电导率与含盐量的关系修订稿

合集下载

TDS和电导率及含盐量关系(可速查)

TDS和电导率及含盐量关系(可速查)

TDS和电导率及含盐量关系(可速查)电导率与含盐量的关系1、⽔的导电能⼒的强弱程度,就称为电导度S(或称电导)。

电导度反映了⽔中含盐量的多少,是⽔的纯净程度的⼀个重要指标。

⽔越纯净,含盐量越少,电阻越⼤,电导度越⼩。

超纯⽔⼏乎不能导电。

电导的⼤⼩等于电阻值的倒数。

即S=1/R,S=(1/ρ)·(F/L)。

1/ρ就称为电导率,其国际制单位为西·M-1(S·m-1)电导率与盐含量成线性关系,这跟离⼦的电荷数和盐的离⼦常数有关。

2、⼀般对于同⼀种⽔源,以温度25℃为基准,其电导率与含盐量⼤致成正⽐关系,其⽐例为:1µS/cm=0.55~0.75mg/l含盐量,在其它温度下,则需加以校正,即温度每变化1℃,其含盐量⼤约变化1.5-2%。

温度⾼于25℃时⽤负值,温度低于25℃时⽤正值。

确切的说⽔中含盐量的⼤⼩是影响⽔的电导率的⼀个重要因素,但是各种离⼦的种类不同,它们的导电能⼒也不同。

所以电导率或电阻率和含盐量之间不能进⾏直接的数学换算。

只有在离⼦组分⼤体相同时,才能根据实验测定绘制出电导率(或电阻率)和含盐量之间关系的换算图,在运⾏现场使⽤。

或者当知道是某⼀类型的⽔时,可以根据已知相似类型⽔的换算图来粗略估算。

3、汇通源泉公司RO产品技术⼿册中在计算脱盐率时提及:准确的脱盐率要通过对产⽔和进⽔进⾏化学分析,测定相应的TDS含量才能计算出来,但是这样会⽐较⿇烦,⼀般采⽤电导率转换为TDS来计算脱盐率。

转换公式如下:TDS=K * EC25其中TDS单位是ppmEC25是经温度校正到25度的电导率,单位为微西/厘M ,EC25所有盐类均当成氯化钠且不考虑CO2的影响附电导率与含盐量的换算关系表格溶液电导率EC25 K产⽔ 0--300 0.50苦咸⽔ 300--4000 0.55苦咸⽔ 4000--20000 0.67海⽔ 40000--60000 0.70浓⽔60000--85000 0.75电阻率,电导率和TDS之间的定义及换算电阻率(resistivity)是⽤来表⽰各种物质电阻特性的物理量。

电导率和含盐量之间的关系

电导率和含盐量之间的关系

电导率和含盐量之间的关系当获得进水电导率数值时,必须将其转化成TDS 数值,以便能在软件设计时输入。

对于多数水源,电导率/TDS 的比率为1.2~1.7 之间,为了进行ROSA 设计,海水选用1.4 比率而苦咸水选用1.3 比率进行换算,通常能够得到较好的近似换算率。

表1 海水含盐量与电导率的关系—摘自氏化学FILMTEC产品与技术手册》表2 电导率与含盐量的换算系数—摘自汇通源泉vontron膜元件《反渗透系统设计导则》表2 换算系数K值—摘自氏化学FILMTEC产品与技术手册》具体水源的换算系数K 必须预先标定,下表为典型的换算系数K值。

‡ EC25不含溶解性CO2对电导的贡献。

▬进水、产水和浓水的pH 值。

▬RO/NF 进水SDI 和浊度值。

▬进水水温。

▬当浓水TDS 小于10,000mg/L 时,最后一段浓水的朗格利尔饱和指数LSI 值,或▬当浓水TDS 大于10,000mg/L 时,最后一段浓水的斯迪文-大卫稳定指数S&DSI 值。

▬根据制造商建议的方法与周期作仪表的校正,每三个月至少一次。

▬任何不正常的事件,例如SDI15,pH,压力的失常及停机。

▬启动时及其后每星期对进水、产水、浓水和水源原水作完整的水质分析。

附录1 水的电阻率计算—摘自《给排水设计手册》第4册《工业水处理》第二版 水的电阻率主要取决于总含盐量,其他如水中离子的组分和温度对电阻率也有明显的影响。

根据水中离子组分不同,把水分成如下四种类型:(1)以一价阳离子(Na+和K+)和一价阴离子(Cl-和NO3-)为主要组分的水称为I-I价型水。

(2)以二价阳离子(Ca2+和Mg2+)和二价阴离子(SO42-)为主要组分的水称为II-II价型水。

(3)以阴离子重碳酸根伟主要组分的水称为重碳酸盐型水。

(4)除以上三种情况外的水均称为不均匀齐价型水。

根据大量实测数据经统计分析整理得出上述不同水型总含盐量C(mg/L)与电导率K (µS/cm)和水温t(℃)之间存在下列关系式:I-I价型水:C=0.5736e(0.0002281t2-0.03322t)K1.0713II-II价型水:C=0.5140e(0.0002071t2-0.03385t)K1.1342重碳酸盐型水:C=0.8382e(0.0001828t2-0.03200t)K1.0809不均齐价型水:C=0.4381e(0.0001800t2-0.03206t)K1.1351对于不清楚水的离子组成,暂不能确定其水型时,可作如下考虑:当常温下电导率小于1200µS/cm时,可按重碳酸盐型水处理;电导率大于1500µS/cm时。

土壤含盐量与土壤电导率及水分含量关系的试验研究

土壤含盐量与土壤电导率及水分含量关系的试验研究

土壤含盐量与土壤电导率及水分含量关系的试验研究土壤含盐量,土壤电导率和水分含量是土壤结构和功能的重要指标,在土壤分析、土壤改良和农业生产中具有重要意义。

本文就土壤含盐量,土壤电导率及水分含量的关系进行试验研究,从而为科学农业生产提供理论支持及参考。

一、研究背景(一)壤含盐量土壤含盐量是指土壤中的水溶性离子及其他介质水溶性有机离子的总量。

它是衡量土壤结构质量和土壤盐分的重要参数,用来检测土壤的盐分类型、诊断土壤的盐碱性以及表征土壤对农作物的适宜性。

(二)壤电导率土壤电导率是指土壤中离子的电导率,是土壤盐分特征的重要指标。

它表明土壤中电解质的含量及种类,可以用于检测土壤的盐分类型、土壤的盐碱性状况及土壤对农作物的适宜性。

(三)分含量水分含量是衡量土壤湿润程度和水文特征的重要参数,是指土壤中水分的含量,是农作物生长发育的重要条件,对农业生产具有重要意义。

二、试验材料与方法(一)验材料试验材料是从不同地区的土壤取得,将土壤样品进行研碎及洗涤,使其中的杂质及有机物质排出,然后收集样品,经过分析测定土壤的水分含量,土壤含盐量及土壤电导率。

(二)验方法(1)定土壤含盐量用另外放置5g土壤样品,贴紧108mL陶瓷烧瓶,用常压水溶液冲洗,反复清洗3次,收集清洗液,用解计测定混合溶液的电导率,根据测定结果计算出样品的含盐量。

(2)定土壤水分含量将研碎好的样品加入150mL容量烧杯中,置于常温烘干,重复烘干4次,每次烘干4小时,并间隔2小时测重,测重后减去烧杯重量,得出样品的水分含量。

(3)定土壤电导率取1g土壤样品,放入25mL烧杯中,用纯水溶液冲洗,反复清洗2次,收集清洗液,用解计测定混合溶液的电导率,用公式计算得出土壤电导率。

三、结果与分析(一)果在不同的地区的土壤中,土壤电导率的结果表明,土壤电导率与土壤含盐量…;水分含量的结果表明,水分含量与土壤电导率及土壤含盐量呈正相关关系。

(二)析结果表明,土壤含盐量,土壤电导率及水分含量之间存在显著的正相关关系,即随着土壤含盐量的增加,土壤电导率和水分含量也会增加;反之,如果把土壤含盐量降低,土壤电导率和水分含量也将降低。

土壤含盐量与土壤电导率及水分含量关系的试验研究

土壤含盐量与土壤电导率及水分含量关系的试验研究

土壤含盐量与土壤电导率及水分含量关系的试验研究摘要:土壤是植物生长最重要的物质基础,它的水分、电导率和含盐量对植物生长有重要影响。

本文从理论上介绍了土壤含盐量与电导率和水分含量之间的关系,并基于这一理论研究,采用实验方法进行分析,针对不同条件采用不同的措施,进行调节,最终得出结论:土壤含盐量与土壤电导率和水分含量高度相关,通过调节其中的一项指标,可以显著改变另外两个指标的值。

关键词:土壤含盐量;土壤电导率;水分含量;关系一、引言1.1壤含盐量与电导率以及水分含量的关系土壤是植物生长的基本物质基础,土壤中的水分、电导率和含盐量是影响植物生长发育的重要因素,他们之间存在复杂的关系。

从土壤物理性质上来说,土壤含盐量对电导率影响很大,当土壤含盐量增加时,电导率也会增加。

这种关系是由于土壤中的离子有极性,当含盐量增加时,土壤中的离子浓度增加,土壤中的离子就可以更自由地进行电导,电导率就会随着离子浓度变化而变化。

此外,电导率还会受到土壤水分含量的影响,当水分含量增加时,电导率会下降,这是由于水分会抑制离子运动、分散离子,从而使电导率降低。

1.2究的意义许多研究表明,土壤水分和电导率对植物的生长发育有着重要的影响,植物生长会受到土壤水分和电导率的影响。

因此,研究土壤含盐量与土壤电导率及水分含量的关系,对于调控土壤电导率和水分含量,为植物生长提供良好的土壤环境,有着重要的意义。

二、试验材料与方法2.1验材料本试验所用的试验材料为苏北平原的一种土壤,其理化性质如下:pH值:7.3;盐量:2.1g/kg;水分含量:21.1%。

2.2验方法本试验使用常规土壤物理实验仪采集试验数据,分别测量不同土壤含盐量时的土壤电导率,不同的水分含量时的土壤电导率和土壤含盐量,目的是研究和探索土壤含盐量与土壤电导率及水分含量之间的关系,并针对不同的条件采取不同的措施进行调节,最终得出结论。

三、实验结果及分析3.1壤含盐量与土壤电导率的关系实验结果表明,当土壤含盐量从2.1g/kg增加到3.5g/kg时,土壤电导率从7.3mS/cm增加到14.7mS/cm,含盐量增加1.4g/kg,电导率增加7.4mS/cm,可以明显看出,土壤含盐量和电导率之间具有相关的关系,当含盐量增加时,电导率也会增加。

TDS和电导率及含盐量关系(可速查)

TDS和电导率及含盐量关系(可速查)

电导率与含盐量的关系1、水的导电能力的强弱程度,就称为电导度S(或称电导)。

电导度反映了水中含盐量的多少,是水的纯净程度的一个重要指标。

水越纯净,含盐量越少,电阻越大,电导度越小。

超纯水几乎不能导电。

电导的大小等于电阻值的倒数。

即S=1/R,S=(1/ρ)·(F/L)。

1/ρ就称为电导率,其国际制单位为西·M-1(S·m-1)电导率与盐含量成线性关系,这跟离子的电荷数和盐的离子常数有关。

2、一般对于同一种水源,以温度25℃为基准,其电导率与含盐量大致成正比关系,其比例为:1μS/cm=0.55~0.75mg/l含盐量,在其它温度下,则需加以校正,即温度每变化1℃,其含盐量大约变化1.5-2%。

温度高于25℃时用负值,温度低于25℃时用正值。

确切的说水中含盐量的大小是影响水的电导率的一个重要因素,但是各种离子的种类不同,它们的导电能力也不同。

所以电导率或电阻率和含盐量之间不能进行直接的数学换算。

只有在离子组分大体相同时,才能根据实验测定绘制出电导率(或电阻率)和含盐量之间关系的换算图,在运行现场使用。

或者当知道是某一类型的水时,可以根据已知相似类型水的换算图来粗略估算。

3、汇通源泉公司RO产品技术手册中在计算脱盐率时提及:准确的脱盐率要通过对产水和进水进行化学分析,测定相应的TDS含量才能计算出来,但是这样会比较麻烦,一般采用电导率转换为TDS来计算脱盐率。

转换公式如下:TDS=K * EC25其中TDS单位是ppmEC25是经温度校正到25度的电导率,单位为微西/厘M ,EC25所有盐类均当成氯化钠且不考虑CO2的影响附电导率与含盐量的换算关系表格溶液电导率EC25 K产水 0--300 0.50苦咸水 300--4000 0.55苦咸水 4000--20000 0.67海水 40000--60000 0.70浓水60000--85000 0.75电阻率,电导率和TDS之间的定义及换算电阻率(resistivity)是用来表示各种物质电阻特性的物理量。

电导率与含盐量的换算

电导率与含盐量的换算

电导率与含盐量的换算
电导率是衡量液体的电导能力的物理参数,它可以反映一个液体中有多少可以被电流通过的离子或其他电荷粒子的数量。

电导率的单位是每厘米伏特(mS/cm),也可以使用微西斯(μS)或毫西斯(mS)作为单位。

一般而言,电导率越高,含盐量越高,表明水中含有更多的电荷粒子。

电导率和含盐量之间的关系可以通过一种叫做电导率-含盐量换算的方法来确定。

这种换算方法基于一个理论,即当在某种浓度的溶液中添加不同量的电解质时,该溶液的电导率将随着添加的电解质的增加而增加。

因此,电导率和含盐量之间的关系可以用一个简单的函数表示,如下所示:
C = K * Ω
其中,C表示溶液的含盐量(以毫克每升(mg/L)为单位),K是一个常数,Ω表示溶液的电导率(以微西斯(μS)为单位)。

电导率-含盐量换算的应用非常广泛,它可以用于从某种溶液中测量其电导率,然后根据上述换算关系计算溶液中的含盐量。

因此,这种换算方法可以用于测量水质、土壤肥力和食品中的盐分等。

电导率-含盐量换算的一个重要特点是,换算关系中的K值可以根据溶液中的不同离子种类而有所不同。

例如,在单离子溶液中,K值可以简单地计算为离子的电荷数和电子半径的乘积,而在多离子溶液中,K值可以通过用一个名为Debye-Hückel系数的参数来计算。

另外,电导率-含盐量换算还可以用于反向计算,即在已知溶液中的含盐量的情况下,计算溶液的电导率。

这种反向计算的方法也很简单,只需要将上述换算关系的C和K 值相互颠倒即可。

总之,电导率-含盐量换算是一种非常有用的方法,它可以用于快速、准确地测量溶液中的电导率和含盐量。

TDS和电导率及含盐量的关系(可速查)

TDS和电导率及含盐量的关系(可速查)

电导率与含盐量的关系1、水的导电能力的强弱程度,就称为电导度S(或称电导)。

电导度反映了水中含盐量的多少,是水的纯净程度的一个重要指标。

水越纯净,含盐量越少,电阻越大,电导度越小。

超纯水几乎不能导电。

电导的大小等于电阻值的倒数。

即S=1/R,S=(1/ρ)·(F/L)。

1/ρ就称为电导率,其国际制单位为西·米-1(S·m-1)电导率与盐含量成线性关系,这跟离子的电荷数和盐的离子常数有关。

2、一般对于同一种水源,以温度25℃为基准,其电导率与含盐量大致成正比关系,其比例为:1μS/cm=0.55~0.75mg/l含盐量,在其它温度下,则需加以校正,即温度每变化1℃,其含盐量大约变化1.5-2%。

温度高于25℃时用负值,温度低于25℃时用正值。

确切的说水中含盐量的大小是影响水的电导率的一个重要因素,但是各种离子的种类不同,它们的导电能力也不同。

所以电导率或电阻率和含盐量之间不能进行直接的数学换算。

只有在离子组分大体相同时,才能根据实验测定绘制出电导率(或电阻率)和含盐量之间关系的换算图,在运行现场使用。

或者当知道是某一类型的水时,可以根据已知相似类型水的换算图来粗略估算。

3、汇通源泉公司RO产品技术手册中在计算脱盐率时提及:准确的脱盐率要通过对产水和进水进行化学分析,测定相应的TDS含量才能计算出来,但是这样会比较麻烦,一般采用电导率转换为TDS来计算脱盐率。

转换公式如下:TDS=K * EC25其中TDS单位是ppmEC25是经温度校正到25度的电导率,单位为微西/厘米,EC25所有盐类均当成氯化钠且不考虑CO2的影响附电导率与含盐量的换算关系表格溶液电导率EC25 K产水0--3000.50xx300--400.55xx4000--2000.67海水400--6000.70浓水600--8500.75电阻率,电导率和TDS之间的定义及换算电阻率(resistivity)是用来表示各种物质电阻特性的物理量。

电导率与含盐量的换算

电导率与含盐量的换算

电导率与含盐量的换算随着现代社会发展,合理管理并有效利用水资源变得越来越重要。

而在水质评价和管理中,电导率与含盐量换算是一项重要技术。

电导率是表征水体电解质浓度在不同温度下的电气性质的重要指标,其可以与含盐量换算,有助于提高水质的科学性评价和管理。

电导率可以定义为在单位时间内两测地点间单位电位差下的电流强度,具体算式为:电导率(S/m)=电流密度(A/m2)÷电位差(V/m)电导率与温度无关,而与水体中的溶解盐含量有关,所以其测量结果可以作为水体的污染程度及水体的盐溶解度的指标。

电导率的测量通常是以μS/cm为单位,有时也以mS/cm为单位,而电导率与水中盐溶解度(g/L)换算的关系式有三种:1.不考虑温度的情况电导率(μS/cm)=含盐量(g/L)÷0.642.考虑温度的情况电导率(μS/cm)=含盐量(g/L)÷1.805÷T其中,T表示温度,单位为℃。

3.考虑含氧量的情况电导率(μS/cm)=含盐量(g/L)/1.805/T×(1-0.159x含氧量)含氧量单位为mL/L,T为温度,单位也是℃。

以上就是电导率与含盐量换算之间关系,有了上述公式,我们就可以正确准确的利用电导率测量水质,从而根据相应的指标把握水质状况和改善水质的可能性。

在水质的管理中,电导率可以有效的反映水体的水质,从而为水质管理提供科学数据。

电导率的测量技术已在国内外得到了广泛的应用,如:水厂对水质的控制与监测,化工厂对生产水源的监测,水库对水位和水质的监测,农田排水对水质的监测等。

电导率与含盐量换算是一项重要技术,它为科学合理的管理和利用水资源提供了重要参考,并且可以减少水质状况的不确定性。

同时,电导率的测量也不但能够对水的盐度有准确的判断,还能及时发现水体中潜在的有害物质和有机污染物,从而可以及时采取有效的措施,保护我们的水资源,维护我们的生态环境。

TDS和电导率及含盐量的关系(可速查)

TDS和电导率及含盐量的关系(可速查)

电导率与含盐量的关系1、水的导电能力的强弱程度,就称为电导度S(或称电导)。

电导度反映了水中含盐量的多少,是水的纯净程度的一个重要指标。

水越纯净,含盐量越少,电阻越大,电导度越小。

超纯水几乎不能导电。

电导的大小等于电阻值的倒数。

即S=1/R,S=(1/ρ)·(F/L)。

1/ρ就称为电导率,其国际制单位为西·米-1(S·m-1)电导率与盐含量成线性关系,这跟离子的电荷数和盐的离子常数有关。

2、一般对于同一种水源,以温度25℃为基准,其电导率与含盐量大致成正比关系,其比例为:1μS/cm=0.55~0.75mg/l含盐量,在其它温度下,则需加以校正,即温度每变化1℃,其含盐量大约变化1.5-2%。

温度高于25℃时用负值,温度低于25℃时用正值。

确切的说水中含盐量的大小是影响水的电导率的一个重要因素,但是各种离子的种类不同,它们的导电能力也不同。

所以电导率或电阻率和含盐量之间不能进行直接的数学换算。

只有在离子组分大体相同时,才能根据实验测定绘制出电导率(或电阻率)和含盐量之间关系的换算图,在运行现场使用。

或者当知道是某一类型的水时,可以根据已知相似类型水的换算图来粗略估算。

3、汇通源泉公司RO产品技术手册中在计算脱盐率时提及:准确的脱盐率要通过对产水和进水进行化学分析,测定相应的TDS含量才能计算出来,但是这样会比较麻烦,一般采用电导率转换为TDS来计算脱盐率。

转换公式如下:TDS=K * EC25其中TDS单位是ppmEC25是经温度校正到25度的电导率,单位为微西/厘米,EC25所有盐类均当成氯化钠且不考虑CO2的影响附电导率与含盐量的换算关系表格溶液电导率EC25 K产水 0--300 0.50苦咸水 300--4000 0.55苦咸水 4000--20000 0.67海水 40000--60000 0.70浓水60000--85000 0.75电阻率,电导率和TDS之间的定义及换算电阻率(resistivity)是用来表示各种物质电阻特性的物理量。

TDS和电导率及含盐量的关系(可速查)

TDS和电导率及含盐量的关系(可速查)

电导率与含盐量的关系1、水的导电能力的强弱程度,就称为电导度S(或称电导)。

电导度反映了水中含盐量的多少,是水的纯净程度的一个重要指标。

水越纯净,含盐量越少,电阻越大,电导度越小。

超纯水几乎不能导电。

电导的大小等于电阻值的倒数。

即S=1/R,S=(1/ρ)·(F/L)。

1/ρ就称为电导率,其国际制单位为西·米-1(S·m-1)电导率与盐含量成线性关系,这跟离子的电荷数和盐的离子常数有关。

2、一般对于同一种水源,以温度25℃为基准,其电导率与含盐量大致成正比关系,其比例为:1μS/cm=0.55~0。

75mg/l含盐量,在其它温度下,则需加以校正,即温度每变化1℃,其含盐量大约变化1。

5—2%。

温度高于25℃时用负值,温度低于25℃时用正值。

确切的说水中含盐量的大小是影响水的电导率的一个重要因素,但是各种离子的种类不同,它们的导电能力也不同.所以电导率或电阻率和含盐量之间不能进行直接的数学换算。

只有在离子组分大体相同时,才能根据实验测定绘制出电导率(或电阻率)和含盐量之间关系的换算图,在运行现场使用。

或者当知道是某一类型的水时,可以根据已知相似类型水的换算图来粗略估算。

3、汇通源泉公司RO产品技术手册中在计算脱盐率时提及:准确的脱盐率要通过对产水和进水进行化学分析,测定相应的TDS含量才能计算出来,但是这样会比较麻烦,一般采用电导率转换为TDS来计算脱盐率.转换公式如下:TDS=K *EC25其中TDS单位是ppmEC25是经温度校正到25度的电导率,单位为微西/厘米,EC25所有盐类均当成氯化钠且不考虑CO2的影响附电导率与含盐量的换算关系表格溶液电导率EC25 K产水 0--300 0.50苦咸水 300--4000 0.55苦咸水 4000--20000 0.67海水 40000-—60000 0.70浓水60000-—85000 0.75电阻率,电导率和TDS之间的定义及换算电阻率(resistivity)是用来表示各种物质电阻特性的物理量。

土壤电导率和全盐量换算

土壤电导率和全盐量换算

土壤电导率和全盐量换算土壤电导率和全盐量换算,这个话题一听就让人觉得有点高深,其实它就像一碗热腾腾的汤,喝下去不但暖心还让你明白其中的道理。

你想啊,土壤电导率,这个词听起来是不是有点让人摸不着头脑?其实简单说,它就是土壤中盐分的“传导能力”,就像电流在导线中流动一样。

电导率高,说明土壤里的盐分多,植物吸收水分和养分的效率就像开了外挂,特别给力。

而电导率低嘛,那就像是堵了车,植物就得慢慢磨蹭,吸收的效率低得很。

再说到全盐量,简单点讲,就是土壤里盐分的总和。

你想,要是土壤像个大海,那全盐量就是海水里的盐。

盐分多了,不仅让土壤变得“咸”,还可能对植物的生长产生负面影响。

我们可不能让植物在“咸海”里苦苦挣扎,得给它们创造一个“温柔”的生长环境。

听上去好像很复杂,其实只要明白电导率和全盐量之间的关系,就像你明白冰淇淋和夏天的关系一样简单。

要换算这两者之间的关系,首先得知道土壤电导率的单位,通常用毫西门子每米(mS/m)来表示。

咱们可以想象一下,电导率就像一把尺子,测量土壤里盐分的浓度。

电导率高的地方,盐分就多;电导率低的地方,盐分就少。

一般来说,电导率每升高1毫西门子,土壤里的全盐量也跟着增加。

这就像你吃了一口咸鱼,发现“哎呀,这味儿真重”,再吃下去,咸味儿就更加浓烈了。

如何把电导率换算成全盐量呢?这里有个大致的公式,咱们就简单说说。

一般情况下,电导率和全盐量的关系可以用一个系数来表示,这个系数大概在0.5到0.8之间。

这就像你去餐厅点菜,服务员告诉你这道菜的分量,虽然不能精确到克,但大致的分量你心里有数。

要是你发现电导率是1.0,那么全盐量大概在0.5到0.8之间,这只是个估算,实际情况还得结合土壤的具体特性。

土壤的种类也影响这换算关系,像沙土、壤土和粘土,三者的电导率和全盐量换算可能就不一样。

沙土排水好,盐分集中;而粘土就像个海绵,盐分可能被吸附得紧紧的。

这就像不同的人,各有各的脾气,有的人性格外向,有的人则内向,不同的土壤性状就决定了它们的“表现”。

TDS和电导率及含盐量的关系(可速查)

TDS和电导率及含盐量的关系(可速查)

电导率与含盐量的关系1、水的导电能力的强弱程度,就称为电导度S(或称电导)。

电导度反映了水中含盐量的多少,是水的纯净程度的一个重要指标。

水越纯净,含盐量越少,电阻越大,电导度越小。

超纯水几乎不能导电。

电导的大小等于电阻值的倒数。

即S=1/R,S=(1/ρ)·(F/L)。

1/ρ就称为电导率,其国际制单位为西·米-1(S·m-1)电导率与盐含量成线性关系,这跟离子的电荷数和盐的离子常数有关。

2、一般对于同一种水源,以温度25℃为基准,其电导率与含盐量大致成正比关系,其比例为:1μS/cm=0.55~0.75mg/l含盐量,在其它温度下,则需加以校正,即温度每变化1℃,其含盐量大约变化1.5-2%。

温度高于25℃时用负值,温度低于25℃时用正值。

确切的说水中含盐量的大小是影响水的电导率的一个重要因素,但是各种离子的种类不同,它们的导电能力也不同。

所以电导率或电阻率和含盐量之间不能进行直接的数学换算。

只有在离子组分大体相同时,才能根据实验测定绘制出电导率(或电阻率)和含盐量之间关系的换算图,在运行现场使用。

或者当知道是某一类型的水时,可以根据已知相似类型水的换算图来粗略估算。

3、汇通源泉公司RO产品技术手册中在计算脱盐率时提及:准确的脱盐率要通过对产水和进水进行化学分析,测定相应的TDS含量才能计算出来,但是这样会比较麻烦,一般采用电导率转换为TDS来计算脱盐率。

转换公式如下:TDS=K * EC25其中TDS单位是ppmEC25是经温度校正到25度的电导率,单位为微西/厘米,EC25所有盐类均当成氯化钠且不考虑CO2的影响附电导率与含盐量的换算关系表格溶液电导率EC25 K产水0--3000.50xx300--400.55xx4000--2000.67海水400--6000.70浓水600--8500.75电阻率,电导率和TDS之间的定义及换算电阻率(resistivity)是用来表示各种物质电阻特性的物理量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电导率与含盐量的关系 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-
1、水的导电能力的强弱程度,就称为电导度S(或称电导)。

电导度反映了水中含盐量的多少,是水的纯净程度的一个重要指标。

水越纯净,含盐量越少,电阻越大,电导度越小。

超纯水几乎不能导电。

电导的大小等于电阻值的倒数。

即S=1/R,S=(1/ρ)·(F/L)。

1/ρ就称为电导率,其国际制单位为西·米-1(S·m-1)
电导率与盐含量成线性关系,这跟离子的电荷数和盐的离子常数有关。

2、一般对于同一种水源,以温度25℃为基准,其电导率与含盐量大致成正比关系,其比例为:1μS/cm=~l含盐量,在其它温度下,则需加以校正,即温度每变化1℃,其含盐量大约变化%。

温度高于25℃时用负值,温度低于25℃时用正值。

确切的说水中含盐量的大小是影响水的电导率的一个重要因素,但是各种离子的种类不同,它们的导电能力也不同。

所以电导率或电阻率和含盐量之间不能进行直接的数学换算。

只有在离子组分大体相同时,才能根据实验测定绘制出电导率(或电阻率)和含盐量之间关系的换算图,在运行现场使用。

或者当知道是某一类型的水时,可以根据已知相似类型水的换算图来粗略估算。

准确的脱盐率要通过对出水和进水进行化学分析,测定相应的TDS含量才能计算出来,但是这样会比较麻烦,一般采用电导率转换为TDS来计算脱盐率。

转换公式如下:
TDS=K×EC25
其中TDS单位是ppm
EC25是经温度校正到25度的电导率,单位为微西/厘米,EC25所有盐类均当成氯化钠且不考虑CO2的影响
附电导率与含盐量的换算关系表格
溶液电导率EC25 K
产水 0--300
苦咸水 300--4000
苦咸水 4000--20000
海水 40000--60000
浓水 60000--85000。

相关文档
最新文档