医用物理学课后习题答案
13医用物理学(习题课1)PDF
23
24
4
二、计算题
2.一个球形肥皂泡在P0大气压中半径为R1,问将这肥 皂泡等温移至怎样的气压下,才能使其半径增大一倍? (α已知)
p' =
1 8
p0
−
3α
2 R1
二、计算题
3.n摩尔理想气体经过如图所示的循环过程,其中I→Ⅱ是 等容过程,Ⅱ→Ⅲ是绝热过程,Ⅲ→I是等压过程,分别求 各个过程中的内能变化,做功、吸收热量的情况。 (设 CV,m,Cp,m已知).
Q 4π ε0 R2
Q 4π ε0 r
接地后
Q 4πε0r 2
0 0
Q (1 − 1 ) 4πε0 r R1
0
0
r < R1
R1 < r < R2 r > R2
r < R1
R1 < r < R2 r > R2
29
5
一、选择题
答案:D
一、选择题
答案:C
h = 2α cos θ ρ gr
θ=0
h = 2α ρ gr
一、选择题
7.运用粘滞定律的条件是 A.理想液体作稳定流动 C.非牛顿液体作片流
B.牛顿液体作湍流 D.牛顿液体作片流
答案:D
7
8
一、选择题
答案:B
Ps=2α/R (单面) Ps=4α/R (双面)
25
26
Ⅰ至Ⅱ过程 等体
W= 0 Q = nCV ,m (T2 − T1) ΔU = nCV ,m (T2 − T1)
Ⅱ至Ⅲ过程 绝热
Ⅲ 至Ⅰ 过程 等压
− nCV ,m (T3 − T2 )
nR(T1 − T3 )
医用物理学习题册答案
医用物理学习题册姓名班级学号包头医学院医学技术学院物理教研室成绩表1、书写整洁,字迹清楚,不得涂改。
2、独立完成,不得抄袭。
第1章力学基本规律教学内容:1、牛顿运动定律、功和能、能量守恒、动量守恒定律2、转动定律(1)角速度与角加速度。
角量与线量的关系。
•(2)刚体的定轴转动。
转动惯性。
转动惯量。
刚体绕定轴转动的动能。
力矩。
转动定律。
力矩作功。
(3)角动量守恒定律。
3、应力与应变:物体的应力与应变。
弹性模量:弹性与范性。
应力—应变曲线。
弹性模量。
一、填空题1. 刚体角速度是表示整个刚体转动快慢的物理量,其方向由右手螺旋定则确定。
2. 一个定轴转动的刚体上各点的角速度相同,所以各点线速度与它们离轴的距离r成正比,离轴越远,线速度越大。
3. 在刚体定轴转动中,角速度ω的方向由右手螺旋定则来确定,角加速度β的方向与角速度增量的方向一致。
4.质量和转动惯量它们之间重要的区别:同一物体在运动中质量是不变的;同一刚体在转动中, 对于不同的转轴, 转动惯量不同。
5. 刚体的转动惯量与刚体的总质量、刚体的质量的分布、转轴的位置有关。
6. 动量守恒的条件是合外力为0 ,角动量守恒的条件是合外力矩为0 .7. 跳水运动员在空中旋转时常常抱紧身体,其目的减小转动惯量,增加角速度。
8、角动量守恒的条件是合外力矩恒等于零。
9. 弹性模量的单位是 Pa ,应力的单位是 Pa 。
10.骨是弹性材料,在正比极限范围之内,它的应力和应变成正比关系。
二、选择题1. 下列说法正确的是[ C ](A)作用在定轴转动刚体上的合力越大,刚体转动的角加速度越大(B)作用在定轴转动刚体上的合力矩越大,刚体转动的角速度越大(C)作用在定轴转动刚体上的合力矩越大,刚体转动的角加速度越大(D)作用在定轴转动刚体上的合力矩为零,刚体转动的角速度为零2.两物体的转动惯量相等,当其转动角速度之比为2:1时,它们的转动动能之比为[ A ](A)4:1 (B)2:1 (C)1:4 (D)1:23.溜冰运动员旋转起来以后,想加快旋转速度总是把两手靠近身体,要停止转动时总是把手伸展开,其理论依据是[ A ](A )角动量守恒定律 (B)转动定律 (C)动量定理 (D)能量守恒定律4.一水平圆盘可绕固定的铅直中心轴转动,盘上站着一个人,初始时整个系统处于静止状态,忽略轴的摩擦,当此人在盘上随意走动时,此系统[ C ](A)动量守恒 (B)机械能守恒 (C)对中心轴的角动量守恒 (D)动量、机械能和角动量都守恒5. 求质量为m 、半径为R 的细圆环和圆盘绕通过中心并与圆面垂直的转轴的转动惯量分别是( C )。
医用物理学课后习题答案
医用物理学课后习题答案This model paper was revised by LINDA on December 15, 2012.习题三第三章流体的运动3-1 若两只船平行前进时靠得较近,为什么它们极易碰撞答:以船作为参考系,河道中的水可看作是稳定流动,两船之间的水所处的流管在两船之间截面积减小,则流速增加,从而压强减小,因此两船之间水的压强小于两船外侧水的压强,就使得两船容易相互靠拢碰撞。
3-6 水在截面不同的水平管中作稳定流动,出口处的截面积为管的最细处的3倍,若出口处的流速为2m·s-1,问最细处的压强为多少?若在此最细处开一小孔,水会不会流出来。
(85kPa)3-7 在水管的某一点,水的流速为2m·s-1,高出大气压的计示压强为104Pa,设水管的另一点的高度比第一点降低了1m,如果在第二点处水管的横截面积是第一点的1/2,求第二点处的计示压强。
(13.8kPa)3-8 一直立圆柱形容器,高,直径,顶部开启,底部有一面积为10-4m2的小孔,水以每秒×10-4m3的快慢由水管自上面放人容器中。
问容器内水面可上升的高度(0.1;11.2s.)3-9 试根据汾丘里流量计的测量原理,设计一种测气体流量的装置。
提示:在本章第三节图3-5中,把水平圆管上宽、狭两处的竖直管连接成U形管,设法测出宽、狭两处的压强差,根据假设的其他已知量,求出管中气体的流量。
解:该装置结构如图所示。
3-10 用皮托管插入流水中测水流速度,设两管中的水柱高度分别为5×10-3m和×10-2m,求水流速度。
·s-1)3-11 一条半径为3mm的小动脉被一硬斑部分阻塞,此狭窄段的有效半径为2mm,血流平均速度为50㎝·s-1,试求(1)未变窄处的血流平均速度。
·s—1)(2)会不会发生湍流。
(不发生湍流,因Re = 350)(3)狭窄处的血流动压强。
医用物理学课后练习题含答案
医用物理学课后练习题含答案
一、选择题
1.根据X射线照片的特征,下列哪项不是纤维样肺病的特点?
A. 肺门淋巴结增大
B. 双侧肺内网状磨玻璃影
C. 肺内斑片状高密度影
D. 胸腔积液或纤维化
答案:C
2.以下哪一项不属于CT扫描的基本步骤?
A. 选择适当的切面
B. 调节层厚
C. 选定切片
D. 光电转换
答案:D
3.下列哪项不是真空吸引原理的应用之一?
A. 针灸吸气
B. 饲喂牛奶
C. 飞机起重
D. 吸尘器清洁
答案:C
二、判断题
1.医用CT扫描仪的X射线灵敏度越高,获得的图像越清晰。
正确或错误?答案:错误
2.超声波在医学影像中的应用局限在脑部、肺部和心脏等重要脏器。
正确或错误?答案:错误
三、简答题
1.请简要描述核磁共振成像(MRI)的原理。
MRI成像是通过对人体进行高频电磁信号的照射,使人体内的原子产生共振吸收,产生电磁信号,接受信号后通过计算机循环分析,还原出高清晰度的图像。
MRI不仅可以观察软组织,对于脑、胸部和腹部等部位的对比度也非常好。
2.什么是加速器放射治疗?请谈一谈这种治疗方法的优势和不足。
加速器放射治疗是利用高能量的电子或X射线照射到肿瘤组织上面,对肿瘤细胞的DNA分子进行破坏而达到治疗的目的。
它的优点在于能够高度精确地定位到病变组织,从而减少对正常组织的影响,同时可控性也很高,能够精确调节剂量。
其不足之处在于,辐射剂量会对周围的正常细胞造成影响,从而引起其他症状和并发症,同时,这种治疗也需要高昂的费用支持,对于较为贫困的地区来说治疗难度较高。
(完整word版)医学物理学习题答案详解
第一章习题答案1-4解:对滑轮:由转动定律 (TT )rJ 1 mr 2122对 m: mg TmaTm ( g a )111111对 m :TKmgmaTm ( aK g )222222得T 1T 2ma 联立上式得 amgK mg又因为 ar122mm 1m2 2(1K)m2m则 Tmg ma2mg11 m mm1122(1K )mmKTmg m g12mgK222m 2m m1221-5.解: 以质心为转轴剖析 ,摩擦力矩为转动力矩。
因 A 、B 、C 的质量和半径相同, 故支持力 F N相同。
由摩擦力F f = μ,摩擦力矩 M =F f· R 可知,三者的摩擦力矩也相同。
F N圆盘 A 的转动惯量 J A = 1 m r 2;实心球 B 的转动惯量 J B =2 m r 2 ; 圆环 C 的转动惯量 J C =25m r 2 .由 M =J α可知B>A>C ,所以 B 先抵达 ,C 最后抵达 .1-6.解 :地球自转角速度=24 2 ,转动惯量 J= 2mR 2 ,则角动量 L J,转动动能60 60512E k = J1-7.解: EF/S = l 0F,将各已知量代入即可求解ll/l 0 S l第二章习题答案2-1.①.②. 皮球在上涨和下降阶段均受恒力(重力 ),因此皮球上下运动不是简谐振动.小球在半径很大的圆滑凹球面的底部摇动时,所受的力是指向均衡地点的答复力,且因为是小幅度摇动,答复力的大小和位移成正比(近似于单摆的小幅度摇动)。
所以此状况下小球小幅度摇动是简谐振动。
第四章习题答案4-1.答:射流在静止气体中发射时,射流双侧的一部分气体随射流流动,进而在射流双侧形成局部低压区。
远处的气压未变,所以远处气体不停流向低压区,以增补被卷吸带走的气体,进而形成了射流的卷吸作用。
4-2.答:关于必定的管子,在流量必定的状况下,管子越粗流速越小;在管子两头压强差必定的状况下,管子越粗流速越快。
医用物理学第 章 课后习题解答
第十一章 几何光学通过复习后,应该:1.掌握单球面折射成像、共轴球面系统、薄透镜成像、薄透镜的组合、放大镜和显微镜;2.理解共轴球面系统的三对基点、眼的分辨本领和视力、近视眼、远视眼、散光眼的矫正;3.了解透镜像差、眼的结构和性质、色盲、检眼镜、光导纤维内窥镜。
11-1 一球形透明体置于空气中,能将无穷远处的近轴光线束会聚于第二个折射面的顶点上,求此透明体的折射率。
习题11-1附图(原11-2附图)解: 无穷远处的光线入射球形透明体,相当于物距u 为∞,经第一折射面折射,会聚于第二折射面的顶点,则v=2r(r 为球的半径),已知n 1 =1.0,设n 2 =n(即透明体的折射率),代入单球面折射成像公式,得rn r n 1.0-20.1=+∞ 解得n =2.0,即球形透明体的折射率。
11-2 在3m 深的水池底部有一小石块,人在上方垂直向下观察,此石块被观察者看到的深度是多少?(水的折射率n =1.33)习题11-2附图(原11-3附图)解: 这时水池面为一平面的折射面,相当于r 为∞,已知u =3m,n 1 =1.33,n 2 =1.0,观察者看到的是石块所成的像,设其像距为v ,应用单球面折射成像公式,得∞=+ 1.33-.010.1m 333.1v 解得v =-2.25m,这表明石块在水平面下2.25m 处成一虚像,即观察者看到的“深度”。
11-3 圆柱形玻璃棒(n =1.5)放于空气中,其一端是半径为2.0cm 的凸球面,在棒的轴线上离棒端8.0cm 处放一点物,求其成像位置。
如将此棒放在某液体中(n =1.6),点物离棒端仍为8.0cm,问像又在何处?是实像还是虚像?习题11-3附图 (a)【原11-5附图(a)】解: ①如本题附图(a)所示,已知n 1 =1.0,n 2 =1.5,u =8.0cm,r =2.0cm,代入单球面折射成像公式,得cm0.2 1.0-.515.1cm 0.80.1=+v得v =12cm,在玻璃棒中离顶点12cm 处成一实像。
医用物理学答案
医⽤物理学答案医⽤物理学习题集答案及简短解答说明:⿊体字母为⽮量练习⼀位移速度加速度⼀.选择题 C B A⼆.填空题1. 2.2. 6 t ; t+t33. -ω2r或-ω2 (A cosωt i+B sinωt j)x2/A2+y2/B2=1三.计算题1.取坐标如图,船的运动⽅程为x=[l2(t)-h2]1/2因⼈收绳(绳缩短)的速率为v0,即d l/d t=-v0.有u=d x/d t=(l d l/d t)/ (l2-h2)1/2=- v0 (x2+h2)1/2/xa= d v/d t=- v0[x (d x/d t)/ (x2+h2)1/2]/x-[(x2+h2)1/2/x2] (d x/d t)=- v0{-h2/[ x2 (x2+h2)1/2]}[ - v0 (x2+h2)1/2/x] =- v02h2/ x3负号表⽰指向岸边.2. 取坐标如图,⽯⼦落地坐标满⾜x=v0t cosθ=s cosαy=v0t sinθ-gt2/2=s sinα解得tanα= tanθ-gt/(2v0cosθ)=2v02sin(θ-α)cosθ/(g cos2α)当v0,α给定时,求s的极⼤值. 令d s/dθ=0,有0=d s/dθ=[2v02/(g cos2α)]··[cos(θ-α)cosθ- sin(θ-α)sinθ]=[2v02 cos(2θ-α)/(g cos2α)]cos(2θ-α)=02θ-α=π/2θ=π/4+α/2所以,当θ=π/4+α/2时, s有极⼤值,其值为s max=2v02sin(π/4-α/2)cos(π/4+α/2)/(g cos2α) = v02[sin(π/2)-sinα] /(g cos2α) = v02(1-sinα)/(g cos2α)练习⼆圆周运动相对运动⼀.选择题 B B D⼆.填空题1.79.5m.2.匀速率,直线, 匀速直线, 匀速圆周.3.4t i-πsinπt j, 4i-π2cosπt j,4m/s2,9.87m/s2.三.计算题1.M的速度就是r变化的速度,设CA=R.由r2=R2+l2-2Rl cosωtR/sinα=r/sinωt得2r d r/d t=2Rlωsinωt=2lωsinωt ·r sinα /sinωtv=d r/d t=lωsinα或v=d r/d t=lωR sinωt/r= lωR sinωt/( R2+l2-2Rl cosωt)1/22.取向下为X正向,⾓码0,1,2分别表⽰地,螺帽,升降机.依相对运动,有a12=a10-a20a12=g-(-2g)=3gv0=a20t0=-2gt0x=v0t+gt2=-2gt0t+gt2代⼊t0=2s, t=0.37s, 得x=-13.8m螺帽上升了s=13.8m练习三转动定律⾓动量守恒定律⼀.选择题 C D B⼆.填空题1. 20.2. 38kg ·m2.3. .mR2/4, 4M sinα/(mR), 16M2t2sinα/(mR)2.三.计算题1.切向⽅向受⼒分析如图,系m1= 20g的物体时动⼒学⽅程为mg-T=0Tr-Mµ=0所以摩擦阻⼒矩Mµ=mgr=3.92×10-2m·N 系m2=50g的物体时物体加速下降,由h=at2/2得a=2h/t2=8×10-3m/s2α=a/r=4×10-2s-2动⼒学⽅程为m2g-T=m2aTr-Mµ=Jα得绳系m2后的张⼒T= m2(g-a)=0.4896N 飞轮的转动惯量J =(Tr-Mµ)/α=1.468kg·m22.(1)受⼒分析如图.F(l1+l2)=Nl1N= F(l1+l2)/l1Mµ=rfµ=rµN=µrF(l1+l2)/l1-Mµ= Jα-µrF(l1+l2)/l1 =(mr2/2)αα=-2µF(l1+l2)/(l1mr)=-40/3=-13.3 rad/s2t=-ω0/α=7.07s由前⾯式⼦α=-2µF(l1+l2)/(l1mr)可得F'=-α'l1mr/[2µ(l1+l2)]= ω0l1mr/[4µ(l1+l2) t'] =177N练习四物体的弹性⾻的⼒学性质⼀.选择题 B B B⼆.填空题1. 1×10-102. 2.5×10-5三.计算题1. 4.9×108 N·m-22. 1.5×108 N·m-23×108 N·m-2练习五理想流体的稳定流动⼀.选择题 A A C⼆.填空题1. 352. 0.75m/s,3m/s3. 10cm三.计算题1. 解:由222212112121ghVPρ+ + = + + 2 2 1 1 S V S V=) ( 104 1 pa P P+ = m h h1 2 1 = -s m V/ 2S S= s m V V/ 4 2 1 2 = =∴) ( ) ( 2 1 2 1 2 2 2 1 1 2 h h g-+=∴ρρpa510151.1?=paPP421038.1?=-即第⼆点处的压强⾼出⼤⽓压强pa 41038.1?23322221211212121gh V P gh V P gh V P ρρρρρρ++=++=++ 01P P = 01=V 03P P = 3322S V S V =sm h h g V /3.13)(2313=-=∴s m V V /65.62132==∴paV h h g P P 42221121006.1021)(?=--+=∴ρρs m S V Q /266.002.03.13333=?==练习六⾎液的层流⼀.选择题 D C A ⼆.填空题 1. 2.78×10-3 Pa 2. 163. 减⼩,增加三. 计算题1.解:由v=[(P 1-P 2)/4ηL ](R 2-r 2) 令r=0得 P 1-P 2=v ·4ηL/R2=2301.0210005.141.0-=8.0N/m22.解:根据泊肃叶公式l P P r Q η8)(214-π=⽽t m Q ??=ρ1 gh P P ρ=-12 tm l gh r ??=6242=--π= 0.0395 Pa ·s练习七简谐振动⼀.选择题 A C B⼆.填空题1. 2.0.2.A cos(2πt /T -π/2);A cos(2πt /T +π/3). 3. 见图.三.计算题1.解:A=0.1m ν=10 Hz ω=20π rad/s T=0.1s ф=(π/4+20πt) x(t =2s)=0.071m υ(t =2s)=-4.43m/sa(t =2s)=-278m/ s 2 2.解:(1)π(2)π/2(3)-π/3 (4)π/4练习⼋简谐振动的叠加、分解及振动的分类⼀.选择题 B E C ⼆.填空题1. x 2 = 0.02cos ( 4 π t -2π/3 ) (SI).2. 2π2mA 2/T 2.3. 5.5Hz ,1.三.计算题1.(1)平衡时,重⼒矩与弹⼒矩等值反向,设此时弹簧伸长为?x 0,有mgl /2-k ?x 0l '= mgl /2-k ?x 0l /3=0 设某时刻杆转过⾓度为θ, 因⾓度⼩,弹簧再伸长近似为θ l '=θ l/3,杆受弹⼒矩为 M k =-l 'F k =- (l/3)[(?x 0+θ l/3)k ]=-k (?x 0l /3+θ l 2/3)合⼒矩为 M G + M k= mgl /2-k (?x 0l /3+θ l 2/3)=-k θ l 2/3 依转动定律,有-k θ l 2/3=J α= (ml 2/3)d 2θ /d t 2 d 2θ /d t 2+ (k /m )θ=0即杆作简谐振动.(2) ω=m k T=2πk m (3) t=0时, θ=θ0, d θ /d t ?t=0=0,得振幅θA =θ0, 初位相?0=0,故杆的振动表达式为θ=θ0cos(m k t )2.因A 1=4×10-2m, A 2=3×10-2m ?20=π/4, ?10=π/2,有A =[A 12+A 22+2A 1A 2cos(?20-?10)]1/2=6.48?10-2mtg ?0=(A 1sin ?10+A 2sin ?20) /(A 1cos ?10+A 2cos ?20)=2.0610=64.11○ ?0=244.11○因 x 0=A cos ?0=x 10+x 20=A 1cos ?10+A 2cos ?20=5.83?10-2m>0 ?0在I 、IV 象限,故0=64.11○=1.12rad所以合振动⽅程为x =6.48?10-2cos(2πt +1.12) (SI)。
医用物理学课后习题参考答案
医用物理学课后习题参考答案练习一 力学基本定律(一)1.j i 55+;j i 54+;i 42.2/8.4s m ;2/4.230s m ;rad 15.3 3.(2);4.(3) 5.(1)由⎩⎨⎧-==22192ty t x 得)0(21192≥-=x x y ,此乃轨道方程 (2)j i r 1142+=,j i r 1721+=,,s m v /33.6=(3)i t i dt rd v 42-==,j dt v d a 4-== st 2=时,j i v 82-=, 6.(1)a dt dv = 2/1kv dtdv-=∴有⎰⎰-=-⇒-=-vv tkt v vkdt dv v2/102/12/122 当0=v 时,有kv t 02=(2)由(1)有2021⎪⎭⎫ ⎝⎛-=kt v vkvkt v k vdt x tk v 3221322/3000/2300=⎪⎭⎫⎝⎛--==∆⎰练习二力 学基本定律(二)1.kg m 2222.j i 431+;j i 321+3.(4)4.(1)5..(1) (2)r mg W f πμ2⋅-=∴j i v 62-=∴j a 4-=2020208321221mv mv v m E W k f -=-⎪⎭⎫ ⎝⎛=∆=rgv πμ163 2=∴(3)34)210(20=∆-=k E mv N (圈) 6.设人抛球后的速度为V,则人球系统抛球过程水平方向动量守恒)() (V u m MV v m M o ++=+∴ mM muv V +-=0人对球施加的冲量mM mMumv V u m I +=-+=0)( 方向水平向前练习三 刚体的转动(一)1.2.20-s rad ;1.48-s rad 2.034ω;2021ωJ 3.(1);4.(5)5.ααR a MR TR maT mg ===-221 R M m mg )2/(+=α;2/M m mga +=;6.(1)由角动量守恒得: 02211=+ωωJ J0222=+⋅ωJ RvMR )(05.0122--=-=S J mRv ω (2)πωω2)]([21=--t (s) 55.02π=t (rad) 1122πωθ==t (3)(s) 422ππωπ===vRT (r a d ) 0.2 2πωθ==∴T 练习四 刚体的转动(二)1.gl 3 2.06.0ω3.(1);πω4504.(3);5.1111a m T g m =- 2222a m g m T =- α)(2121J J r T R T +=- αR a =1 αr a =2联立解得:22212121)(rm R m J J gr m R m +++-=α 222121211)(r m R m J J Rg r m R m a +++-=222121212)(r m R m J J rgr m R m a +++-= g m r m R m J J r R r m J J T 12221212211)(++++++=g m r m R m J J r R R m J J T 22221211212)(++++++=6.23121202lmg ml =⋅ω lg30=ω 2222022131213121mv ml ml +⋅=⋅ωω lmv ml ml +=ωω2023131 gl v 321=练习五 流体力学(一)1.h 、P 、v 2.P 、v 3.(3) 4.(4)5.(1)粗细两处的流速分别为1v 与2v ;则 2211v S v S Q ==12131175403000--⋅=⋅==s cm cms cm S Q v ;121322*********--⋅=⋅==s cm cm s cm S Q v (2)粗细两处的压强分别为1P 与2P2222112121v P v P ρρ+=+)(1022.4)75.03(102121213223212221Pa v v P P P ⨯=-⨯⨯=-=-=∆ρρ P h g ∆=∆⨯⋅-)(水水银ρρ;m h 034.0=∆6.(1)射程 vt s =gh v ρρ=221 gh v 2 =∴ 又 221gt h H =- g h H t )(2-=)(2)(22 h H h gh H gh vt s -=-⋅==∴tt =0.5st t =0s (2)设在离槽底面为x 处开一小孔,则同样有:)(2121x H g v -=ρρ )(21x H g v -= 又 2121gt x = gxt 21= )()(2 111h H h s x H x t v s -==-==∴ h x =∴则在离槽底为h 的地方开一小孔,射程与前面相同。
医用物理学第四版习题答案
医用物理学第四版习题答案医用物理学是一门涉及医学和物理学的交叉学科,旨在研究和应用物理学原理和技术来解决医学领域的问题。
而《医用物理学第四版》是一本经典的教材,为学习和研究医用物理学提供了重要的参考资料。
本文将针对该教材中的习题进行解答,探讨其中涉及的一些重要概念和原理。
第一章习题:1. 什么是医用物理学?医用物理学是一门研究和应用物理学原理和技术来解决医学领域问题的学科。
它涉及到医学成像、辐射治疗、生物物理学等方面。
2. 为什么医用物理学对医学领域至关重要?医用物理学提供了一种理论和技术基础,使医学领域能够进行准确的诊断和治疗。
它可以帮助医生更好地了解人体结构和功能,提高诊断的准确性和治疗的效果。
3. 医用物理学的研究内容包括哪些方面?医用物理学的研究内容包括医学成像、辐射治疗、生物物理学等方面。
其中医学成像是医用物理学的重要分支,包括X射线成像、核磁共振成像、超声成像等。
第二章习题:1. X射线成像的原理是什么?X射线成像是利用X射线的穿透性质和被不同组织吸收的差异来获取人体内部结构的影像。
通过将X射线通过人体,再通过探测器进行接收和处理,最终生成可视化的影像。
2. 核磁共振成像的原理是什么?核磁共振成像利用原子核在外加磁场和射频脉冲作用下的共振现象来获取人体内部结构的影像。
通过对人体施加强大的静态磁场和射频脉冲,使原子核发生共振,然后通过接收和处理信号来生成影像。
第三章习题:1. 辐射治疗的原理是什么?辐射治疗是利用高能射线(如X射线、γ射线)对肿瘤组织进行照射,破坏肿瘤细胞的生长和分裂能力,从而达到治疗目的。
辐射治疗可以通过直接破坏肿瘤细胞的DNA,或者通过诱导肿瘤细胞凋亡来实现。
2. 辐射治疗的剂量如何确定?辐射治疗的剂量是根据肿瘤的类型、位置、大小以及患者的身体状况等因素来确定的。
通常使用剂量计算模型来估算剂量,然后根据患者的具体情况进行调整。
第四章习题:1. 生物物理学的研究内容包括哪些方面?生物物理学是研究生物系统中的物理现象和过程的学科。
医用物理学习题解答汇总(1)(1)(1)(1)
第一章 生物力学基础1-1 两物体的转动动能之比为1:8,转动惯量之比为2:1,求两物体的角速度之比。
解:由211112k E I ω=,222212k E I ω=,且121/8k k E E =,12/2I I =,可得1214ωω=1-2 细棒长度为1m ,质量为6kg ,转轴与棒垂直,距离一端为0.2m ,求转动惯量。
解:0.80.82230.20.211.0083I r dm x dx x λλ--====⎰⎰ kg/m 21-3 圆盘质量为m ,半径为R ,质量分布均匀,轴过盘中心且与盘面垂直,求转动惯。
解:4232212242Rm R J r dm r dr mR R πσππ===⋅⋅=⎰⎰1-4 一个飞轮的转动惯量为2335kg m ⋅,转速为每分钟72转,因受摩擦力矩作用而均匀减速,经40s 停止,求摩擦力矩。
解: 由每分钟72转可得角速度为2π×72/60=2.4π rad/s , 由0t ωωβ=+ 可得 0 2.440πβ=+⨯,0.06βπ=- rad/s , 由M I β=,可得 335(0.06)63.15 N m M π=⨯-=-1-5 在自由旋转的水平圆盘边上,站着一质量为m 的人,圆盘半径为R ,转动惯量为J ,角速度为ω,如果这人由盘边走到盘心,求角速度变化。
解:由角动量守恒()2J mR J ωω+=220(1)J mR mR J Jωωω+==+ 角速度变化20mR Jωωω-= 1-6 一个人坐在转台上,将双手握住的哑铃置于胸前,转台以一定角速度0ω转动(摩擦不计),人和转台的转动惯量为0J ,如果此人将两手平伸,使人和转台的转动惯量增加为原来的2倍,求:(1)人和转台的角速度;(2)转动动能。
解:(1)由角动量守恒0002J J ωω=,所以0/2ωω=(2)222001122224k J E I J ωωω⎛⎫=== ⎪⎝⎭1-7 解释以下各物理量的定义、单位以及它们之间的关系:(1)压应变、压应力、杨氏模量;(2)切应变、切应力、切变模量;(3)体应变、体应力、体变模量。
医用物理学答案
医用物理学习题集答案及简短解答说明:黑体字母为矢量练习一位移速度加速度一.选择题 C B A二.填空题1. 2.2. 6 t ; t+t33. -ω2r或-ω2 (A cosωt i+B sinωt j)x2/A2+y2/B2=1三.计算题1.取坐标如图,船的运动方程为x=[l2(t)-h2]1/2因人收绳(绳缩短)的速率为v0,即d l/d t=-v0.有u=d x/d t=(l d l/d t)/ (l2-h2)1/2=- v0 (x2+h2)1/2/xa= d v/d t=- v0[x (d x/d t)/ (x2+h2)1/2]/x-[(x2+h2)1/2/x2] (d x/d t)=- v0{-h2/[ x2 (x2+h2)1/2]}[ - v0 (x2+h2)1/2/x]=- v02h2/ x3负号表示指向岸边.2. 取坐标如图,石子落地坐标满足x=v0t cosθ=s cosαy=v0t sinθ-gt2/2=s sinα解得tanα= tanθ-gt/(2v0cosθ)t=2v0sin(θ-α)/(g cosα)s=x/cosα= v0t cosθ / cosα=2v02sin(θ-α)cosθ/(g cos2α)当v0,α给定时,求s的极大值. 令d s/dθ=0,有0=d s/dθ=[2v02/(g cos2α)]··[cos(θ-α)cosθ- sin(θ-α)sinθ]=[2v02 cos(2θ-α)/(g cos2α)]cos(2θ-α)=02θ-α=π/2θ=π/4+α/2所以,当θ=π/4+α/2时, s有极大值,其值为s max=2v02sin(π/4-α/2)cos(π/4+α/2)/(g cos2α) = v02[sin(π/2)-sinα] /(g cos2α)= v02(1-sinα)/(g cos2α)练习二圆周运动相对运动一.选择题 B B D二.填空题1.79.5m.2.匀速率,直线, 匀速直线, 匀速圆周.3.4t i-πsinπt j, 4i-π2cosπt j,4m/s2,9.87m/s2.三.计算题1.M的速度就是r变化的速度,设CA=R.由r2=R2+l2-2Rl cosωtR/sinα=r/sinωt得2r d r/d t=2Rlωsinωt=2lωsinωt ·r sinα /sinωtv=d r/d t=lωsinα或v=d r/d t=lωR sinωt/r= lωR sinωt/( R2+l2-2Rl cosωt)1/22.取向下为X正向,角码0,1,2分别表示地,螺帽,升降机.依相对运动,有a12=a10-a20a12=g-(-2g)=3gh= a12t2/2t=[2h/(3g)]1/2=0.37sv0=a20t0=-2gt0x=v0t+gt2=-2gt0t+gt2代入t0=2s, t=0.37s, 得x=-13.8m螺帽上升了s=13.8m练习三转动定律角动量守恒定律一.选择题 C D B二.填空题1. 20.2. 38kg ·m2.3. .mR2/4, 4M sinα/(mR), 16M2t2sinα/(mR)2.三.计算题1.切向方向受力分析如图,系m1= 20g的物体时动力学方程为mg-T=0Tr-Mμ=0所以摩擦阻力矩Mμ=mgr=3.92×10-2m·N 系m2=50g的物体时物体加速下降,由h=at2/2得a=2h/t2=8×10-3m/s2α=a/r=4×10-2s-2动力学方程为m2g-T=m2aTr-Mμ=Jα得绳系m2后的张力T= m2(g-a)=0.4896N 飞轮的转动惯量J =(Tr-Mμ)/α=1.468kg·m22.(1)受力分析如图.F(l1+l2)=Nl1N= F(l1+l2)/l1Mμ=rfμ=rμN=μrF(l1+l2)/l1-Mμ= Jα-μrF(l1+l2)/l1 =(mr2/2)αα=-2μF(l1+l2)/(l1mr)=-40/3=-13.3 rad/s2t=-ω0/α=7.07s∆θ=ω0t+αt2/2=-ω02/(2α)~53转(2) ω''=ω0/2=ω0+α' t'α'=-ω0/(2t')=-7.5π=23.6rad/s2由前面式子α=-2μF(l1+l2)/(l1mr)可得F'=-α'l1mr/[2μ(l1+l2)]= ω0l1mr/[4μ(l1+l2) t']=177N练习四物体的弹性骨的力学性质一.选择题 B B B二.填空题1. 1×10-102. 2.5×10-5三. 计算题 1. 4.9×108 N ·m -22. 1.5×108 N ·m -23×108 N ·m -2练习五 理想流体的稳定流动一.选择题 A A C 二.填空题 1. 352. 0.75m/s,3m/s3. 10cm 三. 计算题1. 解: 由222212112121gh V P gh V P ρρρρ++=++2211S V S V = )(10401pa P P += m h h 121=- s m V /21= 1221S S = s m V V /4212==∴ )()(2121222112h h g V V P P -+-+=∴ρρ pa 510151.1⨯=pa P P 4021038.1⨯=-即第二点处的压强高出大气压强pa 41038.1⨯3. 解:由323322221211212121gh V P gh V P gh V P ρρρρρρ++=++=++01P P = 01=V 03P P = 3322S V S V =sm h h g V /3.13)(2313=-=∴s m V V /65.62132==∴pa V h h g P P 42221121006.1021)(⨯=--+=∴ρρs m S V Q /266.002.03.13333=⨯==练习六 血液的层流一.选择题 D C A 二.填空题 1. 2.78×10-3Pa 2. 163. 减小,增加 三. 计算题1.解:由v=[(P 1-P 2)/4ηL ](R 2-r 2)令r=0得 P 1-P 2=v ·4ηL/R 2=2301.0210005.141.0⨯⨯⨯⨯-=8.0N/m 22.解:根据泊肃叶公式lP P r Q η8)(214-π=而tm Q ∆∆=ρ1 gh P P ρ=-12 tm l gh r ∆∆=∴/824ρηπs Pa 60/106.61.085.08.910)9.1()102/1.0(36242⋅⨯⨯⨯⨯⨯⨯⨯=--π= 0.0395 Pa ·s练习七 简谐振动一.选择题 A C B二.填空题1. 2.0.2.A cos(2πt /T -π/2); A cos(2πt /T +π/3).3. 见图. 三.计算题1.解:A=0.1m ν=10 Hz ω=20π rad/s T=0.1s ф=(π/4+20πt) x(t =2s)=0.071m υ(t =2s)=-4.43m/s a(t =2s)=-278m/ s 22.解:(1)π (2)π/2(3)-π/3 (4)π/4练习八 简谐振动的叠加、分解及振动的分类 一.选择题 B E C 二.填空题1. x 2 = 0.02cos ( 4 π t -2π/3 ) (SI).2. 2π2mA 2/T 2.3. 5.5Hz ,1. 三.计算题1.(1)平衡时,重力矩与弹力矩等值反向,设此时弹簧伸长为∆x 0,有mgl /2-k ∆x 0l '= mgl /2-k ∆x 0l /3=0 设某时刻杆转过角度为θ, 因角度小,弹簧再伸长近似为θ l '=θ l/3,杆受弹力矩为M k =-l 'F k =-(l/3)[(∆x 0+θ l/3)k ] =-k (∆x 0l /3+θ l 2/3) 合力矩为 M G + M k = mgl /2-k (∆x 0l /3+θ l 2/3)=-k θ l 2/3 依转动定律,有-k θ l 2/3=J α= (ml 2/3)d 2θ /d t 2d 2θ /d t 2+ (k /m )θ=0即杆作简谐振动. (2) ω=m k T=2πk m (3) t=0时, θ=θ0, d θ /d t ⎢t=0=0,得振幅θA =θ0,初位相ϕ0=0,故杆的振动表达式为θ=θ0cos(m k t )2.因A 1=4×10-2m, A 2=3×10-2m ϕ20=π/4, ϕ10=π/2,有A =[A 12+A 22+2A 1A 2cos(ϕ20-ϕ10)]1/2=6.48⨯10-2m tg ϕ0=(A 1sin ϕ10+A 2sin ϕ20) /(A 1cos ϕ10+A 2cos ϕ20)=2.061ϕ0=64.11○ ϕ0=244.11○因x0=A cosϕ0=x10+x20=A1cosϕ10+A2cosϕ20=5.83⨯10-2m>0ϕ0在I、IV象限,故ϕ0=64.11○=1.12rad所以合振动方程为x=6.48⨯10-2cos(2πt+1.12) (SI)。
医用物理学第2章课后答案
四、习题解答2-1 理想流体在粗细不均匀、高低不同的管中作定常流动时有 (A)低处的压强一定比较大; (B)低处的流速一定比较大;(C)高处单位体积流体的动能总是比较小;(D)压强较小处,单位体积流体的动能和重力势能之和一定比较大。
答:(D)2-2 如附图2-3所示,一粗细均匀的竖直管中有水自上向下作定常流动,管壁上不同高度A、B、C 之处开有三个相同的小孔。
已知B 孔无水流出也无气泡进入水中,则(A)A 孔有气泡进入水中,C 孔有水流出; (B)A 孔有水流出,C 孔有气泡进入水中; (C)A、C 两孔均有气泡进入水中; (D)A、C 两孔均有水流出。
解: 依伯努利方程可知:2c c 2B B 2A A v 21v 21v 21ρρρρρρ++=++=++gh p gh p gh p c B A由于 0B p p =,C B v v v ==A ,c B A h h h >> 所以 0B A p p p =< 即:A 孔有气泡进入水中; 0B c p p p => 即:C 孔有水流出。
故(A)对2-3 将内径为2cm 的软管连接到草坪的洒水器上,洒水器装一个有20个小孔的莲蓬头,每个小孔直径为0.5cm。
如果水在软管中的流速为1s /m ,试求由各小孔喷出的水流速率是多少?解:设水为做定常流动的不可压缩流体。
依连续性方程可知222121)2(=2(v d N v d ππ附图2-3 习题2-2故 )/(8.0005.020102.022221212s m Nd d =⨯⨯==v v 2-4 注射器活塞面积21cm 2.1=S ,针头截面积22mm 1=S 。
如用0.98 N 的力水平推动活塞将水射出,问使活塞移动4cm 需多少时间?解:设针管活塞处为点1,针头为点2101S Fp p += 02p p =在忽略高度变化的情况下,由伯努利方程可知2222112121v v ρρ+=+p p 由于 21S S 〉〉 所以 01≈v 222121v ρ+=p p 即:1332412120410011021980222---⋅≈⋅⨯⨯⨯⨯==-=s m .mkg .m .N .)(ρρS F p p v 由连续性方程2211v v S S =得1224126122110210410210410-----⋅⨯=⨯⋅⨯==s m ..m .s m .m S S v v 所以 s .sm .m..21100410042112211=⋅⨯⨯⨯==---v L t 2-5 水在粗细不均匀管道中流动,A 处流速为 2.0s /m ,压强比大气压高Pa 100.14⨯;B 处比A 处低1.0m,截面积比A 处小一半。
广东医学院 医用物理学 课后习题+答案
第二章 流体的运动2-1.一水平圆管,粗处的直径为8cm ,流速为1m ·s -1,粗处的直径为细处的2倍,求细处的流速和水在管中的体积流量.解:(1)已知:d 1=8cm ,v 1=1m ·s -1,d 1= 2d 2.求:v 2=?,Q =? 根据连续性方程1122S S =v v ,有22112244d d ππ=v v ,代入已知条件得()12144m s -==⋅v v(2)水的体积流量为()()2223311122118101 5.02410m s 44Q S S d ππ---====⋅⨯⨯=⨯⋅v v v2-2.将半径为2cm 的引水管连接到草坪的洒水器上,洒水器装一个有20个小孔的莲蓬头,每个小孔直径为0.5cm .如果水在引水管中的流速为1m ·s -1,试求由各小孔喷出的水流速度是多少?解:已知:总管的半径r 1=2cm ,水的流速v 1=1m ·s -1;支管的半径为r 2=0.25cm ,支管数目为20.求:v 2=?根据连续性方程1122S nS =v v ,有221122r n r ππ=v v ,代入数据,得()()222222101200.2510--⨯⨯=⨯⨯v从而,解得小孔喷出的水流速度()12 3.2m s -=⋅v .2-3.一粗细不均匀的水平管,粗处的截面积为30cm 2,细处的截面积为10cm 2.用此水平管排水,其流量为3×10-3 m 3·s -1.求:(1)粗细两处的流速;(2)粗细两处的压强差.解:已知:S 1=30cm 2,S 2=10cm 2,Q =3×10-3m 3·s -1.求:(1) v 1=?,v 2=?;(2) P 1-P 2=?(1)根据连续性方程1122Q S S ==v v ,得()()33111244123103101m s , 3m s 30101010Q Q S S ------⨯⨯===⋅===⋅⨯⨯v v (2)根据水平管的伯努利方程22112211++22P P ρρ=v v ,得粗细两处的压强差 ()()22322312211111031410Pa 222P P ρρ-=-=⨯⨯-=⨯v v2-4.水在粗细不均匀的管中做定常流动,出口处的截面积为10cm 2,流速为2m ·s -1,另一细处的截面积为2cm 2,细处比出口处高0.1m .设大气压强P 0≈105Pa ,若不考虑水的黏性,(1)求细处的压强;(2)若在细处开一小孔,水会流出来吗?解:(1) 已知:S 1=10cm 2,v 1=2m ·s -1,S 2=2cm 2,P 1= P 0≈105Pa ,h 2-h 1=0.1m .求:P 2=?根据连续性方程S 1v 1=S 2v 2,得第二点的流速()111212510m s S S -===⋅v v v 又根据伯努利方程2211122211+g +g 22P h P h ρρρρ+=+v v ,得第二点的压强 ()()()()()222112125322341-g 211010210109.80.12=5.10210Pa P P h h ρρ=++-=+⨯⨯-+⨯⨯-⨯v v(2) 因为()4205.10210Pa P P =⨯<,所以在细处开一小孔,水不会流出来.2-5.一种测流速(或流量)的装置如右图所示.密度为ρ的理想液体在水平管中做定常流动,已知水平管中A 、B两处的横截面积分别为S A 和S B ,B 处与大气相通,压强为P 0.若A 处用一竖直细管与注有密度为ρ'(ρ<ρ')的液体的容器C 相通,竖直管中液柱上升的高度为h ,求液体在B 处的流速和液体在管中的体积流量.解:根据水平管的伯努利方程22A AB B1122P P ρρ+=+v v 和连续性方程A A B B S S =v v ,解得B 处的流速B A B A22B A 2(()P P S S S ρ-=-)v 又由竖直管中液柱的高度差,可知B A P P gh ρ'-=,因而B 处的流速为B A22B A 2()ghS S S ρρ'=-v 进而得水平管中液体的体积流量为B B A B22B A 2()ghQ S S S S S ρρ'==-v2-6.用如下图所示的装置采集气体.设U 形管中水柱的高度差为3cm ,水平管的横截面积S 为12cm 2,气体的密度为2kg ·m -3.求2min 采集的气体的体积.解:根据水平管的伯努利方程2211221122P P ρρ+=+v v , 因弯管处流速v 2=0,因此上式可化为211212P P ρ+=v , 又由U 形管中水柱的高度差知1、2两处的压强差为21P P gh ρ-=水, 联立上面两式,解得气体的流速()32112g 2109.831017.15m s 2hρρ--⨯⨯⨯⨯===⋅水v2min 采集的气体的体积为习题2-6()4311121017.32260 2.5m V S t -=∆=⨯⨯⨯⨯=v2-7.一开口大容器底侧开有一小孔A ,小孔的直径为2cm ,若每秒向容器内注入0.8L 的水,问达到平衡时,容器中水深是多少? 解:已知: Q =0.8L ,r 2=1cm .根据连续性方程Q =S 1v 1=S 2v 2,可得小孔处的流速()()312222220.810 2.55m s 3.14110Q Q S r π---⨯====⋅⨯⨯v 又因容器的截面积S 1远大于小孔的截面积S 2,所以v 1≈0.根据伯努利方程 2211122211+g +g 22P h P h ρρρρ+=+v v 因容器上部和底部小孔均通大气,故P 1=P 2=P 0≈1.0×105Pa ,将已知条件代入上式,得21221g g 2h h ρρρ=+v解得 ()22212 2.550.332m 2g 29.8h h -===⨯v2-8.设37℃时血液的黏度η=3.4×10-3Pa ·s ,密度ρ=1.05×103kg ·m -3,若血液以72cm ·s -1的平均流速通过主动脉产生了湍流,设此时的雷诺数为1000,求该主动脉的横截面积.解:根据雷诺数的定义erR ρη=v ,可知主动脉的半径eR r ηρ=v,代入已知条件,得33323.4101000 4.510m 1.05107210e R r ηρ---⨯⨯===⨯⨯⨯⨯v , 进一步得到主动脉的横截面积()223523.14 4.510=6.3610m S r π--==⨯⨯⨯2-9.体积为20cm 3的液体在均匀水平管内从压强为1.2×105Pa 的截面流到压强为1.0×105Pa 的截面,求克服黏性力所作的功.解:根据黏性流体的伯努利方程221112221122P gh P gh ρρρρ++=+++v v w 又因为在均匀水平管中,即v 1=v 2,h 1=h 2,因此单位体积液体克服黏性力做的功12P P =-w那么体积为20cm 3的液体克服黏性力所作的功()()55612 1.210 1.01020100.4J W P P V -=-=⨯-⨯⨯⨯=2-10.某段微血管的直径受神经控制而缩小了一半,如果其他条件不变,问通过它的血流量将变为原来的多少?解:根据泊肃叶定律知,其他条件不变时,体积流量与半径的四次方成正比.因此,其他条件不变,直径缩小了一半,则通过它的血流量将变为原来的1/16.2-11.假设排尿时,尿从计示压强为5.33×103 Pa 的膀胱经过尿道后由尿道口排出,已知尿道长4cm ,体积流量为21cm 3·s -1,尿的黏度为6.9×10-4 Pa ·s ,求尿道的有效直径.解:根据泊肃叶定律,体积流量4π8r PQ Lη∆=得尿道的有效半径11426444388 6.91041021107.2610m π 3.14 5.3310LQ r P η----⎛⎫⨯⨯⨯⨯⨯⨯⎛⎫===⨯ ⎪ ⎪∆⨯⨯⎝⎭⎝⎭故尿道的有效直径为3=1.4510m d -⨯.2-12.某条狗的一根大动脉,内直径为8mm ,长度为10cm ,流过这段血管的血流流量为1cm 3·s -1,设血液的黏度为2.0×10-3Pa ·s .求:(1)血液的平均速度;(2)这段动脉管的流阻;(3)这段血管的血压降落.解:(1)根据体积流量的定义,得血液的平均速度()()61231100.02m s 3.14410Q S ---⨯===⋅⨯⨯v (2) 根据流阻的定义:R =8ηL/πr 4,可得该段动脉管的流阻()()326544388 2.010*******N s m 3.14410L R r ηπ----⨯⨯⨯⨯===⨯⋅⋅⨯⨯ (3) 根据泊肃叶定律:PQ R∆=,得这段血管的血压降落 ()661102102Pa P QR -∆==⨯⨯⨯=2-13.设某人的心输出量为8.2×10-5 m 3·s -1,体循环的总压强差为1.2×104Pa ,试求此人体循环的总流阻(也称总外周阻力).解:根据泊肃叶定律,得此人体循环的总流阻()48551.210 1.4610N s m 8.210P R Q --∆⨯===⨯⋅⋅⨯2-14.液体中有一空气泡,其直径为lmm ,密度为1.29 kg ·m -3,液体的密度为0.9×103 kg ·m -3,黏度为0.15Pa ·s .求该空气泡在液体中上升的收尾速度.解:当空气泡在液体所受的重力、黏性阻力与浮力达到平衡时,小球速率达到最大,此后它将匀速上升,即33m 44633r g r r g πρπηπρ'+=v 从而得空气泡在液体中上升的收尾速度()()()()232331m 20.51029.80.910 1.29 3.2610m s 990.15r g ρρη---⨯⨯'=-=⨯⨯⨯-=⨯⋅⨯v2-15.一个红细胞可近似看为一个直径为5.0×10-6m 、密度为1.09×103kg ·m -3的小球.设血液的黏度为1.2×10-3Pa ·s ,密度为1.03×103kg ·m -3.试计算该红细胞在37℃的血液中沉淀2cm 所需的时间.如果用一台加速度为106g 的超速离心机,问沉淀同样距离所需时间又是多少?解:(1)红细胞在液体所受的重力与黏性阻力和浮力达到平衡,速率达到最大,此后它将匀速下降,即33m 44633r g r g r πρπρπη'=+v 从而得红细胞的收尾速度()()()()262371m 32 2.5109.82 1.09 1.0310 6.810m s 99 1.210r g ρρη----⨯⨯⨯'=-=⨯-⨯=⨯⋅⨯⨯v所以该红细胞在37℃的血液中沉淀2cm 所需的时间()247210 2.9410s 6.810t --⨯==⨯⨯ (2)如果用一台加速度为106g 的超速离心机,则红细胞的收尾速度为()61m m 100.68m s -''==⋅v v所以该红细胞在37℃的血液中沉淀同样距离所需时间()6210 2.9410s t t --'==⨯第三章 振动、波动和声3-5 一物体同时参与同一直线上的两个简谐振动,)324cos(05.01π+π=t s ,)344cos(03.02π-π=t s ,求合振幅的大小是多少?解: πππϕϕϕ∆2)34(3221=--=-=)(08.003.005.021m A A A =+=+= 合振动的振幅为0.08m .3-7 两个同频率同方向的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为61πϕϕ=-,若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅是多少?两个简谐振动的相位差)(21ϕϕ-是多少? 解:已知61πϕϕ=-,20=A cm, 3101=A cm由矢量关系可知:1006cos 310202310(20)cos(22)21121222=⨯⨯-+=--+=πϕϕAA A A A102=A cm)cos(2212122212ϕϕ-++=A A A A A )cos(10310210)310(2021222ϕϕ-⨯⨯++=,0)21cos(=-ϕϕ,...2,1,0,2)12(21=+±=-k k πϕϕ3-9 如图所示一平面简谐波在0=t 时刻的波形图,求 (1)该波的波动表达式;(2)P 处质点的振动方程.解:从图中可知:04.0=A m, 40.0=λm,08.0=u 1s m -⋅,2πϕ-=508.040.0===uT λ,ππω4.02==T(1) 波动表达式:]2)08.0(4.0cos[04.0ππ--=x t s (m)(2) P 处质点的振动方程.)234.0cos(04.0]2)08.02.0(4.0cos[04.0ππππ-=--=t t s (m)3-11 一波源以)9.14cos(03.0ππ-=t s m 的形式作简谐振动,并以1001s m -⋅的速度在某种介质中传播.求:① 波动方程;② 距波源40m 处质点的振动方程;③ 在波源起振后1.0s ,距波源40m 处质点的位移、速度及初相? 解:已知πϕπω9.1,100,4,03.0-====u A ,则① 波动方程为:]9.1)100(4cos[03.0ππ--=x t s (m)② 距波源40m 处质点的振动方程)24cos(03.0]9.1)10040(4cos[03.0ππππ-=--=t t s (m )③ 在波源起振后1.0s ,距波源40m 处质点的位移、速度及初相?02.02203.0)20.14cos(03.0≈⨯=-⨯=ππs (m)v =-65.1224π03.0)π20.14πsin(-≈⨯⨯-=-⨯ωA (1s m -⋅)πϕ2-=3-16 某声音声强级比声强为10-6W/m2的声音声强级大20dB 时,此声音的声强是多少? 解:第四章 分子动理论x (m) O -0.04 0.20 u = 0.08 m/sP0.400.604-2 设某一氧气瓶的容积为35L ,瓶内氧气压强为1.5×107Pa ,在给病人输氧气一段时间以后,瓶内氧气压强降为1.2×107Pa ,假定温度为20℃,试求这段时间内用掉的氧气质量是多少?解:根据理想气体物态方程RT μM pV =,可得瓶内氧气在使用前后的质量分别是TV p M R μ11=T V p M R μ22=故这段时间内用掉的氧气质量为.38kg1)kg 101.2-10(1.5293314.810321035)(R μ77332121≈⨯⨯⨯⨯⨯⨯=-=-=--p p T V M M M ∆4-4 设某容器内贮有的气体压强为1.33Pa ,温度为27℃,试问容器内单位体积气体的分子数有多少?所有这些分子的总平均平动动能是多少? 解:由温度公式,得分子的平均平动动能为J 1021.6J )27327(1038.1232321-23⨯=+⨯⨯⨯==-kT ε由压强公式εn p 32=,得单位体积内的分子数为3-203-213m 1021.3m 1021.62103233.1323⨯≈⨯⨯⨯⨯⨯==--εp n这些分子的总平均平动动能是所有分子的平动动能之和,即1.99J J 1021.61021.32120≈⨯⨯⨯==-εn E4-12 若从内径为1.35mm 的滴管中滴下100滴的液体,其重量为3.14g ,试求该液体的表面张力系数(假定液滴断开处的直径等于管的内径)。
医用物理学课后习题参考答案解析
医用物理学课后习题参考答案解析-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN医用物理学课后习题参考答案第一章1-1 ① 1rad/s ② 6.42m/s1-2 ① 3.14rad/s - ② 31250(3.9310)rad π⨯ 1-3 3g =2l β 1-4 1W=g 2m l 1-5 ① 22k E 10.8(1.0710)J π=⨯ ② -2M=-4.2410N m ⨯⋅③ 22W 10.8(1.0710)J π=-⨯1-6 ① 26.28rad/s ② 314rad ③ 394J ④ 6.28N1-7 ① ω ② 1g 2m l 1-8 ① =21rad/s ω ② 10.5m/s1-9 ① =20rad/s ω ② 36J ③ 23.6kg m /s ⋅1-10 ① 211=2ωω ②1=-2k k1E E ∆ 1-11 =6rad/s ω 1-12 12F =398F 239NN =1-13 ① 51.0210N ⨯ ② 1.9%1-14 ① 42210/N m ⨯ ② 52410/N m ⨯1-15 ① -65m(510)m μ⨯ ② -31.2510J ⨯第三章3-1 -33V=5.0310m ⨯3-2 ① 12m/s ② 51.2610a P ⨯3-3 ① 9.9m/s ② 36.0m3-4 ①-221.510;3.0/m m s ⨯ ② 42.7510a P ⨯ ③粗处的压强大于51.2910a P ⨯时,细处小于P 0时有空吸作用。
3-5 主动脉内Re 为762~3558,Re<1000为层流,Re>1500为湍流, 1000< Re<1500为过渡流。
3-6 71.210J ⨯ 3-7 0.77m/s3-8 ①3=5.610a P P ∆⨯ ②173=1.3810a P s m β-⨯⋅⋅③-143Q=4.0610/m s ⨯3-9 0.34m/s 3-10 431.5210/J m ⨯第四章4-1 -23S=810cos(4t )m 2ππ⨯+或-2-2S=810cos(4t-)m=810sin 4t 2πππ⨯⨯4-2 ① ϕπ∆= ② 12t=1s S 0,S 0==当时,4-3 ① S=0.1cos(t-)m 3ππ ②5t (0.833)6s s ∆=4-4 ①-2S=810cos(2t-)m 2ππ⨯ ② -2=-1610s in(2t-)m/s 2v πππ⨯;2-22a=-3210cos(2t-)m/s 2πππ⨯③k E =0.126J 0.13J;F=0≈.4-5 ①max =20(62.8)m/s v π ②242max a =4000 3.9410m/s π=⨯③22321E=m A =1.9710J=200J 2ωπ⨯ 4-6 ①2A 5.010,=4,T=0.25,=1.25m Hz s m νλ-=⨯② -2S=5.010cos8(t-)0.5xm π⨯ 4-7 ①S=0.10cos(-)0.10cos 0.2(-)522x xt m t m ππ= ②S=-0.10m4-8 ①=60,=1.0Hz m νλ ② -2S=5.010cos120(-)60xt m π⨯ 4-9 ①1s ϕπ-=②2A 6.010,=20,T=0.1,=0.2,c 2.m s m m/s ωπλ-=⨯= 4-10 ①22-31=A =25.44J m 2ερω⋅ ②328.4210W m -⨯⋅ 4-11 ① 0 ② 2A4-12 ①-39.1210a P ⨯ ②-9E=1.6510J ⨯4-13 ① 889.9 ② 0.54-14 ① -621.010W m -⨯⋅ ② -61.010W ⨯ 4-15 2=0.054 5.410v m/s m/s -=⨯第五章5-1 ①71.110a P ⨯ ②67.0810a P ⨯5-2 ① 2534.8310m -⨯ ② -9=2.7310;9d m ⨯倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题三第三章流体的运动3-1 若两只船平行前进时靠得较近,为什么它们极易碰撞?答:以船作为参考系,河道中的水可看作是稳定流动,两船之间的水所处的流管在两船之间截面积减小,则流速增加,从而压强减小,因此两船之间水的压强小于两船外侧水的压强,就使得两船容易相互靠拢碰撞。
3-6 水在截面不同的水平管中作稳定流动,出口处的截面积为管的最细处的3倍,若出口处的流速为2m·s-1,问最细处的压强为多少?若在此最细处开一小孔,水会不会流出来。
(85kPa)3-7 在水管的某一点,水的流速为2m·s-1,高出大气压的计示压强为104Pa,设水管的另一点的高度比第一点降低了1m,如果在第二点处水管的横截面积是第一点的1/2,求第二点处的计示压强。
(13.8kPa)3-8 一直立圆柱形容器,高0.2m,直径0.1m,顶部开启,底部有一面积为10-4m2的小孔,水以每秒 1.4×10-4m3的快慢由水管自上面放人容器中。
问容器内水面可上升的高度? (0.1;11.2s.)3-9 试根据汾丘里流量计的测量原理,设计一种测气体流量的装置。
提示:在本章第三节图3-5中,把水平圆管上宽、狭两处的竖直管连接成U形管,设法测出宽、狭两处的压强差,根据假设的其他已知量,求出管中气体的流量。
解:该装置结构如图所示。
3-10 用皮托管插入流水中测水流速度,设两管中的水柱高度分别为5×10-3m和5.4×10-2m,求水流速度。
(0.98m·s-1)3-11 一条半径为3mm的小动脉被一硬斑部分阻塞,此狭窄段的有效半径为2mm,血流平均速度为50㎝·s-1,试求(1)未变窄处的血流平均速度。
(0.22m·s —1)(2)会不会发生湍流。
(不发生湍流,因Re = 350)(3)狭窄处的血流动压强。
(131Pa)3-12 20℃的水在半径为 1 ×10-2m的水平均匀圆管内流动,如果在管轴处的流速为0.1m·s-1,则由于粘滞性,水沿管子流动10m后,压强降落了多少? (40Pa)3-13 设某人的心输出量为0.83×10—4m3·s-1,体循环的总压强差为12.0kPa,试求此人体循环的总流阻(即总外周阻力)是多少N.S·m-5,?3-14 设橄榄油的粘度为0.18Pa·s,流过管长为0.5m、半径为1㎝的管子时两端压强差为2×104Pa,求其体积流量。
(8.7×10—4m3·s-1)3-15 假设排尿时,尿从计示压强为40mmHg的膀胱经过尿道后由尿道口排出,已知尿道长4㎝,体积流量为21㎝3· s-1,尿的粘度为6.9×10-4 Pa· s,求尿道的有效直径。
(1.4mm)3-16 设血液的粘度为水的5倍,如以72㎝·s-1的平均流速通过主动脉,试用临界雷诺数为1000来计算其产生湍流时的半径。
已知水的粘度为6.9×10-4Pa·s。
(4.6mm)3-17 一个红细胞可以近似的认为是一个半径为2.0×10-6m的小球,它的密度是1.09×103kg·m—3。
试计算它在重力作用下在37℃的血液中沉淀1㎝所需的时间。
假设血浆的粘度为1.2×10-3Pa·s,密度为1.04×103kg·m—3。
如果利用一台加速度(ω2r)为105g的超速离心机,问沉淀同样距离所需的时间又是多少? (2.8×104s;0.28s)习题四第四章振动4-1 什么是简谐振动?说明下列振动是否为简谐振动:(1)拍皮球时球的上下运动。
(2)一小球在半径很大的光滑凹球面底部的小幅度摆动。
4-2 简谐振动的速度与加速度的表达式中都有个负号,这是否意味着速度和加速度总是负值?是否意味着两者总是同方向?4-3 当一个弹簧振子的振幅增大到两倍时,试分析它的下列物理量将受到什么影响:振动的周期、最大速度、最大加速度和振动的能量。
4-4 轻弹簧的一端相接的小球沿x轴作简谐振动,振幅为A,位移与时间的关系可以用余弦函数表示。
若在t=o时,小球的运动状态分别为(1)x=-A。
(2)过平衡位置,向x轴正方向运动。
(3)过处,向x轴负方向运动。
(4)过处,向x轴正方向运动。
试确定上述各种状态的初相位。
4-5 任何一个实际的弹簧都是有质量的,如果考虑弹簧的质量,弹簧振子的振动周期将如何变化?4-6 一沿x轴作简谐振动的物体,振幅为5.0×10-2m,频率2.0Hz,在时间t=0时,振动物体经平衡位置处向x轴正方向运动,求振动表达式。
如该物体在t=o时,经平衡位置处向x轴负方向运动,求振动表达式。
[x=5.0×10—2cos(4πt—π/2)m;x=5.0×10-2cos(4πt+π/2)m]4-7 一个运动物体的位移与时间的关系为,x=0.10cos(2.5πt+π/3)m,试求:(1)周期、角频率、频率、振幅和初相位;(2) t=2s时物体的位移、速度和加速度。
[(1)0.80s;2.5π·s-1;1.25Hz;0.10m;π/3(2)-5×10-2m;0.68m/s;3.1m·s-2]4-8 两个同方向、同频率的简谐振动表达式为,x1=4cos(3πt+π/3)m和x2=3cos(3πt-π/6)m,试求它们的合振动表达式。
[x=5cos(3πt+0.128π)m]4-9 两个弹簧振子作同频率、同振幅的简谐振动。
第一个振子的振动表达式为x1=Acos(ωt+φ),当第一个振子从振动的正方向回到平衡位置时,第二个振子恰在正方向位移的端点。
求第二个振子的振动表达式和二者的相位差。
[x2= Acos(ωt +φ—π/2),Δφ= -π/2]4-10 由两个同方向的简谐振动:(式中x以m计,t以s计)x1=0.05cos(10t十3π/4),x2=0.06cos(10t -π/4)(1)求它们合成振动的振幅和初相位。
(2)若另有一简谐振动x3= 0.07cos (10t+φ),分别与上两个振动叠加,问φ为何值时,x1+x3的振幅为最大;φ为何值时,x1+x3的振幅为最小。
[(1)1.0×l0-2m,-π/4;(2)当φ=2nπ+3π/4,n=1,2,…时,x1+x3的振幅为最大,当φ=2nπ+3π/4,n=1,2,…时,x2+x3的振幅为最小]习题五第五章波动5-1 机械波在通过不同介质时,它的波长、频率和速度中哪些会发生变化?哪些不会改变?5-2 振动和波动有何区别和联系?5-3,波动表达式y= Acos[(ω(t-x/u)+ φ]中,x/u表示什么? φ表示什么?若把上式改写成y=Acos[(ωt—ωx/u)+ φ],则ωx/u表示什么?5-4 已知波函数为y=Acos(bt—cx),试求波的振幅、波速、频率和波长。
(A,b/c,b/2π,2π/c)5-5 有一列平面简谐波,坐标原点按y=Acos(ωt + φ)的规律振动。
已知A=0.10m,T=0.50s,λ=10m。
试求:(1)波函数表达式;(2)波线上相距2.5m的两点的相位差;(3)假如t=0时处于坐标原点的质点的振动位移为y。
= +0.050m,且向平衡位置运动,求初相位并写出波函数。
[(1)y=0.10cos [2π(2.0t-x/l0)+ φ]m,(2), π/2 ,(3)y=0.10cos[2π(2.0t-x /l0)+ π/3]m]5-6 P和Q是两个同方向、同频率、同相位、同振幅的波源所在处。
设它们在介质中产生的波的波长为λ,PQ之间的距离为1.5λ。
R是PQ连线上Q点外侧的任意一点。
试求:(1)PQ两点发出的波到达R时的相位差;(2)R点的振幅。
(3π;0)5-7 沿绳子行进的横波波函数为y=0.10cos(0.01πx—2πt)m。
试求(1)波的振幅、频率、传播速度和波长;(2)绳上某质点的最大横向振动速度。
[(1)0.10m;1.0Hz;200m·s-1;200m (2)0.63m·s-1]5-8 设y为球面波各质点振动的位移,r为离开波源的距离,A。
为距波源单位距离处波的振幅。
试利用波的强度的概念求出球面波的波函数表达式。
5-9 弦线上驻波相邻波节的距离为65cm,弦的振动频率为2.3x102Hz,求波的波长λ和传播速度u。
(1.3m;3.0×102m·s-1)5-10 人耳对1000Hz的声波产生听觉的最小声强约为1×10-12W,m-2,试求20℃时空气分子相应的振幅。
(1×10-11m)5-11 两种声音的声强级相差ldB,求它们的强度之比。
(1.26)5-12 用多普勒效应来测量心脏壁运动时,以5MHz的超声波直射心脏壁(即入射角为°),测出接收与发出的波频差为500Hz。
已知声波在软组织中的速度为1500m·s-1,求此时心壁的运动速度。
(7.5×10-2m·s-1)第七章习题七分子动理论7-14 吹一个直径为10cm的肥皂泡,设肥皂液的表面张力系数α=40×10-3N·m-1。
试求吹此肥皂泡所做的功,以及泡内外的压强差。
(8π×l0-4J;3.2N·m-2)7-15 一U形玻璃管的两竖直管的直径分别为lmm和3mm。
试求两管内水面的高度差。
(水的表面张力系数α=73×10-3N·m-1)。
(2cm)7-16 在内半径r=0.30mm的毛细管中注入水,在管的下端形成一半径R=3.0mm的水滴,求管中水柱的高度。
(5.5cm)7-17 有一毛细管长L=20cm,内直径d=1.5mm,水平地浸在水银中,其中空气全部留是多少?(设大气压强在管中,如果管子漫在深度h=10cm处,问管中空气柱的长度L1=76cmHg,已知水银表面张力系数α=0.49N·m-1,与玻璃的接触角θ=π)。
P(O.179m)习题九第九章静电场9-1 如图所示的闭合曲面S内有一点电荷q,P为S面上的任一点,在S面外有一电荷q/与q的符号相同。
若将q/从A点沿直线移到B点,则在移动过程中:(A)A.S面上的电通量不变;B.S面上的电通量改变,P点的场强不变;C.S面上的电通量改变,P点的场强改变;D.S面上的电通量不变,P点的场强也不变。
习题-1图9-2 在一橡皮球表面上均匀地分布着正电荷,在其被吹大的过程中,有始终处在球内的一点和始终处在球外的一点,它们的场强和电势将作如下的变化:(B)A.E内为零,E外减小,U内不变,U外增大;B.E内为零,E外不变,U内减小,U外不变;C.E内为零,E外增大,U内增大,U外减小;D.E内、E外,U内、U外均增大。