理数,但是有的数不开方也是无理数,如:π,3π等,因此①不正确,不符合题意;①2x 5x 的整数有﹣1,0,1,2共4个,因此①正确,符合题意; ①﹣3是9819,因此①正确,符合题意;①π就是无理数,不带根号的数也不一定是有理数,因此①不正确,不符合题意; ①无限循环小数,是有理数,因此①不正确,不符合题意;①若a <02a |a|=﹣a ,因此①不正确,不符合题意;因此正确的结论只有①①,故答案为:①①.【点拨】本题考查无理数、有理数、实数的意义,理解和掌握实数的意义是正确判断的前提. 33.12【分析】根据实数分类,分别求出m 、n 、k 、t 的值是多少,再应用代入法求值即可. 解:由题意可得 有理数8个,即m 8=,自然数2个,即2n =,分数3个,即3k =,整数5个,即5p =,负数有4个,即4t =故12m n k t p --++=.【点拨】本题主要考查有理数的分类,以及有理数的乘方,有理数的减法的运算方法,熟练掌握实数的定义和分类是解答此题的关键.34. 0.4 5±【分析】根据求一个数的算术平方根与平方根进行计算即可求解.解:0.16的算术平方根是0.4255=255故答案为:0.4,5±【点拨】本题考查了求一个数的算术平方根与平方根,理解平方根与算术平方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根.35.141414-14-14【分析】根据算术平方根和平方的非负性,求出x y 、的值,然后进行计算即可. 解:()2460x y -+=,又()24060x y -+≥,,()24060x y -=+=,,①40x -=,60y +=,①4x =,y =-6,①()2246=86=14x y -=⨯--+,①2x y -的平方根为:14故答案为:14±【点拨】本题考查了算术平方根和平方式的非负性、代数式求值,解题的关键是利用非负性求出x y 、的值.3634【分析】根据一个正数的两个平方根互为相反数,列出方程,即可求得这个数,再求它的立方根即可.解:一个正数的两个平方根是24m -与31m -,24310m m -+-=∴, 解得1m =,24242m ∴-=-=-,故这个正数为4,3434【点拨】本题考查了一个正数的两个平方根之间的关系,求一个数的立方根,熟练掌握和运用一个正数的两个平方根之间的关系是解决本题的关键.37.9或-9【分析】根据平方根的定义即可解答.解:①()2981±=,①这个数是9或-9.故答案为:9或-9. 【点拨】本题主要考查了平方根的定义,一个正数的平方根有两个且这两个数互为相反数. 38.3-【分析】根据题意,27去掉绝对值的值为±27,在根据题意x 没有平方根直接算出立方根即可.解:①27去掉绝对值的值为±27,①x =±27,又①x 没有平方根①x =27,①x 的立方根为-3.故答案为:-3.【点拨】本题考查了绝对值的性质、平方根的性质和立方根的计算,解决此题的关键是不漏题目条件,掌握基本的计算即可.39.2【分析】根据非负数的性质列式求出x 、y 的值,然后相乘即可得解.解:根据题意得:10x -=,0x y -=,解得:1x =,1y =,①20222022112x y +=+=.故答案为:2.【点拨】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.40.-1,2,-2.【分析】根据题意可知m 是整数,然后求出m 的范围即可得出m 的具体数值,然后根据2m +解:2m + ①m 是整数,①221m <①m 2≤4,①-2≤m≤2,①m=-2,-1,0,1,2当m=±2或-12m +故答案为:-1,2,-2【点拨】本题考查算术平方根,解题的关键是根据条件求出m 的范围,本题属于中等题型. 41.1-【分析】根据算术平方根的定义得到1y =,代入代数式根据()111n n n ⎧-=⎨-⎩为偶数为奇数求解即可得到结论.解:1y -0,∴10y -=,得1y =,()()()20212021202121211y ∴-=-=-=-,故答案为:1-.【点拨】本题考查代数式求值,涉及到算术平方根的定义和()111n n n ⎧-=⎨-⎩为偶数为奇数,熟练掌握相关定义是解决问题的关键.42.4-【分析】移项后直接开立方即可得到答案.解:3163x +=-,3163x =--364x =-①4x=--故答案为:4【点拨】本题主要考查了开立方解方程,正确理解一个数的立方根只有一个是解答本题的关键.43.33【分析】(1)利用立方根的定义求得x的值;(2)利用算术平方根的定义解答即可.解:(1)①3270x-=,①33x==,273①x=3,故答案为:3;(2)由(1)知x=3,∴333【点拨】本题考查立方根和算术平方根的定义及计算,正确利用上述定义与性质解答是解题的关键.44.±3【分析】首先根据2a-1的平方根是±3,可得:2a-1=9,据此求出a的值是多少;然后根据3a+b-1的算术平方根是4,可得:3a+b-1=16,据此求出b的值是多少,进而求出a-2b的平方根是多少即可.解:①2a-1的平方根是±3,①2a-1=9,解得a=5;①3a+b-1的算术平方根是4,①3a-b-1=16,①3×5-b-1=16,解得b=-2,①a-2b=5+2×2=9,①a-2b的平方根是:93±=±.故答案为:±3.【点拨】此题主要考查了平方根、算术平方根的性质和应用.要熟练掌握,解答此题的关键是要明确:①被开方数a 是非负数;①算术平方根a 本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.45.4±【分析】根据271x y ++的算术平方根是6,83x y +的立方根是5,可得方程组2713683125x y x y ++=⎧⎨+=⎩①②,①+①再化简得到+x y 的值,然后求平方根即可得到答案. 解:①271x y ++的算术平方根是6,83x y +的立方根是5①2713683125x y x y ++=⎧⎨+=⎩①② ①①+①:1010160x y +=①+x y =16①+x y 的平方根为4±故答案为:4±.【点拨】本题考查了平方根和立方根的定义,平方根和立方根是解题关键.易错点:正数有两个平方根,不能只写一个平方根.46.4【分析】利用算术平方根,立方根定义求出m 与n 的值,代入原式计算即可求出值. 解:由题意可得:4159m +=,268n -=-, 解得:32m =-,53n =, 5364=6416432n m ⎛⎫-⨯-⨯- ⎪⎝⎭. 故答案为:4.【点拨】本题考查了平方根、算术平方根、立方根的定义.解题的关键是掌握平方根、立方根的定义.如果一个数的平方等于a ,这个数就叫做a 的平方根,也叫做a 的二次方根,其中的正数叫做a 的算术平方根,.如果一个数x 的立方等于a ,那么这个数x 就叫做a 的立方根.47. 9 13 2122【分析】根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可. 2(81)-的算术平方根是9,127=31()3的立方根是13222故答案为:-9,13,22. 【点拨】本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力.48.a - 【分析】根据数轴可得:0a b << ,从而得到a b b a -=-,再根据算术平方根和立方根的性质求解即可.解:根据题意得:0a b << ,①0a b -< ,①a b b a -=-, 2233()()a a b b a --()a a b b a =--+-a b a b a =--++-a =-.故答案为:a -.【点拨】本题主要考查了实数与数轴、算术平方根、立方根的性质等知识点,掌握根据数轴判定代数式的正负是解题的关键.49.>【分析】利用两个负数比较大小,绝对值大的反而小即可求解. 解:①1212=321818-==1218< ①1218> 即1232-->故答案为:>【点拨】本题考查了实数的大小比较,熟记两个负实数比较大小的方法是解题的关键.50.>解:首先估算得出3104<1012>1011->,819<,由此比较得出答案即可. 【解答】解:3104<<, ∴1012>,1011->, 819<, ∴10189->. 故答案为:>.【点拨】本题考查实数的大小比较和无理数的估算,10的关键.51.73-37-+【分析】3进而估算出23确定m n 、的值,再代入计算即可.解:①134<<,①132<,①3234<<,①23+3m =,小数部分(23331n =-, ①()263173m n --==故答案为:73-【点拨】本题考查无理数的估算,根据接近的数求出整数部分是解题关键.52.3【分析】估计出31914<<,再结合题意,[]a 表示不超过a 的最大整数,因此即可得出191⎡⎤⎣⎦的答案. 解:①161925<<,①4195<,①31914<<,①1913⎡⎤=⎣⎦,故答案为:3.【点拨】本题考查了实数的估算,以及新定义运算,熟练找准无理数的整数部分是本题的关键.53.2-或10 【分析】把22321462x y ++=-(2231462x y y +-=-+,根据x 、y 是有理数,得到22314x y +-的值为有理数,即(62y -+故60y +=,求出y ,再求得x 即可求解. 解:2232142x y y +=-2231422x y y ∴+-=-,(2231462x y y ∴+-=-+x 、y 是有理数,22314x y ∴+-的值为有理数,(62y ∴-+60y ∴+=,解得y =-6,223140x y ∴+-=()2236140x ∴+⨯--=,解得4x =±,2x y ∴+=-或10x y +=-,故答案为:2-或10.【点拨】本题主要考查了代数式求值,利用有理数的定义进行求解,解题的关键在于能够熟练掌握相关知识进行求解.54.9559-【分析】先根据绝对值的性质、算术平方根和立方根的定义进行化简,然后再进行计算即可.3162527=+4253=95故答案为:95【点拨】本题考查了实数的混合运算,解本题的关键在熟练掌握绝对值的性质、算术平方根和立方根的定义.算术平方根:一般地,如果一个正数的平方等于a,即2x a=,那么这个正数就叫做a的算术平方根;立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根.55.7【分析】根据图表列出算式,然后把x=-1代入算式进行计算,注意分两种情况,且只有运算的数值大于3时才能输出结果.即可得解.解:根据题意可得,(-1+4)×(-2)+(-3)=3×(-2)+(-3)=-6-3=-9<3(-9+4)×(-2)+(-3)=(-5)×(-2)+(-3)=10-3=7>3.故答案为7.【点拨】此题的关键是知道计算顺序,明白当运算的结果小于3时要再重新计算,直到结果大于3,输出结果为止.56.3255【分析】(1)根据题意对64进行计算即可得出答案.(2)根据题意对256进行计算即可得出答案.解:(1)依题可得,646488221⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦第一次第二次第三次,①对64只需进行3次操作后变为1.故答案为:3.(2)只需进行3次操作后变为1的所有正整数中,最大的是255,①25616⎡=⎣,164⎡=⎣,42⎡⎤=⎣⎦,21⎡=⎣,①对256只需进行4次操作后变为1,①只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为:255.【点拨】本题考查新定义,算术平方根,理解新定义是解题的关键.57.18【分析】先设出正方形边长,再分别求出它们的边长,即可求解.解:设正方形ABCD 的边长为a ,正方形CEFG 的边长为b ,①28a =,①0a >, ①22a =①阴影面积为()()11222222522S b b b =-⨯=, ①0b >①32b =①218b =,故答案为:18. 【点拨】本题考查了实数运算的实际应用,解题关键是正确求出正方形的边长并且表示出阴影面积. 58.13- 【分析】根据题目中的数据,可以写出这列数的前几项,从而可以发现数字的变化特点,然后即可得到a 2011的值.解:由题意可得,113a =-,。
人教版数学七年级下册第六章综合与实践《体会实数在现实生活中的应用》课件
(2)如何在数轴上画出长度等于正方体的棱长的线段? 思考 如图1,在数轴上画一个边长为____1____dm的正方形,其 对角线长为____2____dm.以数轴原点为圆心,正方形对角线长为半径 画弧,与数轴正半轴交于一点,该点与数轴原点之间的线段长就等于 该正方体的棱长.
图1
(3)如何做出这个正方体纸盒? 如图2,选定一种正方体的展开图(11种展开图任选一种均可),要 求所有正方形的边长都为____2____dm,根据展开图,裁剪粘贴.
(3)如何在数轴上画出长度等于侧面展开图的长的线段? 思考 如图3,将一个直径为1个单位长度的圆从原点沿数轴向右滚 动一周,圆上的一点由原点到达点O′,则点O′对应的数是_____π___,即 线段OO′的长为____π____.(结果保留π) 所以要在数轴上画出长度为20π cm的线段,则所需圆的直径为 ___2_0____cm.
探究 你知道华罗庚是怎样迅速准确地计算出来的吗?请你按照
下面的问题试一试:
(1)由 103=1 000,1003=1 000 000,你能确定3 59 319 是几位数吗? 解:∵1 000<59 319<1 000 000,
∴3 1 000
3 < 59 319
3 < 1 000 000
,即__1_0___<3
图2
任务2 制作一个底面半径为10 cm,高为20 cm的圆柱形纸盒. (1)圆柱的侧面展开图是什么形状? 答:圆柱的侧面展开图是__长__方__形__. (2)这个侧面展开图各边的长分别是多少? 答:这个圆柱的侧面展开图的长为___2_0_π___cm,宽为____2_0___cm.(结 果保留π)
59 319
<__1_0_0__.
人教版七年级数学下册实数章末复习二实数测试题
章末复习(二) 实数基础题知识点1 平方根、算术平方根、立方根的概念与性质1.(武汉中考)若式子x -2在实数范围内有意义,则x 的取值范围是(C )A .x ≥-2B .x >-2C .x ≥2D .x ≤2 2.(滨州中考)数5的算术平方根为(A )A . 5B .25C .±25D .± 5 3.下列说法中正确的是(D )A .-4没有立方根B .1的立方根是±1C .136的立方根是16D .-5的立方根是3-54.利用计算器计算:52-32=4,552-332=44,5552-3332=444.猜想23802580333555 个个-=480444个⋯ . 5.已知2a +1的算术平方根是0,b -a 的算术平方根是12,求12ab 的算术平方根.解:∵2a +1=0,∴a =-12.∵b -a =12,∴b -a =14.∴b =-14.∴12ab =12×⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-14=116. ∴12ab 的算术平方根是14.知识点2 实数的分类与估算6.(烟台中考)下列实数中,有理数是(D )A .8B .34C .π2D .0.101 001 0017.下列语句中,正确的是(A )A .无理数都是无限小数B .无限小数都是无理数C .带根号的数都是无理数D .不带根号的数都是无理数8.估算17+4的值在(D )A .5和6之间B .6和7之间C .7和8之间D .8和9之间 知识点3 实数与数轴9.如图,下列各数中,数轴上点A 表示的数可能是(C )A .4的算术平方根B .4的平方根C .8的算术平方根D .10的算术平方根10.如图,数轴上的两个点A ,B 所表示的数分别是a ,b ,在a +b ,a -b ,ab ,|a|-|b|中,是正数的有1个.知识点4 实数的性质及运算11.计算:3-22+23=33-2212.实数1-2的相反数是2-1,绝对值是2-1. 13.求下列各式的值:(1)(5)2-22; 解:原式=5-2=3.(2)(-3)2+3-64; 解:原式=3+(-4)=-1.(3)121+7×⎝⎛⎭⎪⎫2-17-31 000.解:原式=11+27-1-10=27.中档题14.计算(-8)2的结果是(B )A .-8B .8C .16D .-16 15.下列各式正确的是(A )A .±31=±1 B .4=±2 C .(-6)2=-6 D .3-27=316.下列说法中,正确的有(B )①只有正数才有平方根;②a 一定有立方根;③-a 没意义;④3-a =-3a ;⑤只有正数才有立方根.A .1个B .2个C .3个D .4个17.(郾城区期中)如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有(C )A .0个B .1个C .2个D .3个 18.已知30.5≈0.793 7,35≈1.710 0,那么下列各式正确的是(B )A .3500≈17.100B .3500≈7.937 C .3500≈171.00 D .3500≈79.3719.下列各组数中,互为倒数的一组是(D )A .5与-5B .2与12C .|-π|与(-π)2D .32与2320.写出3-9到23之间的所有整数:-2,-1,0,1,2,3,4. 21.-27的立方根与81的平方根之和是0或-6.22.有若干个面积为2的正方形,根据下图拼图的启示填空:(1)计算:2+8=32; (2)计算:8+32=62; (3)计算:32+128=122. 23.求下列各式中x 的值:(1)x 2-5=49; (2)(x -1)3=125.解:x 2-5=49, 解:(x -1)3=125,x 2=499, x -1=5,x =±73. x =6.24.用长3 cm ,宽2.5 cm 的邮票30枚,拼成一个正方形,则这个正方形的边长是多少?解:设这个正方形的边长是x cm ,根据题意,得 x 2=3×2.5×30.解得x =15. 答:这个正方形的边长是15 cm . 25.已知2a -1的平方根是±3,(-16)2的算术平方根是b ,求a +b.解:由题意,得2a -1=32.解得a =5.由于(-16)2=16,∴b =4. ∴a +b =5+4=3.26.已知a 为250的整数部分,b -1是400的算术平方根,求a +b 的值.解:∵152<250<162, ∴250的整数部分是15,即a =15. ∵b -1=400=20,∴b =21. ∴a +b =15+21=36=6. 综合题27.已知实数a ,b 在数轴上的位置如图所示,化简:|a -b|-a 2+(-b)2+23b 3.解:由图知,a>0,b<0,a -b>0. ∴原式=a -b -a -b +2b =0.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为() A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b >0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________. 14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O 的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE =2∠COF . (2)∠BOE =2∠COF 仍成立. 理由:设∠AOC =β, 则∠AOE =90°-β,又因为OF 是∠AOE 的平分线, 所以∠AOF =90°-β2.所以∠BOE =180°-∠AOE =180°-(90°-β)=90°+β,∠COF =∠AOF +∠AOC =90°-β2+β=12(90°+β).所以∠BOE =2∠COF . 25.解:(1)0.5x ;(0.65x -15) (2)(165-123)÷6×30=210(度), 210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元. (3)设10月的用电量为a 度. 根据题意,得0.65a -15=0.55a , 解得a =150.答:该用户10月用电150度. 26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130, 解得t =65.65×4=260,260+30=290, 所以点D 表示的数为-290. (4)ON -AQ 的值不变. 设运动时间为m s , 则PO =100+8m ,AQ =4m . 由题意知N 为PO 的中点, 得ON =12PO =50+4m ,所以ON +AQ =50+4m +4m =50+8m , ON -AQ =50+4m -4m =50.故ON-AQ的值不变,这个值为50.。
人教版七年级数学下册6.3.2《实数的运算》教学设计
人教版七年级数学下册6.3.2《实数的运算》教学设计一. 教材分析人教版七年级数学下册6.3.2《实数的运算》是学生在掌握了有理数的运算基础上,进一步学习实数的运算。
本节内容主要包括实数的加法、减法、乘法、除法运算,以及实数的乘方、开方运算。
教材通过具体的例子,引导学生掌握实数运算的法则,培养学生的运算能力。
二. 学情分析七年级的学生已经掌握了有理数的运算,对于实数的运算,他们具备了一定的认知基础。
但是,学生在运算过程中,可能会对实数的加减乘除运算规则理解不深,容易出错。
因此,在教学过程中,教师需要通过具体的例子,让学生加深对实数运算规则的理解,提高运算能力。
三. 教学目标1.理解实数的加法、减法、乘法、除法运算规则,掌握实数的乘方、开方运算。
2.能够熟练地进行实数的运算,提高运算速度和准确性。
3.培养学生的逻辑思维能力和问题解决能力。
四. 教学重难点1.实数的加法、减法、乘法、除法运算规则。
2.实数的乘方、开方运算。
五. 教学方法1.采用讲解法,通过讲解实数运算的规则,让学生理解并掌握实数运算的方法。
2.采用例题演示法,通过具体的例子,让学生加深对实数运算规则的理解。
3.采用练习法,让学生在练习中提高实数运算的能力。
4.采用小组讨论法,让学生分组讨论实数运算问题,培养学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的教学PPT,展示实数运算的规则和例子。
2.准备一些练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾有理数的运算,为新课的学习做好铺垫。
例如:同学们,我们已经学习了有理数的运算,那么有理数的加法、减法、乘法、除法运算规则是什么?2.呈现(15分钟)教师通过PPT展示实数的加法、减法、乘法、除法运算规则,以及实数的乘方、开方运算。
同时,通过具体的例子,让学生加深对实数运算规则的理解。
3.操练(10分钟)教师提出一些实数运算的题目,让学生在课堂上进行练习。
实数综合应用(习题及答案).
3 24 2 1 3 11 3 35 3 10 实数综合应用(习题)➢ 复习巩固1. 满足- <x < 的整数 x 是. 2. 估算6 - 的值() A .在 1 和 2 之间B .在 2 和 3 之间C .在 3 和 4 之间D .在 4 和 5 之间 3. 估计3 - 3 的值应在() A .0 和 1 之间B .1 和 2 之间C .2 和 3 之间D .3 和 4 之间4. 估计(2 + 6 2) ⨯的值应在( )A .4 和 5 之间B .5 和 6 之间C .6 和 7 之间D .7 和 8 之间 5. 11 的整数部分为,小数部分为 .6. 已知8 - 的整数部分为 x ,小数部分为 y ,则y (x + 11) = .7. 比较大小:(1) + 2 与 -1;(2) -1 与 +1 ;(3) 与 5 ; 2 8 (4) -7 - 223 与-6;(5) 与 1.5; (6) 与;6 3 35 82 10 5 5 -13 7 6 5 2 11 3 3 3 7 3 7 3 3 8 (-2)2 3 6 75 3 (7) -2 与-3 ;(8) -3 与-4 ;(9) + 与2 + ;(10) 2 + 与2 + .8. , 37 , 5 的大小关系是( ) 3A . 5 < <B . 3C . 3 7 < 5 <D . 3< < 5 3 < 5 < 3 9. 下列说法:①-1 是 1 的平方根;② 16 的平方根是±4;③ 的立方根 2;④(-2)2 的算术平方根是 2;⑤有理数和数 轴上的点一一对应.其中正确的是 .(填写序号)10. 下列说法:①负数有立方根;②只有正数才有平方根;③-a 没有平方根;④平方根和立方根都是它本身的只有 1; ⑤无限不循环小数是无理数;⑥无理数都是无限小数.其中正确的是 .(填写序号)11. 下列说法中:①实数可分为有理数和无理数,也分为正实数和负实数;② 2 不是分数;③实数与数轴上的点一一对应;4④两个无理数之积是无理数;⑤一个有理数和一个无理数的差一定是无理数.其中正确的是.(填写序号) 12. 下列运算正确的是() A . = -2B . (2 3)2 = 6C . 2 ⨯ =D . ( - 15) ÷ = 25 2 5 3 3 3 3 3 7 5189n 15 - n实数 13. 有一个数值转换器,原理如下:当输入的 x 为 81 时,输出的 y 是. 14. 根据如图所示的程序,计算 y 的值,若输入 x 的值是 1 时,则输出的 y 值为 .15. 已知 ≈ 1.859 , ≈ 5.879 ,则 ≈ .16. 已知 n 是正整数, 是整数,则 n 的最小值为 .17. 若 是正整数,则 n 的最大整数值为. ➢ 思考小结1. 实数的学习与有理数的学习非常类似,我们可以类比有理数的学习,来梳理出实数学习的整个过程:(1) 有理数的学习分为 6 个步骤:①负数的引入.②数域扩充(有理数分类).③数轴、相反数、绝对值等工具的学习.④有理数运算法则.⑤有理数混合运算.⑥应用.(2) 类似于有理数,实数的学习也是 6 个步骤,请填空: ①无理数的引入.②数域扩充(实数的分类):⎧正实数 ⎧有理数 ⎪ 实数⎨ ⎨0 ⎩ ⎪ ⎩3.456 34.56 345 6002 3 3 3 5 ③数轴、相反数、绝对值等工具的学习:实数和数轴上的点是一一对应的;的相反数是 ; - = .④二次根式运算法则:加减法则:; 乘除法则:.⑤实数混合运算.⑥应用.2. 阅读下列材料(二分法求值),回答问题.小明想知道 精确到 0.1 的近似值,他想到一个办法: ①先通过估值可以确定, 介于 1 和 2 之间;②取 1 和 2 中间的数 1.5,把 1 到 2 以 1.5 为界分为两部分, 通过乘方法比较大小,因为 1.52=2.25, ( 3)2 = 3 ,2.25<3, 所以 一定在 1.5 和 2 之间;③取 1.5 和 2 中间的数 1.75,把 1.5 到 2 以 1.75 为界分为两部 分,通过乘方法比较大小,因为 1.752=3.062 5, ( 3)2 = 3 , 3<3.062 5,所以 一定在 1.5 和 1.75 之间;④取 1.5 和 1.75 中间的数 1.625,把 1.5 到 1.75 以 1.625 为界 分为两部分,通过乘方法比较大小,因为 1.6252=2.640 625, ( 3)2 = 3 ,2.640 625<3,所以 一定在 1.625 和 1.75 之间; ⑤按照这种方法不断地取中间数,分为两部分,然后通过乘 方比较大小,可以确定 约等于 1.7.小明的这种方法叫做二分法,请你尝试利用二分法确定 的近似数(精确到 0.1).2 3 3 311 3 9b a b【参考答案】➢复习巩固1. -1,0,1,22. A3. B4. C5. 3,- 36. 57. (1)<;(2)<;(3)<;(4)>;(5)<;(6)>;(7)<;(8)>;(9)<;(10)<8. A9. ①④10. ①⑤⑥11. ②③⑤12. C13.14. -215. 587.916. 2117. 14➢ 思考小结1. (2)②无理数,负实数;③- 2 ,2 ;④化成最简二次根式;合并同类二次根式aa ⋅=2. 2.2 ab(a≥0,b≥0);=(a≥0,b>0)b。