刚体定轴转动练习题.
第五章刚体定轴转动典型题型

• 例3一质量为m,半径为R的均匀圆盘,求 通过中心o并与盘面垂直的轴的转动惯量
• 例4一半径为R的光滑置于竖直平面内,一 质量为m的小球穿在圆环上,并可在圆环 上滑动,小球开始 时静止于圆环上的电 A(该点在通过环心o的水平面上),然 后从A点开始下滑,设小球与圆环间的摩 擦略去不计。求小球滑到点B时对环心o 的角动量和角速度。
O
A
质点运动与钢体定轴转动对照表
质点运动
速度
v dr / dt
加速度 a dv / dt
力
F
钢体定轴转动
角速度 d / dt
角加速度 d / dt
力矩
M
质量 m
转动惯量 J
动量 p mv
角动量 L J
牛二律 F m a
F dp / dt
转动定律 M J
M dL / dt
第五章 刚体定轴转动
• 例1一飞轮半径为0.2m,转速为150r/min, 因受到制动二均匀减速,经30s停止转动, 试求:
1)角加速度和在此时间内飞轮所转的圈数
2)制动开始后t=6s时飞轮的角速度
3) t=6s时飞轮边缘上一点的线速度,切线 加速度和法线加速度。
• 例2一质量为m,长为的均匀细长棒,求 1)通过其中心并于棒垂直的转动惯量 2)通过棒端点并与棒垂直的轴的转动惯量
角加速度( )
• 例8 质量为M,半径为R的转台,可绕过 中心的竖直轴无摩擦的转动。质量为m的 一个人,站在距离中心r处(r<R),开 始时,人和台处于静止状态。如果这个人 沿着半径为r的圆周匀速走一圈,设它相 对于转台的运动速度为u,求转台的旋转 角速度和相对地面的转过的角度。
r
R
• 5)角动量守恒定律和机械能守恒定律的综 合应用
第3章 刚体的定轴转动 习题答案

1
1 v r 78 . 5 1 78 . 5 m s (3) 解:
an r 78.5 1 6162 .2 m s
2 2
2
a r 3.14 m s
2
3-13. 如图所示,细棒长度为l,设转轴通过棒上距中心d的一 点并与棒垂直。求棒对此轴的转动惯量 J O ',并说明这一转 动惯量与棒对质心的转动惯量 J O之间的关系。(平行轴定理)
n0
J 2 2 n 收回双臂后的角动能 E k J n 0 2 J 0 n
1 2 2 1 2
Ek 0 J
1 2
2 0
3-17. 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来, 此后无外力矩作用。则当此人收回双臂时,人和转椅这一系 统的转速、转动动能、角动量如何变化?
解:首先,该系统的角动量守恒。
设初始转动惯量为 J ,初始角速度为 0 收回双臂后转动惯量变为 J n , 由转动惯量的定义容易知,n 1 由角动量守恒定理容易求出,收回双臂后的角速度 初始角动能
M t J
代入数据解得:M 12.5 N m
3-4. 如图所示,质量为 m、长为 l 的均匀细杆,可绕过其一 端 O 的水平轴转动,杆的另一端与一质量为m的小球固定在 一起。当该系统从水平位置由静止转过 角时,系统的角
速度、动能为?此过程中力矩所做的功?
解: 由角动能定理得:
解:设该棒的质量为m,则其
线密度为 m l
1 l d 2 1 l d 2
O
d O'
J O'
0
r dr
2
3
0
r dr
刚体定轴转动练习题及答案

刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。
设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。
B 角速度从小到大,角加速度从小到大。
C 角速度从大到小,角加速度从大到小。
D 角速度从大到小,角加速度从小到大。
3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。
(B )n a 、t a 的大小均保持不变。
(C )n a 的大小变化, t a 的大小恒定不变。
(D )n a 的大小恒定不变, t a 的大小变化。
5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。
A 只有(1)是正确的。
B (1),(2)正确,(3),(4)错误。
刚体定轴转动习题

刚体定轴转动习题刚体定轴转动⼀、选择题(每题3分)1、个⼈站在有光滑固定转轴的转动平台上,双臂伸直⽔平地举起⼆哑铃,在该⼈把此⼆哑铃⽔平收缩到胸前的过程中,⼈、哑铃与转动平台组成的系统的( )(A)机械能守恒,⾓动量守恒; (B)机械能守恒,⾓动量不守恒,(C)机械能不守恒,⾓动量守恒; (D)机械能不守恒,⾓动量不守恒.2、⼀圆盘绕通过盘⼼且垂直于盘⾯的⽔平轴转动,轴间摩擦不计.如图射来两个质量相同,速度⼤⼩相同,⽅向相反并在⼀条直线上的⼦弹,它们同时射⼊圆盘并且留在盘内,则⼦弹射⼊后的瞬间,圆盘和⼦弹系统的⾓动量L以及圆盘的⾓速度ω的变化情况为( ) (A) L 不变,ω增⼤ (B) 两者均不变(C) L不变,ω减⼩ (D) 两者均不确定3、有两个⼒作⽤在⼀个有固定转轴的刚体上:(1)这两个⼒都平⾏于轴作⽤时,它们对轴的合⼒矩⼀定是零(2)这两个⼒都垂直于轴作⽤时,它们对轴的合⼒矩可能是零(3)当这两个⼒的合⼒为零时,它们对轴的合⼒矩也⼀定是零(4)当这两个⼒对轴的合⼒矩为零时,它们的合⼒也⼀定是零在上述说法中,正确的是()(A)只有(1)是正确的(B)只有(1)、(2)正确(C)只有(4)是错误的(D)全正确4、以下说法中正确的是()(A)作⽤在定轴转动刚体上的⼒越⼤,刚体转动的⾓加速度越⼤。
(B)作⽤在定轴转动刚体上的合⼒矩越⼤,刚体转动的⾓速度越⼤。
(C)作⽤在定轴转动刚体上的合⼒矩越⼤,刚体转动的⾓加速度越⼤。
(D)作⽤在定轴转动刚体上的合⼒矩为零,刚体转动的⾓速度为零。
5、⼀质量为m的均质杆长为l,绕铅直轴o o'成θ⾓转动,其转动惯量为()6、⼀物体正在绕固定光滑轴⾃由转动()(A) 它受热膨胀或遇冷收缩时,⾓速度不变.(B) 它受热时⾓速度变⼩,它遇冷时⾓速度变⼤.(C)它受热或遇冷时,⾓速度均变⼤.(D) 它受热时⾓速度变⼤,它遇冷时⾓速度变⼩.O7、关于刚体对轴的转动惯量,下列说法中正确的是( )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置⽆关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置⽆关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布⽆关.8、两个均质圆盘A 和B 的密度分别为A ρ和B ρ,若A ρ﹥B ρ,但两圆盘的质量与厚度相同,如两盘对通过盘⼼垂直于盘⾯的转动惯量各为J A 和J B ,则()(A )J A >J B (B )J B >J A(C )J A = J B (D )J A 、 J B 哪个⼤,不能确定9、某转轮直径d =40cm ,以⾓量表⽰的运动⽅程为θ=3t -3.02t +4.0t ,式中θ的单位为rad,t 的单位为s,则t =2.0s 到t =4.0s 这段时间内,平均⾓加速度为( )(A)212-?srad (B)26-?s rad(C)218-?s rad (C)212-?s m10、轮圈半径为R ,其质量M 均匀分布在轮缘上,长为R 、质量为m 的均质辐条固定在轮⼼和轮缘间,辐条共有2N 根。
05刚体的定轴转动习题解答.

第五章刚体的定轴转动一选择题1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:()A. α > 0B. ω > 0,α > 0C. ω < 0,α > 0D. ω > 0,α < 0解:答案是B。
2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。
()A. 相等;B. 铅盘的大;C. 铁盘的大;D. 无法确定谁大谁小解:答案是C。
简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。
3. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω 按图示方向转动。
若将两个大小相等、方向相反但不在同一条直线的力F 1和F 2沿盘面同时作用到圆盘上,则圆盘的角速度ω的大小在刚作用后不久 ( )A. 必然增大B. 必然减少C. 不会改变D. 如何变化,不能确定解:答案是B 。
简要提示:力F 1和F 2的对转轴力矩之和垂直于纸面向里,根据刚体定轴转动定律,角加速度的方向也是垂直于纸面向里,与角速度的方向(垂直于纸面向外)相反,故开始时一选择题3图定减速。
4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( )A. a 1 = a 2B. a 1 > a 2C. a 1< a 2D. 无法确定解:答案是B 。
简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:⎪⎩⎪⎨⎧===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。
得:)/(222mr J Fr a +=,所以a 1 > a 2。
5. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( )A. 4 F 2/ mB. 2 F 2 / mC. F 2 / mD. F 2 / 2 m解:答案是A 。
刚体定轴转动补充习题

第3章 刚体和流体一、选择题1. 飞轮绕定轴作匀速转动时, 飞轮边缘上任一点的 [ ] (A) 切向加速度为零, 法向加速度不为零 (B) 切向加速度不为零, 法向加速度为零(C) 切向加速度和法向加速度均为零 (D) 切向加速度和法向加速度均不为零2. 刚体绕一定轴作匀变速转动时, 刚体上距转轴为r 的任一点的 [ ] (A) 切向加速度和法向加速度均不随时间变化 (B) 切向加速度和法向加速度均随时间变化 (C) 切向加速度恒定, 法向加速度随时间变化 (D) 切向加速度随时间变化, 法向加速度恒定3. 一飞轮从静止开始作匀加速转动时,n ιa 的值怎样?[ ] (A) n a 不变, ιa 为0 (B) n a 不变, ιa 不变 (C) n a 增大, ιa 为0 (D) n a 增大, ιa 不变4. 当飞轮作加速转动时, 飞轮上到轮心距离不等的二点的切向加速度ιa 和法向加速度n a 是否相同?[ ] (A) ιa 相同, n a 相同 (B) ιa 相同, n a 不同 (C) ιa 不同, n a 相同 (D) ιa 不同, n a 不同5. 刚体的转动惯量只决定于[ ] (A) 刚体的质量 (B) 刚体的质量的空间分布 (C) 刚体的质量对给定转轴的空间分布 (D) 转轴的位置6. 关于刚体的转动惯量J , 下列说法中正确的是[ ] (A) 轮子静止时其转动惯量为零 (B) 若m A >m B , 则J A >J B (C) 只要m 不变, 则J 一定不变 (D) 以上说法都不正确7. 下列各因素中, 不影响刚体转动惯量的是[ ] (A) 外力矩 (B) 刚体的质量(C) 刚体的质量分布 (D) 转轴的位置8. 关于刚体的转动惯量, 以下说法中错误的是 [ ] (A) 转动惯量是刚体转动惯性大小的量度 (B) 转动惯量是刚体的固有属性, 具有不变的量值(C) 转动惯量是标量, 对于给定的转轴, 刚体顺时针转动和反时针转动时, 其转动惯量的数值相同(D) 转动惯量是相对量, 随转轴的选取不同而不同9. 两个质量分布均匀的圆盘A 和B 的密度分别为 ρ A 和 ρ B , 如果有 ρ A >ρ B , 但两圆盘的总质量和厚度相同.设两圆盘对通过盘心垂直于盘面的轴的转动惯量分别为J A 和J B , 则有:[ ] (A) J A >J B (B) J A <J B(C) J A =J B (D) 不能确定J A 、J B 哪个大10. 两个半径相同、质量相等的细圆环A 和B ,A 环的质量均匀分布,B 环的质量分布不均匀, 它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B , 则有: [ ] (A) J A >J B (B) J A <J B(C) J A =J B (D) 不能确定J A 、J B 哪个大11. 一均匀圆环质量为M , 内半径为R 1, 外半径为R 2, 圆环绕过中心且垂直于圆环面的转轴的转动惯量是[ ] (A) 122212M R R ()- (B) 122212M R R ()+(C) 12212M R R ()- (D) 12212M R R ()+12. 一正方形均匀薄板, 已知它对通过中心并与板面垂直的轴的转动惯量为J .如果以其一条对角线为轴, 它的转动惯量为 [ ] (A) J 32 (B) J 21(C) J (D) 不能确定13. 地球的质量为m , 太阳的质量为M , 地心与太阳中心的距离为R , 引力常数为G , 地球绕太阳转动的轨道角动量的大小为[ ] (A) m GMR (B)GmM R (C) mM GR (D) GmMR214. 冰上芭蕾舞运动员以一只脚为轴旋转时将两臂收拢, 则 [ ] (A) 转动惯量减小 (B) 转动动能不变(C) 转动角速度减小 (D) 角动量增大15. 一滑冰者, 开始自转时其角速度为0ω, 转动惯量为0J 当他将手臂收回时, 其转动惯量减少为J 31, 则它的角速度将变为 [ ] (A) 031ω (B)031ω (C) 03ω (D) 0ω16. 绳的一端系一质量为m 的小球, 在光滑的水平桌面上作匀速圆周运动. 若从桌面中心孔向下拉绳子, 则小球的[ ] (A) 角动量不变 (B) 角动量增加 (C) 动量不变 (D) 动量减少17. 刚体角动量守恒的充分而必要的条件是[ ] (A) 刚体不受外力矩作用 (B) 刚体所受的合外力和合外力矩均为零(C) 刚体所受合外力矩为零 (D) 刚体的转动惯量和角速度均保持不变18. 绕定轴转动的刚体转动时, 如果它的角速度很大, 则[ ] (A) 作用在刚体上的力一定很大 (B) 作用在刚体上的外力矩一定很大 (C) 作用在刚体上的力和力矩都很大 (D) 难以判断外力和力矩的大小19. 一个可绕定轴转动的刚体, 若受到两个大小相等、方向相反但不在一条直线上的恒力作用, 而且力所在的平面不与转轴平行, 刚体将怎样运动? [ ] (A) 静止 (B) 匀速转动(C) 匀加速转动 (D) 变加速转动20. 几个力同时作用在一个具有固定转轴的刚体上.如果这几个力的矢量和为零, 则物体[ ] (A) 必然不会转动 (B) 转速必然不变(C) 转速必然改变 (D) 转速可能不变, 也可能变21. 两个质量相同、飞行速度相同的球A 和B, 其中A 球无转动, B 球转动, 假设要把它们接住,所作的功分别为A 1和A 2, 则 :[ ] (A) A 1>A 2 (B) A 1<A 2 (C) A 1 = A 2 (D) 无法判定22. 一个半径为R 的水平圆盘恒以角速度ω作匀速转动.缘走到圆盘中心, 圆盘对他所作的功为 [ ] (A) 2ωmR (B) 2ωmR -(C) 2221ωmR (D) 2221ωmR -23. 在外力矩为零的情况下, 将一个绕定轴转动的物体的转动惯量减小一半, 则物体的 [ ] (A) 角速度将增加三倍 (B) 角速度不变, 转动动能增大二倍(C) 转动动能增大一倍 (D) 转动动能不变, 角速度增大二倍24. 银河系中一均匀球体天体, 其半径为R , 绕其对称轴自转的周期为T .由于引力凝聚作用, 其体积在不断收缩. 则一万年以后应有:[ ] (A) 自转周期变小, 动能也变小 (B) 自转周期变小, 动能增大 (C) 自转周期变大, 动能增大 (D) 自转周期变大, 动能减小25. 人造地球卫星绕地球作椭圆轨道运动. 卫星轨道近地点和远地点分别为A 和B, 用L 和E k 分别表示卫星对地心的角动量及其动能的瞬时值, 则应有[ ] (A) kB kA B A E E L L >>, (B) kB kA B A E E L L <=,(C) kB kA B A E E L L >=, (D) kB kA B A E E L L <<,26. 一运动小球与另一质量相等的静止小球发生对心弹性碰撞, 则碰撞后两球运动方向间的夹角[ ] (A) 小于90︒ (B) 等于90︒(C) 大于90︒ (D) 条件不足无法判定27. 一质量为M 的木块静止在光滑水平面上, 质量为M 的子弹射入木块后又穿出来.子弹在射入和穿出的过程中, [ ] (A) 子弹的动量守恒 (B) 子弹和木块系统的动量守恒, 机械能不守恒(C) 子弹的角动量守恒(D) 子弹的机械能守恒28. 一子弹以水平速度v 射入一静止于光滑水平面上的木块后随木块一起运动. 对于这一过程的分析是[ ] (A) 子弹的动能守恒(B) 子弹、木块系统的机械能守恒 (C) 子弹、木块系统水平方向的动量守恒 (D) 子弹动能的减少等于木块动能的增加29. 一块长方形板可以其一个边为轴自由转动,于板面撞击板, 并粘在板上. 对粘土和板系统, 如果不计空气阻力, 在碰撞过程中守恒的量是T3-1-27图[ ] (A) 动能 (B) 绕长方形板转轴的角动量 (C) 机械能 (D) 动量30. 在下列四个实例中, 物体机械能不守恒的实例是 [ ] (A) 质点作圆锥摆运动(B) 物体在光滑斜面上自由滑下(C) 抛出的铁饼作斜抛运动(不计空气阻力) (D) 物体在拉力作用下沿光滑斜面匀速运动31. 在系统不受外力作用的非弹性碰撞过程中[ ] (A) 动能和动量都守恒 (B) 动能和动量都不守恒 (C) 动能不守恒, 动量守恒 (D) 动能守恒, 动量不守恒32. 下面说法中正确的是[ ] (A) 物体的动量不变, 动能也不变 (B) 物体的动量不变, 角动量也不变 (C) 物体的动量变化, 角动量也一定变化(D) 物体的动能变化, 动量却不一定变化33. 人造地球卫星绕地球作椭圆轨道运动. 若忽略空气阻力和其他星球的作用, 在卫星的运行过程中[ ] (A) 卫星的动量守恒, 动能守恒(B) 卫星的动能守恒, 但动量不守恒(C) 卫星的动能不守恒, 但卫星对地心的角动量守恒(D) 卫星的动量守恒, 但动能不守恒34. 人站在摩擦可忽略不计的转动平台上, 双臂水平地举起二哑铃, 当人在把此二哑铃水平地收缩到胸前的过程中, 人与哑铃组成的系统有[ ] (A) 机械能守恒, 角动量守恒 (B) 机械能守恒, 角动量不守恒 (C) 机械能不守恒, 角动量守恒 (D) 机械能不守恒, 角动量不守恒35. 一人手拿两个哑铃, 两臂平伸并绕右足尖旋转, 转动惯量J , 角速度为ω. 若此人突然将两臂收回, 转动惯量变为J 31.如忽略摩擦力, 则此人收臂后的动能与收臂前的动能之比为[ ] (A) 1 : 9 (B) 1 : 3 (C) 9 : 1 (D) 3 : 136. 将唱片放在绕定轴转的电唱机转盘上时, 若忽略转轴摩擦, 则以唱片和转盘为体系的[ ] (A) 总动能守恒 (B) 总动能和角动量都守恒 (C) 角动量守恒 (D) 总动能和角动量都不守恒37. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如T3-1-37图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? [ ] (A) 角速度从小到大,角加速度从大到小 (B) 角速度从小到大,角加速度从小到大 (C) 角速度从大到小,角加速度从大到小 (D) 角速度从大到小,角加速度从小到大38. 有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;T3-1-37图(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中:[ ] (A) 只有(1)是正确的(B) (1)、(2)正确,(3)、(4)错误(C) (1)、(2)、(3)都正确,(4)错误(D) (1)、(2)、39. 一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同、速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω[ ] (A) 增大(B) 不变(C) 减小(D) 不能确定40. 光滑的水平面上有长为2l、质量为m的竖直固定轴自由转动,转动惯量为231ml.起初杆静止.有一质量为m的小球沿桌面正对着杆的一端,在垂直于杆长的方向上,以速率v运动,如右图所示.当小球与杆端发生碰撞后,就与杆粘在一起随杆转动,则这一系统碰撞后的转动角速度是[ ] (A)12v l(B)l32v(C)l43v(D)lv3二、填空题1. 半径为r的圆环平放在光滑水平面上, 环上有一甲虫, 环和甲虫的质量相等, 并且原先都是静止的. 以后甲虫相对于圆环以等速率爬行, 当甲虫沿圆环爬完一周时, 圆环绕其中心转过的角度是.2. 一质量为60 kg的人站在一质量为60 kg、半径为1米的均匀圆盘的边缘, 圆盘可绕与盘面相垂直的中心竖直轴无摩擦地转动.系统原来是静止的,后来人沿圆盘边缘走动, 当他相对于圆盘的走动速度为2m.s-1时, 圆盘的角速度大小为.3. 一匀质杆质量为m、长为l, 通过一端并与杆成θ角的轴的转动惯量为.4. 两个完全一样的飞轮, 当用98N的拉力作用时,产生角加速度1β; 当挂一重98N的重物时, 产生角加速度2β.则1β和2β的关系为.T3-2-1图T3-2-3图图T3-2-5图T3-1-40图5. 两人各持一均匀直棒的一端, 棒重W , 一人突然放手, 在此瞬间, 另一人感到手上承受的力变为 .6. 一力)53(j i F+=N, 其作用点的矢径为)34(j i r-=m, 则该力对坐标原点的力矩为 .7. 一质量为m 的质点沿着一条空间曲线运动,该曲线在直角坐标系下的定义式为j t b i t a rωωsin cos +=,其中ω、、b a 皆为常数.则此质点所受的对原点的力矩M= ;该质点对原点的角动量L = .8. 一转动惯量为J 的圆盘绕一固定轴转动, 起初角速度为0ω, 设它所受阻力矩与转动角速度成正比ωk M -= (k 为正常数). 则在它的角速度从0ω变为021ω过程中阻力矩所作的功为 .9. 质量为32 kg 、半径为0.25 m 的均质飞轮, 其外观为圆盘形状.当飞轮作角速度为12 rad.s -1的匀速率转动时, 它的转动动能为 .10. 一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动.开始杆与水平方向成某一角度θ,处于静止状态,如T3-2-9图所示.释放后,杆绕O 轴转动,则当杆转到水平位置时,该系统所受的合外力矩的大小M = ,此时该系统角加速度的大小β= .11. 在一水平放置的质量为m 、长度为l 的均匀细杆上,套着一个质量也为m 的套管(可看作质点),套管用细线拉住,它到竖直的光滑固定轴OO ′的距离为l 21,杆和套管所组成的系统以角速度0ω绕OO ′轴转动,如图所示.若在转动过程中细线被拉断,套管将沿着杆滑动.在套管滑动过程中,该系统转动的角速度ω与套管轴的距离x 的函数关系为 .(已知杆本身对OO ′轴的转动惯量为231ml )12. 长为l 、质量为M 的匀质杆可绕通过杆一端O 的水平光滑固定轴转动,转动惯量为231Ml ,开始时杆竖直下垂,如右图所示.现有一质量为m 的子弹以水平速度0v射入杆上A 点,并嵌在杆中,OA =2l / 3,则子弹射入后瞬间的角速度=ω .13. 一水平的匀质圆盘,可绕通过盘心的铅直光滑固定轴自由转动.圆盘质量为M ,半径为R ,对轴的转动惯量221MR J =.当圆盘以角速度0ω转动时,有一质量为m 的子弹T3-2-9图T3-2-11图 T3-2-12图沿盘的直径方向射入圆盘,且嵌在盘的边缘上,子弹射入后,圆盘的 角速度为=ω .14. 一个作定轴转动的轮子,对轴的转动惯量J = 2.0 kg m 2,正以角速度ω0匀速转动.现对轮子加一恒定的力矩M =-7.0Nm ,经过8秒,轮子的角速度为 -ω0,则ω0= .15. 一质量m = 2200kg 的汽车以1hkm 60-⋅=v 的速度沿一平直公路开行.汽车对公路一侧距公路d = 50m 的一点的角动量是 ;对公路上任一点的角动量大小为 .16. 水分子的形状如T3-2-16图所示.从光谱分析得知水分子对AA轴的转动惯量是247m kg 1093.1⋅⨯=-'A A J ,对BB ′轴的转动惯量是247m kg 1014.1⋅⨯=-'B B J .假设各原子都可当质点处理, 由此数据和各原子的质量可得出氢和氧原子间的距离d = ,夹角θ= .17. 一个唱片转盘在电动机断电后的30s 内由min rev/3133减慢到停止,它的角加速度是 ;它在这段时间内一共转了 圈.18. 哈雷慧星绕太阳运动的轨道是一个椭圆.它离太阳最近的距离是m 1075.8101⨯=r ,此时它的速率是141s m 1046.5-⋅⨯=v .它离太阳最远时的速率是122s m 1008.9-⋅⨯=v ,这时它离太阳的距离=2r .19. 一质量为M 、半径为R 、并以角速度ω旋转着的飞轮,某瞬时有一质量为m 的碎片从飞轮飞出.假设碎片脱离圆盘时的瞬时速度方向正好竖直向上,如T3-2-18图所示,则余下圆盘的角速度为 ,角动量为 .三、计算题1. 物体A 和B 叠放在水平面上,由跨过定滑轮的不可伸长的轻质细绳相互连接,如图所示.今用大小为F 的水平力拉A .设A 、B 和滑轮质量都为m ,滑轮的半径为R ,对轴的转动惯量221mR J =,AB 之间、A 与桌面之间、滑轮与轴之间均无摩擦,绳与滑轮之间无相对滑动,且绳子不可伸长.已知F =10N ,m =8.0 kg ,R =0.050m ,求:(1) 滑轮的角加速度;(2) 物体A 与滑轮之间的绳中的张力; (3) 物体B 与滑轮之间的绳中的张力.BAFT3-3-1图A3-2-16图ABθd d A 'B 'HHOT3-2-19图2. 一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为M 41,均匀分布在其边缘上.绳子的A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为M 21的重物,如图.设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度.(已知滑轮对过滑轮中心且垂直于轮面转动的轴的转动惯量4/2MR J =)3. 质量分别为m 和2 m 、半径分别为r 和2 r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直于盘面的水平光滑固定轴转动,对转轴的转动惯量为292mr ,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如T3-3-3图所示.求盘的角加速度的大小.4.两长度均为L 、质量分别为1m 和2m 的均匀细杆,首尾相连地连成一根长直细杆(其各自的质量保持分布不变).试计算该长直细杆对垂直于长直细杆端点(在1m 上)的轴(垂直板面)的转动惯量.5. 一长度为L 、质量为m 的匀质细杆与半径为R 、质量为M 的匀质圆盘连成一个刚体(见T3-3-5图).试计算该刚体对垂直于板面的O 轴的转动惯量.6. 一根质量为m 、长度为l 的均匀细棒AB 和一质量为m 的小球牢固连结在一起,细棒可绕通过其A 端的水平轴在竖直平面内自由摆动,现将棒由水平位置静止释放,求:(1) 刚体绕A 端的水平轴的转动惯量, (2) 当下摆至θ角时,刚体的角速度.7. 一轻绳绕过一质量可以不计且轴光滑的滑轮,质量皆为m 的甲、乙二人分别抓住绳的两端从同一高度静止开始加速上爬,如T3-3-7图所示.(1) 二人是否同时达到顶点? 以甲、乙二人为系统,在运动中系统的动量是否守恒? 机械能是否守恒? 系统对滑轮轴的角动量是否守恒?(2) 当甲相对绳的运动速度u 是乙相对绳的速度2倍时,甲、乙二人的速度各是多少?8. 地球的自转轴与它绕太阳的轨道平面的垂线间的夹角是23.5º(T3-3-8图).由于太阳和月亮对地球的引力产生力矩,地球的自转轴绕轨道平面的垂线旋进,旋进一周需时间约26000a .已知地球绕自转轴的转动惯量为237m kg 1005.8⋅⨯=J .求地球自旋角动量矢量变化率的大小,即t d d L ,并求太阳和月亮对地球的合力矩.(注:a 为年,1a =3.1536107s )T3-3-2图 •A BT3-3-3图m m r r 2m 2mT3-3-6图m A B θ A3-3-5图 O m L R MT3-3-7图T3-3-8图9. 如T3-3-9图所示,转轴平行的两飞轮I 和II ,半径分别为1R 、2R .对各自转轴的转动惯量分别为1J 、2J .最初I 轮转动的角速度为0ω,II 轮不转动.现移动II 轮使两轮缘互相接触.两轴仍保持平行,由于摩擦,两轮的转速会变化.问转动稳定后,两轮的角速度各为多少?10. 地球对自转轴的转动惯量是233.0MR ,其中M 是地球的质量(kg 1098.524⨯),R 是地球的半径(6370 km).求地球的自转动能.由于潮汐对海岸的摩擦作用,地球自转的速度逐渐减小,每百万年自转周期增加16s .这样,地球自转动能的减小相当于摩擦消耗多大的功率? 潮汐对地球的平均力矩多大?11. 一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度0v 在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一方L 21处,如T3-3-11图所示.求棒在碰撞后的瞬时绕点O 转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.) 12. 蟹状星云中心是一颗脉冲星(代号PSR0531+21),它以十分确定的周期(0.033s)向地球发射电磁波脉冲.这种脉冲星实际上是转动着的中子星,由中子密集而成,脉冲周期就是它的转动周期.实测还发现,上述中子星的周期以s/a 1026.15-⨯的速率增大.(1) 求此中子星的自转角加速度.(2) 设此中子星的质量为kg 105.130⨯(近似太阳的质量),半径为10 km ,求它的转动动能以多大的速率(以J/s 计)减小.(这减小的转动动能就转变为蟹状星云向外辐射的能量)(3) 若这一能量变化率保持不变,该中子星经过多长时间将停止转动.设此中子星可作为均匀球体处理.13. 如T3-3-13图所示,一长为l 、质量为m 的均匀细棒,可绕光滑轴O 在竖直面内转动.棒由水平位置从静止下落,转到竖直位置时与原静止于地面上的质量也为m 的小滑块碰撞,碰撞时间极短.滑块与地面的摩擦系数为,碰后滑块移动S 后停止, 棒继续沿原方向转动.求碰后棒的质心C 离地面的最大高度h .14. 如图,长为l 、质量为m 的均匀细杆可绕水平光滑固定轴O 转动,开始时杆静止在竖直位置.另一质量也为m 的小球,用长也为l 的轻绳系于O 轴T3-3-11图BAL 21Lv Ov L 21T3-3-9图T3-3-13图mCO•C •Shl3πmlO θm上.现将小球在竖直平面内拉开,使轻绳与竖直方向的夹角θ,然后使小球自由下摆与杆端发生弹性相碰,结果使杆的最大偏角为3π.求角度θ.15. 如T3-3-15图所示,两质量分别为M 和m 的小球位于一固定的、半径为R 的水平光滑圆形沟槽内.一轻弹簧被压缩在两球间(未与球连接),用线将两球缚紧,并使之静止.(1) 今把线烧断,两球被弹开后沿相反方向在沟槽内运动,问此后M 转过多大角度就要与m 相碰?(2) 设原来储存在被压缩的弹簧中的势能为0U ,问线断后两球经过多长时间发生碰撞?16. 一小球质量为m ,在流体中自上而下运动,其初速00=v .设流体的阻力和速度的关系为vk f -=,求:小球运动速度v 随t 的变化关系.友情提示:部分文档来自网络整理,供您参考!文档可复制、编制,期待您的好评与关注!T3-3-15图。
大学物理刚体习题

大学物理刚体习题(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习 题第三章 刚体的转动刚体的定轴转动47. 一定滑轮半径为R ,质量为M ,用一质量不计的绳绕在滑轮上,另一端系一质量为m 的物体并由静止释放,这时滑轮的角加速度为1β,若不系物体而用一力F = mg 拉绳子使滑轮转动,这时角加速度为2β,这时有()1β2β()1β2β (C )1β2β(D )无法判断 分析由转动定律M I β=本题中I 不变β的大小完全取决于M 的大小而 M TR =系物体m 时 : T mg <不系物体而用一力F = mg 时: TF mg ==因此力矩变大所以有12ββ<mF选49.一飞轮的转动惯量为J ,t = 0时角速度为0ω,轮子在转动过程中受到一力矩2ωk M-=,则当转动角速度为0/3ω时的角加速度β = 从0ω到0/3ω飞轮转动经过的时间t ∆= 解: (1) 求β当0/3ω时, 20()3M k ω=-由 M J β=, 可得此时 209k MJ J ωβ==-(2) d M J J dt ωβ== 2d k J dt ωω-=分离变量,两边积分32td kdt Jωωωω-=⎰⎰解得: 02J t k ω∆=50.长为l 的均匀直棒可绕其下端与棒垂直的水平光滑轴在竖直平面内转动。
抬起一端使与水平夹角为60=θ,棒对轴的转动惯量为231ml J =,由静止释放直棒,则t = 0时棒的β=?;水平位置时的β=?这时的ω=(1)求β 据转动定律M J β=, MJβ= 0t =时, cos 602lM mg =︒水平位置时, 2lM mg =代入MJβ=,可别解得034glβ= 和 32g l β= (2)求ωd d d d M J J J J dt d dt d ωωθωβωθθ====将cos 2l M mg θ=和213J ml =代入化简并积分得, 0033cos 2g d d l ωπθθωω=⎰⎰ 60可求得332g l ω=(本题还可用动能定律机械能守恒方便求解ω)2211sin 60223l mg ml ω︒=⋅ 332g lω⇒=51.一飞轮以min /600rev 的转速转动,其转动惯量为25.2m kg J ⋅=,以恒定力矩使飞轮在一分钟内停止转动,求该力矩M 。
大学物理AⅠ刚体定轴转动习题答案及解法

《大学物理A Ⅰ》2010 刚体定轴转动习题、答案及解法一.选择题1.两个匀质圆盘A 和B 相对于过盘心且垂直于盘面的轴的转动惯量分别为A J 和B J ,若A B J J >,但两圆盘的的质量和厚度相同,如两盘的密度各为A ρ和B ρ,则( A )(A )B A ρρ> (B )B A ρρ<(C )B A ρρ= (D )不能确定B A ρρ的大小参考答案: B B A Ah R h R M ρπρπ22== A A A h M MR J ρπ222121== BB B h M MR J ρπ222121== 2.有两个半径相同、质量相等的细圆环。
1环的质量分布均匀。
2环的质量分布不均匀,它们对通过圆心并与环面垂直的轴的转动惯量分别为A J 和B J ,则( C )(A )21J J > (B )21J J <(C )21J J = (D )不能确定21J J 的大小 参考答案:∵ ⎰=Mdm r J 2 ∴ 21J J =3.一圆盘绕过圆心且于盘面垂直的光华固定轴O 以角速度1ω按图所示方向转动,将两个大小相等,方向相反的力F 沿盘面同时作用到圆盘上,则圆盘的角速度变为2ω,那么( C )(A )21ωω> (B )21ωω=(C )21ωω< (D )不能确定如何变化 参考答案:()12ωωJ J t r R F -=∆⋅- ()12ωω+∆⋅-=t r R JF4.均匀细棒OA 的质量为m 。
长为L ,可以绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图2所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法那一种是正确的[ A ](A )合外力矩从大到小,角速度从小到大,角加速度从大到小。
(B )合外力矩从大到小,角速度从小到大,角加速度从小到大。
(C )合外力矩从大到小,角速度从大到小,角加速度从大到小。
(D )合外力矩从大到小,角速度从大到小,角加速度从小到大。
刚体的定轴转动习题

WENKU DESIGN
2023-2026
ONE
KEEP VIEW
刚体的定轴转动习
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
CATALOGUE
目 录
• 刚体定轴转动的基本概念 • 刚体定轴转动的力学分析 • 刚体定轴转动的运动分析 • 刚体定轴转动的习题解析 • 刚体定轴转动的实际应用案例
PART 03
刚体定轴转动的运动分析
刚体的角速度与角加速度
角速度
描述刚体转动快慢的物理量,用ω表 示。单位是弧度/秒(rad/s)。
角加速度
描述刚体转动角速度变化快慢的物理 量,用α表示。单
转动轨迹
刚体转动的路径是一个圆或椭圆,其形 状取决于刚体的质量和转动轴的位置。
PART 04
刚体定轴转动的习题解析
简单习题解析
题目
一个质量为m,半径为R的 圆盘,以边缘某点为轴, 以角速度ω做定轴转动, 求圆盘的动量。
解析
根据动量的定义,圆盘的 动量P=mv=mrω,其中r 是质点到转动轴的距离, m是质量,v是线速度,ω 是角速度。
题目
一质量为m的杆,长度为l, 一端固定,绕另一端点做 定轴转动,求杆的转动惯 量。
航空航天器姿态调整中的应用
01
02
03
卫星轨道调整
卫星在轨道调整过程中, 通过刚体定轴转动实现姿 态的调整,从而改变推进 力的方向。
飞机飞行控制
飞机飞行过程中,通过刚 体定轴转动实现舵面的操 纵,从而调整飞行姿态和 方向。
火箭发射
火箭发射过程中,通过刚 体定轴转动实现发动机的 转向和稳定。
大学物理上练习册 第2章《刚体定轴转动》答案-2013

第2章 刚体定轴转动一、选择题1(B),2(B),3(C),4(C),5(C) 二、填空题(1). 62.5 1.67s (2). 4.0 rad/ (3). 0.25 kg ·m 2(4). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(5). 2E 0三、计算题1. 如图所示,半径为r 1=0.3 m 的A 轮通过皮带被半径为r 2=0.75 m 的B 轮带动,B 轮以匀角加速度π rad /s 2由静止起动,轮与皮带间无滑动发生.试求A 轮达到转速3000 rev/min 所需要的时间.解:设A 、B 轮的角加速度分别为βA 和βB ,由于两轮边缘的切向加速度相同, a t = βA r 1 = βB r 2则 βA = βB r 2 / r 1 A 轮角速度达到ω所需时间为()75.03.060/2300021⨯π⨯π⨯===r r t B Aβωβωs =40 s2.一砂轮直径为1 m 质量为50 kg ,以 900 rev / min 的转速转动.撤去动力后,一工件以 200 N 的正压力作用在轮边缘上,使砂轮在11.8 s 内停止.求砂轮和工件间的摩擦系数.(砂轮轴的摩擦可忽略不计,砂轮绕轴的转动惯量为21mR 2,其中m 和R 分别为砂轮的质量和半径).解:R = 0.5 m ,ω0 = 900 rev/min = 30π rad/s ,根据转动定律 M = -J β ① 这里 M = -μNR ②μ为摩擦系数,N 为正压力,221mR J =. ③ 设在时刻t 砂轮开始停转,则有: 00=+=t t βωω从而得 β=-ω0 / t ④将②、③、④式代入①式,得 )/(2102t mR NR ωμ-=- ∴ m =μR ω0 / (2Nt )≈0.5r1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量)解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ总摩擦力矩 mgR M M R μ32d 0==⎰故平板角加速度 β =M /J设停止前转数为n ,则转角 θ = 2πn由 J /Mn π==4220θβω可得 g R MJ n μωωπ16/342020=π=2. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.解:根据转动定律: J d ω / d t = -k ω ∴ t J kd d -=ωω两边积分:⎰⎰-=t t J k02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k5.一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg T =ma ① T r =J β ② 由运动学关系有: a = r β ③ 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0 ∴ S =221at , a =2S / t 2 ⑤将⑤式代入④式得:J =mr 2(Sgt22-1)3.如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度. 解:作示力图.两重物加速度大小a 相同,方向如图.m 1g -T 1=m 1a T 2-m 2g =m 2a 设滑轮的角加速度为β,则 (T 1-T 2)r =J β 且有 a =r β 由以上四式消去T 1,T 2得: ()()J r m m gr m m ++-=22121β 开始时系统静止,故t 时刻滑轮的角速度.()()Jrm m grt m m t ++-==22121 βω7.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量为m '= 0.020 kg ,速率为v = 400 m ·s -1.试问:(1) 棒开始和子弹一起转动时角速度ω有多大?(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?解:(1) 角动量守恒:ω⎪⎭⎫ ⎝⎛'+='2231l m ml l m v ∴ l m m m ⎪⎭⎫ ⎝⎛'+'=31vω=15.4 rad ·s -1(2) 由转动定律,得: -M r =(231ml +2l m ')β0-ω 2=2βθ∴ rM l m m 23122ωθ⎪⎭⎫ ⎝⎛'+==15.4 rad8.如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20 kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C 为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求: mm , lOm '(1) 两轮啮合后的转速n ; (2) 两轮各自所受的冲量矩.解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒J A ωA +J B ωB = (J A +J B )ω,又ωB =0得: ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min (2) A 轮受的冲量矩⎰t MAd = J A (J A +J B ) = -4.19×10 2 N ·m ·s负号表示与A ωϖ方向相反. B 轮受的冲量矩⎰t MBd = J B (ω - 0) = 4.19×102 N ·m ·s方向与A ωϖ相同.4.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为L m L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中ρ为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以 L m mL 022112/7v =ω ∴ ω = 6v 0 / (7L)10. 空心圆环可绕光滑的竖直固定轴AC 自由转动,转动惯量为J 0,环的半径为R ,初始时环的角速度为ω0.质量为m 的小球静止在环内最高处A 点,由于某种微小干扰,小球沿环向下滑动,问小球滑到与环心O 在同一高度的B 点和环的最低处的C 点时,环的角速度及小球相对于环的速度各为多大?(设环的内壁和小球都是光滑的,小球可视为质点,环截面半径r <<R .)解:选小球和环为系统.运动过程中所受合外力矩为零,角动量守恒.对地球、小球和环系统机械能守恒.取过环心的水平面为势能零点.小球到B 点时: J 0ω0=(J 0+mR 2)ω ①2121()22220200212121BR m J mgR J v ++=+ωωω ② 式中v B 表示小球在B 点时相对于地面的竖直分速度,也等于它相对于环的速度.由式①得:ω=J 0ω 0 / (J 0 + mR 2) 1分代入式②得222002J mR RJ gR B ++=ωv 当小球滑到C 点时,由角动量守恒定律,系统的角速度又回复至ω0,又由机械能守恒定律知,小球在C 的动能完全由重力势能转换而来.即: ()R mg m C 2212=v , gR C 4=v 四 研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。
刚体定轴转动的功和能

《大学物理》练习题 刚体定轴转动的功和能班级 ___________ 学号 __________ 姓名 _________ 成绩 ________基本要求:(1) 掌握力矩的功、转动动能、动能定理、含刚体的机械能守恒定律及应用内容提要: 1. 力矩的功:⎰=θMd A2 转动动能:刚体的转动惯量与角速度平方乘积的一半。
221ωJ E k =3 刚体定轴转动的动能定理:合外力矩对定轴转动刚体所做的功等于刚体转动动能的增量21222121ωωJ J A -=若在刚体转动过程中,只有重力做功,其他非保守内力不做功,则刚体在重力场中机械能守恒.常量=+=C mgh J E 221ω一、选择题1. 如图所示, 一匀质细杆可绕通过其一端的水平光滑轴在竖直平面内自由转动. 杆长 l = (5/3)m,今使杆从与竖直方向成60°角的位置由静止释放(g 取10m/s 2), 则杆的最大角速度为 [ ] (A) 3rad/s.(B) rad/s (C) 9 rad/s.60° 图(D)3rad/s.2.一人站在旋转平台的中央,两臂侧平举,整个系统以2rad/s 的角速度旋转,转动惯量为.如果将双臂收回则系统的转动惯量变为.此时系统的转动动能与原来的转动动能之比E k / E k0为[ ] (A)2.(B) 2. (C) 3. (D) 3.3.如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴旋转,初始状态为静止悬挂。
现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 [ ] (A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒. (D) 机械能、动量角和动量均守恒. 二.填空题1.一匀质细杆AB,长为l ,质量为m . A 端挂在一光滑的固定水平轴上, 细杆可以在竖直平面内自由摆动.杆从水平位置由静止释放开始下摆,当下摆 时,杆的角速度为 .2.将一质量为m 的小球, 系于轻绳的一端, 绳的另一端穿过光滑水平桌面上的小孔用手拉住, 先使小球以角速度1在桌面上做半径为r 1的园周运动, 然后缓慢将绳下拉, 使半径缩小为r 2, 在此过程中小球的动能增量是 .○· O 图三.计算题1.有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动. 另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相撞,设碰撞时间极短,已知小滑块在碰撞前后的速度分别为v 1和v 2,如图所示. 求碰撞后从细棒开始转动到停止转动的过程所需的时间 (以知棒绕O 点的转动惯量J=m 1l 2/3).2.一长l=0.4m 的均匀木棒,质量M=1.0kg ,可绕水平轴O 在竖直内转动,开始时棒自然地竖直悬垂,今有质量m=8g 的子弹以s m v 200 地速率从A 点射入棒中,假定A 点与O 点的距离为43l ,求:(1)、棒开始运动时的角速度; (2)、棒的最大偏转角。
大学物理A 练习题 第2章《刚体定轴转动》

《第2章 刚体定轴转动》一 选择题1. 关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量. (2) 作用力和反作用力对同一轴的力矩之和必为零.(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A) 只有(2) 是正确的. (B) (1)、(2) 是正确的. (C) (2)、(3) 是正确的.(D) (1)、(2)、(3)都是正确的.[ ]2. 几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变.[ ]3. 将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (A) 小于β. (B) 大于β,小于2 β. (C) 大于2 β. (D) 等于2 β.[ ]4. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0.[ ]5. 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒.[ ]二 填空题1. 一飞轮作匀减速转动,在5 s 内角速度由40π rad ·s -1减到10π rad ·s -1,则飞轮在这5 s 内总共转过了________________圈,飞轮再经______________的时间才能停止转动.2. 一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度ω 0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过了角度∆θ =_________________.3. 如图所示,A 、B 两飞轮的轴杆在一条直线上,并可用摩擦啮合器C 使它们连结.开始时B 轮静止,A 轮以角速度ωA 转动,设在啮合过程中两飞轮不受其它力矩的作用.当两轮连结在一起后,共同的角速度为ω.若A 轮的转动惯量为J A ,则B 轮的转动惯量J B =________.4. 一根质量为m 、长为l 的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动.已知细杆与桌面的滑动摩擦系数为μ,则杆转动时受的摩擦力矩的大小为________________.5. 一滑冰者开始张开手臂绕自身竖直轴旋转,其动能为E 0,转动惯量为J 0,若他将手臂收拢,其转动惯量变为021J ,则其动能将变为__________________.(摩擦不计) 三 计算题1. 均质圆轮A 的质量为M 1,半径为R 1,以角速度ω绕OA 杆的A 端转动,此时,将其放置在另一质量为M 2的均质圆轮B 上,B 轮的半径为R 2.B 轮原来静止,但可绕其几何中心轴自由转动.放置后,A 轮的重量由B 轮支持.略去轴承的摩擦与杆OA 的重量,并设两轮间的摩擦因素为μ,问自A 轮放在B 轮上到两轮间没有相对滑动为止,需要经过多长时间?2. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.3. 如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度.4. 一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)m21215. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为 ),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1) 子弹击中圆盘后,盘所获得的角速度.(2) 经过多少时间后,圆盘停止转动. (圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩)四 研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。
刚体定轴转动习题知识分享

刚体定轴转动习题刚体定轴转动一、选择题(每题3分)1、个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的( )(A)机械能守恒,角动量守恒; (B)机械能守恒,角动量不守恒,(C)机械能不守恒,角动量守恒; (D)机械能不守恒,角动量不守恒.2、一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L以及圆盘的角速度ω的变化情况为()(A) L 不变,ω增大 (B) 两者均不变(C) L不变,ω减小 (D) 两者均不确定3、有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零在上述说法中,正确的是()(A)只有(1)是正确的(B)只有(1)、(2)正确(C)只有(4)是错误的(D)全正确4、以下说法中正确的是()(A)作用在定轴转动刚体上的力越大,刚体转动的角加速度越大。
(B)作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大。
(C)作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大。
(D)作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零。
5、一质量为m的均质杆长为l,绕铅直轴o o'成θ角转动,其转动惯量为()6、一物体正在绕固定光滑轴自由转动( )(A) 它受热膨胀或遇冷收缩时,角速度不变. (B) 它受热时角速度变小,它遇冷时角速度变大. (C)它受热或遇冷时,角速度均变大.(D) 它受热时角速度变大,它遇冷时角速度变小.7、关于刚体对轴的转动惯量,下列说法中正确的是( )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关. (B) 取决于刚体的质量和质量的空间分布,与轴的位置无关. (C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.8、两个均质圆盘A 和B 的密度分别为A ρ和B ρ,若A ρ﹥B ρ,但两圆盘的质量与厚度相同,如两盘对通过盘心垂直于盘面的转动惯量各为J A 和J B ,则( )(A )J A >J B (B )J B >J A(C )J A = J B (D )J A 、 J B 哪个大,不能确定9、某转轮直径d =40cm ,以角量表示的运动方程为θ=3t -3.02t +4.0t ,式中θ的单位为rad,t 的单位为s,则t =2.0s 到t =4.0s 这段时间内,平均角加速度为( )(A)212-⋅s rad (B)26-⋅s rad(C)218-⋅s rad (C)212-⋅s m10、 轮圈半径为R ,其质量M 均匀分布在轮缘上,长为R 、质量为m的均质辐条固定在轮心和轮缘间,辐条共有2N 根。
03 刚体的定轴转动习题

V刚体的定轴转动习题班级 姓名 学号 成绩一、选择题1、一刚体以每分钟60转绕z 轴沿正方向做匀速转动,设此时该刚体上一点P 的位矢k j i r543++=,单位为10-2m ,若以12s m 10--⋅为速度单位,则该时刻点P 的速度为【 】(A )k j i v0.1546.1252.94++= (B )j i v8.181.25+-=(C )j i v8.181.15+= (D )k v4.32=2、下列说法中正确的是【 】(A )作用在定轴转动刚体上的力越大,刚体转动的角速度越大 (B )作用在定轴转动刚体上的合力矩力越大,刚体转动的角速度越大 (C )作用在定轴转动刚体上的合力矩力越大,刚体转动的角加速度越大 (D )作用在定轴转动刚体上的合力矩力为零,刚体转动的加速度为零3、两个均匀圆盘A 和B 的密度分别为A ρ和B ρ,若B A ρρ>,但两圆盘的质量和厚度相同,如两圆盘对通过盘心垂直于盘面的轴的转动惯量各为A J 和B J ,则【 】(A )B A J J > (B )B A J J <(C )B A J J = (D )A J 、B J 哪个大,不能确定4、有两个半径相同、质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的转轴的转动惯量分别为J A 和J B ,则【 】(A )B A J J > (B )B A J J <(C )B A J J = (D )A J 、B J 哪个大,不能确定5、如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止。
杆身与竖直方向成θ角,则A 端对墙壁的压力大小为【 】(A )4)cos (θmg (B )2)tan (θmg (C )θsin mg (D )不能唯一确定 6、有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于转轴作用时,它们对转轴的合力矩一定是零 (2)这两个力都垂直于转轴作用时,它们对转轴的合力矩可能是零 (3)当这两个力的合力为零时,它们对转轴的合力矩也一定是零 (4)当这两个力对转轴的合力矩为零时,它们的合力也一定是零 在上述说法中【 】(A )只有(1)是正确的 (B )(1)(2)正确,(3)(4)错误 (C )(1)(2)(3)正确,(4)错误 (D )(1)(2)(3)(4)都正确7、半径为R 、质量为m 的匀质圆形平板在粗糙的水平桌面上,绕通过圆心且垂直于平板的O O '轴转动,摩擦力对O O '轴的力矩为【 】(A )2mgR μ (B )mgR μ (C )2mgR μ (D )0 8、一不可伸长的摆线长L ,下挂一质量为m 的小球,小球静止。
大学物理03章试题库刚体的定轴转动

《大学物理》试题库管理系统内容第三章 刚体的定轴转动1 题号:03001 第03章 题型:选择题 难易程度:较难试题: 某刚体绕定轴作匀变速转动,对刚体上距转轴为r 处的任一质元的法向加速度n a 和切向加速度τa 来说正确的是( ).A.n a 的大小变化,τa 的大小保持恒定B.n a 的大小保持恒定,τa 的大小变化C.n a 、τa 的大小均随时间变化D.n a 、τa 的大小均保持不变 答案: A2 题号:03002 第03章 题型:选择题 难易程度:适中试题: 有A 、B 两个半径相同、质量也相同的细环,其中A 环的质量分布均匀,而B 环的质量分布不均匀.若两环对过环心且与环面垂直轴的转动惯量分别为B A J J 和,则( ).A. B A J J =B. B A J J >C. B A J J <D. 无法确定B A J J 和的相对大小 答案: A3 题号:03003 第03章 题型:选择题 难易程度:适中试题: 一轻绳绕在具有水平转轴的定滑轮上,绳下端挂一物体,物体的质量为m ,此时滑轮的角加速度为β,若将物体取下,而用大小等于mg 、方向向下的力拉绳子,则滑轮的角加速度将( ).A.变大B.不变C.变小D.无法确定 答案: A试题: 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来,若此后无外力矩作用,则当此人收回双臂时,人和转椅这一系统的( ).A.系统的角动量保持不变B.角动量加大C.转速和转动动能变化不清楚D.转速加大,转动动能不变 答案: A5 题号:03005 第03章 题型:选择题 难易程度:较难试题: 某力学系统由两个质点组成,它们之间仅有引力作用.若两质点所受外力的矢量和为零,则此力学系统( ).A.动量守恒,但机械能和角动量是否守恒不能确定B.动量和角动量守恒,但机械能是否守恒不能确定C.动量、机械能守恒,但角动量是否守恒不能确定D.动量、机械能以及对某一转轴的角动量一定守恒 答案: A6 题号:03006 第03章 题型:选择题 难易程度:较难试题: 如图所示,两个质量均为m 、半径均为R 的匀质圆盘形滑轮的两端,用轻绳分别系着质量为m 和2m 的小物块.若系统从静止释放,则释放后两滑轮之间绳内的张力为( ).A.mg 811 B.mg 23C.mg 21 D.mg答案: A试题: 某质点受的力为kx e F F -=0,若质点从静止开始运动(即,0=x 时0=v ),则该质点所能达到的最大动能为( ).A.k F 0 B. k eF0 C. k e kF 0 D. 0kF 答案: A8 题号:03008 第03章 题型:选择题 难易程度:适中试题: 如图所示,在水平光滑的圆盘上,有一质量为m 的质点,拴在一根穿过圆盘中心光滑小孔的轻绳上.开始时质点离中心的距离为r ,并以角速度转动.今以均匀速率向下拉绳,将质点拉至离中心2r 处时,拉力做的功为( ).A.2223ωmr B. 2225ωmr C.2227ωmr D. 2221ωmr 答案: A9 题号:03009 第03章 题型:选择题 难易程度:适中试题: 已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的角动量为( ).A.GMR mB.R G MmC.R GMmD.RGMm 2 答案: A10 题号:03010 第03章 题型:选择题 难易程度:适中F ϖrm试题: 卫星绕地球做椭圆运动,地心为椭圆的一个焦点,在运动过程中,下列叙述中正确的是().A.角动量守恒B.动量守恒C.机械能不守恒D.动量和角动量都不守恒答案: A11 题号:03011 第03章题型:选择题难易程度:适中试题: 三个完全相同的轮子可绕一公共轴转动,角速度的大小都相同,但其中一轮的转动方向与另外两轮的转动方向相反.若使三个轮子靠近啮合在一起,则系统的动能与原来三个轮子的总动能相比为().A.减小到1/9B.减小到1/3C.增大9倍D.增大3倍答案: A12 题号:03012 第03章题型:选择题难易程度:较难试题: 下列说法中,错误的是().A.对于给定的刚体而言,他的质量和形状是一定的,则其转动惯量也是唯一确定的M=,其中M、J和β均是对同一转轴而言的B.刚体定轴转动的转动定律为βJC.刚体的转动动能等于刚体上各质元的动能之和D.刚体作定轴转动时,其上各点的角速度相同而线速度不同答案: A13 题号:03013 第03章题型:选择题难易程度:适中试题: 下列说法中,正确的是().A.作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大B.作用在定轴转动刚体上的合力矩越大,刚体转动的角速度就越大C.作用在定轴转动刚体上的合力矩为零,刚体转动的角速度就为零D.作用在定轴转动刚体上的合力越大,刚体转动的角加速度就越大 答案: A14 题号:03014 第03章 题型:选择题 难易程度:难试题: 轮圈半径为R 、其质量M 均匀分布在轮缘上,长为R 、质量为m 的匀质辐条固定在轮心和轮缘间,辐条共有2N 根.今若将辐条数减少N 根,但保持轮对通过轮心、垂直于轮平面轴的转动惯量不变,则轮圈的质量应为( ).A.M m N +3 B.M m N +6 C.M m N +12 D. M m N +32 答案: A15 题号:03015 第03章 题型:选择题 难易程度:适中 试题: 如图一质量为m 的匀质杆长为l ,绕铅直轴O O '成θ角转动,其转动惯量为( ).A.θ22sin 31mlB.231mlC.θ22sin 41ml D.2121ml 答案: A16 题号:03016 第03章 题型:选择题 难易程度:适中 试题: 如图一质量为m 的匀质杆长为l ,绕铅直轴O O '成θ角转动,则匀质杆所受的合外力矩为( ).A.θsin 21mgl B.θcos 21mgl C.θsin mgl D.θcos mgl 答案: A17 题号:03017 第03章 题型:选择题 难易程度:适中 试题: 如图一质量为m 的匀质杆长为l ,绕铅直轴O O '成θ角转动,则匀质杆的角动量为( ).A.θω22sin 31mlB.ω231mlC.ω2121ml D.θω22sin 41ml 答案: A18 题号:03018 第03章 题型:选择题 难易程度:难 O O '成θ角转试题: 如图一质量为m 的匀质杆长为l ,绕铅直轴动,则匀质杆的角加速度为( ).A.θsin 23l g B.lg θsin 23C.l g θsin 32D.θsin 32l g 答案: A19 题号:03019 第03章 题型:选择题 难易程度:难试题: 如图所示,两根长度和质量分别相等的细杆分别绕着光滑的水平轴1O 和2O 转动,设他们自水平位置从静止释放时,角加速度分别为1β和2β,则二者角加速度之间的关系为( ).1Ol O32lA. 21ββ=B.21ββ>C. 21ββ<D.不能确定 答案: A20 题号:03020 第03章 题型:选择题 难易程度:难试题: 如图所示,光滑的水平桌面上有一长为2l 、质量为m 的匀质细杆,可绕通过中点O 、且与杆垂直的竖直轴自由转动,开始时细杆静止.现有一质量为m 的小球,沿桌面正对着杆的一端,以速度v ρ运动,并与杆的A 端碰撞后与杆粘在一起转动,则这一系统碰撞后的转动角速度为( ).A.lv43 B. l v 2C.l v 32 D. lv54 答案: A21 题号:03021 第03章 题型:填空题 难易程度:容易 试题: 刚体是一理想模型,他虽然有一定的形状和大小,但形状和大小永远保持 . 答案: 不变22 题号:03022 第03章 题型:填空题 难易程度:容易 试题: 刚体定轴转动的运动方程的表示式是 . 答案: )(t θθ=23 题号:03023 第03章 题型:填空题 难易程度:较难 试题: 把不涉及转动的原因,只研究如何描述刚体的定轴转动的问题称为 .Ol 2 mv ρmA答案: 刚体定轴转动运动学24 题号:03024 第03章 题型:填空题 难易程度:较难 试题: 把研究刚体定轴转动原因的问题称为 . 答案: 刚体定轴转动的动力学25 题号:03025 第03章 题型:填空题 难易程度:适中试题: 刚体的转动惯量取决于刚体的总质量、质量分布和 等三个因素. 答案: 转轴的位置26 题号:03026 第03章 题型:填空题 难易程度:较难试题: 一飞轮以1min rad 300-⋅的转速转动,转动惯量为2m kg 5⋅,现施加一恒定的制动力矩,使飞轮在2s 内停止转动,则该恒定制动力矩的大小为 . 答案: m N ⋅=5.78M27 题号:03027 第03章 题型:填空题 难易程度:适中 试题: 如图所示,质量为1m 和2m 的均匀细棒长度均为2l ,在两棒对接处嵌有一质量为m 的小球,对过A 的轴而言,若2222141127121ml l m l m J A ++=,则B J 为 . 答案:2222141127121ml l m l m ++ 28 题号:03028 第03章 题型:填空题 难易程度:较难试题: 质量为m 的匀质细杆,长为l ,以角速度ω绕过杆的端点且垂直于杆的水平轴转动,则杆的动量大小为 .答案:ωml 21A B29 题号:03029 第03章 题型:填空题 难易程度:适中试题: 质量为m 的匀质细杆,长为l ,以角速度ω绕过杆的端点且垂直于杆的水平轴转动,则杆绕转动轴的动能为 .答案:2261ωml 30 题号:03030 第03章 题型:填空题 难易程度:适中试题: 质量为m 的匀质细杆,长为l ,以角速度ω绕过杆的端点且垂直于杆的水平轴转动,则杆绕转动轴的角动量大小为 .答案: ω231ml31 题号:03031 第03章 题型:填空题 难易程度:适中试题: 若飞轮从静止开始作匀加速转动,在最初2min 转了3600转,则飞轮的角加速度为 . 答案: 2s rad -⋅=14.3β32 题号:03032 第03章 题型:填空题 难易程度:较难试题: 若飞轮从静止开始作匀加速转动,在最初1min 转了3600转,则飞轮在第50秒末的角速度为 . 答案: 1s rad -⋅=314ω33 题号:03033 第03章 题型:填空题 难易程度:适中 试题: 若某飞轮绕其中心轴转动的运动方程为t t t 4223+-=θ,其中θ的单位为rad ,t 的单位为s ,则飞轮在第2秒末的角加速度为 . 答案: 2s rad -⋅=12β34 题号:03034 第03章 题型:填空题 难易程度:较难试题: 若某飞轮绕其中心轴转动的运动方程为t t t 4223+-=θ,其中θ的单位为rad ,t 的单位为s ,则飞轮从s 2=t 到s 4=t 这段时间内的平均角加速度为 . 答案: 2s rad -⋅=12β35 题号:03035 第03章 题型:填空题 难易程度:较难试题: 若质量为m 、半径为R 的匀质薄圆盘绕过中心且与盘面垂直轴的转动惯量为221mR ,则质量为m 、半径为R 、高度为h 的匀质圆柱体绕过中心且与端面垂直轴的转动惯量为 .答案:221mR 36 题号:03036 第03章 题型:填空题 难易程度:适中试题: 一转动惯量为J 的刚体绕某固定轴转动,当他在外力矩M ρ的作用下,角速度从1ω变为2ω,则该刚体在此过程)(21t t →中所受的冲量矩⎰21t t dt M ρ等于 . 答案: 12ωωJ J -37 题号:03037 第03章 题型:填空题 难易程度:适中试题: 一转动惯量为J 的刚体绕某固定轴转动,当他在外力矩M ρ的作用下,角速度从1ω变为2ω,则该刚体在此过程)(21θθ→中力矩所做的功⎰21θθθMd 等于 .答案:21222121ωωJ J - 38 题号:03038 第03章 题型:填空题 难易程度:容易试题: 刚体角动量守恒的条件为 . 答案: 0=外M ρ39 题号:03039 第03章 题型:填空题 难易程度:较难试题: 一质量为m 的粒子,相对于坐标原点处于j y i x r ρρρ+=点,速度为j v i v v y x ρρρ+=,则该质点相对于坐标原点的角动量为 . 答案: k yv xv m L x y ρρ)(-=40 题号:03040 第03章 题型:填空题 难易程度:适中试题: 一飞轮的转动惯量为J ,0=t 时角速度为0ω,此后飞轮经历一制动过程,受到的阻力矩的大小与角速度成正比,即ωk M -=,式中k 为正的常量.当3ωω=时,飞轮的角加速度为 .答案: Jk 30ωβ-= 41 题号:03041 第03章 题型:计算题 难易程度:适中 试题: 一条缆索绕过一个定滑轮拉动升降机,如图所示.滑轮的半径为m 5.0=r ,如果升降机从静止开始以加速度2s m 4.0-⋅=a 匀加速上升,求:(1)滑轮的角加速度;(2)开始上升后t = 5s 末滑轮的角速度; (3)在这5秒内滑轮转过的圈数;(4)开始上升后s 1='t 末滑轮边缘上一点的加速度(假定缆索和滑轮之间不打滑).答案: 为了图示清晰,将滑轮放大为如图所示.a ρv ρ(1)由于升降机的加速度和滑轮边缘上的一点的切向加速度相等,所以滑轮的角加速度为2s rad 8.0-⋅===rar a τβ (2)由于00=ω,所以5秒末滑轮的角速度为1s rad 0.4-⋅==t βω(3)在这5秒内滑轮转过的角度为rad 10212==t βθ 所以在这5秒内滑轮转过的圈数为圈6.1210==πN(4)结合题意,由图可以看出2s m 4.0-⋅==a a τ2222s m 32.0-⋅===t r r a n βω由此可得滑轮边缘上一点在升降机开始上升后s 1='t 时的加速度为222s m 51.0-⋅=+='τa a a n这个加速度的方向与滑轮边缘的切线方向的夹角为117.384.032.0tan tan =⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=--ταa a n 42 题号:03042 第03章 题型:计算题 难易程度:难 试题: 一绳跨过定滑轮,两端分别系有质量分别为m 和M 的物体,且m M >.滑轮可看作是质量均匀分布的圆盘,其质量为m ',半径为R有摩擦,滑轮转动时受到了摩擦阻力矩阻M 且与滑轮间无相对滑动.求物体的加速度及绳中的张力. 答案: 由于滑轮有质量,所以不得不考虑滑轮的转动惯性;在转动过程中滑轮还受到阻力矩的作用,在滑轮绕轴作加速转动时,它必须受到两侧绳子的拉力所产生的力矩,以便克服转动惯性与阻力矩的作用,因此滑轮两a ρ1a侧绳子中的拉力一定不相等.设两侧绳子中的拉力分别为1T 和2T ,则滑轮及两侧物体的受力如图所示,其中11T T '=,22T T '=(作用力与反作用力大小相等).因为m M >,所以左侧物体上升,右侧物体下降.设其加速度分别为1a 和2a ,据题意可知,绳子不可伸长,则21a a =,令它们为a .滑轮以顺时针转动,设其角加速度为β,则摩擦阻力矩阻M 的指向为逆时针方向,如图所示.对于上下作平动的两物体,可以视为质点,由牛顿第二运动定律得⎩⎨⎧=-=-Ma T Mg M mamg T m 21:对:对 (1) 滑轮作定轴转动,受到的外力矩分别为R T 2'和R T 1'及阻M (轴对滑轮的支持力N 通过了转轴,其力矩为零).若以顺时针方向转的力矩为正,逆时针转的方向为负,则由刚体定轴转动的转动定律得ββ⎪⎭⎫⎝⎛'==--21221R m J M R T R T 阻 (2)据题意可知,绳与滑轮间无相对滑动,所以滑轮边缘上一点的切向加速度和物体的加速度相等,即βτR a a == (3)联立(1)、(2)、(3)三个方程,得2)(m m M R M g m M a '++--=阻2)22()(1m m M R mM mg m M a g m T '++-'+=+=阻2)22()(2m m M R MM Mg m m a g M T '+++'+=-=阻43 题号:03043 第03章 题型:计算题 难易程度:适中试题: 求长为L ,质量为m 的均匀细棒AB 的转动惯量.(1)对于通过棒的一端与棒垂直的轴;(2)对于通过棒的中点与棒垂直的轴. 答案: (1)如图所示,以过A 端垂直于棒的o o '为轴,沿棒长方向为x 轴,原点在轴上,在棒上取一长度元dx ,则这一长度元的质量为dx Lmdm =,所以202231mL dx L m x dm x J L m =⎪⎭⎫ ⎝⎛==⎰⎰端点(2)同理,如图所示,以过中点垂直于棒的o o '为轴,沿棒长方向为x 轴,原点在轴上,在棒上取一长度元dx ,因此22222121mL dx L m x dm x J L L m=⎪⎭⎫ ⎝⎛==⎰⎰-中点 由此可见,对于同一均匀细棒,转轴的位置不同,棒的转动惯量不同. 44 题号:03044 第03章 题型:计算题 难易程度:容易试题: 试求质量为m 、半径为R 的匀质圆盘对垂直于平面且过中心轴的转动惯量. 答案: 已知条件如图所示.由于质量连续分布,所以220222mR dl R m R dm R J Rm=⎪⎭⎫ ⎝⎛==⎰⎰ππ 45 题号:03045 第03章 题型:计算题 难易程度:适中试题: 试求质量为m 、半径为R 的匀质圆环对垂直于平面且过中心轴的转动惯量.o AA dm答案: 已知条件如图所示.由于质量连续分布,设圆盘的厚度为l ,则圆盘的质量密度为lR m2πρ=.因圆盘可以看成是许多有厚度的圆环组成,所以()ρππρl R ldr r r dm r J R m 4022212=⋅⋅==⎰⎰代入圆盘的质量密度,得221mR J =46 题号:03046 第03章 题型:计算题 难易程度:较难试题: 如图所示,一质量为M 、半径为R 的匀质圆盘形滑轮,可绕一无摩擦的水平轴转动.圆盘上绕有质量可不计的绳子,绳子一端固定在滑轮上,另一端悬挂一质量为m 的物体,问物体由静止落下h 高度时,物体的速率为多少答案: 法一 用牛顿第二运动定律及转动定律求解.受力分析如图所示,对物体m 用牛顿第二运动定律得ma T mg =- (1)对匀质圆盘形滑轮用转动定律有βJ R T =' (2)物体下降的加速度的大小就是转动时滑轮边缘上切向加速度,所以βR a = (3)又由牛顿第三运动定律得T T '=(4)物体m 落下h 高度时的速率为lah v 2= (5)因为221MR J =,所以联立以上(1)、(2)、(3)、(4)和(5)式,可得物体m 落下h 高度时的速率为mM mghv 22+=(小于物体自由下落的速率gh 2).解法二 利用动能定理求解.如图所示,对于物体m 利用质点的动能定理有222121mv mv Th mgh -=- (6) 其中0v 和v 是物体的初速度和末速度.对于滑轮利用刚体定轴转动的转动定理有222121ωωθJ J TR -=∆ (7) 其中θ∆是在拉力矩TR 的作用下滑轮转过的角度,0ω和ω是滑轮的初角速度和末角速度.由于滑轮和绳子间无相对滑动,所以物体落下的距离应等于滑轮边缘上任意一点所经过的弧长,即θ∆=R h .又因为00=v ,00=ω,R v ω=,221MR J =,所以联立(6)和(7)式,可得物体m 落下h 高度时的速率为mM mghv 22+=.解法三 利用机械能守恒定律求解.若把滑轮、物体和地球看成一个系统,则在物体落下、滑轮转动的过程中,绳子的拉力T 对物体做负功(Th -),T '对滑轮做正功(Th )即内力做功的代数和为零,所以系统的机械能守恒.若把系统开始运动而还没有运动时的状态作为初始状态,系统在物体落下高度h 时的状态作为末状态,则0212121222=-+⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛mgh mv R v MR 所以物体m 落下h 高度时的速率为mM mghv 22+=.47 题号:03047 第03章 题型:计算题 难易程度:容易试题: 哈雷慧星绕太阳运行的轨道是一个椭圆,如图所示,它离太阳最近的距离是m 1075.810⨯=近日r ,此时速率为-14s m 1046.5⋅⨯=近日v ;它离太阳最远时的速率为-12s m 1008.9⋅⨯=远日v ,这时它离太阳的距离?远日=r答案: 彗星受太阳引力的作用,而引力通过了太阳,所以对太阳的力矩为零,故彗星在运行的过程中角动量守恒.于是有远日远日近日近日v r v r ρρρρ⨯=⨯因为远日远日近日近日,v r v r ρρρρ⊥⊥,所以有远日近日近日远日v v r r =代入数据,得m 1026.512⨯=远日r48 题号:03048 第03章 题型:计算题 难易程度:较难试题: 如图所示,一个长为l 、质量为M 的匀质杆可绕支点o 自由转动.一质量为m 、速率为v 的子弹以与水平方向成060角的方向射入杆内距支点为a 处,使杆的偏转角为030.问子弹的初速率为多少答案: 把子弹和匀质杆作为一个系统,由于该系统所受的外力有重力及轴对杆的约束力,在子弹射入杆的极短过程中,重力和约束力都通过了转轴o ,因此它们对转轴的力矩均为零,故该系统的角动量守恒.设ρ子弹射入杆后与杆一同前进的角速度为ω,则碰撞前的角动量等于碰撞后的角动量,即()ω⎪⎭⎫⎝⎛+=2203160cos ma Ml a v m子弹在射入杆后与杆一起摆动的过程中只有重力做功,所以由子弹、杆和地球组成的系统机械能守恒,因此有()()022230cos 1230cos 13121-⋅+-=⎪⎭⎫ ⎝⎛+l Mg mga ma Ml ω 联立上述这两个方程得子弹的初速率为()()22326322ma Ml ma Ml g mav ++-=49 题号:03049 第03章 题型:计算题 难易程度:较难试题: 如图所示,一根质量为M 、长为2 l 的均匀细棒,可以在竖直平面内绕通过其中心的光滑水平轴转动,开始时细棒静止于水平位置.今有一质量为m 的小球,以速度u ρ垂直向下落到了棒的端点,设小球与棒的碰撞为完全弹性碰撞.试求碰撞后小球的回跳速度v ρ及棒绕轴转动的角速度ω.答案: 以棒和小球组成的系统为研究对象,则该系统所受的外力有小球的重力、棒的重力和轴给予棒的支持力, 后两者的作用线都通过了转轴,对轴的力矩为零.由于碰撞时间极短,碰撞的冲力矩远大于小球所受的重力矩,所以小球对轴的力矩可忽略不计.分析可知所取系统的角动量守恒.由于碰撞前棒处于静止状态,所以碰撞前系统的角动量就是小球的角动量lmu . 由于碰撞后小球以速度v 回跳,其角动量为lmv ;棒获得的角速度为ω,棒的角动量为()ωω22312121Ml l M =⎥⎦⎤⎢⎣⎡.所以碰撞后系统的角动量为ω231Ml lmv +.由角动量守恒定律得omuω231Ml lmv lmu += (1) 注意:上式中u ,v 这两个速度是以其代数量来表示.以碰撞前小球运动的方向为正,即0>u ;碰撞后小球回跳,u 与v 的方向必然相反,应该有0<v .由题意知,碰撞是完全弹性碰撞,所以碰撞前后系统的动能守恒,即222231212121ω⎪⎭⎫⎝⎛+=Ml mv mu (2) 联立(1)和(2)式,可得小球的速度为u Mm Mm v +-=33棒的角速度为luM m m ⋅+=36ω讨论:由于碰撞后小球回跳,所以v 与u 的方向不同,而0>u ,则0<v .从结果可以看出,要保证0<v ,则必须保证m M 3>.否则,若M m 31≥,无论如何,碰撞后小球也不能回跳,杂耍运动员特别注意这一点.50 题号:03050 第03章 题型:计算题 难易程度:较难试题: 如图所示,一长为l 、质量为m 的匀质细棒竖直放置,其下端与一固定铰链o 相连结,并可绕其转动.由于此竖直放置的细棒处于非稳定平衡状态,当其受到微小扰动时,细棒将在重力的作用下由静止开始绕铰链o 转动.试计算细棒转到与竖直位置成θ角时的角加速度和角速度.答案: 法一 利用定轴转动的转动定律求解.分析受力如图所示,其中G ρ为细棒所受的重力、N ρ为铰链给细棒的约束力.由于约束力N ρ始终通过转轴,所以其作用力矩为零;铰链与细棒之间的摩擦力矩题中没有给定可认为不存在.又由于细棒为匀质细棒,所以重力G ρ的作用点在细棒中心.故由定轴转动的转动定律可得βθ⎪⎭⎫ ⎝⎛=231sin 21ml mgl 因此细棒转过θ角时的角加速度为θβsin 23lg=由角加速度的定义可得θθθωsin 23lgdt d d d =⋅ 整理可得θθωωd l g d ⎪⎭⎫⎝⎛=sin 23 由于0=t 时,0=θ,0=ω;而t t =时,θθ=,ωω=.所以上式两边取积分有θθωωθω⎰⎰⎪⎭⎫⎝⎛=0sin 23d l g d 因此细棒转过θ角时的角速度为()θωcos 13-=lg解法二 利用机械能守恒定律求解.以细棒和地球组成的系统为研究对象,由于细棒所受的重力为保守内力,铰链给细棒的约束力不做功,铰链与细棒之间的摩擦力题中没有给定可认为不存在,因此系统的机械能守恒.于是有()223121cos 12ωθ⎪⎭⎫ ⎝⎛=-⋅ml l mg 因此细棒转过θ角时的角速度为()θωcos 13-=lg此时的角加速度为θωβsin 23lgdt d ==解法三 利用定轴转动的动能定理求解.铰链的约束力对细棒不做功,摩擦力矩没有给定可以认为不存在,只有重力矩做功,所以对于细棒而言,合外力所做的功就是重力矩所做的功,即()θθθθθθcos 121sin 200-=⎪⎭⎫⎝⎛==⎰⎰mgl d l mg Md W由定轴转动的动能定理得()223121cos 121ωθ⎪⎭⎫ ⎝⎛=-ml mgl 因此细棒转过θ角时的角速度为()θωcos 13-=lg此时的角加速度为θωβsin 23lgdt d ==51 题号:03051 第03章 题型:计算题 难易程度:适中试题: 如图所示,在光滑的水平面上有一长为l 、质量为m 的匀质细棒以与棒长方向相互垂直的速度v ρ向前平动,平动中与一固定在桌面上的钉子o 相碰撞,碰撞后,细棒将绕点o 转动,试求其转动的角速度.答案: 由于细棒在光滑的水平面上运动,所以细棒与钉子o 碰撞的过程中遵守角动量守恒定律,则碰撞后碰撞前L L =对于转轴o 而言:⎪⎭⎫⎝⎛=4l mv L 碰撞前方向垂直于纸面向外;ωω⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+==242l l m J J L o 中心轴碰撞后ωω2224874121ml l m ml =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=方向垂直于纸面向外.所以有ω24874ml l mv =⎪⎭⎫⎝⎛ 故细棒碰撞后绕轴o 转动的角速度为lv712=ω 52 题号:03052 第03章 题型:计算题 难易程度:适中试题: 如图所示,在光滑的水平面上有一劲度系数为k 的轻质弹簧,它的一端固定,另一端系一质量为M 的滑块.最初滑块静止时,弹簧处于自然长度0l .现有一质量为m 的子弹以速度0v 沿水平方向并垂直于弹簧轴线射向滑块且留在其中,滑块在水平面内滑动.当滑块被拉伸到长度为l 时,求滑块速度的大小和方向.答案: 此题的物理过程有两个,第一个过程为子弹与滑块的碰撞过程.在该过程中子弹与滑块组成的系统所受的合外力为零,所以系统的动量守恒.于是有()V m M mv +=0第二个过程为滑块与子弹一起,以共同的速度V 在弹簧的约束下运动的过程.在该过程中弹簧的弹力不断增大,但始终通过转轴o ,它的力矩为零,所以角动量守恒;与此同时若以子弹、滑块、弹簧和地球组成的系统为研究对象,则该过程也满足机械能守恒定律.因此有()()θsin 0v m M l V m M +=+()()()2022212121l l k v m M V m M -++=+ 其中θ为滑块运动方向与弹簧轴线方向之间的夹角.联立以上三个方程可得滑块速度的大小和方向分别为()m M l l k m M mv v +--⎪⎪⎭⎫⎝⎛+=2020 ()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡+--⎪⎪⎭⎫ ⎝⎛++=--212020001sin m M l l k m M mv m M l l mv θ 53 题号:03053 第03章 题型:计算题 难易程度:适中试题: 一飞轮半径r = 1m ,以转速1min r 1500-⋅=n 转动,受制动均匀减速,经s 50=t 后静止.试求:(1)角加速度β和从制动开始到静止这段时间飞轮转过的转数N ;(2)制动开始后s 25=t 时飞轮的角速度ω;(3)在s 25=t 时飞轮边缘上一点的速度和加速度.答案: (1)角加速度20s rad 14.35060150014.325020-⋅-=⨯⨯-=-=-=ntπωωβ从制动开始到静止这段时间飞轮转过的转数62514.325014.3215060150014.322212220=⨯⨯⨯-⨯⨯⨯=+=∆=πβωπθtt N 圈(2)制动开始后s 25=t 时飞轮的角速度10s rad 5.782514.360150014.322-⋅=⨯-⨯⨯=+=+=t n t βπβωω (3)在s 25=t 时飞轮边缘上一点的速度和加速度分别为11s m 5.78s m )15.78()(--⋅=⋅⨯==τττωρρρρr v ()()τβωττρρρρρr n r a n a a n +=+=2()[]()232s m )14.31016.6(14.315.78-⋅-⨯=⨯-+⨯=ττρρρρn r n54 题号:03054 第03章 题型:计算题 难易程度:适中试题: 如图所示.细棒的长为l ,设转轴通过棒上离中心距离为d 的一点并与棒垂直.求棒对此轴的转动惯量o J '.试说明这一转动惯ol量o J '与棒对过棒中心并与此轴平行的转轴的转动惯量o J 之间的关系(此为平行轴定理).答案: 如图所示,以过o '点垂直于棒的直线为轴,沿棒长方向为x '轴,原点在o '点处,在棒上取一长度元x d ',则()⎰'='mo dm x J 2()⎰⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛''=d l d l x d lm x 22222121md ml +=所以o J '与o J 之间的关系为2md J J o o +='55 题号:03055 第03章 题型:计算题 难易程度:适中试题: 如图所示.两物体的质量分别为1m 和2m ,滑轮的转动惯量为J ,半径为r .若2m 与桌面的摩擦系数为μ,设绳子与滑轮间无相对滑动,试求系统的加速度a 的大小及绳子中张力1T 和2T 的大小.答案: 分析受力如题图所示.21m m 和设其加速度分别为1a 和2a ,则由牛顿运动定律得22221111⎩⎨⎧=-=-a m g m T a m T g m μ 滑轮作定轴转动,则由转动定律有βJ r T r T =-21由于绳子与滑轮间无相对滑动,所以r a a a β===21d ox 'x 1。
《刚体定轴转动》答案

第2章 刚体定轴转动一、选择题1(B),2(B),3(A),4(D),5(C),6(C),7(C),8(C),9(D),10(C) 二、填空题(1). v ≈15.2 m /s ,n 2=500 rev /min (2). 62.5 1.67s (3). g / l g / (2l ) (4). 5.0 N ·m (5). 4.0 rad/s (6). 0.25 kg ·m 2 (7).Ma 21(8). mgl μ21参考解:M =⎰M d =()mgl r r l gm l μμ21d /0=⎰(9).()212mRJ mr J ++ω(10).l g /sin 3θω=三、计算题1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量221mR J =,其中m 为圆形平板的质量) 解:在r 处的宽度为d r 的环带面积上摩擦力矩为r r r R mgM d 2d 2⋅π⋅π=μ总摩擦力矩 mgR M M R μ32d 0==⎰故平板角加速度 β =M /J设停止前转数为n ,则转角 θ = 2πn由 J /Mn π==4220θβω可得 g R MJ n μωωπ16/342020=π=2. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.解:根据牛顿运动定律和转动定律列方程对物体: mg -T =ma ① 对滑轮: TR = J β ② 运动学关系: a =R β ③ 将①、②、③式联立得 a =mg / (m +21M ) ∵ v 0=0,∴ v =at =mgt / (m +21M )3. 为求一半径R =50 cm 的飞轮对于通过其中心且与盘面垂直的固定转轴的转动惯量,在飞轮上绕以细绳,绳末端悬一质量m 1=8 kg 的重锤.让重锤从高2 m 处由静止落下,测得下落时间t 1=16 s .再用另一质量m 2=4 kg 的重锤做同样测量,测得下落时间t 2=25 s .假定摩擦力矩是一个常量,求飞轮的转动惯量.解:根据牛顿运动定律和转动定律,对飞轮和重物列方程,得 TR -M f =Ja / R ① mg -T =ma ② h =221at ③ 则将m 1、t 1代入上述方程组,得a 1=2h /21t =0.0156 m / s 2 T 1=m 1 (g -a 1)=78.3 N J =(T 1R -M f )R / a 1 ④ 将m 2、t 2代入①、②、③方程组,得a 2=2h /22t =6.4×10-3 m / s 2 T 2=m 2(g -a 2)=39.2 NJ = (T 2R -M f )R / a 2 ⑤由④、⑤两式,得 J =R 2(T 1-T 2) / (a 1-a 2)=1.06×103 kg ·m 24. 一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间.解:根据转动定律: J d ω / d t = -k ω ∴ t J kd d -=ωω两边积分:⎰⎰-=t t J k 02/d d 100ωωωω得 ln2 = kt / J ∴ t =(J ln2) / k5. 某人站在水平转台的中央,与转台一起以恒定的转速n 1转动,他的两手各拿一个质量为am 的砝码,砝码彼此相距l 1 (每一砝码离转轴21l 1),当此人将砝码拉近到距离为l 2时(每一砝码离转轴为21l 2),整个系统转速变为n 2.求在此过程中人所作的功.(假定人在收臂过程中自身对轴的转动惯量的变化可以忽略)解:(1) 将转台、砝码、人看作一个系统,过程中人作的功W 等于系统动能之增量:W =∆E k =212210222204)21(214)21(21n ml J n ml J π+-π+2 这里的J 0是没有砝码时系统的转动惯量.(2) 过程中无外力矩作用,系统的动量矩守恒:2π(J 0+2121ml ) n 1 = 2π (J 0+2221ml ) n 2 ∴ ()()1222212102n n n l n l m J --=(3) 将J 0代入W 式,得 ()2221212l l n mn W -π=6. 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1) 子弹击中圆盘后,盘所获得的角速度. (2) 经过多少时间后,圆盘停止转动. (圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩)解:(1) 以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O 的角动量守恒.m v 0R =(21MR 2+mR 2)ω R m M m ⎪⎭⎫ ⎝⎛+=210v ω(2) 设σ表示圆盘单位面积的质量,可求出圆盘所受水平面的摩擦力矩的大小 为 ⎰π⋅=Rf r rg r M 0d 2σμ=(2 / 3)πμσgR 3=(2 / 3)μMgR设经过∆t 时间圆盘停止转动,则按角动量定理有 -M f ∆t =0-J ω=-(21MR 2+mR 2)ω=- m v 0R ∴ ()Mg m MgR R m M R m t fμμ2v 33/2v v 000===∆mRO0v7.一匀质细棒长为2L ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点O 发生完全非弹性碰撞.碰撞点位于棒中心的一侧L 21处,如图所示.求棒在碰撞后的瞬时绕O 点转动的角速度ω.(细棒绕通过其端点且与其垂直的轴转动时的转动惯量为231ml ,式中的m 和l 分别为棒的质量和长度.)解:碰撞前瞬时,杆对O 点的角动量为L m L x x x x L L 0202/002/30021d d v v v v ==-⎰⎰ρρρ式中ρ为杆的线密度.碰撞后瞬时,杆对O 点的角动量为ωωω2221272141234331mL L m L m J =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=因碰撞前后角动量守恒,所以 L m mL 022112/7v =ω ∴ ω = 6v 0 / (7L)8. 长为l 的匀质细杆,可绕过杆的一端O 点的水平光滑固定轴转动,开始时静止于竖直位置.紧挨O 点悬一单摆,轻质摆线的长度也是l ,摆球质量为m .若单摆从水平位置由静止开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止.求: (1) 细杆的质量.(2) 细杆摆起的最大角度θ.解:(1) 设摆球与细杆碰撞时速度为v 0,碰后细杆角速度为ω,系统角动量守恒 得: J ω = m v 0l由于是弹性碰撞,所以单摆的动能变为细杆的转动动能2202121ωJ m =v 代入J =231Ml ,由上述两式可得 M =3m (2) 由机械能守恒式mgl m =2021v 及 ()θωcos 121212-=Mgl J 并利用(1) 中所求得的关系可得 31arccos =θ四 研讨题1. 计算一个刚体对某转轴的转动惯量时,一般能不能认为它的质量集中于其质心,成为一质点,然后计算这个质点对该轴的转动惯量?为什么?举例说明你的结论。
大学物理-刚体的定轴转动-习题和答案

第4章 刚体的定轴转动 习题及答案1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?答:当刚体作匀变速转动时,角加速度β不变。
刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。
又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。
2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系?答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为zz dL M dt=,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。
()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以()z z dL d d M I I I dt dt dtωωβ====。
既 z M I β=。
所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式,及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。
3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。
4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒?答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。
刚体的定轴转动---练习题

刚体的定轴转动---练习题一、选择题1.几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 ( )(A) 必然不会转动. (B) 转速必然不变.(C) 转速可能不变,也可能改变. (D) 转速必然改变.2.关于刚体对轴的转动惯量,下列说法中正确的是( )(A )取决于刚体的质量、质量的空间分布和轴的位置.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.3.关于刚体,下列说法正确的是: ( )A .刚体所受合外力为零,则刚体所受的合外力矩也为零;B .刚体所受合外力矩为零时,刚体角速度一定为零;C .刚体所受合外力矩不为零时,刚体角速度会发生变化;D .刚体平衡的条件是:它所受到的合外力为零.4.两个匀质圆盘A 和B 的半径分别为A R 和B R ,若B A R R >,但两圆盘的质量相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为J A 和J B ,则 ( )(A ) J B >J A . (B ) J A >J B . (C ) J A =J B . (D )J A 、J B 哪个大,不5.如图所示,均匀木棒OA 可绕过其端点O 并与棒垂直的水平光滑轴转动。
令棒从水平位置开始下落,在棒转到竖直位置的过程中,下列说法中正确的是 ( )A 、角速度从小到大,角加速度从小到大;B 、角速度从小到大,角加速度从大到小;C 、角速度从大到小,角加速度从大到小;D 、角速度从大到小,角加速度从小到大6. 如图所示,A 、B 为两个相同的绕着轻绳的质量为M 的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B两滑轮的角加速度分别为A α和B α,不计滑轮轴的摩擦,则有A .B A αα= B . B A αα>C . B A αα<D . 不确定 7.一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿顺时针方向转动,则绳中的张力 ( )(A )处处相等.(B )左边大于右边.(C )右边大于左边.(D )哪边大无法判断.A MB F m 2m 18.一力学系统由两个质点组成,两质点之间只有万有引力作用,若系统所受外力的矢量和为零,则此系统 ( )A 、动量、机械能以及对某一定轴的动量矩守恒;B 、动量、机械能守恒,但动量矩是否守恒不能确定;C 、动量守恒、但机械能和动量矩是否守恒不能确定;D 、动量和动量矩守恒、但机械能是否守恒不能确定.9.人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K 分别表示卫星对地心的动量矩及其动能的瞬时值,则应有 ( )A .L A >LB ,E KA >E kB . B . L A =L B ,E KA >E KB .C .L A =L B ,E KA <E KB .D . L A <L B ,E KA <E KB .10. 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统 ( )A . 动量守恒.B . 机械能守恒.C . 动量、机械能和角动量都守恒.D . 对转轴的角动量守恒.11.花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0角速度为ω0,然后她将两臂收回,使转动惯量变为原来的一半,这时她转动的角速度变为 ( B )A 、ω0/2;B 、2ω0;C 、(1/2)ω0;D 、2ω0.12.如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 ( )(A) 只有动量守恒.(B) 只有机械能守恒.(C) 只有对转轴O 的动量矩守恒.(D) 机械能、动量和动量矩均守恒.13.刚体动量矩守恒的充分必要条件是 ( )(A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变.14.一质量为M 的均匀细杆,可绕光滑水平轴转动,一质量为m 的小球以速度V 0水平飞来,与杆一端作完全弹性碰撞,则小球与杆组成的系统(如图所示),满足: ( )A 、动量守恒,动量矩守恒;B 、动量不守恒,动量矩守恒;C 、动量不守恒,动量矩不守恒;D 、动量守恒,动量矩不守恒..15.如图所示,均匀木棒可绕过其中点O 的水平光滑轴在竖直平面内转动,棒初始位于水平位置,一小球沿竖直方向下落与棒的右端发生碰撞,碰撞后球粘在杆上。
刚体力学习题

1、以下运动属于刚体定轴转动的是(A )电梯的升降; (B )自行车轮胎的运动;(C )门的开关; (D )陀螺的运动2、刚体定轴转动的特点表述错误的是(A )与转轴平行的直线上各点的运动情况都相同;(B )定轴转动的刚体上始终不动的轴线称为转轴;(C )定轴转动的刚体在某瞬时其上各点的角量相同;(D )定轴转动的刚体可看成一个点的运动。
3、电子质量为m ,在半径为r 的圆周上绕氢核作匀速圆周运动,已知电子的角动量为π2h ,则它的角速度为 (A )mr h π2; (B )22mr h π; (C )0; (D )m hr π22 4、关于角动量以下说法中,正确的是(A )质点系的总动量为零,总角动量一定为零;(B )一质点作直线运动,相对于直线上的任一点,质点的角动量一定为零;(C )一质点作直线运动,质点的角动量一定不变;(D )一质点作匀速率圆周运动,其动量方向在不断改变,所以角动量的方向也随之不断改变。
5、一力学系统由两个质点组成,它们之间只有引力作用。
若两质点所受外力的矢量和为零,则系统中(A )动量、机械能以及对一轴的角动量都守恒;(B )动量、机械能守恒,但角动量是否守恒还不能断定;(C )动量守恒、但机械能和角动量是否守恒还不能断定;(D )动量和角动量守恒,但机械能是否守恒还不能断定;6、等长的细木棒和细铁棒绕端点轴的转动惯量间的关系(A )木铁I I =; (B )木铁I I >; (C )木铁I I <; (D )无法确定7、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。
今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A )角速度从小到大,角加速度从大到小;(B )角速度从小到大,角加速度从小到大;(C )角速度从大到小,角加速度从大到小;(D )角速度从大到小,角加速度从小到大。
8、在质量为M ,半径为R 的均质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量(A )⎪⎪⎭⎫ ⎝⎛--2422221R r r R M ; (B )221MR ; (C )0; (D )⎪⎪⎭⎫ ⎝⎛+21222R r Mr 计算:1、已知圆环质量为m ,半径为R ,求圆环绕中心轴旋转的转动惯量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 刚体定轴转动练习题
1.(0148) 几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体
(A) 必然不会转动. (B) 转速必然不变.
(C) 转速必然改变. (D) 转速可能不变,也可能改变.
2.(0165) 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小.
(B) 角速度从小到大,角加速度从小到大.
(C) 角速度从大到小,角加速度从大到小. (D) 角速度从大到小,角加速度从小到大.
3.(0292) 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将
(A) 不变. (B) 变小.
(C) 变大. (D) 如何变化无法判断.
4.(5401) 有两个力作用在一个有固定转轴的刚体上:
(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;
(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;
(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;
(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.
在上述说法中,
(A) 只有(1)是正确的.
(B) (1) 、(2)正确,(3) 、(4) 错误.
(C) (1)、(2) 、(3) 都正确,(4)错误.
(D) (1) 、(2) 、(3) 、(4)都正确.
5. (0197) 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统
(A) 动量守恒.
(B) 机械能守恒.
(C) 对转轴的角动量守恒.
(D) 动量、机械能和角动量都守恒. (E) 动量、机械能和角动量都不守恒.
6. (0230) 一圆盘正绕垂直于盘面的水平光滑固定轴
O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬
间,圆盘的角速度ω
(A) 增大. (B) 不变.
(C) 减小. (D) 不能确定.
7. (0294) 刚体角动量守恒的充分而必要的条件是
(A) 刚体不受外力矩的作用.
(B) 刚体所受合外力矩为零.
(C) 刚体所受的合外力和合外力矩均为零.
(D) 刚体的转动惯量和角速度均保持不变.
8. (0110) 一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ω1=20πrad/s ,
再转60转后角速度为ω2=30π rad /s ,则角加速度β =_____________,转过上述 60转所需的时间Δt =________________.
9. (0111) 利用皮带传动,用电动机拖动一个真空
泵.电动机上装一半径为 0.1m 的轮子,真空泵
上装一半径为0.29m 的轮子,如图所示.如果电动机的转速为1450 rev/min ,则真空泵上的轮子的
边缘上
一点的线速度为__________________,真空泵的转速为____________________.
10.(0240) 一飞轮以600 rev/min 的转速旋转,转动惯量为2.5 kg ·m 2,现加一恒定的
制动力矩使飞轮在1 s 内停止转动,则该恒定制动力矩的大小M =_________.
11. (0125) 一飞轮以角速度ω0绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系统的角速度ω=__________________.
12. (0163) 一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地
将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求: (1) 放手时棒的角加速度; (2) 棒转到水平位置时的角加速度.
13. (0241) 一轴承光滑的定滑轮,质量为M =2.00 kg ,半径为R =0.100 m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系
有一质量为m =5.00 kg 的物体,如图所示.已知定滑轮的转动惯
量为J =22
1MR ,其初角速度 ω0=10.0 rad/s ,方向垂直纸面向里.求:
(1) 定滑轮的角加速度的大小和方向;
(2) 定滑轮的角速度变化到ω=0时,物体上升的高度;
(3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.
14. (0304) 有两位滑冰运动员,质量均为50 kg ,沿着距离为3.0 m 的两条平行路径相互滑近.他们具有10 m/s 的等值反向的速度.第一个运动员手握住一根3.0 m 长的刚性轻杆的一端,当第二个运动员与他相距3m 时,就抓住杆的另一端.(假设冰面无摩擦)
(1) 试定量地描述两人被杆连在一起以后的运动.
(2) 两人通过拉杆而将距离减小为1.0m ,问这以后他们怎样运动?
15. (0784) 如图所示,一半径为R 的匀质小木球固结在一长度为l 的匀质细棒的下端,且可绕水平光滑固定轴O 转动.今有一质量为m ,速度为0v 的子弹,沿着与水平面成
α角的方向射向球心,且嵌于球心.已知小木球、细棒对通过O 的水平轴的转动惯量的总和为J .求子弹嵌入球心后系统的共同角速度.
16. (0787) 一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5 kg ,长度为l = 1.0 m ,对
轴的转动惯量为J = 231ml .初始时棒静止.今有一水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所
示.子弹的质量为m '= 0.020 kg ,速率为v = 400 m ·s -1.试问:
(1) 棒开始和子弹一起转动时角速度ω有多大?
(2) 若棒转动时受到大小为M r = 4.0 N ·m 的恒定阻力矩作用,棒能转过多大的角度θ?
17. (0115) 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量22
1mR J =,其中m 为圆形平板的质量)
m , l O m '。