机械零件有限元分析实验报告
有限元分析实验报告(总16页)
有限元分析实验报告(总16页)
有限元分析实验报告是一种以有限元分析为基础的工程设计和实验报告,通常包含物理模型、材料属性、建模及计算过程、结果分析和解释等内容。
1. 引言:本章旨在介绍该实验项目的背景,研究目标,和实验方法。
2. 目的:介绍该实验的目的,研究对象,实验原理,以及实验要求。
3. 材料/模型:介绍使用的实验材料,模型及其属性,如材料弹性模量,材料粘度系数等。
4. 有限元分析:介绍有限元分析的步骤,如几何建模,单元类型选择,加载类型,材料行为等。
5. 结果分析:对实验结果进行分析,从而得出实验所需要的结果。
6. 结论:对实验结果进行总结,并根据实验结果提出合理的结论或建议。
2018-有限元分析报告-范文模板 (8页)
MAXIMUM ABSOLUTE VALUES
力图;
并注明最大位移和最大应力;(除支撑点附
近)
二,分析过程
1、简化模型并创建有限元单元模型图1
图2
(1) 由于结构对称性,现取球形容器的一个截面作为研究对象,如上图所示。
(2) 单元类型选择:plane42
(3) 定义材料属性:EX:2.06E11 泊松比PRXY : 0.3
(4) 创建模型:先后生成两个圆环面,分别为液面以上部分和液面以下部分;
1.2分析任务:分析在板上开不同形状的槽时板的变形以及应力应
变的异同,讨论槽的形状对板强度以及应力集中的影
响。
2. 模型建立
2.1利用前处理器的moldling功能建立板的几何模型。
1)用create画出基本几何要素。
2)用moldling模块的布尔运算得出开方槽的板的几何模型。
2.2定义材料性质,实常数, 单元 类型,最后单元划分。
⑹由于工程实际多采用混凝土现浇工艺,所有构件的连接处视为刚接 ⑺由于拱顶与主梁之间的混凝土的厚度较小,可忽略这部分混凝土,让拱顶与主梁直接接触。
⑻由于桥面的重量较其它杆件大得多,故只考虑桥面的重量。 ⑼计算车辆对桥面的荷载时,不考虑车辆的具体尺寸,将其定义为均布荷载加在桥面上。
五 模型受力分析
在桥面上施加规范规定的10.5kN/m2的公路一级荷载,来模拟车辆对桥的压力。
学 生:於军红
学 号:201X2572
指导教师:张大可
报告日期:201X.12.19
重庆大学
机械工程学院 机械设计制造及其自动化系
二零一二年十一月制
2020年有限元分析报告模板
⑻由于桥面的重量较其它杆件大得多,故只考虑桥面的重量。⑼计算车辆对桥面的荷载时,不考虑车辆的具体尺寸,将其定义为均布荷载加在桥面上。
五模型受力分析
在桥面上施加规范规定的10.5kN/m2的公路一级荷载,来模拟车辆对桥的压力。
2.3定义载荷,将cd边位移设置为0(即将cd边固定),在ab边上施加均匀分布载荷p=20N/mm.
3.计算分析。
3.1位移分析
1)开方槽时的变形情况
2)开圆形槽时的变形情况
3)分析:由上面ansys软件分析结果我们可以清楚地看到不管是方槽还是圆形槽,离固定边越远的地方位移越而开方形槽时最大位移为1.731mm。
3.2应力应变分布
1)开方槽时的应力和应变:
2)开圆形槽时的应力和应变:
班级:土木1204
学号:19
姓名:廖枭
冰
班级:土木1204
学号:23
姓名:梅雨辰
混凝
土上承式空腹式拱桥研究
一引言
本文通过SAP2000软件,对混凝土上承式空腹式拱桥在上部车辆荷载作用下,各个部位的内力和应力的分布进行分析,对强度和刚
重庆大学
机械工程学院机械设计制造及其自动化系
二零**年十一月制
《现代设计方法》有限元部分上机作业题
1题目概况
1.1基本数据:板长300mm,宽100mm,厚5mm,E?2?10N/mm52,泊松比0.27;ac边固定,ab边受垂直于边的向下均布载荷p=20N/mm.
1.2分析任务:分析在板上开不同形状的槽时板的变形以及应力应
3立柱:拱桥与主梁的之间的竖向构件,采用矩形截面,长宽均为1.2m,分别在桥的每隔10m布置1根
南理工有限元分析实验报告
有限元上机实验报告学生专业学生学号学生姓名实验日期南京理工大学机械工程学院一、实验设备机械工程软件工具包Ansys二、实验主要流程和步骤(1)建立有限元模型的几何、输入模型的物理和材料特性、边界条件和载荷的描述、模型检查的整个过程。
具体操作如下: ①定义文件名 ②建模③选用单元类型 ④设定单元的厚度 ⑤设定材料属性 ⑥离散几何模型 ⑦施加位移约束 ⑧施加压强⑨查看最后的有限元模型(2)对建立的有限元模型选择相应的求解器进行求解运算。
(3)对计算结果进行考察和评估,比如绘制应力、变形图,将结果与失效准则进行比较等。
习题11、已知条件简支梁如图3.1.1所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚度t=10mm 。
上边承受均布载荷,集度q=1N/mm 2,材料的E=206GPa ,μ=0.29。
平面应力模型。
X 方向正应力的弹性力学理论解如下:)534()4(622223-+-=h y h y q y x L h q x σ2、目的和要求(1)在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。
(2)计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。
(3)针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。
3、实验步骤(1) 定义文件名, (2)建模,(3)选用单元类型 (4) 设定单元的厚度 (5) 设定材料属性 (6) 离散几何模型 (7)施加位移约束 (8) 施加压强(9) 查看最后的有限元模型 (10) 提交计算 (11) 查看位移(12) 查看模型X 方向应力(13) 查看X 方向上的应力关于X 轴的位移图模型图1MNMXXY Z0.116E-06.232E-06.348E-06.464E-06.580E-06.696E-06.812E-06.927E-06.104E-05APR 13 201309:15:22NODAL SOLUTION STEP=1SUB =1TIME=1USUM (AVG)RSYS=0DMX =.104E-05SMX =.104E-05位移云图1MNMXXY Z-188808-147068-105329-63589-218501989061629103369145108186848APR 13 201309:23:35NODAL SOLUTION STEP=1SUB =1TIME=1SX (AVG)RSYS=0DMX =.104E-05SMN =-188808SMX =186848应力云图1107.036283.180459.324635.468811.612987.7561163.9001340.0441516.1881692.3321868.479(x10**2) 0.1.2.3.4.5.6.7.8.91DISTAPR 13 201309:32:04POST1STEP=1SUB =1TIME=1PATH PLOT NOD1=1NOD2=2X1X 向应力关于X 轴位移图 三角单元三角单元模型1MNMXXY Z0.964E-07.193E-06.289E-06.386E-06.482E-06.578E-06.675E-06.771E-06.867E-06APR 13 201309:42:17NODAL SOLUTION STEP=1SUB =1TIME=1USUM (AVG)RSYS=0DMX =.867E-06SMX =.867E-06三角单元位移图1MNMXXY Z-129669-100854-72038-43223-14408144084322372038100854129669APR 13 201309:43:16NODAL SOLUTION STEP=1SUB =1TIME=1SX (AVG)RSYS=0DMX =.867E-06SMN =-129669SMX =129669三角单元应力云图1104.842224.027343.212462.397581.582700.767819.952939.1371058.3221177.5071296.688(x10**2) 0.1.2.3.4.5.6.7.8.91DISTAPR 13 201309:46:38POST1STEP=1SUB =1TIME=1PATH PLOT NOD1=1NOD2=2X1三角单元X 向应力关于X 轴位移图1MNMXXY Z-158263-123094-87924-52754-17585175855275487924123094158263APR 13 201309:50:47ELEMENT SOLUTION STEP=1SUB =1TIME=1SX (NOAVG)RSYS=0DMX =.867E-06SMN =-158263SMX =158263X 向应力中间最大两边小,有限元解只是一种数值近似与理论解还是有误差的。
机械零件有限元分析——实验报告
中南林业科技大学机械零件有限元分析实验报告专业:机械设计制造及其自动化年级: 2013级班级:机械一班姓名:政学号:20131461I一、实验目的通过实验了解和掌握机械零件有限元分析的基本步骤;掌握在ANSYS 系统环境下,有限元模型的几建模、单元属性的设置、有限元网格的划分、约束与载荷的施加、问题的求解、后处理及各种察看分析结果的法。
体会有限元分析法的强大功能及其在机械设计领域中的作用。
二、实验容实验容分为两个部分:一个是受压作用的球体的有限元建模与分析,可从中学习如处理轴对称问题的有限元求解;第二个是轴承座的实体建模、网格划分、加载、求解及后处理的综合练习,可以较全面地锻炼利用有限元分析软件对机械零件进行分析的能力。
实验一、受压作用的球体的有限元建模与分析对一承受均匀压的空心球体进行线性静力学分析,球体承受的压为 1.0×108Pa,空心球体的径为 0.3m,外径为 0.5m,空心球体材料的属性:弹性模量 2.1×1011,泊松比0.3。
承受压:1.0×108 Pa受均匀压的球体计算分析模型(截面图)1、进入ANSYS→change the working directory into yours→input jobname: Sphere2、选择单元类型ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→ Options…→select K3:Axisymmetric →OK→Close (the Element Type window)3、定义材料参数ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:2.1e11, PRXY:0.3→ OK4、生成几模型生成特征点ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →InActive CS→依次输入四个点的坐标:input:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3)→OK 生成球体截面ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global SphericalANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In ActiveCoord→依次连接 1,2,3,4 点生成 4 条线→OKPreprocessor →Modeling →Create →Areas →Arbitrary →By Lines→依次拾取四条线→OKANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian5、网格划分ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set →拾取两条直边:OK→input NDIV: 10 →Apply→拾取两条曲边:OK →input NDIV: 20 →OK →(back to the mesh tool window) Mesh: Areas,Shape: Quad,Mapped →Mesh →Pick All(in Picking Menu) → Close( the Mesh Tool window)6、模型施加约束给水平直边施加约束ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Displacement→On Lines →拾取水平边:Lab2: UY → OK给竖直边施加约束ANSYS Main Menu: Solution→Define Loads →Apply→Structural →DisplacementSymmetry B.C.→On Lines→拾取竖直边→OK 给弧施加径向的分布载荷ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Pressure →On Lines →拾取小圆弧;OK →input VALUE:1e8→OK7、分析计算ANSYS Main Menu: Solution →Solve →Current LS→OK(to close the solve Current Load Step window) →close8、结果显示ANSYS Main Menu: General Postproc →Plot Results→Deformed Shape…→select Def + Undeformed→OK (back to Plot Results window)Contour Plot→Nodal Solu…→select: DOF solution, 分别选X-Component of displacement + Deformed Shape with undeformed model;Y-Component of displacement + Deformed Shape with undeformed model;Displacement vector sum + Deformed Shape with undeformed model.Contour Plot→Nodal Solu…Stress 下分别选X-Component of stress + Deformed Shape with undeformed model;Y-Component of stress + Deformed Shape with undeformedmodel;Z-Component of stress + Deformed Shape withundeformed model;Von mises stress + Deformed Shapewith undeformed model.查看各后处理结果的数据并回答最后面的问答题。
有限元分析报告(1)
有限元分析报告(1)有限元仿真分析实验⼀、实验⽬的通过刚性球与薄板的碰撞仿真实验,学习有限元⽅法的基本思想与建模仿真的实现过程,并以此实践相关有限元软件的使⽤⽅法。
本实验使⽤HyperMesh 软件进⾏建模、⽹格划分和建⽴约束及载荷条件,然后使⽤LS-DYNA软件进⾏求解计算和结果后处理,计算出钢球与⾦属板相撞时的运动和受⼒情况,并对结果进⾏可视化。
⼆、实验软件HyperMesh、LS-DYNA三、实验基本原理本实验模拟刚性球撞击薄板的运动和受⼒情况。
仿真分析主要可分为数据前处理、求解计算和结果后处理三个过程。
前处理阶段任务包括:建⽴分析结构的⼏何模型,划分⽹格、建⽴计算模型,确定并施加边界条件。
四、实验步骤1、按照点-线-⾯的顺序创建球和板的⼏何模型(1)建⽴球的模型:在坐标(0,0,0)建⽴临时节点,以临时节点为圆⼼,画半径为5mm的球体。
(2)建⽴板的模型:在tool-translate⾯板下node选择临时节点,选择Y-axis,magnitude输⼊,然后点击translate+,return;再在2D-planes-square ⾯板上选择Y-axis,B选择上⼀步移下来的那个节点,surface only ,size=30。
2、画⽹格(1)画球的⽹格:以球模型为当前part,在2D-atuomesh⾯板下,surfs 选择前⾯建好的球⾯,element size设为,mesh type选择quads,选择elems to current comp,first order,interactive。
(2)画板的⽹格:做法和设置同上。
3、对球和板赋材料和截⾯属性(1)给球赋材料属性:在materials⾯板内选择20号刚体,设置Rho为,E为200000,NU为。
(2)给球赋截⾯属性:属性选择SectShll,thickness设置为,QR设为0。
(3)给板赋材料属性:材料选择MATL1,其他参数:Rho为,E为100000,Nu 为,选择Do Not Export。
有限元分析实验报告
学生学号1049721501301实验课成绩武汉理工大学学生实验报告书实验课程名称机械中的有限单元分析机电工程学院开课学院指导老师姓名学生姓名学生专业班级机电研1502班学年第学期2016—20152实验一方形截面悬臂梁的弯曲的应力与变形分析钢制方形悬臂梁左端固联在墙壁,另一端悬空。
工作时对梁右端施加垂直向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。
方形截面悬臂梁模型建立1.1建模环境:DesignModeler15.0。
定义计算类型:选择为结构分析。
定义材料属性:弹性模量为 2.1Gpa,泊松比为0.3。
建立悬臂式连接环模型。
(1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。
(2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图 1.1所示。
图1.1方形截面梁模型:定义单元类型1.2选用6面体20节点186号结构单元。
网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图 1.2所示:图1.2网格划分1.21定义边界条件并求解本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。
(1)给左端施加固定约束;(2)给悬臂梁右端施加垂直向下的集中力;1.22定义边界条件如图1.3所示:图1.3定义边界条件1.23应力分布如下图1.4所示:定义完边界条件之后进行求解。
图1.4应力分布图1.2.4应变分布如下图1.5所示:图1.5应变分布图改变载荷大小:1.3将载荷改为60kN,其余边界条件不变。
UG有限元分析学习(报告)
基于UG的机械优化设计专业:机械设计制造及其自动化班级:机械1083班学号:201013090312学生姓名:谢铮指导教师:彭浩舸2013年6 月13 日基于UG的机械优化设计通过U G对机械零件进行初步建模, 然后根据实际情况把设计模拟成有限元模型, 最后用结构分析模块对其进行优化设计, 既可减少产品的设计周期, 又节约了生产成本, 提高了企业的竞争力。
本课程我们主要对机械运动仿真和有限元分析技术概念、和有限元分析软件使用过程有所了解,以及对UG机械运动仿真和有限元分析使用案例进行分析,更多是需要我们课后的自主学习!下面是学生谢铮对这本课程的理解和认识。
一、机械运动仿真1.1机械运动仿真的概念机械运动仿真是指对于某个待研究的系统模型建立其仿真模型,进而在计算机上对该仿真模型研究的过程。
所以机械运动仿真是通过对系统模型的实验去研究一个真实的系统。
1.2机械运动仿真的应用机械运动仿真作业一门新兴的高科技技术,在制造业产品设计和制造,尤其在航空、航天、国防及其他大规模复杂系统的研制开发过程中,一直是不可缺少的工具,它在减少损失、节约经费、缩短开发周期、提高产品质量等方面发挥了巨大的作用。
在从产品的设计、制造到测试维护的整个生命周期中,机械放着技术贯穿始末。
1.3 一般操作流程及说明⑴建模和装配及了解其工作原理。
⑵建立运动仿真环境。
⑶定义连杆。
⑷定义运动副,其操作分为三步:a)选择运动副要约束的连杆。
b)确定运动副的原点。
c)确定运动副的方向。
⑸定义运动驱动,运动驱动是赋在运动副上控制运动的运动副参数。
⑹仿真解算。
⑺仿真的结果的输出与后处理。
主要是运动分析结果的数据输出和表格、变化曲线输出,进行人为的机构的运动特性分析二、有限元分析技术2.1有限元分析的概念有限元分析是应用有限元法辅助产品设计开发,提高产品的可靠性。
有限元法是根据变分原理求解数学物理问题的一种数值计算方法,将研究对象离散成有限个单元体,单元之间仅在节点处相连接,通过分析得到一组代数的方法,进而求得近似解。
有限元分析报告书【范本模板】
轴流式通风机叶轮与机座有限元分析分析与优化报告书第2 页共47 页目录第一部分机座的有限元分析与优化—-———--—--—--—--———--——---——--——--—- 41。
1 机座分析的已知条件--—--—--—--—-----—-———---—-————--—-—-——-—— 41。
2 材料的力学性能--—--——-—-——--———-——-—--——---—--------—-————--- 41。
3 有限元分析模型——-—-—--—-—--—------——----———-————-———------—-- 41.3.1 分析前的假设--——-——-——---—-———-——-—---———-—---—-————— 41。
3.2 建立分析模型—--—-————--———---—————--—--—-————-——---—— 51。
3.3 建立有限元分析模型—-——-——-————---———--———-----—--—-- 71.4 计算结果——----——----—--—--—--—————---------———-—————————-—---— 71.4.1 变形结果———---—-——-—-—--——-------——-------—-——————-—-—- 71.4.2 应力结果-——-—--————-----——-—-——--—-—--—-——-—--————----— 81.4。
3 路径结果—-——-----——-—----——-—---—-—-—-———--——--————---- 111。
4。
4 分析结果评判-———-----———-----——-———-—-----——--—--—--—- 131.5 机座优化-———-—---—————-—-------——--——--——--——-——-—---——--—---- 141.5。
1 优化参数的确定—-—-—--—---—-——------——--——-----————-—— 141.5。
有限元分析实验报告
有限元分析实验报告有限元分析实验报告一、实验基本要求根据实验指导书的要求能够独立的使用ANSYS 软件操作并在计算机上运行,学会判断结果及结构的分析,学会建立机械优化设计的数学模型,合理选用优化方法,独立的解决机械优化设计的实际问题。
二、实验目的1. 加深对机械优化设计方法的理解2. 掌握几种常用的最优化设计方法3. 能够熟练使用ANSYS 软件操作,培养学生解决案例的能力4. 培养学生灵活运用优化设计方法解决机械工程中的具体实例三、实验软件及设备计算机一台、一种应用软件如ANSYS四、实验内容实验报告例题实训1——衍架的结构静力分析图2-2所示为由9个杆件组成的衍架结构,两端分别在1,4点用铰链支承,3点受到一个方向向下的力F y , 衍架的尺寸已在图中标出,单位: m。
试计算各杆件的受力。
其他已知参数如下: 弹性模量(也称扬式模量)E=206GPa;泊松比μ=0.3;作用力F y =-1000N;杆件的2横截面积A=0.125m.一、 ANSYS8.0的启动与设置图2-2 衍架结构简图1.启动。
点击:开始>所有程序> ANSYS8.0> ANSYS ,即可进入ANSYS 图形用户主界面。
图2-4 Preference 参数设置对话框2.功能设置。
电击主菜单中的“Preference ”菜单,弹出“参数设置”对话框,选中“Structural ”复选框,点击“OK ”按钮,关闭对话框,如图2-4所示。
本步骤的目的是为了仅使用该软件的结构分析功能,以简化主菜单中各级子菜单的结构。
3.系统单位设置。
由于ANSYS 软件系统默认的单位为英制,因此,在分析之前,应将其设置成国际公制单位。
在命令输入栏中键入“/UNITS,SI ”,然后回车即可。
(注:SI 表示国际公制单位)二单元类型,几何特性及材料特性定义1.定义单元类型。
2.定义几何特性。
3.定义材料特性。
三衍架分析模型的建立1.生成节点。
齿轮箱有限元模态分析及试验研究报告
齿轮箱有限元模态分析及试验研究报告齿轮箱是现代机械设备中重要的组成部分,它广泛用于各种机械传动系统中,如车辆、工程机械等。
因此研究齿轮箱的动力学特性对于机械传动系统的设计、优化和性能提升具有重要意义。
本文通过有限元模态分析和试验研究,对齿轮箱的动力学特性进行了分析和研究。
首先进行有限元模态分析,使用ANSYS软件建立了三维齿轮箱模型,并对其进行了固有频率和模态分析。
在分析过程中,设定了模型的约束和加载条件,确保模型模拟的真实性与可靠性。
通过模态分析,得到了齿轮箱的固有频率和模态形态,并且确定出了前几个重要频率的数值。
结果表明,齿轮箱的固有频率主要集中在数百Hz的高频段。
为了验证有限元模态分析结果的准确性,本文设计了试验验证方案。
首先,使用激光精密测量仪对齿轮箱的位移进行测量,并将测试数据存储为动态位移序列。
然后,基于FFT算法对动态位移序列进行频谱分析,得到齿轮箱的频响函数。
最后,通过对比有限元模态分析结果与试验结果,验证模型的准确性和可靠性。
试验结果表明,模型的预测结果与试验结果相符,二者的误差在可接受范围内。
综上所述,本文采用有限元模态分析和试验验证两种方法,对齿轮箱的动力学特性进行了研究。
结果表明,齿轮箱具有较高的固有频率,且主要分布在数百Hz的高频段。
通过试验验证,证明了有限元模态分析方法的准确性和可靠性。
这些结果对于齿轮箱的优化设计、结构改进和性能提升具有重要参考价值。
齿轮箱的有限元模态分析和试验研究,采用了多项相关数据。
在本文中,我们主要关注以下数据:1. 齿轮箱模型的材料性质2. 模型的约束和加载条件3. 模型的固有频率和模态形态4. 齿轮箱的位移测试数据5. 齿轮箱的频响函数6. 模型预测结果与试验结果的误差对于第一项数据,齿轮箱的材料性质是有限元模型分析的关键。
正确的材料参数可以确保分析结果的准确性和可靠性。
在本文中,我们将齿轮箱的材料定义为铸铁,其杨氏模量为169 GPa,泊松比为0.27。
有限元实验报告
有限元实验报告结构有限元分析实验报告姓名:韩如锋学号:0801510115指导⽼师:葛建⽴实验⼀平⾯问题应⼒集中分析⼀、⽬的要求:掌握平⾯问题的有限元分析⽅法和对称性问题建模的⽅法。
通过简单⼒学分析,可以知道本实验问题属于平⾯应⼒问题,基于结构和载荷的对称性,可以只取模型的1/4进⾏分析。
⽤8节点四边形单元分析X=0截⾯σx的分布规律和最⼤值,计算圆孔边的应⼒集中系数,并与理论解对⽐。
⼆、实验过程概述:1、启动ABAQUS/CAE2、创建部件3、创建材料和截⾯属性4、定义装配件5、设置分析步6、定义边界条件和载荷7、划分⽹格8、提交分析作业9、后处理10、退出ABAQUS/CAE三、实验结果:(1)σx应⼒云图:(2)左边界直线与圆弧边交点的σx值为: 2.78935 MPa;(3)左右对称⾯上的σx曲线:四、实验内容分析:a)模型全局σx应⼒分布:σx应⼒集中分布于中⼼圆孔与x、y轴相交的地⽅,且与x轴相交处应⼒为负,与y轴相交处应⼒为正;沿圆周向周围,σx迅速减⼩;沿y⽅向的σx应⼒⼤于沿x⽅向的σx应⼒。
b)应⼒集中系数为 2.78935,⼩于理论值3.0。
误差来源:有限元分析⽅法是将结构离散化,⽹格划分得越稀疏,计算出的结果就越偏离理论值。
五、实验⼩结与体会:通过本次实验,对理论课所学有限元基本⽅法有了⼀个更加直观、深⼊的理解。
通过对Abaqus软件三个步骤:前处理、分析计算、后处理的操作,了解了这款软件的基本应⽤,试验中,遇到诸多问题,仔细思考,加之请教⽼师,逐⼀解决,确实很有收获。
实验⼆平⾯问题有限元解的收敛性⼀、实验⽬的和要求:(1)在ABAQUS软件中⽤有限元法探索整个梁上σx和σy的分布规律。
(2)计算梁底边中点正应⼒σx的最⼤值;对单元⽹格逐步加密,把σx的计算值与理论解对⽐,考察有限元解的收敛性。
(3)针对上述⼒学模型,对⽐三节点三⾓形平⾯单元和8节点四边形平⾯单元的求解精度。
有限元分析(桁架结构)
有限元上机分析报告~学院:机械工程专业及班级:机械设计及其自动化08级7班姓名:***学号:题目编号: 2》1.题目概况结构组成和基本数据结构:该结构为一个六根杆组成的桁架结构,其中四根杆组成了直径为800cm的正方形,其他两根杆的两节点为四边形的四个角。
材料:该六根杆截面面积均为100cm2,材料均为Q235,弹性模量为200GPa,对于直径或厚度大于100mm的截面其强度设计值为190Mpa。
载荷:结构的左上和左下角被铰接固定,限制了其在平面内x和y方向的位移,右上角受到大小为2000KN的集中载荷。
结构的整体状况如下图所示:分析任务】该分析的任务是对该结构的静强度进行校核分析以验算该结构否满足强度要求。
2.模型建立物理模型简化及其分析由于该结构为桁架结构,故认为每根杆件只会沿着轴线进行拉压,而不会发生弯曲和扭转等变形。
结构中每根杆为铰接连接,有集中载荷作用于最上方的杆和最右方杆的铰接点。
单元选择及其分析由于该结构的杆可以认为是只受拉压的杆件,故可以使用LINK180单元,该单元是有着广泛工程应用的杆单元,它可以用来模拟桁架、缆索、连杆、弹簧等等。
这种三维杆单元是杆轴方向的拉压单元,每个节点具有三个自由度:沿节点坐标系X、Y、Z方向的平动。
就像铰接结构一样,不承受弯矩。
输入的数据有:两个节点、横截面面积(AREA)、单位长度的质量(ADDMAS)及材料属性。
输出有:单元节点位移、节点的应力应变等等。
由此可见,LINK180单元适用于该结构的分析。
模型建立及网格划分((1)启动Ansys软件,选择Preferences→Structural,即将其他非结构菜单过滤掉。
(2)选择单元类型:选择Preprocessor→Element Type→Add/Edit/Delete→Add,在出现的对话框中选择Link→3d finit stn 180,即LINK180,点击“OK”(3)选择实常数:选择Preprocessor→Real Constants→Add/Edit/Delete→Add,在出现的对话框中的Cross-sectional area中输入100,点击“OK”。
压缩机腔体有限元分析
有限元上机实验报告题目:压缩机腔体有限元分析1 实验目的本实验的目的是为了对理论知识进行巩固,通过在Ansys中的实际操作加深对有限元的认识,并掌握有限元软件Ansys的具体使用方法,学会遇到操作中实际问题时的应对措施,并顺利解决,同时从问题中看有限元的基本思想,学会工程问题的分析求解。
2 实验设备Ansys 14.0软件,UG 8.0软件,工作站3 三维建模3.1 钢丝绳索建模根据所给工程图,在UG中建立钢丝绳索三维模型。
成型三维模型如图1、图2所示。
图1 压缩机腔体图2 压缩机腔体内部结构3.3 模型材料腔体采用材料为HT200,查资料得HT200的参数为:弹性模量:1.2x105MPa泊松比:0.25密度:7.8g/mm34 模型的预处理进行有限元分析时应进行必要的处理,但必须遵守符合实际情况且不会对最终求解结果造成很大影响的原则。
对零件结果影响不大的细节宜去除,对结构复杂的部分且对计算结果影响不大的部分应该进行简化。
4.1 钢丝绳索的预处理根据上述原则,对图1进行预处理,处理结果如图3所示。
图3 压缩机腔体预处理后模型处理部位:一般的孔是解析上的光滑结构,而且孔边的应力水平对孔光滑程度非常敏感。
而有限元分析中采用的是离散单元,因而在模拟孔边的受力时,计算结果很容易存在误差,然而这部分的计算应力又是往往是很高的,它的存在会影响计算我们对结构整体应力水平的了解,因而很多时候需要隐藏掉孔边的局部结构,只看结构其他部分结构的结果。
因此,在本文中,我们将底座上的螺纹孔及走线孔进行隐藏(删除面)。
腔体边上的倒圆角对整个模型分析影响较小,且划分网格时容易出现不规则单元,在此将其去除。
最后情况如图3所示。
5 有限元分析5.1 参数设置选取单元类型为Solid186(全局)和Sur154(方案2,3,4),整体为结构(Structural)方面的静态分析(static analysis),定义材料的弹性模量:1.2x105MPa,泊松比:0.25,密度:7.8g/mm3。
CATIA有限元分析实验报告设计
目录实验一:CATIA 中的工程分析动臂应力分析问题描述解题思路操作过程实验二:电子样机运动机构模拟四连杆运动机构模拟问题描述解题思路操作过程实验三:电子样机空间分析柴油机燃油供给系中输油泵空间分析问题描述解题思路操作过程感想实验一:装载机动臂应力分析一、问题描述装载机无偏载工作时,动臂承受一定外载荷和来自车架的约束。
动臂结构示意图见图1。
图1在建立模型时,油缸假设为柔性弹簧,A铰点作为动臂的支点,允许动臂绕通过A 铰点的轴转动,B铰点是动臂油缸支点(动臂油缸的刚度假设为2.0e7N_m)。
C铰点和D铰点是外载荷的作用点。
本实例分析的工况是正铲无偏载,载荷、结构同时对称,最好取出模型的一般,通过施加对称约束,进行有限元求解。
二、解题思路1、进入并载入源文件2、前处理(施加约束和载荷)3、求解4、后处理三、操作过程1、进入并载入源文件(1)、打开文件dongbi.CATPART。
(2)、进行有限元分析前的基本设置工作。
(3)、单击Start/Analysis Simulation/Generative Structural Analysis 进入有限元分析模块,选择Static Analysis, 进入静态有限元分析,如图2所示。
图22、前处理●在A点建立刚性虚件,如下图所示。
●限定A点自由度,如下图所示。
●B点建弹簧虚件,如下图所示。
●圆锥角约束,如下图所示。
C点建刚性虚件并施加载荷在C点处创建的刚性虚件,然后利用分布力按钮在Y轴输入-2000N,Z轴输入-2000N。
,如下图所示。
在D点施加载荷在D点处的创建柔性虚件,然后利用分布力按钮在Y轴输入-2000N,Z轴输入-2000N。
用同样的方法在D点右侧的柔性虚件上施加载荷,如下图所示。
3、自动求解●计算冯米斯应力●计算数值位移●编辑图片●排列图片●生成报告按书上步骤做的,详细步骤不在此赘述,见谅。
实验二:电子样机运动机构模拟一、问题描述选择题目一,以四连杆为例来说明在CATIA V5里如何使用DMU单元中的KIN模块的放着分析功能,在KIN模块里,创建运动仿真机构(Designing a V5 Mechanism)的过程是这样的。
有限元分析及理论上机报告
有限元分析及理论上机报告报告(一)Demo7 stress一、问题描述一个承受拉力的平板,在其中心位置有一个小圆孔,其结构尺寸如下图所示,要求分析其结构圆孔处的Mises应力分布。
材料特性:弹性模量E = 210000 MPa,泊松比 =0.3拉伸载荷:P=100MPa平板厚度:d=1mm二、方法概述,建模思路和分析策略1由于薄板只在边缘上受到了平行于板面的并沿厚度均匀分布的力,所以平板处于平面应力状态。
在创建部件(Part)时,薄板的模型所在空间(Space)设置为(2D Planer),绘制图形。
2由于该平板受力模型的结构和载荷是对称的,所以,可以取用模型的1/4进行分析。
其图形如下所示。
3材料为线弹性材料,其材料属性设置为Elasticity中的Elastic,设置其弹性模量(E=210000MPa)和泊松比( =0.3)。
薄板属于实体,其截面属性种类为实体(Solid),然后赋予其截面属性。
4由薄板的受力情况和分析要求可知,薄板的应力分析为线性/非线性的静力学分析,所以其分析步的类型为Static、General,不用考虑几何非线性(NLgeom>off)。
5模型所受的载荷为均布压力,使用载荷类型为(pressure)。
由于模型的对称,所以对模型的左侧和底部的边界线设置边界条件,固定边界。
由受力分析结果可得:左侧边界为XSYMM,底部边界为YSYMM。
6中心圆孔处为应力集中区域,且为分析结果要求重点,应局部网格加密。
划分网格,然后提交分析。
三、分析过程中遇到的问题及解决方法分析过程中没有遇到什么问题,但是需要注意几个方面。
1、在定义截面属性时,应注意的是平面应力分析问题的截面属性不是shell,而应该是solide(实体)。
其次注意平面的厚度。
一会吧其次,边界条件应该在分析步的第一步(initial)里添加,否则会导致有限元分析的失败。
载荷的添加应该是在第二步,注意载荷的方向为由里向外—100 三,由于取用的是板子的1/4作为分析的模型,所以将边界条件固定来模仿相应的应力情况,即固定相应边的XY方向上的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中南林业科技大学机械零件有限元分析实验报告专业:机械设计制造及其自动化年级: 2013级班级:机械一班姓名:杨政学号:20131461I一、实验目的通过实验了解和掌握机械零件有限元分析的基本步骤;掌握在ANSYS 系统环境下,有限元模型的几何建模、单元属性的设置、有限元网格的划分、约束与载荷的施加、问题的求解、后处理及各种察看分析结果的方法。
体会有限元分析方法的强大功能及其在机械设计领域中的作用。
二、实验内容实验内容分为两个部分:一个是受内压作用的球体的有限元建模与分析,可从中学习如何处理轴对称问题的有限元求解;第二个是轴承座的实体建模、网格划分、加载、求解及后处理的综合练习,可以较全面地锻炼利用有限元分析软件对机械零件进行分析的能力。
实验一、受内压作用的球体的有限元建模与分析对一承受均匀内压的空心球体进行线性静力学分析,球体承受的内压为1.0×108Pa,空心球体的内径为0.3m,外径为0.5m,空心球体材料的属性:弹性模量2.1×1011,泊松比0.3。
R1=0.3R2=0.5承受内压:1.0×108 Pa受均匀内压的球体计算分析模型(截面图)1、进入ANSYS→change the working directory into yours→input jobname: Sphere2、选择单元类型ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→ Options… →select K3: Axisymmetric →OK→Close (the Element Type window)3、定义材料参数ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:2.1e11, PRXY:0.3→ OK4、生成几何模型生成特征点ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS→依次输入四个点的坐标:input:1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3)→OK 生成球体截面ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global SphericalANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In Active Coord→依次连接1,2,3,4 点生成4 条线→OKPreprocessor →Modeling →Create →Areas →Arbitrary →By Lines→依次拾取四条线→OKANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian5、网格划分ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set→拾取两条直边:OK→input NDIV: 10 →Apply→拾取两条曲边:OK →input NDIV: 20 → OK →(back to the mesh tool window) Mesh: Areas,Shape: Quad,Mapped →Mesh →Pick All(in Picking Menu) → Close( the Mesh Tool window)6、模型施加约束给水平直边施加约束ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Displacement→On Lines →拾取水平边:Lab2: UY → OK给竖直边施加约束ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Displacement Symmetry B.C.→On Lines→拾取竖直边→OK 给内弧施加径向的分布载荷ANSYS Main Menu: Solution→Define Loads →Apply→Structural →Pressure →On Lines →拾取小圆弧;OK →input V ALUE:1e8→OK7、分析计算ANSYS Main Menu: Solution →Solve →Current LS→OK(to close the solve Current Load Step window) →close8、结果显示ANSYS Main Menu: General Postproc →Plot Results→Deformed Shape…→select Def + Undeformed→OK (back to Plot Results window)Contour Plot→Nodal Solu…→select: DOF solution, 分别选X-Component of displacement + Deformed Shape with undeformed model;Y-Component of displacement + Deformed Shape with undeformed model;Displacement vector sum + Deformed Shape with undeformed model.Contour Plot→Nodal Solu…Stress 下分别选X-Component of stress + Deformed Shape with undeformed model;Y-Component of stress + Deformed Shape with undeformed model;Z-Component of stress + Deformed Shape with undeformed model;Vonmises stress + Deformed Shape with undeformed model.查看各后处理结果的数据并回答最后面的问答题。
实验二、轴承座的实体建模、网格划分、加载、求解及后处理实验目的:学习创建实体模型的方法,工作平面的平移及旋转,布尔运算(相减、粘接、搭接等),基本网格划分,基本加载、求解及后处理。
问题描述:下图为一轴承座,具体尺寸见课本 128 页。
已知轴承座的材料属性为:弹性模量为 3×107psi ,泊松比为 0.3。
轴承座承受的载荷如下图所示,试分析轴承座的变形及内部应力分布状态。
圆孔下半部分的内表面承受向下作用力(3500+学号后两位×5) psi.具体步骤: 1、创建基座模型生成长方体Main Menu :Preprocessor>>Modeling>Create>Volumes>Block>By Dimensions 输入 x1=0,x2=3,y1=0,y2=1,z1=0,z2=3平移并旋转工作平面Utility Menu>WorkPlane>Offset WP by Increments X,Y,Z Offsets 输入 2.25,1.25,0.75 点击 Apply XY ,YZ ,ZX Angles 输入 0,-90,0。
点击 OK 。
创建圆柱体Main Menu :Preprocessor>Modeling>Create> Volumes>Cylinder> Solid Cylinder Radius 输入 0.375,Depth 输入-1.5,点击 OK 。
轴承座底部四条边线的约束 (UY=0)沉孔底面上的推力 (800 +学号后两位×5) psi. 四个安装孔径向约束 ( 对称位移约束 )拷贝生成另一个圆柱体Main Menu:Preprocessor>Modeling >Copy>Volume 拾取圆柱体,点击Apply, DZ 输入1.5,然后点击OK。
从长方体中减去两个圆柱体Main Menu:Preprocessor>Modeling >Operate>Booleans>Subtract> Volumes,首先拾取被减的长方体,点击Apply,然后拾取减去的两个圆柱体,点击OK。
使工作平面与总体笛卡尔坐标系一致Utility Menu>WorkPlane>Align WP with> Global Cartesian2、创建支撑部分Utility Menu: WorkPlane -> Display Working Plane (toggle on)Main Menu: Preprocessor -> Modeling->Create -> -Volumes->-Block -> By 2 corners & Z 在创建实体块的参数表中输入下列数值:WP X = 0WP Y = 1Width = 1.5Height = 1.75Depth = 0.75OKToolbar: SAVE_DB3、偏移工作平面到轴瓦支架的前表面Utility Menu: WorkPlane -> Offset WP to -> Keypoints +1. 在刚刚创建的实体块的左上角拾取关键点2. OKToolbar: SAVE_DB4、创建轴瓦支架的上部Main Menu: Preprocessor -> Modeling->Create -> Volumes->Cylinder -> Partial Cylinder +1). 在创建圆柱的参数表中输入下列参数:WP X = 0WP Y = 0Rad-1 = 0Theta-1 = 0Rad-2 = 1.5Theta-2 = 90Depth = -0.752). OKToolbar: SAVE_DB5、在轴承孔的位置创建圆柱体,为布尔操作生成轴孔做准备Main Menu: Preprocessor -> Modeling->Create -> Volume->Cylinder -> Solid Cylinder + 1)输入下列参数:WP X = 0WP Y = 0Radius = 1Depth = -0.18752)拾取 Apply3)输入下列参数:WP X = 0WP Y = 0Radius = 0.85Depth = -24.)OK6、从轴瓦支架“减”去圆柱体形成轴孔Main Menu: Preprocessor -> Modeling ->Operate -> Booleans ->Subtract -> Volumes +1.拾取构成轴瓦支架的两个体,作为布尔“减”操作的母体。