矢量运算及微积分初步

合集下载

大学物理矢量运算

大学物理矢量运算

chap0 矢量代数0.1矢量与标量一.标量定义:只有大小,没有方向的量。

表示:数字(可带正负号)。

加法:代数和。

二.矢量定义:既有大小,又有方向的量。

表示:0A v v 矢量的模)矢量的大小A v (:1)A A = 方向的单位矢量沿A A v:0 2)有向线段 矢量的方向方向矢量的模)矢量的大小长度:(:加法:平行四边形法则或三角形法则。

0.2矢量的合成与分解一.矢量的合成Av Av v C v B v Bv Cv Av Bv Cv Dv Ev 说明:)(B A B A vv v v −+=−BA C v v v +=BA C v v +=DC B A E v v v v v +++=A v Bv Cv Bv −Av Cv Bv二.矢量的分解把一个矢量看成两个或两个以上的矢量相加。

1.矢量的分解Ø一般一个矢量有无穷多种分解法Av Cv B v A v xA v yA v CB A v v v +→yx A A A v v v +→2.矢量的正交分解z三.矢量和(差)的正交分量表示k A j A i A A z y x v vv v ++=v vv v k B j B i B B z y x ++=k B A j B A i B A B A z z y y x x v vv v v )()()(±+±+±=±0.3矢量的乘积定义:一.矢量乘以标量Am B v v=二.矢量的标积定义:性质:1)A B B A v v v v ⋅=⋅v θψcos AB B A =⋅=vv )],([B A v v =θ2)C A B A C B A v v v v v v ⋅+⋅=+⋅)(3)B A B A v v v v ⊥⇔=⋅0 4)2A A A =⋅v v 矢量的标积的正交分量表示:zz y y x x B A B A B A B A ++=⋅vv 1=⋅=⋅=⋅=⋅=⋅=⋅k k j j i i i k k j j i v v v v v v v v v v v v三.矢量的矢积定义:==×=大小:)],([sin B A AB S BA S vv v v v θθ性质:⊥⊥满足右螺旋定则方向:,,B S A S v v v v 1)A B B A v v v v ×−=×2)C A B A C B A v v v v v v v ×+×=+×)(3)B A B A v v v v //0↔=×4)0=×A A v v矢量的标积的正交分量表示:0.4矢量函数的导数与积分一.矢量函数矢量A v与变量t 之间存在一定的关系,如果当变量t 取定某个值后,矢量A v有唯一确定的值(大小和方向)与之对应,则A v称为t 的矢量函数,即:)(t A A v v =二.矢量函数的导数定义tt A t t A t Adt A d t t ∆∆∆∆∆∆)()(lim lim 00v v vv −+==→→zv xy)(t A A v v =)('t t A A ∆+=v)()(t A t t A A v v v −+=∆∆O1)dtBd dt A d B A dt d vv v v ±=±)(2)dtAd m A dt dm A m dt d vv v +=)(B d A d d v v v v v v 性质三.矢量函数的积分定义v v v v B d v v,若)(t A A =,)(t B B =,且A dt=则B v称为A v 的积分,记为:∫=dt A B v v性质1)dt B dt A dt B A ∫∫∫±=±v v v v )(2)dt A m dt A m ∫∫=vv )( 常量)=m (3)dt A C dt A C ∫∫⋅=⋅vv v v )(常量)=C r (r 矢量函数积分的正交分量表示k dt A j dt A i dt A dt A z y x v v v v )()()(∫∫∫∫++=4)dt A C dt A C ∫∫×=×vv v v )(常量)=C (例题0-1 两矢量:k j i a v v v v−+=34,k j i b v v v v 543+−=,通过矢量运算求:求:(1)以a v 、b v为两邻边所作的平行四边形两对角线的长度;例0-2 两矢量函数:j i t a v v v2)12(+−=,j t i b v v v )32(−+−=。

矢量微分运算公式汇总

矢量微分运算公式汇总

矢量微分运算公式汇总1.矢量的求导:设矢量f(t)=(f1(t),f2(t),f3(t)),则它的导数为:df/dt = (df1/dt, df2/dt, df3/dt)2.矢量的积分:设曲线C的参数方程为r(t)=(x(t),y(t),z(t)),则矢量场F(x,y,z)沿曲线C的积分为:∫F·dr = ∫(F·r'(t)) dt,其中r'(t)为r(t)的导数。

3.散度:设矢量场F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)),则它的散度为:div F = ∇·F = ∂P/∂x + ∂Q/∂y + ∂R/∂z4.散度的运算公式:(1)若U和V是标量场,F和G是矢量场,则有:∇·(UF+VG)=U∇·F+V∇·G∇·(F×G)=G·(∇×F)-F·(∇×G)(2)若F是矢量场,Φ是标量场,则有:∇·(ΦF)=(∇Φ)·F+Φ∇·F5.旋度:设矢量场F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)),则它的旋度为:rot F = ∇×F = ( ∂R/∂y - ∂Q/∂z, ∂P/∂z - ∂R/∂x, ∂Q/∂x - ∂P/∂y ) 6.旋度的运算公式:(1)若U和V是标量场,F和G是矢量场,则有:∇×(UF+VG)=U∇×F+V∇×G(2)若F是矢量场,Φ是标量场,则有:∇×(ΦF)=(∇Φ)×F+Φ∇×F7.保守场:若矢量场F是一个保守场,则存在标量场Φ,使得F=∇Φ。

在保守场下,散度和旋度之间满足如下关系:∇·(∇×F)=08.梯度:设标量场Φ(x,y,z)grad Φ = ∇Φ = (∂Φ/∂x, ∂Φ/∂y, ∂Φ/∂z)9.梯度的运算公式:若U和V是标量场,F是矢量场,则有:∇·(U∇V)=∇U·∇V+UΔV∇×(U∇V)=U∇×∇V=0∇·(F×G)=G·∇×F-F·∇×G∇×(F×G)=(∇·G)F-(∇·F)G+(G·∇)F-(F·∇)G以上是一些常见的矢量微分运算公式汇总,这些公式在向量分析的求解中起到了重要的作用。

学习大学物理必备数学知识

学习大学物理必备数学知识

r
r
r
自矢矢 量量的BAr 的 末端末画端出画矢出量矢量 ,CBr,则再从就Cr矢是量 和A的Ar 始端的Br到合
矢量。
4
利用矢量平移不变性: r
d
A r
c
r
C
r
B a

r
B b
A
图4 两矢量相加的平行四边形法则
2、利用计算方法计算合矢量的大小和方向:
r
C A2 B2 2AB cos arctan B sin
r B

r dA
dt
dt
dt
(4)
d
rr A B

r A
r dB

r dA

r B
dt
dt dt
26
2、矢量的积分:

r A

r B
均在同一平面直角坐标系内,且
r dB

Ar,
则有:dBr

r Adt
dt
r B


r Adt



r Axi

Ay
r j
dt
r
r
Axdt i Aydt j
r
的模,用符号 A 表示。
A
图1 矢量的图像表示
2
2、矢量平移的不变性:
r
r
把矢量 A在空间平移,则矢量 A的大小和方向都不
会因平移而改变。
r
r
A
A
r A
图2 矢量平移
3
二 矢量合成的几何方法
1、利用质点在平面上的位移说明矢量相加法则:
r
c

所有矢量计算公式解析

所有矢量计算公式解析

所有矢量计算公式解析矢量计算公式解析。

矢量是物理学和工程学中经常出现的概念,它们可以用来描述物体的运动、力和速度等。

在矢量计算中,有一些常见的公式和运算规则,下面我们来逐个解析这些公式。

1. 矢量的加法和减法。

矢量的加法和减法是矢量计算中最基本的运算之一。

假设有两个矢量A和B,它们的加法和减法运算分别如下:A +B = (Ax + Bx, Ay + By)。

A B = (Ax Bx, Ay By)。

其中,Ax和Ay分别表示矢量A在x和y方向上的分量,Bx和By表示矢量B 在x和y方向上的分量。

通过这些公式,我们可以很容易地计算出两个矢量的和或差。

2. 矢量的数量积。

矢量的数量积又称为点积,它是矢量计算中另一个重要的运算。

假设有两个矢量A和B,它们的数量积运算如下:A·B = |A| |B| cosθ。

其中,|A|和|B|分别表示矢量A和B的模长,θ表示两个矢量之间的夹角。

通过这个公式,我们可以计算出两个矢量的数量积,从而得到它们之间的关系。

3. 矢量的叉积。

矢量的叉积又称为向量积,它是矢量计算中另一个重要的运算。

假设有两个矢量A和B,它们的叉积运算如下:A×B = |A| |B| sinθ n。

其中,|A|和|B|分别表示矢量A和B的模长,θ表示两个矢量之间的夹角,n表示一个垂直于A和B所在平面的单位矢量。

通过这个公式,我们可以计算出两个矢量的叉积,从而得到它们之间的关系。

4. 矢量的分解。

在实际问题中,我们经常需要将一个矢量分解成两个分量矢量,以便进行更方便的计算。

假设有一个矢量A,它可以被分解成在x和y方向上的两个分量矢量Ax和Ay,分解公式如下:A = Ax + Ay。

其中,Ax和Ay分别表示矢量A在x和y方向上的分量。

通过这个公式,我们可以将一个矢量分解成两个分量矢量,从而方便进行计算。

5. 矢量的单位化。

在矢量计算中,有时我们需要将一个矢量转化为单位矢量,以便进行更方便的计算。

矢量运算基础与微积分初步

矢量运算基础与微积分初步

矢量运算基础
第二种情况,对矢量点乘积分:
如 : 变力沿曲线作功,
元功dW

F

dr

Fxdx Fydy
Fz dz
总功W


F
dr


Fx dx


Fy dy


Fz dz
还有,对矢量叉乘积分,以后在电磁学里再讲。
微积分基础
(一)、导数的概念
引例:讨论物体作变速直线运动的速度问题
X
y
矢量运算基础
Ax Acos

Ay Acos

Az Acos

分别是A与X ,Y , Z 三个坐标轴的夹角




A B ( Ax Bx )i ( Ay By ) j (Az Bz )k
同一方向上的分量的运算如同标量一样。
不同方向上的分量不能合并同类项,要按矢量加法法 则叠加。
(一) 不定积分的概念
已知函数 f x ,如果存在一函数 F x ,使得
Fx f x
则称 F x 为 f x 的一个原函数。由于常数C的导数恒
等于零,因此,任意可积函数的原函数都有无穷多个。
原函数 F x又称 f x 的不定积分,记为:
F x f xdx C
i

dAy
j

dAz
k
dt dt
dt
dt
但一般 dA dA (除非定向运动。)
dt dt
如:速度的导数是加速度,速率的导数是加速度的切向
分量。
矢量运算基础
即:矢量的导数的模一般不等于矢量的模的导数

矢量的概念与运算法则

矢量的概念与运算法则

矢量的概念与运算法则矢量是物理学中一个重要的概念,它不仅在力学、电磁学等领域中有着广泛的应用,而且在计算机图形学、数据分析等领域中也扮演着重要的角色。

本文将介绍矢量的概念以及常见的运算法则。

一、矢量的概念矢量是一个有大小和方向的量,用箭头表示。

在二维空间中,矢量可以表示为一个有序的数对(x, y),其中x和y分别表示矢量在x轴和y轴上的分量。

在三维空间中,矢量可以表示为一个有序的数组(x, y, z),其中x、y和z分别表示矢量在x 轴、y轴和z轴上的分量。

矢量的大小可以用长度来表示,即矢量的模。

在二维空间中,矢量的模可以通过勾股定理计算:|v| = √(x^2 + y^2)。

在三维空间中,矢量的模可以通过类似的方法计算:|v| = √(x^2 + y^2 + z^2)。

矢量的方向可以用角度来表示。

在二维空间中,矢量的方向可以通过与x轴的夹角来确定。

在三维空间中,矢量的方向可以通过与x、y和z轴的夹角来确定。

二、矢量的运算法则1. 矢量的加法矢量的加法是指将两个矢量相加得到一个新的矢量。

在二维空间中,矢量的加法可以通过将两个矢量的分量相加来进行:v1 + v2 = (x1 + x2, y1 + y2)。

在三维空间中,矢量的加法可以通过类似的方法进行:v1 + v2 = (x1 + x2, y1 + y2, z1 + z2)。

2. 矢量的减法矢量的减法是指将一个矢量减去另一个矢量得到一个新的矢量。

在二维空间中,矢量的减法可以通过将两个矢量的分量相减来进行:v1 - v2 = (x1 - x2, y1 - y2)。

在三维空间中,矢量的减法可以通过类似的方法进行:v1 - v2 = (x1 - x2, y1 - y2, z1 -z2)。

3. 矢量的数量积矢量的数量积又称为点积,表示为v1 · v2。

在二维空间中,矢量的数量积可以通过将两个矢量的对应分量相乘再相加来计算:v1 · v2 = x1 * x2 + y1 * y2。

矢量微分 规则 记忆

矢量微分 规则 记忆

矢量微分规则记忆
记忆矢量微分规则可以帮助你在矢量微积分中进行计算和推导。

以下是一些常用的矢量微分规则:
1.线性性质:微分运算是线性的,即对于任意矢量场U 和V,
以及标量函数 f,有如下规则:
o d/dt (U + V) = dU/dt + dV/dt
o d/dt (fU) = df/dt U + f dU/dt
2.乘积法则:对于标量函数 f 和矢量场 U,有乘积法则:
o d/dt (fU) = (df/dt) U + f (dU/dt)
3.合成函数法则:对于复合函数,有链式法则(链式规则):
o如果矢量场U 是标量函数g 的函数,而g 又是标量函数 f 的函数,则有 dU/dt = (dg/dt) (df/dg)
4.标量对矢量的偏导数:对于标量函数 f 关于矢量场 U 的偏
导数,可以分别对 U 的每个分量求偏导数:
o(∂f/∂U) = (∂f/∂x) i + (∂f/∂y) j + (∂f/∂z) k
这些规则是矢量微分中常用的规则,可以帮助你进行向量值函数的微分运算。

记忆这些规则并理解其应用场景,可以在解决问题时更加高效和准确。

需要注意的是,矢量微分规则可能会因上下文和具体问题而有所变化和扩展。

因此,在应用时根据具体问题需求灵活运用。

矢量的定义和加减法运算法则

矢量的定义和加减法运算法则
冒=4+4+4
A=AaA=Ad y yy z zz
矢量表示为:冒=4A + Ayay + "
在直角坐标系下的矢量表示:
矢量:冒=4,+4句+AZ(:I z
+模的计算:1冒1= M+A; + A;
令单位矢量:
a=
A Ax .
4八 &八
a* + 0,
+
a
Z
Ml Ml Ml J Ml
=cos a a + cos pay + cosEz
第1章电磁学的数学基= 础
矢量分析
—,矢量的定义和表示
矢量的基_=|— 本运算'- 法则
h
F

三,矢量微分元:线11 = 元,面元,体元
111 标量场的梯度
五,矢量场的散度 六■矢量场的旋度
—■矢量的定义和表示
1. 标量:只有大小,没有方向的物理量。 如:温度T、长度L等
2. 矢量:不仅有大小,而且有方向的物理量。
例: 已知^点和因点对于原点的位置矢量为刁和方,
求:通过4点和3点的直线方程。 解:
在通过力点和3点的直线上,任取
一 点G对于原点的位置矢量为c, 则:
c — a = k (b — 1)
c = (1 — k)a + kb 其中:k为任意实数。
小结:
、矢量的定义和表示 、矢量的加减法运算法则
如:重力电场强度E、磁场强度可 等
3-矢量表示
—个矢量可以表示成矢量的模与单位矢量的乘积。 矢量 表示为: A=\A\a
其中:| A |为矢量的模,表示该矢量的大小。 a为单位矢量,表示矢量的方向,其大小为1。

矢量运算法则

矢量运算法则
注意:先后轮换次序。
推论:三个非零矢量共面的条件。
vvv A(BC) 0
v vv
h BC v
A

v C
v B
在直角坐标系中:
vvv
aˆx aˆy aˆz
A (B C) ( Axaˆx Ayaˆy Azaˆz ) Bx By Bz
v v v Ax Ay Az A (B C) Bx By Bz
•面元:
v dS1

h2h3du2du3aˆu1
v dS2 h1h3du1du3aˆu2
v dS3 h1h2du1du2aˆu3
•体元: dV h1h2h3du1du2du3
电磁场与电磁波
四、标量场的梯度
1. 标量场的等值面 以温度场为例:
第1章 矢量分析
等温面
热源
可以看出:标量场的函数是单值函数,各等值面是互不 相交的。
2.矢量:不仅有大小,而且有方向的物理量。
如:力
v F
、速度
vv
、电场
v E

vv 矢量表示为: A | A| aˆ
其中:|
A|
为矢量的模,表示该矢量的大小。
aˆ 为单位矢量,表示矢量的方向,其大小为1。
所以:一个矢量就表示成矢量的模与单位矢量的乘积。
电磁场与电磁波
第1章 矢量分析
例1:在直角坐标系中, x 方向的大小为 6 的矢量如何表示?
两矢量的叉积又可表示为:
v v aˆx aˆy aˆz A B Ax Ay Az
Bx By Bz
电磁场与电磁波
第1章 矢量分析
(3)三重积:
三个矢量相乘有以下几种形式:

矢量的运算

矢量的运算

这时 r 是矢量的模,括号中的量是单位矢量。 cosα,cosβ,cosγ也称为该矢量的方向余弦。
矢量与数量相乘时,各分量也相应扩大同样的倍数。




F ma maxi may j mazk
9
矢量的乘法
物矢理量学的中 点用 乘到 :的F矢• 量S的 乘FS法c还os有点乘和叉F乘。
sin
j)
其中r是该矢量的模,而括号中的 项是r方向上的单位
矢量。
r0
cos

i sin
j
在已知x及y的情况下
r x2 y2
tg y
x
例1、设矢量
r

(6i

8
j )m
写出该矢量的模和单位矢量,并用图表示该矢量。
6
Y
y r2
y2 y1
0 x2
利用矢量的解析表示法,设两矢量
dt t0
t
当上述极限存在时 r 的导数存在。对直角坐标系来说:
dr

dx
i
dy
j
dz
k
dt dt dt dt
15
如果
r rr0
问这时
d r dt

?
单位矢量表示方向,是可以随时间变化的,所以求导
时要考虑单位矢量的导数。这时:
dr dt
dr dt
r0

试证明矢量合成的平行四边形法则,即两矢量的
合矢量r的大小为:

r
r12 r22 2r1r2 cos
解: r r1 r2
两边对自身点乘
r • r (r1 r2 ) • (r1 r2 )

大学物理中矢量微积分的计算

大学物理中矢量微积分的计算

0前言大学物理与中学物理相比,最显著的区别就应用矢量、导数和微积分来分析和求解生活实践中更一般的实际问题,微积分思想和方法的运用,使大学物理相比于中学物理有质的飞跃。

相对于高等数学只注重代数形式的导数和微积分性质和计算,大学物理中几乎全是矢量的导数和微积分模型的建立和求解[1],如果没有掌握矢量的导数和微积分的处理方法,对于解物理问题,往往会觉得无从下手。

本文就大学物理中矢量的导数和微积分的求解问题提出自己的一点见解,以期对初学者有所帮助。

1矢量和微积分思想矢量是既有大小又有方向的量。

大学物理中很多物理量都是用矢量的乘法来表示,这就涉及矢量的点积与叉积,如功W =F →·r →=Fr cosθ结果为标量,力矩M →=r →×F →结果为矢量,其中θ为两矢量之间的夹角。

与中学物理研究的大都是“常量”、“标量”,用代数和平面几何去解决生活实践中某个特殊类型的问题不同,大学物理中的研究的大都是“变量”、矢量”,用矢量和微积分来解决生活实践中更一般的实际问题。

对于一般物理实际问题,常常需要应用微积分来解决,其基本思想是先“微”后“积”。

由于物理量对时间或者空间分布不均,因而需要把研究物理量在时间或者空间范围内进行无限次分割,分割后的物理量在这些足够小的时空区域(即微元区域)就变成了均匀分布,这时恰当的选取微元,写出元过程或者元贡献的表达式,然后把所有有限小的过程累加求和[2],再应用定积分,确定积分上、下限,然后求得计算结果。

大学物理中的矢量求解,不管是微分还是积分,首先要将矢量标量化运算,也就是说先要把矢量向某一方向或者坐标系进行投影,然后再进行微积分运算。

大体可以归纳为两类,一类是矢量的微分或求导问题,一类是矢量的积分问题。

2矢量的求导问题这类问题在大学物理中比较简单,一般就是先把矢量在坐标系进行投影,然后再在各个分量方向上求导。

例如由位矢r →(t )求速度v →(t )和加速度a →(t ),则先对r →(t )“矢量标量化运算”,即把r →(t )向直接坐标系进行x ,y ,z 方向进行投影,即有r →(t )=x (t )i ^+y (t )j ^+z (t )k ^,然后在个方向上进行求导,如v →(t )=dr →dt =dx dt i ^+dy dt j ^+dz dt k^,同样的,求加速度也是先投影后求导,a →(t )=dv →dt =dvx dt i ^+dv y dt j ^+dv z dt k ^=d 2x dt 2i ^+d 2y dt 2j ^+d 2z dt2k ^。

矢量运算法则

矢量运算法则

03
矢量减法
矢量减法的几何意义
• 矢量减法的几何意义 • 矢量减法表示两个矢量的头和尾相连,然后去掉第一个矢量的 尾巴 • 矢量减法的模等于两个矢量模的差 • 矢量减法的方向等于两个矢量方向的差
矢量减法的计算方法与性质
矢量减法的计算方法
• 矢量减法可以通过对应分量的相减得到 • 矢量减法的计算公式为:A - B = (A1 - B1, A2 - B2, ..., An - Bn)
矢量的方向
• 矢量的方向可以用矢量的单位向量表示 • 矢量的单位向量是矢量除以其模的结果
02
矢量加法
矢量加法的几何意义
• 矢量加法的几何意义 • 矢量加法表示两个矢量的头和尾相连 • 矢量加法的模等于两个矢量模的和 • 矢量加法的方向等于两个矢量方向的合成
矢量加法的计算方法与性质
矢量加法的计算方法
矢量减法的性质
• 矢量减法满足交换律:A - B = B - A • 矢量减法满足结合律:(A - B) - C = A - (B + C)
矢量减法的应用实例 • 矢 量 减 法 的 应 用 实 例 • 计算两个力的差力:F = F1 - F2 • 计算两个速度的差速度:v = v1 - v2
04
矢量运算在计算机图形学中的 应用
• 矢量运算在计算机图形学中的应用 • 计算物体的运动轨迹:s = v0t + 0.5at^2 • 计算光照和阴影:L = I * (N · L) / (N · V) • 计算物体的表面法向量:N = (A × B) / |A × B|
CREATE TOGETHER
矢量叉积的几何意义
• 矢量叉积表示两个矢量的模和角度的乘积 • 矢量叉积的结果等于两个矢量模的乘积乘以它们夹角的 余弦

大学物理矢量运算

大学物理矢量运算

chap0 矢量代数0.1矢量与标量一.标量定义:只有大小,没有方向的量。

表示:数字(可带正负号)。

加法:代数和。

二.矢量定义:既有大小,又有方向的量。

表示:0A v v 矢量的模)矢量的大小A v (:1)A A = 方向的单位矢量沿A A v:0 2)有向线段 矢量的方向方向矢量的模)矢量的大小长度:(:加法:平行四边形法则或三角形法则。

0.2矢量的合成与分解一.矢量的合成Av Av v C v B v Bv Cv Av Bv Cv Dv Ev 说明:)(B A B A vv v v −+=−BA C v v v +=BA C v v +=DC B A E v v v v v +++=A v Bv Cv Bv −Av Cv Bv二.矢量的分解把一个矢量看成两个或两个以上的矢量相加。

1.矢量的分解Ø一般一个矢量有无穷多种分解法Av Cv B v A v xA v yA v CB A v v v +→yx A A A v v v +→2.矢量的正交分解z三.矢量和(差)的正交分量表示k A j A i A A z y x v vv v ++=v vv v k B j B i B B z y x ++=k B A j B A i B A B A z z y y x x v vv v v )()()(±+±+±=±0.3矢量的乘积定义:一.矢量乘以标量Am B v v=二.矢量的标积定义:性质:1)A B B A v v v v ⋅=⋅v θψcos AB B A =⋅=vv )],([B A v v =θ2)C A B A C B A v v v v v v ⋅+⋅=+⋅)(3)B A B A v v v v ⊥⇔=⋅0 4)2A A A =⋅v v 矢量的标积的正交分量表示:zz y y x x B A B A B A B A ++=⋅vv 1=⋅=⋅=⋅=⋅=⋅=⋅k k j j i i i k k j j i v v v v v v v v v v v v三.矢量的矢积定义:==×=大小:)],([sin B A AB S BA S vv v v v θθ性质:⊥⊥满足右螺旋定则方向:,,B S A S v v v v 1)A B B A v v v v ×−=×2)C A B A C B A v v v v v v v ×+×=+×)(3)B A B A v v v v //0↔=×4)0=×A A v v矢量的标积的正交分量表示:0.4矢量函数的导数与积分一.矢量函数矢量A v与变量t 之间存在一定的关系,如果当变量t 取定某个值后,矢量A v有唯一确定的值(大小和方向)与之对应,则A v称为t 的矢量函数,即:)(t A A v v =二.矢量函数的导数定义tt A t t A t Adt A d t t ∆∆∆∆∆∆)()(lim lim 00v v vv −+==→→zv xy)(t A A v v =)('t t A A ∆+=v)()(t A t t A A v v v −+=∆∆O1)dtBd dt A d B A dt d vv v v ±=±)(2)dtAd m A dt dm A m dt d vv v +=)(B d A d d v v v v v v 性质三.矢量函数的积分定义v v v v B d v v,若)(t A A =,)(t B B =,且A dt=则B v称为A v 的积分,记为:∫=dt A B v v性质1)dt B dt A dt B A ∫∫∫±=±v v v v )(2)dt A m dt A m ∫∫=vv )( 常量)=m (3)dt A C dt A C ∫∫⋅=⋅vv v v )(常量)=C r (r 矢量函数积分的正交分量表示k dt A j dt A i dt A dt A z y x v v v v )()()(∫∫∫∫++=4)dt A C dt A C ∫∫×=×vv v v )(常量)=C (例题0-1 两矢量:k j i a v v v v−+=34,k j i b v v v v 543+−=,通过矢量运算求:求:(1)以a v 、b v为两邻边所作的平行四边形两对角线的长度;例0-2 两矢量函数:j i t a v v v2)12(+−=,j t i b v v v )32(−+−=。

《大学物理》矢量运算

《大学物理》矢量运算


a a 3a b 2a b 6b b a a a b 6b b
a ab cos 45 6b
2 2


36 6 2 2
2 2
68
24
练习题
矢量
矢量的积分若ktbjtbitbtbtazyx?????dd????则????????kttbjttbittbttbzyx?????ddddakajaiazyx??????a??对应?环流?通量??la??d??sa??d44矢量相等1矢量定义22矢量表示法55共线矢量33零矢量66零矢量无方向对吗
补充知识:矢量运算
表示:粗体字母A 或 A ,其大小用 A 或 A 表示 。
A A A0
A0 叫做单位矢量;
A
A 也叫做模。
1单位
矢量相等 :大小相等、方向相同的两矢量相等。 矢量平移后保持不变。
二、矢量的加减法(几何法)
1.矢量的加法
已知:A 、B ,求 A B
A B( t )d t B x ( t )d ti B y (t )d tj B z ( t )d tk
dl A A ds
Reviewing
1、矢量定义 不对!有 2、矢量表示法 方向且方 大小相同且 3、零矢量 1 、 向为任意 AB 长度为零 具有大小和 方向相同的 4、矢量相等 方向相同 2 、 方向 a 的矢量为 矢量叫相等 方向的量 或相反的 5、共线矢量 矢量(或同 3 、 a 零矢量 非零矢量 6、零矢量无方向对吗? 一矢量
c
B

A B Ax Bx

第一章、 矢量分析与场论初步

第一章、 矢量分析与场论初步
∈ijk ,注意下标的顺序,i 给基矢,j、k 依次给后边的符号。 同样矢量 u 的旋度 curl u 采用置换符号可以写成
e1 e2 curl u = ∇ × u = ∂ ∂
∂x1 ∂x2
u1 u2
(curl
u )i
=∈ijk
⎛ ⎜⎜⎝
∂uk ∂x j
⎞ ⎟⎟⎠
e3
∂ ∂x3
=∈ijk
⎛ ⎜⎜⎝
∂uk ∂x j
证:因为
( ) ( ) [ A× B × C ]i =∈ijk Aj B × C k =∈ijk Aj ∈kmn BmCn =∈ijk∈kmn Aj BmCn ( ) = ∈kij∈kmn Aj BmCn = δimδ jn − δinδ jm Aj BmCn = An BiCn − Aj BjCi = ( A • C ) Bi − ( A • B) Ci = ⎡⎣( A• C ) B⎤⎦i − ⎡⎣( A• B) C⎤⎦i
(1 − 2 − 6)
称为逆变换系数矩阵。显然对于笛卡儿直角坐标系,逆变换系数矩阵恰好是正变换系数矩阵
的转置矩阵。
如果坐标变换时,坐标原点由 O 移至 O’(平移加旋转),位移矢量为 C,与前面的做法
类似,可得到如下关系
xi' = x j βij − Ci'
xi
=
x
' j
β
ij
− Ci
(1 − 2 − 7) (1 − 2 − 8)
(1 − 1 − 1)
i 称为约定求和指标。约定求和指标在展开式中不再出现,因此也称为“哑指标”。显然哑指 标的字母可以更换,因为 AiBi 与 AjBj 的含意是相同的。
例 1、 ∂Ai = ∂A1 + ∂A2 + ∂A3 ∂xi ∂x1 ∂x2 ∂x3

矢量运算基础

矢量运算基础

读者自行完成此步的矢量合成图.
2
A -B
B
-B D
Aห้องสมุดไป่ตู้
图 8. 矢量的差
两个或两个以上矢量叠加可以合成一个矢量,相反,一个矢量也可以分解为两个或多个分矢量.通 常,一个矢量分解为两个矢量可以有无穷多种不同的分解方案,可以在几何上想象为对角线不变的平行 四边行有无限多个,相邻的两个邻边就是两个分矢量.图 9 给出了同一矢量 C 分解为两个矢量的无穷 多种不同的分解方案中两种可能的分解结果.只有已知两个分矢量的方向或已知一个分矢量的大小和方 向,这种分解才能有唯一结果.
带箭头的线段来表示,线段的长度正比于矢量的大小,箭头的方向即矢量的方向,有时为了方便表示,
不标注起点和终点,如图 1 所示.显然,矢量具有平移不变性,即矢量虽然具有大小和方向,但它在空 间没有确定的位置,可以如图 2 所示平移到任何地方,而他仍是同一个矢量.
AP
A
O
图 1. 矢量的表示及其简化形式
A
AB
DC
B
C
A A+B
A+B+C
D
E=A+B+C +D
图 7. 多矢量的合成
矢量 A 与 B 的相减 A-B 可写成矢量 A 与矢量 -B 的叠加,即 A-B=A (-B) ,如同两矢量相加一样,
取矢量 B 的负矢量 -B ,移动 -B 使 -B 的始端与矢量 A 的末端重合,从 A 的始端引向 -B 的末端的矢量 D 就是矢量 A 与 B 差 D A-B=A (-B) ,如图 8 所示,读者也可以通过交换律得到 D A-B=(-B)+A ,请
A A
图 2.矢量的平移
两个表示同类物理量(如力)的矢量 A 与 B ,如果矢量 A 与 B 大小相等且方向相同,则称矢量 A 与 B 相等,记为 A B , 如图 3 所示; 如果这两个矢量大小不相等或方向不相同,则矢量 A 与 B 不 相等; 如果这两个矢量大小相等但方向相反,则矢量 A 与 B 互为负矢量,记为 A -B 或 B -A ,如 图 4 所示.

附录A1矢量微分运算

附录A1矢量微分运算

附录A1 矢量微分运算A1.1 广义正交曲线坐标系(u ,v ,w )1. 必要充分条件:若x、y、z 为笛卡儿坐标系,则弧长ds 表达式22222dw w x dv v x du u x )dz ()dy ()dx ()ds (⎟⎠⎞⎜⎝⎛∂∂+∂∂+∂∂=++=+……中交叉项之和为0时,u, v, w 正交。

此时22w 22v 22u 2dw h dv h du h )ds (++=其中 h u 、h v 、h w 称为广义正交曲线坐标系中各坐标系的拉梅系数:2222uu z u y u x h ⎟⎠⎞⎜⎝⎛∂∂+⎟⎠⎞⎜⎝⎛∂∂+⎟⎠⎞⎜⎝⎛∂∂= (A1-1)v h 、w h 的表达式与上式相当。

2. 单位矢量: 设矢径z ˆz y ˆy xˆx )w .v ,u (++=r ,其中z ˆ,y ˆ,x ˆ为笛卡儿坐标的单位矢量,则可求出广义正交曲线坐标的单位矢量分别为wh 1w ,u h 1v ,u h 1u w v u ∂∂=∂∂=∂∂=rr r (A1-2)3. 长度元、面积元、体积元: 在w ,v ,u 方向上的长度元为w ˆdw h ,v ˆdv h ,uˆdu h w u u (A1-3) 单位法线矢量为w ˆ,v ˆ,uˆ的面积元分别为 dudv h h ,dwdu h h ,dvdw h h v u u w w v (A1-4)而体积元为dudvdw h h h w v u4. 常用坐标系:常用坐标系的w ,v ,u 和u h 、v h 、w h 见下表:A1.2 矢量微分算符1. 梯度、散度、旋度、方向导数和拉普拉斯算符Vd limgrad 0V ∆φ=φ∫∫→∆S (A1-6) Vlimdiv 0V ∆•=∫∫→∆A dS A (A1-7) Vlimrot 0V ∆×=∫∫→∆A dS A (A1-8) φ•≡φgrad )grad (S S (A1-9) S)grad (∂∂•≡AS A S (A1-10) 拉普拉斯算符△作用于标量φ=∆•φ=φ∆∫∫→∆grad div Vgrad limSV ds (A1-11)拉普拉斯算符作用于矢量A -A A rot rot div grad =∆ (A1-12)上列各式中(A1-11)及(A1-12)为二次微分运算,其余为一次微分运算。

13矢量微分算子

13矢量微分算子

ex

y
ey

z
ez
)

A

x
(ex

A)

y
(ey

A)

z
(ez

A)

Ax x

Ay y

Az z


A

x
(ex

A)

y
(ey

A)

z
(ez

A)

x
(
Ay ez

Az e y
1)对于任何▽,可以将▽看作普通矢量进行矢量代数的恒等变 换,所得结果不变。但是在变换中不能将▽后面的函数移到▽ 的前面(除非此函数视为常数),而若把▽前面的函数移到▽ 的后面时应在此函数上加注下标c,以表示它被视为常数。 2)如果在▽的后面有两个函数相乘(包括数乘、点乘和叉乘), 那么▽可表示为两项之和。在其中一项中,前一函数视为常数, 不受微分影响,而在另一项中,后一函数视为常数,不受微分 影响。
4
例2: (A B) ?
( A B) ( Ac B) ( A Bc )(*)
由矢量代数恒等式
A (B C) ( AC)B ( A B)C B( AC) C( A B)
可得 (Ac B) A( B) ( Ac)B A( B) (A)B
例1:求 f 在直角坐标系中的展开式。
f

x
ex
f

y
ey
f

z
ez
f
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h) h
f (x0 ) .
f ( x0 )
lim
x x0
f (x) f (x0 ) . x x0
应当指出,函数 f(x) 的导数 f ´(x) 本身也是x的一 个函数,因此我们可以再取它对x的导数,这叫函 数 y = f(x) 的二阶导数。
y f (x) d 2 y d ( dy ) d f (x) dx2 dx dx dx
19
2) 矢量积(叉积、外积) A B C 是一个轴矢量
大小:平行四边形面积
C A B ABsin (0 )
C
B A
精品课件
绪论
方向:右手螺旋
20
绪论
矢积的性质:
A B B A
A ( B C) A B AC
A A 0
A(BC) B( A•C) C( A• B)
精品课件
18
直角坐标系下的表示
因为X、Y、Z轴相互垂直,所以
i i 1; i j 0;
j j 1; i k 0;
k k 1 jk 0
A B (Axi Ay j Azk ) (Bxi By j Bzk )
Ax Bx Ay By Az Bz
精品课件
R
D
C AB
R ABCD
精品课件
14
绪论
2) 矢量的数乘
大小
A
C
方向
C A 0 C平行于 A
0 C平行于-A
结合律: ( A) ( ) A 分配律: ( A B) A B
精品课件
15
绪论
3) 矢量的分解 在一个平面内,若存在两个不共线的矢量 e1和e2 则 平面内的任一矢量可以分解为:
矢量的混合积 结果为平行六面体的体积 (A B) • C (C A) • B (B C) • A
(B A) • C
精品课件
21
直角坐标系下的表示(右手系)
z
z
右手系
左手系
y
x
x
i j k; j i k; i i 0;
y
jk i k j i j j 0
精品课件
9
一单位
A
A
A
A
矢量的图示
等矢量
负矢量
矢量平移(大小和方向不变),矢量不变
A
A
A
B
B
B
精品课件
10
•矢量的模与单位矢量
矢量的大小称为矢量的模,用 A 或 A 表示
矢量 eA ,其模为1、方向与 A 相同,称为 A 单位矢量
A AeA
精品课件
11
直角坐标系
z
i
k j
y
模:A Ax2 Ay2 Az2
A B ( Ax Bx )i ( Ay By ) j ( Az Bz )k
精品课件
17
•矢量的积
绪论
1) 标量积(点积、内积) 两个矢量的点积为一标量。
A B AB cos 为A与B的夹角
若B为单位矢, A B为A在B方向的投影
交换律: A• B B • A 分配律: A• ( B C) A• B A •C
x i 、 j、 k 为X、Y、Z方向的单位矢量。
精品课件
12
矢量运算基本规律
绪论
矢量结合法则 1) 矢量加法:遵从平行四边形定则
交换律: A B B A
结合律: A (B C) ( A B) C
精品课件
13
简化为
C AB
B
A
A
B C AB
矢量合成的三角形法则
f (x) f (x0 ) , x x0
N 沿曲线C M , x x0 ,
切线MT的斜率为 k tan lim f ( x) f ( x0 ) .
精品课x件 x0
x x0
24
2)导数的定义
定义 设函数 y f (x)在点 x0的某个邻域内 有定义, 当自变量 x在 x0处取得增量x (点 x0 x 仍在该邻域内)时, 相应地函数 y取 得增量y f (x0 x) f (x0 ); 如果y与 x之比当x 0时的极限存在, 则称函数
A A1e1 A2 e2
常用 e1e2 称为正交分解
三维空间中应有3个不共面的矢量

精品课件
16
•矢量在直角坐标系下的表示 (二维推广到三维)
y
Ay
A
A Axi Ay j
Ax x
模: A Ax2 Ay2
A B ( Ax Bx )i ( Ay By ) j
三维: A Axi Ay j Azk
y f (x)在点 x0处可导, 并称这个极限为函
数 y f (x)在点 x0处的导数, 记为y xx0 ,
dy dx

x x0
df (x) dx
, x x0
精品课件
25

y
x x0
y lim x0 x
lim
x0
f ( x0
x) x
f (x0 )
其它形式
f
( x0 )
lim
h0
f (x0
k i j i k j k k 0
精品课件
22
A B ( Axi Ay j Azk ) (Bxi By j Bzk )
( AyBz AzBy )i ( AzBx AxBz ) j ( AxBy AyBx )k
写成行列式
i
j
k
A B Ax Ay Az Bx By Bz
精品课件
23
4. 导数
y
1)问题的提出——切线问题
如图, 如果割线MN绕点M旋 转而趋向极限位置MT,直线 MT就称为曲线C在点M处的 切线.
极限位置即
o
y f (x)
N
CM
x0
T
xx
MN 0, NMT 0. 设 M ( x0 , y0 ), N ( x, y).
割线MN的斜率为
tan y y0 x x0
精品课件
27
4)由定义求导数 步骤: (1) 求增量 y f ( x x) f ( x);
依此类推,可以定义高阶导数。
精品课件
26
3)导数的几何意义
f ( x0 )表示曲线 y f ( x) y 在点M ( x0 , f ( x0 ))处的 切线的斜率,即
f ( x0 ) tan , (为倾角)
o
y f (x)
T M
x0
x
切线方程为 y y0 f ( x0 )( x x0 ).
矢量分析、微积分 知识初步
精品课件
绪论
3. 矢量 矢量
•矢量和矢标量理和标量
普通物理中的物理量大致分为两类:标量和矢量 标量:只有大小(一个数和一个单位)的量,
例如:质量、长度、时间、密度、能量、温 度等。 矢量:既有大小又有方向的量,并有一定的运算规则,
例如:位移、速度、加速度、角速度、力矩、电 场强度等。
相关文档
最新文档