数字信号处理习题解答
数字信号处理习题与答案
==============================绪论==============================1. A/D 8bit 5V00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
《数字信号处理》(2-7章)习题解答
第二章习题解答1、求下列序列的z 变换()X z ,并标明收敛域,绘出()X z 的零极点图。
(1) 1()()2nu n (2) 1()()4nu n - (3) (0.5)(1)nu n --- (4) (1)n δ+(5) 1()[()(10)]2nu n u n -- (6) ,01na a <<解:(1) 00.5()0.50.5nn n n zZ u n z z ∞-=⎡⎤==⎣⎦-∑,收敛域为0.5z >,零极点图如题1解图(1)。
(2) ()()014()1414n nn n z Z u n z z ∞-=⎡⎤-=-=⎣⎦+∑,收敛域为14z >,零极点图如题1解图(2)。
(3) ()1(0.5)(1)0.50.5nnn n zZ u n z z --=-∞-⎡⎤---=-=⎣⎦+∑,收敛域为0.5z <,零极点图如题1解图(3)。
(4) [](1Z n z δ+=,收敛域为z <∞,零极点图如题1解图(4)。
(5) 由题可知,101010910109(0.5)[()(10)](0.5)()(0.5)(10)0.50.50.50.50.50.5(0.5)n n nZ u n u n Z u n Z u n z z z z z z z z z z z --⎡⎤⎡⎤⎡⎤--=--⎣⎦⎣⎦⎣⎦⋅=-----==--收敛域为0z >,零极点图如题1解图(5)。
(6) 由于()(1)nn n a a u n a u n -=+--那么,111()(1)()()()nn n Z a Z a u n Z a u n z z z a z a z a a z a z a ----⎡⎤⎡⎤⎡⎤=---⎣⎦⎣⎦⎣⎦=----=-- 收敛域为1a z a <<,零极点图如题1解图(6)。
(1) (2) (3)(4) (5) (6)题1解图2、求下列)(z X 的反变换。
数字信号处理课后习题答案(全)1-7章
1
4
(2m 5) (n m) 6 (n m)
m4
m0
第 1 章 时域离散信号和时域离散系统
(3) x1(n)的波形是x(n)的波形右移2位, 再乘以2, 画出图形如题2解图 (二)所示。
(4) x2(n)的波形是x(n)的波形左移2位, 再乘以2, 画出图形如题2解图(三) 所示。
因此系统是非线性系统。
第 1 章 时域离散信号和时域离散系统
(6) y(n)=x(n2)
令输入为
输出为
x(n-n0)
y′(n)=x((n-n0)2) y(n-n0)=x((n-n0)2)=y′(n) 故系统是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n2)+bx2(n2) =aT[x1(n)]+bT[x2(n)]
0≤m≤3
-4≤m≤n
非零区间如下:
第 1 章求解: ① n<0时, y(n)=0
② 0≤n≤3时, y(n)= ③ 4≤n≤7时, y(n)= ④ n>7时, y(n)=0
1=n+1
n
1=8-m n0
3
mn4
第 1 章 时域离散信号和时域离散系统
x(m)h(n-m)
m
第 1 章 时域离散信号和时域离散系统
题7图
第 1 章 时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}
第 1 章 时域离散信号和时域离散系统
解法(二) 采用解析法。 按照题7图写出x(n)和h(n)的表达式分别为
数字信号处理习题解答
第一章2、已知线性移不变系统的输入为()x n ,系统的单位抽样相应为()h n ,试求系统的输出()y n 。
(2)3()(),x n R n = 4()()h n R n =解:此题考察线性移不变系统的输出为激励与单位抽样相应的卷积,即:()()*(){1,2,3,3,2,1}y n x n h n == 4、判断下列每个序列的周期性,若是周期性的,试确定其周期。
3()cos()78x n A n ππ=-解:03 ()cos()78314 N=2/2/7314,3x n A n k k k k ππππωπ=-==∴=是周期的,周期是。
6、试判断系统的线性和移不变性。
()2(2) ()y n x n =⎡⎤⎣⎦ 解:()2()y n x n =⎡⎤⎣⎦()[]()[]2111)(n x n x T n y ==()()[]()[]2222n x n x T n y ==()()()[]()[]212121n bx n ax n by n ay +=+()()[]()()[]()[]()[]()()()()[]()()n by n ay n bx n ax T n x n abx n bx n ax n bx n ax n bx n ax T 2121212221221212 +≠+++=+=+即()[]()[]()()[]()[]()系统是移不变的即∴-=--=--=-m n y m n x T m n x m n y m n x m n x T 228、以下序列是系统的单位抽样响应()h n ,试说明系统的因果性和稳定性。
(4)3()nu n - 解:因果性:当0n <时,()0h n ≠,∴是非因果的;稳定性:0123|()|3332n h n •••∞--=-∞=+++=∑,∴是稳定的。
11、有一理想抽样系统,抽样角频率为6s πΩ=,抽样后经理想低通滤波器()a H j Ω还原,其中1,3()20,3a H j ππ⎧Ω<⎪Ω=⎨⎪Ω≥⎩今有两个输入,12()cos 2,()cos5a a x t t x t t ππ==。
数字信号处理习题及参考解答
目录习题一 (3)习题二 (26)习题三 (40)习题四 (61)习题五 (83)习题一1.1序列)(n x 如图T1.1所示,用延迟的单位采样序列加权和表示出这个序列。
图 T1.1 习题1.1图【解答】 任一数字序列都可表达为)()()(k n k x n x k -=∑∞-∞=δ所以图T1-1信号可表达为)3(2)1(3)()3(2)(-+-+-+-=n n n n n x δδδδ1.2 分别绘出以下各序列的图形: (1))(2)(1n u n x n =(2))(21)(2n u n x n⎪⎭⎫⎝⎛=(3)()3()2()nx n u n =-(4))(21)(4n u n x n⎪⎭⎫⎝⎛-=【解答】 用MATLAB 得到的各序列图形如图T1.2所示。
图T1.2习题1.2解答1.3 判断下列每个序列是否是周期性的;若是周期性的,试确定其周期。
(1)⎪⎭⎫ ⎝⎛-=873cos )(ππn A n x(2)⎪⎭⎫⎝⎛=n A n x 313sin )(π(3)⎪⎭⎫⎝⎛-=n j e n x 6)(π(4){}{}/12/18()Re Im jn jn x n e e ππ=+(5)16()cos(/17)jnx n e n ππ=【解答】(1)因为730πω=,而31473220==ππωπ,这是一有理数。
所以)(n x 是周期的,周期为14。
(2)因为3130πω=,而136313220==ππωπ,也为有理数。
所以)(n x 是周期的,周期为6。
(3)注意此序列的10=ω,πωπ220=,是无理数,所以)(n x 是非周期的。
(4)实际上()cos(/12)sin(/18)x n n n ππ=+因此)(n x 有两个频率分量,即1201πω=,1802πω=,而 24122201==ππωπ;02223618πππω==都是有理数,所以)(n x 是两个周期信号之和,第一个周期信号的周期241=N ,第二个周期信号的周期362=N ,因此)(n x 的周期是这两个周期的最小公倍数,即72123624)36,24gcd(3624),gcd(2121=⋅=⋅=⋅=N N N N N(5)()x n 是两个周期序列的乘积,其中132N =,234N =,所以该序列的周期是121232343234544gcd(,)gcd(32,34)2N N N N N ⋅⋅⋅====1.4 已知序列)]6()()[6()(---=n u n u n n x ,画出下面序列的示意图。
《数字信号处理》课后答案
数字信号处理课后答案 1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。
解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。
5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
数字信号处理(程佩青)课后习题解答(1)
数字信号处理(程佩青)课后习题解答(1)1. 什么是数字信号处理?数字信号处理(Digital Signal Processing,DSP)是指对数字信号进行滤波、采样、压缩、编码和解码等操作的一种信号处理技术。
数字信号处理通过离散采样将连续时间信号转换为离散时间信号,并利用数学算法对离散时间信号进行处理和分析。
数字信号处理广泛应用于音频处理、图像处理、视频处理、通信系统等领域。
2. 采样定理的原理是什么?采样定理又称为奈奎斯特-香农采样定理(Nyquist-Shannon Sampling Theorem),是指在进行模拟信号的离散化处理时,采样频率必须大于模拟信号中最高频率的两倍。
采样定理的原理是根据信号的频谱特性,将模拟信号转换为离散时间信号时,需要保证采样频率足够高,以避免采样后的信号出现混叠现象,即频域上的重叠造成的信息损失。
根据奈奎斯特-香农采样定理,采样频率必须大于模拟信号中最高频率的2倍,才能完全还原原始信号。
3. 什么是混叠现象?如何避免混叠现象?混叠现象是指在进行模拟信号的采样时,由于采样频率低于模拟信号中的最高频率,导致频域上的重叠,从而造成采样信号中出现与原始信号不一致的频谱。
混叠现象会使得原始信号的高频部分被错误地表示成低频部分,从而损失了原始信号的信息。
为了避免混叠现象,可以采取以下措施:- 提高采样频率:采样频率必须大于模拟信号中最高频率的两倍,以保证信号的频谱不发生重叠。
- 使用低通滤波器:在采样前,先通过低通滤波器将模拟信号中的高频成分滤除,以避免混叠现象。
滤波器的截止频率应该设置为采样频率的一半。
4. 离散时间信号和连续时间信号有哪些区别?离散时间信号和连续时间信号是两种不同的信号表示形式。
离散时间信号是在时间上离散的,通常由序列表示,每个时间点上有对应的取样值。
离散时间信号可以通过采样连续时间信号得到,采样时将连续时间信号在一定时间间隔内进行取样。
连续时间信号是在时间上连续的,可以用数学函数、图像或者波形图来表示,不存在取样点。
数字信号处理_习题与解答
[ax (k ) bx (k )]
1 2 2 1 2
x1( k ) b
n n0
k n n0
x (k ) aT[ x (n)] bT[ x (n)]
系统是线性系统 9
( 4)T [ x( n )] x( n n0) ( a )若 | x( n ) | M ,则: | T [ x( n )] || x( n n0 ) | M 系统是稳定系统 (b ) y( n ) x( n n0 ), (i )n0 0, n n0 n, y( n )与n时刻之后的输入无关 系统是因果系统 (ii )n0 0, n n0 n, y( n )与n时刻之后的输入有关 系统不是因果系统 (c ) T [ax1( n ) bx2 ( n )] ax1( n n0 ) bx2 ( n n0 ) aT[ x1( n )] bT[ x2 ( n )] 系统是稳定系统
15
1 2 j n x( n ) X ( j )e d 2 0 1 2 j 2 n x ( 2n ) X ( j )e d 2 0 1 4 j ' n X ( j '/ 2)e d ' ( ' 2) 4 0 1 2 j n 1 4 j n X ( j )e d X ( j )e d 4 0 2 4 2 2 1 2 j n 1 2 2 j n X ( j )e d X( j )e d 2 0 2 4 0 2 2 1 2 1 j n [ X ( j ) X [ j ( )]e d G ( j )e j d 0 0 2 2 2 2 16
数字信号处理课后习题答案
(修正:此题有错,
(3)系统的单位脉冲响应 而改变,是两个复序列信号之和)
(4)
(修正: 随上小题答案
(修正:此图错误,乘系数应该为 0.5,输出端 y(n)应该在两个延迟器 D 之间)
1-25 线性移不变离散时间系统的差分方程为
(1)求系统函数 ; (2)画出系统的一种模拟框图; (3)求使系统稳定的 A 的取值范围。 解:(1)
(2)
(3)
解:(1)
(2)
(3)
1-7 若采样信号 m(t)的采样频率 fs=1500Hz,下列信号经 m(t)采样后哪些信号不 失真? (1) (2) (3) 解:
(1)
采样不失真
(2)
采样不失真
(3)
,
采样失真
1-8 已知
,采样信号 的采样周期为 。
(1) 的截止模拟角频率 是多少?
(2)将 进行 A/D 采样后, 如何?
(3)最小阻带衰减 5-4
由分式(5.39)根据 A 计算 ,如下: 由表 5.1 根据过度带宽度 计算窗口:
单位脉冲响应如下:
单位脉冲响应如下:
其中 为凯泽窗。 5-5 答:减小窗口的长度 N,则滤波器的过度带增加,但最小阻带衰减保持不变。 5-6:图 5.30 中的滤波器包括了三类理想滤波器,包括了低通,带通和高通,其响应的单位
(1)
,
(2)
1-18 若当 时
;时
(1)
,其中
(2) 证明:
,收敛域
,其中 N 为整数。试证明: ,
(1) 令 其中
,则 ,
(2)
,
1-19 一系统的系统方程及初时条件分别如下: ,
(1)试求零输入响应 ,零状态响应 ,全响应 ; (2)画出系统的模拟框图 解: (1)零输入响应
数字信号处理习题解答
y(5)=2*1+1*2=4;y(6)=2*3+1*1+3*2=13 y(7)=1*3+3*1=6;y(8)=3*3=9
y(9)=0;
• N=10圆卷积的结果
10 13 9
6
4
4
1
2
n
0
补充作业
x(n)
22
1
1
n
0
求: (1)x(n)*x(n)的线卷积。
,N=4(不加长)
,N=6(补零加长)
,N=7(补零加长)
作业解答
lfhuang
第一次作业: P104页,3题
...
...
0
n
0
n
第一次作业: P104页,3题
第一次作业: P104页,3题
4
...
1
.k .
0
第二次作业: P104页,4题
第二次作业: P104页,4题
... ... ...
... 图a
n
...
图b n
...
图c n
第二次作业: P104页,4题
3
2
1
1
n
0
周期化
3
2
1
1
n
0
3
3
3
1
2 1
12 1
1
2 1
0
0
n
反折、取主值区间。
3 2
11
0
右平移、相乘、相加 y(0)=1*1+2*1+1*2=5 y(1)=2*3+1*1+3*2=13 y(2)=1*2+2*1+1*3+3*3=16
数字信号处理_课后习题答案
1-1画出下列序列的示意图(1)(2)(3)(1)(2)(3)1-2已知序列x(n)的图形如图1.41,试画出下列序列的示意图。
图1.41 信号x(n)的波形(1) (2)(3) (4)(5) (6)(修正:n=4处的值为0,不是3)(修正:应该再向右移4个采样点)1-3判断下列序列是否满足周期性,若满足求其基本周期(1)解:非周期序列;(2)解:为周期序列,基本周期N=5;(3)解:,,取为周期序列,基本周期。
(4)解:其中,为常数,取,,取则为周期序列,基本周期N=40。
1-4 判断下列系统是否为线性的?是否为移不变的?(1)非线性移不变系统(2) 非线性移变系统(修正:线性移变系统)(3) 非线性移不变系统(4) 线性移不变系统(5) 线性移不变系统(修正:线性移变系统)1-5判断下列系统是否为因果的?是否为稳定的?(1) ,其中因果非稳定系统(2) 非因果稳定系统(3) 非因果稳定系统(4) 非因果非稳定系统(5) 因果稳定系统1-6已知线性移不变系统的输入为x(n),系统的单位脉冲响应为h(n),试求系统的输出y(n)及其示意图(1)(2)(3)解:(1)(2)(3)1-7若采样信号m(t)的采样频率fs=1500Hz,下列信号经m(t)采样后哪些信号不失真?(1)(2)(3)解:(1)采样不失真(2)采样不失真(3),采样失真1-8已知,采样信号的采样周期为。
(1) 的截止模拟角频率是多少?(2)将进行A/D采样后,的数字角频率与的模拟角频率的关系如何?(3)若,求的数字截止角频率。
解:(1)(2)(3)1-9计算下列序列的Z变换,并标明收敛域。
(1) (2)(3) (4)(5)解:(1)(2)(3)(4) ,,收敛域不存在(5)1-10利用Z变换性质求下列序列的Z变换。
(1)(2)(3)(4)解:(1) ,(2) ,(3),(4) , 1-11利用Z变换性质求下列序列的卷积和。
(1)(2)(3)(4)(5)(6)解:(1) ,,,,(2) ,,,(3) , ,,(4) ,,(5) ,,,(6) ,,,1-12利用的自相关序列定义为,试用的Z 变换来表示的Z变换。
《数字信号处理》第三版课后习题答案
数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n 及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n nn n n n nnn n 2. 给定信号:25,41()6,040,nnx n n其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列;(3)令1()2(2)x n x n ,试画出1()x n 波形;(4)令2()2(2)x n x n ,试画出2()x n 波形;(5)令3()2(2)x n x n ,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n nnnn n n n n n (3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n,A 是常数;(2)1()8()j n x n e 。
解:(1)3214,73w w ,这是有理数,因此是周期序列,周期是T=14;(2)12,168ww,这是无理数,因此是非周期序列。
5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
(1)()()2(1)3(2)y n x n x n x n;(3)0()()y n x n n ,0n 为整常数;(5)2()()y n x n ;(7)0()()n m y n x m 。
数字信号处理习题及答案
==============================绪论==============================1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理习题及解答..
数字信号处理习题及解答
第二章 Z变换及离散时间系统分析 3 解答 X(z)有两个极点: z1=0.5, z2=2, 因为收敛域总是以极点为 界, 因此收敛域有三种情况: |z|<0.5,0.5<|z|<2, 2<|z|。 三种收敛域对应三种不同的原序列。 (1)收敛域|z|<0.5:
j
1 1 1 ae j FT[ xo (n)] j Im[ X (e ] j Im[ ] j Im[ ] 1 ae j 1 ae j 1 ae j a sin 1 a 2 2a cos
j
数字信号处理习题及解答
第三章 信号的傅里叶变换 4 已知长度为N=10的两个有限长序列:
(2) x2 (n)
1 1 δ(n 1) δ(n) δ(n 1) 2 2
数字信号处理习题及解答
第三章 信号的傅里叶变换 2 解答
(1)
X 1 (e
j
)
n
δ(n 3) e jn e j3
(2)
X 2 (e j )
n
x2 (n)e jn
1 0 ≤ n ≤ 4 x1 (n) 0 5≤ n≤ 9
1 x 2 ( n) 1
0≤ n ≤ 4 5≤ n ≤ 9
做图表示x1(n)、 x2(n)和y(n)=x1(n) * x2(n), 循环卷积区间长度L=10。
数字信号处理习题及解答
第三章 信号的傅里叶变换 4 解答 x1(n)、 x2(n)和y(n)=x1(n) * x2(n)分 别如题3解图(a)、 (b)、 (c) 所示。
数字信号处理习题集(附答案)
第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。
此滤波器亦称为“抗混叠”滤波器。
在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。
判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。
()答:错。
需要增加采样和量化两道工序。
3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。
()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。
因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。
故离散时间信号和系统理论是数字信号处理的理论基础。
第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。
(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。
(b ) 对于kHz T 201=,重复(a )的计算。
解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。
03数字信号处理_吴镇扬_习题解答
解答:
1
(1) 不能用令 x(n)=δ(n)来求 h(n),然后确定稳定性,因为该系统并非线性时不变系统。
实际上,因 g(n)有界,所以,当 x(n)有界时,y(n)= x(n) g(n)<= |x(n)| |g(n)|<∞, 所以系统稳定,y(n) 只与 x(n)的当前值有关,显然是因果的。 (2)
=
N −1
kn
x(n)WN2
+
(−1)k
N −1
kn
x(n)WN2
n=0
n=0
∑N −1
当k为偶数时,上式=2
n=0
kn
x(n)WN2
=
2X
( k ); 2
当k为奇数时,上式=0.
2-9 有限长为 N = 10 的两序列
x(n)
=
⎧1, 0 ≤ ⎨⎩0,5 ≤
n n
≤ ≤
4 9
y(n)
=
⎧1, 0 ⎨⎩−1,
DFS,试利用 X1(k ) 确定 X 2 (k) . 解答:
N −1
∑ X1(k) = x(n)WNkn n=0
2 N −1
N −1
N −1
∑ ∑ ∑ X 2 (k) = x(n)W2kNn = x(n)W2kNn + x(n + N )W2kN(n+N )
N =0
n=0
n=0
注:W2kNn
− j 2π kn
,式中 a 为实数
(1) 对于什么样的 a 值范围系统是稳定的? (2) 如果 0<a<1,画出零点-极点图,并标出收敛区域; (3) 在 z 平面上用图解证明该系统是一个全通系统,即频率响应的幅度为一常数. 解答:
数字信号处理习题和答案解析
. WORD 格式整理. .习题及答案4一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴 B.原点 C.单位圆 D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是 ( ) A.N≥M B.N≤M C.N≤2M D.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B.∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
数字信号处理习题解答
13、对实信号进行谱分析,要求谱分辨率 F ≤10 Hz,信号最高频率 fc=2.5 kHz, 试确定:
(1)最小记录时间 Tpmin; (2)最大的采样间隔 Tmax; (3)最少的采样点数 Nmin。
3
)
用采样频率 fs 100Hz
采样,写出所得到的信
号序列 x(n)表达式,求出该序列 x(n) 的最小周期长度。
解: T
1 fs
0.01,
x(n)
xa
(nT )
A c os (0.8n
3
)
2 2 5 ; N 5 0 0.8 2
12、设系统的单位取样响应 h(n) u(n) ,输入序列为
k 0
则存在公共的收敛区域
X (z)
1 1 cz 1
cz 1 cz
,
c
z
1 c
18、分析单位脉冲响应为 h(k ) aku(k ), 的线性时不变系统
的因果性和稳定性。 解:1)因为 k0 时,h(k)=0,因此系统是因果的
2)如果 |a|<1, 则 s 1 故系统是稳定的 1 | a |
如果 |a|≥1 , 则 s → ∞,级数发散。 故系统仅在|a|<1 时才是稳定的
17、求 x(n) c n 的 z 变换 ( c 1 )
1
解 X (z) x(n)z n cn z n cn z n
n
n
n0
c 1,
X 1 ( z)
cn zn
n0
1 1 cz 1
zc
X 2 (z)
1
数字信号处理课后习题答案 全全全
1
1 >
. . z
z
(3) , | | 0.5
1 0.5
1
1 <
. . z
z
(4)
, | | 0
1 0.5
1 (0.5 )
1
1 10
>
.
.
.
.
z
z
z
1.8 (1) ) , 0
1
( ) (1 2
1 3 3
3.014 2.91 1.755 0.3195
0.3318 0.9954 0.9954 0.3318
1 0.9658 0.5827 0.1060
z z z
z z z
z z z
z z z
. . .
. . .
. . .
. . .
. + .
=
= . . +
= . . . +
..
.
..
. π
2.13
0,1,2, , 1
( ) ( )
= .
=
k N
Y rk X k
..
2.14
Y(k) = X ((k)) R (k) k = 0,1, ,rN .1 N rN ..
2.15 (1) x(n) a R (n) N
= n y(n) b R (n) N
= n
(2) x(n) =δ (n) y(n) = Nδ (n)
2.16 ( )
1
1 a R N
a N
n
. N
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章2、已知线性移不变系统的输入为()x n ,系统的单位抽样相应为()h n ,试求系统的输出()y n 。
(2)3()(),x n R n = 4()()h n R n =解:此题考察线性移不变系统的输出为激励与单位抽样相应的卷积,即:()()*(){1,2,3,3,2,1}y n x n h n == 4、判断下列每个序列的周期性,若是周期性的,试确定其周期。
3()cos()78x n A n ππ=-解:03 ()cos()78314 N=2/2/7314,3x n A n k k k k ππππωπ=-==∴=是周期的,周期是。
6、试判断系统的线性和移不变性。
()2(2) ()y n x n =⎡⎤⎣⎦解:()2()y n x n =⎡⎤⎣⎦()[]()[]2111)(n x n x T n y ==()()[]()[]2222n x n x T n y ==()()()[]()[]212121n bx n ax n by n ay +=+()()[]()()[]()[]()[]()()()()[]()()n by n ay n bx n ax T n x n abx n bx n ax n bx n ax n bx n ax T 2121212221221212 +≠+++=+=+即()[]()[]()()[]()[]()系统是移不变的即∴-=--=--=-m n y m n x T m n x m n y m n x m n x T 228、以下序列是系统的单位抽样响应()h n ,试说明系统的因果性和稳定性。
(4)3()nu n - 解:因果性:当0n <时,()0h n ≠,∴是非因果的;稳定性:0123|()|3332n h n ∙∙∙∞--=-∞=+++=∑,∴是稳定的。
11、有一理想抽样系统,抽样角频率为6s πΩ=,抽样后经理想低通滤波器()a H j Ω还原,其中1,3()20,3a H j ππ⎧Ω<⎪Ω=⎨⎪Ω≥⎩今有两个输入,12()cos2,()cos5a a x t t x t t ππ==。
输出信号有无失真?为什么?解:要想时域抽样后能不失真的还原出原始信号,则要求抽样频率大于2倍信号频谱的最高频率,即满足奈奎斯特抽样定理。
根据奈奎斯特定理可知:失真。
频谱中最高频率无失真。
频谱中最高频率)(3265 , 5cos )()(3262, 2cos )(222111t y t t x t y t t x a a a a a a ∴=>==∴=<==∙∙∙∙∙∙ππππππππΩΩ第二章1、求以下序列的z 变换,并求出对应的零极点和收敛域。
(1)||(),||1n x n a a =<解:由Z 变换的定义可知:11212()111(1)(1)1(1)1()()nnn nn nn n n n n n nn n X z azaza z a z a z az a a az az az z a z a z z a a ∞-∞----=-∞=-∞=∞∞-==-=⋅=+=+-=+=-----=--∑∑∑∑∑∞====<<<<z z az a z a z a z a az ,0 1, 11,1 零点为:极点为:即:且收敛域: 2、假如()x n 的z 变换代数表示式是下式,问()X z 可能有多少不同的收敛域,它们分别对应什么序列?)83451)(411(411)(2122----+++-=z z z z z X 解:对X(z)的分子和分母进行因式分解得11211111111(1)(1)22()113(1)(1)(1)424112113(1)(1)(1)224Z Z X Z Z Z Z Z jZ jZ Z ----------+=+++-=+-+X(z)的零点为:1/2 , 极点为: j/2 , -j/2 , -3/4∴ X(z)的收敛域为:(1) 1/2 < |z | < 3/4 , 为双边序列系统不是线性系统∴000()sin[()]sin[]x n N A n N A N n ωφωωφ+=++=++02N k ωπ=02kN πω=(2) | z | < 1/2 , 为左边序列 (3) |z | > 3/4 , 为右边序列6. 有一信号)(n y ,它与另两个信号)(1n x 和)(2n x 的关系是:)1()3()(21+-*+=n x n x n y其中)(21)(1n u n x n⎪⎭⎫ ⎝⎛=,)(31)(2n u n x n⎪⎭⎫ ⎝⎛=,已知111)]([--=az n u a Z n ,a z >, 。
变换的变换性质求利用 )( )( z Y z n y z解:根据题目所给条件可得:112111)(-Z-−→←z n x 123111)(--−→←z n x Z131211)3(--−→←+⇒z z n x Z 21>zz z X n x Z 3111)()(122-=−→←-- 311>-zz z n x Z 311)1(12-−→←+-- 3<z 而 )1( )3()(21+-*+=n x n x n y所以[][]123113()(3)(1)1111233(3)()2Y z Z x n Z x n z z z z zz z --=+⋅-+=⋅--=---12. 已知用下列差分方程描述的一个线性移不变因果系统)1()2()1()(-+-+-=n x n y n y n y(1) 求这个系统的系统函数,画出其零极点图并指出其收敛区域;(2) 求此系统的单位抽样响应;(3) 此系统是一个不稳定系统,请找一个满足上述差分方程的稳定的(非因果)系统的单位抽样响应。
解:(1)对题中给出的差分方程的两边作Z 变换,得:)()()()(121z X z z Y z z Y z z Y ---++=所以))((1)()()(21211a z a z z z z z z X z Y z H --=--==--- 零点为z=0,极点为()62.1515.01=+==a z ∞=z ()62.0515.02-=-==a z因为是因果系统,所以|z|>1.62是其收敛区域。
(2)1212121112121200121 ()()()111111n n n n n n z z z H z z a z a a a z a z a a a a za z a z a z a a --∞∞--==⎡⎤==-⎢⎥-----⎣⎦⎡⎤=-⎢⎥---⎣⎦⎡⎤=-⎢⎥-⎣⎦∑∑()62.0 , 62.1 )(1)( 212121-==--=a a n u a a a a n h nn 式中所以由于)(z H 的收敛区域不包括单位圆,故这是个不稳定系统。
(3)若要使系统稳定,则收敛区域应包括单位圆,因此选)(z H 的收敛区域为 12a z a <<,即 62.162.0<<z ,则⎥⎦⎤⎢⎣⎡----=21211)(a z z a z z a a z H中第一项对应一个非因果序列,而第二项对应一个因果序列。
1120121()n n n n n n H z a z a z a a -∞--=-∞=⎡⎤∴=--⎢⎥-⎣⎦∑∑()[])()62.0()1()62.1(447.0)()1(1)(2112n u n u n u a n u a a a n h n n nn -+--⨯-=+---=则有 从结果可以看出此系统是稳定的,但不是因果的。
13、研究一个输入为)(n x 和输出为)(n y 的时域线性离散移不变系统,已知它满足)()1()(310)1(n x n y n y n y =++--,并已知系统是稳定的。
试求其单位抽样响应。
解:对给定的差分方程两边作Z 变换,得:)31)(3( 3101)()()()()()(310)(11--=+-===+---z z zzz z X z Y z H z X z zY z Y z Y z 则: 31,3 21==z z 极点为,为了使它是稳定的,收敛区域必须包括单位圆,故取 1/3|| 3 z <<。
利用第十二题(3)的结果123,1/3a a == 即可求得⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+---=)(31)1(383)(n u n u n h nn第三章1、如下图,序列x(n)是周期为6的周期性序列,试求其傅立叶级数的系数。
552660022222234566666X()()()1412108610j nk nk n n j k j k j k j k j k k x n Wx n eeeeeeππππππ-==-----===+++++∑∑解:计算求得:(0)60;(1)933; (2)3 3 ;(3)0; (4)33;(5)93 3 X X j X j X X j X j ==-=+==-=+。
3.设1,04(),0n n x n n+≤≤⎧=⎨⎩,其它4()(2)h n R n =-。
令66()(()),()(()),x n x n h n h n ==试求()()x n h n 与的圆周卷积并作图。
解:在一个周期内的计算值()()*()()y n x n hn h n m ==-如下图所示:8、如下图表示一个5点序列()x n 。
(1)试画出1()()()y n x n x n =*; (2)试画出2()()()y n x n x n =⑤; (3)试画出3()()()y n x n x n =⑩。
解:由图可知(){1,0,2,1,3|0,1,2,3,4}x n n ==则(1)线性卷积()()x n x n *为 ()()()(),m x n x n x m x n m n ∞=-∞*=--∞<<∞∑1 02 13 1 0 2 1 3 3 0 6 3 91 02 13 2 04 2 61 02 13 1 04 2 10 4 13 6 9 故,()()1()y n x n x n =*={1, 0, 4, 2, 10, 4, 13, 6, 9; n=0, 1, 2, 3, 4, 5, 6, 7, 8}(2) 利用圆周卷积是线性卷积以5点位周期的周期延拓序列的主值序列,故2(0)y =1+4=5; 2(1)y =0+13=13;2(2)y =4+6=10;2(3)y =2+9=11;2()y n =()x n ⑤()x n ={5,13,10,11,10;n=0,1,2,3,4}(3) 当圆周卷积的长度大于等于线性卷积非零值长度时,两者相等,故3()()()y n x n x n =⑩={1,0,4,2,10,4,13,6,9,0; n=0, 1,2,3,4,5,6,7,8,9}14、设有一谱分析用的信号处理器,抽样点数必须为2的整数幂,假定没有采用任何特殊数据处理措施,要求频率分辨力≤10Hz ,如果采用的抽样时间间隔为0.1ms ,试确定:(1)最小记录长度;(2)所允许处理的信号的最高频率;(3)在一个记录中的最少点数。