212二次根式的乘除(1)用
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习提问
1.什么叫二次根式?
式子 a(a 0)叫做二次根式。
2.两个基本性质:
a 2=a (a≥ 0) a (a≥ 0) a2 =∣a∣ = -a (a<0)
合作学习
计算下列各式, 观察计算结果,你发现什么规律
思考: 1、 4 × 9 =_6___ 4 9 _6____
?
2、 16 25 _2_0_, 16 25 2_0____
反过来:
ab a b(a≥0,b≥0) (通常用来化简)
在本章中, 如果没有特别说明,所有的字母都表示正数.
ab a • b(a 0,b 0)
例2.化简:
(1)16 81;(2) 4a2b3 ;
解 : (1) 16 81 16 81 49 36
(2) 4a2b3 4 • a2 • b3
102 5 10 5 10 5(cm)
答:AB长 10 5 cm.
1.本节课学习了算术平方根的积和积的算
术平方根。
a•
b
ab a≥0,b≥0
ab a • b (a 0,b 0)
2.化简二次根式的步骤:
1.将被开方数尽可能分解成几个平方数.
2.应用 ab a b
3.将平方项应用 a2 a (a 0) 化简
化简二次根式的步骤: 1.将被开方数尽可能分解成几个平方数. 2.运用公式 ab a b (a 0, b 0)
3.将平方项应用 a2 a (a 0) 化简.
练习
计算:
(1)5 12 4 27 (2) 6 15 10
解: (1)5 12 4 27 (5 4) 12 27 20 4 3 3 9
2•a • b2 •b
2a b2 b 2ab b
想一想?
(4)(9) (4) (9) 成立吗?为什么?
ab a • b (a 0,b 0)
(4) (9)
36 6
非 负
数
例题3 计算:
1. 14 7
3. 3x 1 xy
3
2.3 5 2 10
同学们自己来算吧! 看谁算得既快又准确!
20 (2 3 3)2 2018 360
解: (2) 6 15 10 6 15 10 233552
(235)2 302 30
4:如图,在ABC中,∠C=90°,
A
AC=10cm, BC=20cm.
求:AB.
解:
B
C
AB2 AC2 BC2
AB AC2 BC 2
102 202 500
用你发现的规律填空,并用计算器验算
1、 2 3 _=__ 6;
2、 2 5 _=__ 10
一般地,对于二次根式的乘法规定:
a • b ab (a≥0,b≥0)
ቤተ መጻሕፍቲ ባይዱ
a • b ab (a≥0,b≥0)
算术平方根的积等于各个被开方数积的算 术平方根
a、b必须都是非负数!
a • b ab (a≥0,b≥0)
自我检测
1.下列运算正确的是
[ A]
2.填空
选做题 (A组)
- 4 13
√
8.64 -3- 10
选做题 (B组)
√ √
√
算术平方根的积等于各个被开方数积的算 术平方根
例1: 计算
1、 3 5 3 5 15
2、 1
3
27
1 27 3
9 3
练习:计算
(1) 6 7
(2) 1 32 2
解:
(1) 6 7 6 7 42
(2) 1 32 1 32 16 4
2
2
一般的:
a b ab (a≥0,b≥0)
1.什么叫二次根式?
式子 a(a 0)叫做二次根式。
2.两个基本性质:
a 2=a (a≥ 0) a (a≥ 0) a2 =∣a∣ = -a (a<0)
合作学习
计算下列各式, 观察计算结果,你发现什么规律
思考: 1、 4 × 9 =_6___ 4 9 _6____
?
2、 16 25 _2_0_, 16 25 2_0____
反过来:
ab a b(a≥0,b≥0) (通常用来化简)
在本章中, 如果没有特别说明,所有的字母都表示正数.
ab a • b(a 0,b 0)
例2.化简:
(1)16 81;(2) 4a2b3 ;
解 : (1) 16 81 16 81 49 36
(2) 4a2b3 4 • a2 • b3
102 5 10 5 10 5(cm)
答:AB长 10 5 cm.
1.本节课学习了算术平方根的积和积的算
术平方根。
a•
b
ab a≥0,b≥0
ab a • b (a 0,b 0)
2.化简二次根式的步骤:
1.将被开方数尽可能分解成几个平方数.
2.应用 ab a b
3.将平方项应用 a2 a (a 0) 化简
化简二次根式的步骤: 1.将被开方数尽可能分解成几个平方数. 2.运用公式 ab a b (a 0, b 0)
3.将平方项应用 a2 a (a 0) 化简.
练习
计算:
(1)5 12 4 27 (2) 6 15 10
解: (1)5 12 4 27 (5 4) 12 27 20 4 3 3 9
2•a • b2 •b
2a b2 b 2ab b
想一想?
(4)(9) (4) (9) 成立吗?为什么?
ab a • b (a 0,b 0)
(4) (9)
36 6
非 负
数
例题3 计算:
1. 14 7
3. 3x 1 xy
3
2.3 5 2 10
同学们自己来算吧! 看谁算得既快又准确!
20 (2 3 3)2 2018 360
解: (2) 6 15 10 6 15 10 233552
(235)2 302 30
4:如图,在ABC中,∠C=90°,
A
AC=10cm, BC=20cm.
求:AB.
解:
B
C
AB2 AC2 BC2
AB AC2 BC 2
102 202 500
用你发现的规律填空,并用计算器验算
1、 2 3 _=__ 6;
2、 2 5 _=__ 10
一般地,对于二次根式的乘法规定:
a • b ab (a≥0,b≥0)
ቤተ መጻሕፍቲ ባይዱ
a • b ab (a≥0,b≥0)
算术平方根的积等于各个被开方数积的算 术平方根
a、b必须都是非负数!
a • b ab (a≥0,b≥0)
自我检测
1.下列运算正确的是
[ A]
2.填空
选做题 (A组)
- 4 13
√
8.64 -3- 10
选做题 (B组)
√ √
√
算术平方根的积等于各个被开方数积的算 术平方根
例1: 计算
1、 3 5 3 5 15
2、 1
3
27
1 27 3
9 3
练习:计算
(1) 6 7
(2) 1 32 2
解:
(1) 6 7 6 7 42
(2) 1 32 1 32 16 4
2
2
一般的:
a b ab (a≥0,b≥0)