最新大学化学第三章
大学普通化学---第三章PPT课件
粒子数 蒸气压 沸点 凝固点 渗透压
BaCl2 →HCl → HAc → 蔗糖 蔗糖 → HAc → HCl → BaCl2 BaCl2 → HCl → HAc → 蔗糖 蔗糖→ HAc → HCl → BaCl2 BaCl2 → HCl → HAc → 蔗糖
-
22
第三章
从部分电解质的0.1mol·kg-1溶液的凝固点下降数值与理论 值的比较可以得到电解质溶液的偏差 i 值
-
2
第三章
3.1 溶液的通性 3.2 水溶液中的单相离子平衡 3.3 难溶电解质的多相离子平衡 3.4 胶体与界面化学 3.5 水污染及其危害
-
3
第三章
3.1 溶液的通性
溶液有两大类性质:
1)与溶液中溶质的本性有关:溶液的颜色、密度、酸 碱性和导电性等;
2)与溶液中溶质的独立质点数有关:而与溶质的本身 性质无关————溶液的依数性,如溶液的蒸气压、 凝固点、沸点和渗透压等。
-
10
第三章
蒸气压下降的应用
测定溶质分子的相对摩尔质量
设质量为WB的溶质溶于质量为WA的溶剂中,则有: ppAW A/M W A B/M W B B/MB
干燥剂工作原理
CaCl2、NaOH、P2O5等易潮解的固态物质,常用作干 燥剂。因其易吸收空气中的水分在其表面形成溶液,该 溶液蒸气压较空气中水蒸气的分压小,使空气中的水蒸 气不断凝结进入溶液而达到消除空气中水蒸气的目的。
为酸碱共轭关系。酸失去质子后形成的碱被称为该
酸的共轭碱;碱结合质子后形成的酸被称为该碱的
共轭酸。共轭酸与它的共轭碱一起称为共轭酸碱对。
例如:
共轭酸碱对
HAc + H2O H3O+ +NH3 H2O+ CNH2O+ CO32-
大学普通化学第六版第3章精品课件
一、多相离子平衡
CaCO3(s)
Ca2+(aq) + CO32-(aq)
平衡常数表达式为:
Ks ceq(Ca2)/c ceq(CO32)/c 简写:为 Ks ceq(Ca2)ceq(CO32)
1.溶度积常数(溶度积)
AnBm(s) = n Am+(aq) + m Bn-(aq)
Ks ceq (Am )n ceq (Bn )m;
共轭酸与它的共轭碱一起称为共轭酸碱对
如在水溶液中 HCl(aq)
HAc(aq)
NH4+(aq) HCO3-(aq) Al(H2O)63+
酸
H+(aq) +Cl-(aq)
H+(aq) +Acˉ(aq)
H+(aq) +NH3(aq) H+(aq) + CO32-(aq)
H+(aq)+ Al(H2O)5(OH-)2+ 质子 + 碱
ΠV nRT Π cRT
二.电解质溶液的通性 1.电解质溶液不服从拉乌尔定律.
2.电解质溶液的蒸汽压、沸点、熔点的改变和渗透压数值都比非电解质大。
3.溶液依数性的一般规律: A2B(AB2)强电解质>AB强电解质>AB弱电解质>非电解质
例3.1 将质量摩尔浓度均为0.10 mol·kg-1的BaCl2, HCl, HAc, 蔗糖水溶液的粒子数、蒸气压、沸点、凝固 点和渗透压按从大到小次序排序:
Δp = pA·xB xB: 溶质B在溶液中的摩尔分数, pA: 纯溶剂的蒸汽压。
2. 溶液的沸点上升
溶液的沸点上升:难挥发物质的溶液的沸点总是高于纯溶剂的 沸点.
大学化学 第三章 化学平衡
第二节 平衡常数
一、经验平衡常数 定义:在一定温度下,可逆反应达平衡时,各生成物的浓度 (或分压力)以化学计量数为幂的乘积与各反应物的浓度 (或分压力)以化学计量数为幂的乘积之比是一个常数,称 为经验平衡常数(或实验平衡常数)。
平衡常数 1、浓度平衡常数
实 验 编 号 1 2 3 4
H ( gIg ) ( ) 2 H I ( g )( 7 1 8 K ) 2 2
5 M n ( ) p 2 2
K
nO 2 H M H2O
2 4 5
6
平衡常数 2、多重平衡规则 如果一个化学反应是若干个分反应的代数和(差), 在相同温度下,这个化学反应的标准平衡常数就等于分 反应的标准平衡常数的积(商)。 假设有三个化学方程式①,②和③,它们之间与其平衡 常数之间的关系为: (1)化学方程式③= ①+②,则K3=K1· K2 (2)化学方程式③= ①-②,则K3=K1/K2 (3)化学方程式③= n×①,则K3=K1n
化学反应等温式
S O ( g ) O ( g ) 2 S O ( g ) 例3-3:求化学反应 2 2 2 3 在600K时的平衡常数Kθ。
解:计算600K时的
fHm /kJ.mol-1
0.0079 0.0192 0.0257 0.00205 0 0
0.0400 0.00435 0.00435
平衡常数 大量实验证明,对任一化学反应
A BY Z( 5 . 1 ) A B Y Z
在一定温度下,当反应达到平衡时
Y Z [ Y ] [ Z ] K ( 常 数 ) c A B [ A ] [ B ]
( 5 . 2 )
大学化学 第3章
分体积定律
分体积:指混合气体所处的温度、压力下,各组分气体单独 存在时所占的体积。 分体积定律:气体混合物的总体积是各组分气体分体积之和。
V = V1 + V2 + ……Vi
PVi = niRT
由
PV=nRT Pi P ni n
PiV=niRT = xi
得
=
称为摩尔分数
同理,由 PV=nRT Vi V ni n
讨论 对上述三种不同的化学反 应方程式,其标准平衡常数的关 系为:
K1 (K2 )2
K1 1/ K3
1 / 2 N 2 ( g ) 3 / 2 H 2 ( g ) NH 3 ( g )
K
2
( PN2 / P )1/ 2 ( PH 2 / P )3 / 2
rGΘm,T 为温度T下反应的标准Gibbs函数变; R T 是摩尔气体常数(8.314J·mol-1·K-1); 是反应温度(K);
J
为反应商;
J 为反应商
对于反应:
aA(g) bB(aq) pC(s) qD(g)
(pD/pӨ)q
J =
[c(B)/cӨ]a [pA/pӨ]b
对于气体反应,J 为相对压力商; 对于溶液中的反应,在反应物和生成物的浓 度都不大时,J 为相对浓度商(物质的量度浓); 写该等温式时,固体和纯液体不计入式中。
第三章
化学平衡和化学
反应速率
3.1
化学平衡
3.2
化学平衡系统的计算
3.1
化学平衡
3.1.1 分压定律 3.1.2 非标准态反应Gibbs函数变 3.1.3 化学平衡
3.1.4 多重平衡法则
3.1.1
大学化学第三章 总结
总结—化学平衡
反应限度的判据 rGm(T) = 0 标准平衡常数K
aA bB gG dD
eq θ g eq θ d eq θ g eq θ d { p / p } { p / p } { c / c } { c / c } eq θ eq G D G D Q eq θ a eq θ b =K Q eq θ a eq θ b K θ {p A /p } {p B /p } {c A /c } {c B /c }
H (298.15 K) S (298.15 K) ln K (T ) RT R
θ θ m θ m
(3) 多重平衡求KӨ
总结—反应速率
浓度对反应速率的影响(质量作用定律)
kc c α β γ kcAcBcC
aA bB yY zZ
a b A B
温度对反应速率的影响(阿伦尼乌斯方程)
Байду номын сангаас
θ θ θ rGm (T ) r Hm (298.15K) T r Sm (298.15K)
吉布斯(亥姆霍兹)等温方程
rGm (T ) rG (T ) RT ln Q
θ m
热力学等温方程
总结—反应方向判据
反应自发性的判据
∆G < 0 自发过程,反应正向进行 ∆G = 0 平衡状态 ∆G > 0 非自发过程,反应逆向进行
标准平衡常数K与标准摩尔反应吉布斯函数rGm的 关系
θ G θ r m (T ) ln K Kθ = exp(- △rGθm /RT) RT
总结—化学平衡
温度对化学平衡的影响 范特霍夫等压方程式
θ θ Δ S Δ H lnK θ r m r m R RT θ θ θ K2 r Hm r Hm T2 T1 1 1 ln θ ( ) ( ) K1 R T2 T1 R T1T2
大学有机化学第三章 烯烃和炔烃
CH3 → CH=CH2 + HX
CH3CH—CH3 X
马代规则是 不对称试剂与双键发生亲电性加成时, 试剂中正电性部分主要加到能形成较稳定正碳离子 的那个双键碳原子上。 + CH3CHCH3 δ+ δ-
CH3—CH=CH2 + H+
HX分子中的氢以H+ 质子形式发生反应,因此称为亲电试剂
CH3CH2CH2
CH3
顺反异构命名与Z .E命名规则不相同,不能混为一 谈,两者之间没有固定的关系
例如:
Cl Cl C=C CH3 H (Z)-1 , 2-二氯丙烯 顺-1 , 2-二氯丙烯 H C H ‖ C H H 大 Br
Cl
C=C
CH3
Cl 大
Cl C COOH ‖ C Br Cl
(E)-1 , 2-二氯-1-溴丙烯 顺--1 , 2-二氯-1-溴丙烯 CH3 C H ‖ C H H
次产物
因此 1.1.1-三氟-3-氯丙烷是主要产物
2. 加硫酸
R-CH=CH2 + HOSO2OH H3PO4 300℃ 7Mpa R-CHCH3 H2O RCH-CH3 OSO2OH OH (间接水化法制备醇) CH3CH2OH
CH2=CH2 + H2O
3. 加卤素
CH2 = CH2 + X2
CH2 = CH2 + Br2/CCl4 Br2/H2O CH2—CH2 X X CH2-CH2 Br Br
如遇到含多个双键化合物而主链编号有选择时,则编号应从 顺型双键的一端开始 4 1 如 3 2 CH3 H 6 5 CH2 C=C 7 C=C H H H CH3 顺· 反-2.5-庚二烯
四、物理性质 五. 化学性质
大学化学第三章
第3章氧化还原反应电化学3.1 本章小结3.1.1. 基本要求(包括重点和难点)第一节氧化数的概念第二节电极反应、电池符号、电极类型电动势、电极电势(平衡电势)、标准电极电势能斯特方程、离子浓度及介质酸碱性改变对电极电势的影响及计算原电池电动势与吉布斯函数变的关系利用电极电势判断原电池的正负极、计算电动势、比较氧化剂与还原剂的相对强弱氧化还原反应方向的判据计算氧化还原反应的平衡常数并判断氧化还原反应进行的程度第三节分解电压(理论分解电压、实际分解电压、超电压)电解产物(盐类水溶液电解产物)第四节金属的腐蚀:化学腐蚀、电化学腐蚀(析氢腐蚀、吸氧腐蚀)金属腐蚀的防止3.1.2. 基本概念第一节氧化与还原: 对于一个氧化还原反应,得到电子的物质叫做氧化剂,失去电子的物质叫做还原剂。
氧化剂从还原剂中获得电子,使自身氧化数降低,这个过程叫做还原;还原剂由于给出电子而使自身氧化数升高,这个过程叫做氧化。
还原剂失去电子后呈现的元素的高价态称为氧化态,氧化剂获得电子后呈现的元素的低价态称为还原态。
氧化数: 指化合物分子中某元素的形式荷电数,可假设把每个键中的电子指定给电负性较大的原子而求得。
氧化数的计算遵循以下规律:(1)单质氧化数为0(2)简单离子的氧化数等于该离子所带的电荷数(3)碱金属和碱土金属在化合物中的氧化数分别为+1、+2(4) 氢在化合物中氧化数一般为+1,在活泼金属氢化物中的氧化数为-1。
(5) 化合物中氧的氧化数一般为-2,但在过氧化物中,其氧化数为-1,在超氧化物中为-21,在氧的氟化物OF 2和O 2F 2中氧化数分别为+2和+1。
(6) 在所有的氟化物中,氟的氧化数为-1(7) 在多原子分子中,各元素氧化数的代数和为0,多原子离子中,各元素的氧化数的代数和等于离子所带的电荷数;在配离子中,各元素氧化数的代数和等于该配离子的电荷第二节原电池(电池符号) 利用氧化还原反应产生电流,使化学能转变为电能的装置叫做原电池。
最新大学无机及分析化学第三章化学动力学题附答案
大学无机及分析化学第三章化学动力学题附答案第三章化学动力学基础一判断题1.溶液中,反应物 A 在t1时的浓度为c1,t2时的浓度为c2,则可以由 (c1-c2 ) / (t1 - t2 ) 计算反应速率,当△t→ 0 时,则为平均速率。
......................................................................()2.反应速率系数k的量纲为 1 。
..........................()3.反应2A + 2B → C,其速率方程式v = kc (A)[c (B)]2,则反应级数为 3。
................()4.任何情况下,化学反应的反应速率在数值上等于反应速率系数。
..........()5.化学反应3A(aq) + B(aq) → 2C(aq) ,当其速率方程式中各物质浓度均为 1.0 mol·L-1时,其反应速率系数在数值上等于其反应速率。
......................................................................()6.反应速率系数k越大,反应速率必定越大。
......()7.对零级反应来说,反应速率与反应物浓度无关。
...........................................()8.所有反应的速率都随时间而改变。
........................()9.反应a A(aq) + b B(aq) → g G(aq) 的反应速率方程式为v = k [c (A)]a[ c(B)]b,则此反应一定是一步完成的简单反应。
........................()10.可根据反应速率系数的单位来确定反应级数。
若k的单位是 mol1-n·L n-1·s-1,则反应级数为n。
新大学化学第3章答案
3.2习题及详解一.判断题1. 在25℃及标准状态下测定氢的电极电势为零。
( X )2. 已知某电池反应为,21212B A B A +→+++而当反应式改为B A B A +→+++222时,则此反应的E Θ不变,而Δr G m Θ改变。
( √ ) 3. 在电池反应中,电动势越大的反应速率越快。
( X ) 4. 在原电池中,增加氧化态物质的浓度,必使原电池的电动势增加。
( X ) 5. 标准电极电势中θE 值较小的电对中的氧化态物质,都不可能氧化θE 值较大的电对中 的还原态物质。
( X ) 6. 若将马口铁(镀锡)和白铁(镀锌)的断面放入稀盐酸中,则其发生电化学腐蚀的阳极反应是相同的。
( X )7. 电解反应一定是0,0<∆>∆G G r r θ的反应。
( X ) 8. 超电势会导致析出电势高于平衡电势。
( X )二.选择题1. 下列关于氧化数的叙述正确的是( A )A.氧化数是指某元素的一个原子的表观电荷数B.氧化数在数值上与化合价相同C.氧化数均为整数D.氢在化合物中的氧化数皆为+12. 若已知下列电对电极电势的大小顺序E Θ(F 2/F -) > E Θ(Fe 3+/Fe 2+) > E Θ(Mg 2+/Mg) >E Θ(Na +/Na),则下列离子中最强的还原剂是( B )A.F -B.Fe 2+C.Na +D.Mg 2+3. 已知电极反应Cu e Cu →+-+22的标准电极电势为0.342V ,则电极反应+-→-2242Cu e Cu 的标准电极电势应为( C )A.0.684VB.-0.684VC.0.342VD.-0.342V 4. 已知E Θ(Ni 2+/Ni)= -0.257V ,测得镍电极的E(Ni 2+/Ni)= -0.210V ,说明在该系统中必有( A )A.121)(-+⋅>kg mol Nim B. 121)(-+⋅<kg mol Ni mC. 121)(-+⋅=kg mol Ni mD.)(2+Ni m 无法确定 5. 下列溶液中,不断增加H +的浓度,氧化能力不增强的是( D )A.MnO 4-B.NO 3-C.H 2O 2D.Cu 2+ 6. 将下列反应中的有关离子浓度均增加一倍,使对应的E 值减少的是( C )A.Cu e Cu →+-+22B. +-→-22Zn e ZnC. --→+Cl e Cl 222D. +-+→+242Sn e Sn7. 某电池的电池符号为(-)Pt|A 3+,A 2+ ¦¦ B 4+,B 3+|Pt(+),则此电池反应的产物应为( B )A. A 3+, B 4+B. A 3+, B 3+C. A 2+, B 4+D. A 2+, B 3+ 8. 在下列电对中,标准电极电势最大的是( D )A.AgCl/AgB.AgBr/AgC.[Ag(NH 3)2]+/AgD.Ag +/Ag 9. A 、B 、C 、D 四种金属,将A 、B 用导线连接,浸在稀硫酸中,在A 表面上有氢气放 出,B 逐渐溶解;将含有A 、C 两种金属的阳离子溶液进行电解时,阴极上先析出C ;把D 置于B 的盐溶液中有B 析出。
大学化学第三章离子平衡
酸性:HCl> NH4+, 碱性:NH3> Cl-
7
第三章课堂练习 以下物质,哪些是酸?写出其共轭碱。 哪些是碱?写出其共轭酸。 哪些是酸碱两性物质?
HAc, NH3, H3PO4
Ac-, NH4+, H2PO4-, HPO42-, PO43-, HS- ,
H2O, H3O+,Cl-,
第三章 水溶液中离子平衡
(第二版第九、十一章,第三版第九章)
§3.1 稀溶液的浓度表示法 §3.2 酸碱理论 §3.3 酸和碱在水溶液中的解离平衡 §3.4 酸碱缓冲溶液 §3.5 酸碱指示剂 §3.6 难溶强电解质的沉淀-溶解平衡
1
§3.1 稀溶液的浓度表示法
二版P13,三版P13
§3.3 酸和碱在水溶液中的解离平衡 3.3.1 一元弱酸和弱碱的解离平衡 n 3.3.2 多元弱酸(碱)的解离平衡 n 3.3.3 离子酸、离子碱的解离平衡
n §3.4 酸碱缓冲溶液 §3.5 酸碱指示剂 §3.6 难溶强电解质的沉淀-溶解平衡
12
§3.3 酸和碱在水溶液中的解离平衡
质量摩尔浓度 bB
[例3.1] 23克乙醇溶于 500克水中,此溶液的 密度是0.992g∙ml-1。 计算:
bB
溶质B的物质的量(mol) 溶剂的质量(kg)
(23 / 46)mol 1mol kg 1 0.500kg
物质的量浓度cB
CB
溶质B的物质的量(mol) 混合物体积(dm3 )
c OH c Kb
pH 14 pOH
c(H ) KW / c(OH ) 1014 / 1.00 103
大学化学专业第三章电化学反应动力学
表 2.1 一些电化学反应的标准速率常数
电极反应 Bi3+ + 3eCd2+ + 2eCe4+ + eCr3+ + eCs+ + eFe3+ + eHg+ + eNi2+ + 2ePb2+ + 2eTl+ + eZn2+ + 2eZn2+ + 2eZn2+ + 2e-1
Bi Cd Ce3+ Cr2+ Cs Fe2+ Hg Ni Pb Tl Zn Zn
将以上两式带回到公式
得到: i ic ia nFA k f cOs kbcRs
Butler-Voluner方程
也称为电化学反应的基本方程
这一表达式是首先由Butler和Voluner 推出的,所以这一表达式以及其相关的动力 学表达式都称为Butler-Voluner方程,以纪 念他们在这一领域的杰出贡献。
假定电极电位在0 V时的阴极反应活化能和阳 极反应活化能各为G0,c <G0,a,若电极电位从0 V向正方向移动到+ ,则电极上电子的能量将改 变-nF(能量下降),
O ne R
Ga Go,a 1 nF Gc Go,c nF 1 nF
2. 速率常数与温度的关系
实验表明,溶液中的大多数反应,其速率常数随温度
的变化符合Arrhenius公式。事实上任何形式的电极反应,
其活化焓 式:
与速H率常数之间的关系也符合Arrhenius公
k Aexp H / RT
A是指前因子。在电子转移反应中,离子氛重排是基本步 骤,这步骤包含活化熵ΔS≠(activation entropy)。重新
大学 无机化学 第三章 酸碱平衡
Ka = 1.3 10 5
HCl HAc = H 2 Ac Cl
Ka = 2.8 10 9
二、酸碱质子理论 4.酸碱的强弱 由此可见:为了定量地表示质子论中的各种酸碱的相对强弱, 我们必须用一两性物质作为基准物-- H2O HAc + H2O Ac+ H2 O Ac- + H3 O+
+ pOH =pKw= 14
=1.08%
影响电离度a的因素 内因 影响因素 外因 a. 溶剂的性质 b.温度 c. 浓度 电解质的结构
提示:今后提及电离度时,必须同时指出溶液的浓度。
二、强电解质溶液 根据现代结构理论,强电解质在溶液中完全电离,从理论上
来说,电离度应该是100%,但实验测得的结果却表明小于100%。
实验值
二、酸碱质子理论
1.将不同强度的酸碱均化到相同强度水平,这种效应称为拉平效应。
HClO4 H 2O H 3O ClO4
HCl H 2O H 3O Cl
区分性试 剂
2.能区分酸、碱强弱的效应称为区分效应。
HClO4 HAc = H 2 Ac ClO4
-
一、酸碱电离理论 局 限 性: 1.仅限于水溶液,无法说明物质在非水溶液中的酸碱问题。 如:在液氨中,NH4+与NaNH2的反应。 NH4+ + NH22 NH3
非水滴定
2.把碱限制为氢氧化物,对Na2CO3、Na3PO4等本质上具有碱性
无法说明。
二、酸碱质子理论
1923年布朗斯特(J.N.Bronsted)提出了酸碱质子理论。 酸: 能给出质子的物质,即质子的给体。 如:HCl → H+ + Cl碱: 能与质子结合的物质,即质子的受体。
大学有机化学第三章不饱和脂肪烃
01
绿色合成
发展绿色合成方法,减少不饱和脂肪烃 合成过程中的环境污染和资源浪费,是 可持续发展的重要方向。
02
03
循环经济
通过循环利用不饱和脂肪烃,实现资 源的最大化利用,同时降低对环境的 负面影响。
跨学科研究的趋势与展望
化学与其他学科的交叉
不饱和脂肪烃的研究涉及到化学、生物学、医学、材料科学等多个学科领域,跨学科合作将有助于推动不饱和脂肪烃 的深入研究和发展。
烯烃的化学性质主要取决于碳碳双键,可以发生 加成、氧化、聚合等反应。
炔烃
01
炔烃的通式为CnH2n-2,其中含有两个碳碳三键。
02
炔烃的稳定性比烯烃更低,因为碳碳三键更容易受到亲电攻 击。
03
炔烃的化学性质与烯烃相似,但三键的反应活性更高,可以 发生加成、氧化、聚合等反应。
共轭二烯烃
01
02
03
烯烃的合成与转化
烷烃的热裂
在加热条件下,烷烃可以发生热裂反 应,生成烯烃和氢气。
醇的脱水
在酸催化下,醇可以发生脱水反应, 生成烯烃和水。
烯烃的合成与转化
• 炔烃的还原:通过还原炔烃的碳碳三键, 可以得到相应的烯烃。
烯烃的合成与转化
加氢反应
烯烃可以与氢气在催化剂的作用下发生加氢反应,生 成相应的烷烃。
烯烃的1,2-加成反应:在催化剂的作用 下,两个烯烃分子可以发生1,2-加成反 应,生成共轭二烯烃。
共轭二烯烃的转化
04 不饱和脂肪烃在工业和生 活中的应用
工业应用
01 02
塑料和合成橡胶生产
不饱和脂肪烃,如乙烯和丙烯,是塑料和合成橡胶的主要原料。它们通 过聚合反应形成高分子聚合物,广泛应用于包装、建筑材料、汽车部件 等领域。
大学化学第三章
渗透压的作用
1.半透膜
只允许小分子通过,不允许大分子通过 的膜。
2.渗透
定义
a b
B室(H2O)
溶剂分子通过半透膜向溶液方向移动的现象。
d c
半透膜
H2O
A室(糖水)
H2O
产生渗透的条件
存在半透膜 半透膜两侧浓度不同
(高、低、等)渗溶液
渗透现象会无止境地进行下去吗?
溶液体积逐渐增大,液面不断上升,产生的液体压 力逐渐增大,使溶液中的溶剂分子在单位时间内透 过半透膜的数目增多。当液面上升到一定高度,增 加的液体压力就会抵消由于单位体积内溶剂分子数 目不等而造成的渗透现象。此时单位时间内从半透 膜两侧透过的溶剂分子数目相等,溶液液面不再上 升,体系达到渗透平衡。
nB mB T f K f bB K f Kf mA M B mA
MB K f mB T f mA
1.86o C kg / mol 0.2 g 0.180kg / mol o 0.207 C 10.0 g
四 溶液的渗透压
夏天腌黄瓜为什么“出汤”?
在一密闭罩内,放有浓度不同的两半杯糖水, 长时间放臵两杯溶液浓度各有何变化?为什 么?
解释: 稀的变浓,浓的变稀。因为溶液的蒸气压对稀 溶液饱和,但对浓溶液即为过饱和,所以水蒸 气将在浓度大的一杯水的表面凝结成水,使水 量增加,溶液浓度变小,相反原来稀的溶液溶 剂不断蒸发,溶剂量减少,浓度变大,直到两 杯糖水浓度相同。
农作物施肥后不浇水可使作物脱水枯死。
海水鱼和淡水鱼不能交换生活环境,否则 会导致死亡。 人生病时,应输入等渗溶液(临床上常用 的有9.0g/L的NaCl溶液和50g/L葡萄糖溶 液等),否则血细胞会遭破坏。 当人们所吃的食物过咸时,会感到口渴。 在淡水中游泳时,眼球容易“红胀”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章氧化还原反应电化学3.1 本章小结3.1.1. 基本要求(包括重点和难点)第一节氧化数的概念第二节电极反应、电池符号、电极类型电动势、电极电势(平衡电势)、标准电极电势能斯特方程、离子浓度及介质酸碱性改变对电极电势的影响及计算原电池电动势与吉布斯函数变的关系利用电极电势判断原电池的正负极、计算电动势、比较氧化剂与还原剂的相对强弱氧化还原反应方向的判据计算氧化还原反应的平衡常数并判断氧化还原反应进行的程度第三节分解电压(理论分解电压、实际分解电压、超电压)电解产物(盐类水溶液电解产物)第四节金属的腐蚀:化学腐蚀、电化学腐蚀(析氢腐蚀、吸氧腐蚀)金属腐蚀的防止3.1.2. 基本概念第一节氧化与还原: 对于一个氧化还原反应,得到电子的物质叫做氧化剂,失去电子的物质叫做还原剂。
氧化剂从还原剂中获得电子,使自身氧化数降低,这个过程叫做还原;还原剂由于给出电子而使自身氧化数升高,这个过程叫做氧化。
还原剂失去电子后呈现的元素的高价态称为氧化态,氧化剂获得电子后呈现的元素的低价态称为还原态。
氧化数: 指化合物分子中某元素的形式荷电数,可假设把每个键中的电子指定给电负性较大的原子而求得。
氧化数的计算遵循以下规律:(1)单质氧化数为0(2)简单离子的氧化数等于该离子所带的电荷数(3)碱金属和碱土金属在化合物中的氧化数分别为+1、+2(4)氢在化合物中氧化数一般为+1,在活泼金属氢化物中的氧化数为-1。
(5) 化合物中氧的氧化数一般为-2,但在过氧化物中,其氧化数为-1,在超氧化物中为-21,在氧的氟化物OF 2和O 2F 2中氧化数分别为+2和+1。
(6) 在所有的氟化物中,氟的氧化数为-1(7) 在多原子分子中,各元素氧化数的代数和为0,多原子离子中,各元素的氧化数的代数和等于离子所带的电荷数;在配离子中,各元素氧化数的代数和等于该配离子的电荷第二节原电池(电池符号) 利用氧化还原反应产生电流,使化学能转变为电能的装置叫做原电池。
原电池由两个电极组成,发生氧化反应的部分称为负极,发生还原反应的部分称为正极。
书写电池符号时,负极写在左边,正极写在右边;以单垂线“|”表示两相界面,同相内不同物质之间用“,”隔开;参与电极反应的气体、液体分别注明压力与浓度;以双虚线“¦¦”表示盐桥,盐桥两边是两个电极所处的溶液。
半电池(电极) 原电池由氧化和还原两个半电池(两个电极)组成,每个半电池(电极)一般由同一种元素不同氧化数的两种物质组成,宏观上表现由电极导体和电极溶液组成,进行氧化态和还原态相互转化的反应。
半反应(电极反应) 半电池中发生的,由同一种元素形成的氧化态物质与还原态物质之间相互转化的反应。
氧化半反应是元素由还原态变为氧化态的过程,而还原半反应是元素由氧化态变为还原态的过程。
半电池中进行的氧化态和还原态相互转化的反应也称做电极反应。
氧化还原电对 构成电极相应的同一元素的氧化态物质和还原态物质称做氧化还原电对。
电极类型大致分为四类:金属—金属离子电极;非金属—非金属离子电极(气体—阴离子电极);氧化还原电极;金属—金属难溶盐电极(氧化物—离子电极)。
电极类型与电极反应 电极符号 电对示例Zn 2++2e - Zn ∣Zn 2+ Zn 2+/ZnO 2+H 2O+4e -- Pt ∣O 2∣OH - O 2/OH -Fe 3++e -Fe 2+ Fe 3+,Fe 2+∣Pt Fe 3+/Fe 2+ Pt ∣ Fe 3+,Fe 2+Hg 2Cl 2(s)+2e 2Hg Hg ∣Hg 2Cl 2∣Cl - Hg 2Cl 2/Hg电极电势 是电极的平衡电势。
对于金属电极而言,即指金属表面与附近含该金属离子溶液形成的类似电容器一样的双电层所产生的电势差,其绝对数值目前是无法得到的;对某一电极来说,其电极电势的相对数值等于在一定温度下,与标准氢电极之间的电势差。
标准电极电势 当构成电极的各物质均处于标准态(纯净气体的分压为100Kpa /或溶液中离子浓度为1.0mol •kg -1/或纯固体/或纯液体)时,与标准氢电极之间的电势差称为标准电极电势。
标准电极电势的物理意义 国际上规定标准氢电极的电极电势为零,其他标准态的待测电极与标准氢电极一起构成原电池,所测得的原电池电动势就是待测电极的标准电极电势。
而标准氢电极是将100Kpa 的纯氢气流通入镀有蓬松铂黑的铂片,并插入到H +浓度为1.0mol •kg -1的酸溶液中,这时,氢气被铂黑吸附,被氢气饱和了的铂电极就是标准氢气电极,其电极符号是H +(1.0mol •kg -1) |H 2(100Kpa )|Pt 。
能斯特方程式 用于表示当电极处于非标准态时,氧化还原电对的电极电势与溶液中相关离子浓度、气体压力、温度等影响因素的定量关系式:电极电势在氧化还原反应、原电池中的应用(1)判断原电池的正负极和计算电动势。
在原电池中,正极发生还原反应,负极发生氧化反应。
因此电极电势代数值大的为正极,电极电势代数值小的为负极。
正极和负极的电势差就是原电池的电动势,即-+-=E E E 。
(2)判断氧化剂、还原剂的相对强弱水溶液中,θE (氧化态/还原态)值越大,电对中氧化态物质氧化性越强,还原态物质的还原性越弱;θE (氧化态/还原态)值越小,电对中还原态物质还原性越强,氧化态物质的氧化性越弱。
(3)判断氧化还原反应的自发方向电极电势代数值大的电对中的氧化态物质与电极电势代数值小的电对中的还原态物质的反应是可以自发进行的,即E>0,反应能正向自发进行;E<0,反应不可能正向自发进行;E=0,反应处于平衡状态。
(4)判断氧化还原反应进行的程度一定温度下,氧化还原反应进行的程度主要由正、负两个电极标准电极电势的差值决定,差值越大,反应完成的程度越高。
可根据公式θθK z E lg 059.0= 进行定量计算。
第三节 电解池的结构 把化学能转化为电能的装置叫电解池。
电解池由阴极和阳极以及电解液构成。
电解池中与直流电源正极相连的电极称阳极、与直流电源负极相连的电极称阴极。
电子从电源负极沿导线进入电解池的阴极;另一方面又从电解池的阳极离去,沿导线流回电源正极。
这样在阴极上电子过剩,在阳极上电子缺少,电解液(或熔融液)中的正离子移向阴极,在阴极上得到电子,进行还原反应;负离子移向阳极,在阳极上给出电子,进行氧化反应。
放电反应 在电解池的两极反应中,氧化态物质在阴极得到电子或还原态物质在阳极给出电子的过程叫做放电反应。
通过电极反应这一特殊形式,使金属导线中电子导电与电解质溶液中离子导电联系起来。
分解电压 分为实际分解电压和理论分解电压。
能使电解顺利进行的最低电压称为实际分解电压,简称分解电压。
电解池的理论分解电压等于阴阳两极产生的电解产物形成的原电池的反向电动势。
超电压 实际分解电压总是高于理论分解电压。
二者的差值称超电压。
()θθθb b b b zF RT E E //(ln 还原态氧化态)+=超电势 超电势r ir ϕϕη-=,式中ir ϕ——有电流通过时的不可逆电极电势;r ϕ——可逆电极电势。
电极极化 凡是电极电势偏离可逆电极电势的现象都称为电极极化。
电极极化规律是:阳极极化后,电极电势升高,即ηϕϕ+=r ir ;阴极极化后,电极电势降低,即ηϕϕ-=r ir 。
其影响因素与电极材料、电极表面状况、电流密度等有关。
电解产物的分析 从热力学角度考虑,在阳极上进行氧化反应首先得到的是,实际析出电势(考虑超电势因素后的实际电极电势)代数值较小的还原态物质;在阴极上进行还原反应首先是析出实际电极电势代数值较大的氧化态物质。
简单盐类水溶液电解产物的一般情况如下:阴极析出的物质:H +只比电动序中Al 以前的金属离子(K +,Ca 2+,Na +,Mg 2+,Al 3+)易放电。
电解这些金属的盐溶液时,阴极析出氢气;而电解其它金属的盐溶液时,阴极则析出相应的金属。
阳极析出的物质:OH -只比含氧酸根离子易放电。
电解含氧酸盐溶液时,阳极析出氧气;而电解卤化物或硫化物时,阳极则分别析出卤素或硫。
但是,如果阳极导体是可溶性金属,则阳极金属首先放电(阳极溶解)。
第四节金属腐蚀当金属与周围环境接触时,由于发生化学作用或电化学作用而引起材料性能的退化和破坏,叫做金属腐蚀。
金属腐蚀的过程可以按化学反应和电化学反应两种不同机理进行,因此可分为化学腐蚀和电化学腐蚀。
化学腐蚀金属表面直接与介质中的某些氧化性组分发生氧化还原反应而引起的腐蚀称为化学腐蚀,其特点是腐蚀介质为非电解质溶液或干燥气体,腐蚀过程无电流产生。
电化学腐蚀指金属表面由于局部电池形成而引起的腐蚀。
所谓局部电池是指在电解质溶液存在下,金属本体与金属中的微量杂质构成的一个短路小电池。
析氢腐蚀在酸性较强的介质中,金属及其表面杂质形成微型原电池,活泼金属做负极(称做腐蚀电池的阳极)失去电子,而介质中的氢离子在正极(称做腐蚀电池的阴极)得到电子而析出氢气,从而发生析氢腐蚀。
吸氧腐蚀在弱酸性或中性的介质中,金属及其表面杂质形成微型原电池,活泼金属做负极(称做腐蚀电池的阳极)失去电子,而在正极(称做腐蚀电池的阴极)氧气得到电子,生成OH-阴离子,从而发生吸氧腐蚀。
浓差腐蚀(差异充气腐蚀)是吸氧腐蚀的一种形式,它是由于金属表面的氧气分布不均匀而引起的。
溶解氧气浓度较小处的金属做腐蚀电池的阳极,发生金属的溶解反应;溶解氧气浓度较大处的金属做腐蚀电池的阴极,发生氧气获得电子,生成OH -阴离子的反应。
腐蚀的防治方法正确选材、覆盖保护层(金属保护层及非金属保护层)、缓释剂法、电化学保护法(阴极保护法及阳极保护法)、改善环境等。
阴极保护法防腐将被保护金属作为腐蚀电池的阴极,可通过两种途径来实现:一是牺牲阳极保护法。
即将较活泼的金属或合金连接在被保护金属上,构成原电池。
这时较活泼的金属作为腐蚀电池的阳极而被腐蚀,被保护的金属作为阴极而获得保护。
一般常用的牺牲阳极材料有铝合金、镁合金与锌合金等;二是外加电流保护法。
即将被保护金属件与另一不溶性辅助件组成宏观电池,被保护金属件连接直流电源负极,通以阴极电流,实现阴极保护。
阳极保护法防腐利用外加电源,给被保护金属通以阳极电流,使其表面产生耐蚀的钝化膜以达到保护目的。
此法只适于易钝化金属的保护,在强腐蚀的酸性介质中应用较多。
缓蚀剂用来阻止或降低金属腐蚀速率的添加剂称为缓蚀剂。
根据其化学组成,可分为无机和有机两类:(1)无机缓蚀剂 在中性和碱性介质中主要采用无机缓蚀剂,如铬酸盐、重铬酸盐、磷酸盐、碳酸氢盐等,它们主要是在金属的表面形成氧化膜或沉淀物。
(2)有机缓蚀剂 在酸性介质中采用,常见的有乌洛托品(六亚甲基四胺)、若丁(主要成分是二邻苯甲基硫脲)等。