风机液压机构原理
风电机组液压系统讲解
• 3)外界侵入的污染
• 油箱防尘性差,容易侵入灰尘、切屑和杂物;油箱没有设 置清理箱内污物的窗口,造成油箱内部难清理或无法清理 干净;切削液混进油箱,使油液严重乳化或掺进切屑;维 修过程中不注意清洁,将杂物带入油箱或管道内等。
• 4)管理不严
• 新液压油质量未检验;未清洗干净的桶用来装新油,使油 液变质;未建立液压油定期取样化验的制度;换新油时, 未清洗干净管路和油箱;管理不严,库存油液品种混乱; 将两种不能混合使用的油液混合使用。
• 节流阀18-1 用于抑制蓄能器预压力并在系统维修时,释 放来自蓄能器16-1的压力油。油箱上装有油位开关2,用 来监视油箱的油位,防止油箱内油溢出或泵在缺油情况下 运转。
• 油箱内的油温由装在油箱上部的热电阻(PT100)测得。 油温达到设定值时会报警。
• 1)液压系统在运转/暂停时的工作情况 • 电磁阀19-1 和19-2(紧急顺桨阀)通电后,使比例阀上的P
工作的灵敏性、稳定性、可靠性和寿命提出了愈 来愈高的要求,而油液的污染会影响系统的正常 工作和使用寿命,甚至引起设备事故。据统计, 由于油液污染引起的故障占总故障的75%以上, 固体颗粒是液压系统中最主要的污染物。可见要 保证液压系统工作灵敏、稳定、可靠,就必须控 制油液的污染。
• 液压油污染原因与危害 • 液压油污染原因 • 1)藏在液压元件和管道内的污染物 • 液压元件在装配前,零件未去毛刺和未经严格清洗,铸造
• 机械刹车机构
• 机械刹车机构由安装在低速轴或高速轴上 的刹车盘与布置在它四周的液压钳构成。 液压钳是固定的,刹车圆盘随轴一起转动。 由PLC控制刹车钳的打开和关闭。实现风力 发电组轴系的启、停。为了监视机械刹车 机构的内部状态,刹车钳内部装有指示刹 车片厚度的传感器。
风力发电机液压变桨系统简介
风力发电机液压变桨系统简介全球投入商业运行的兆瓦级以上风力发电机均采用了变桨距技术,变桨距控制与变频技术相配合,提高了风力发电机的发电效率和电能质量,使风力发电机在各种工况下都能够获得最佳的性能,减少风力对风机的冲击,它与变频控制一起构成了兆瓦级变速恒频风力发电机的核心技术。
液压变桨系统具有单位体积小、重量轻、动态响应好、转矩大、无需变速机构且技术成熟等优点。
本文将对液压变桨系统进行简要的介绍。
风机变桨调节的两种工况风机的变桨作业大致可分为两种工况,即正常运行时的连续变桨和停止(紧急停止)状态下的全顺桨。
风机开始启动时桨叶由90°向0°方向转动以及并网发电时桨叶在0°附近的调节都属于连续变桨。
液压变桨系统的连续变桨过程是由液压比例阀控制液压油的流量大小来进行位置和速度控制的。
当风机停机或紧急情况时,为了迅速停止风机,桨叶将快速转动到90°,一是让风向与桨叶平行,使桨叶失去迎风面;二是利用桨叶横向拍打空气来进行制动,以达到迅速停机的目的,这个过程叫做全顺桨。
液压系统的全顺桨是由电磁阀全导通液压油回路进行快速顺桨控制的。
液压变桨系统液压变桨系统由电动液压泵作为工作动力,液压油作为传递介质,电磁阀作为控制单元,通过将油缸活塞杆的径向运动变为桨叶的圆周运动来实现桨叶的变桨距。
液压变桨系统的结构变桨距伺服控制系统的原理图如图1所示。
变桨距控制系统由信号给定、比较器、位置(桨距)控制器、速率控制器、D/A转换器、执行机构和反馈回路组成。
图1 控制原理图液压变桨执行机构的简化原理图如图2所示,它由油箱、液压动力泵、动力单元蓄压器、液压管路、旋转接头、变桨系统蓄压器以及三套独立的变桨装置组成,图中仅画出其中的一套变桨装置。
图2 液压原理图结束语液压变桨系统与电动变桨系统相比,液压传动的单位体积小、重量轻、动态响应好、扭矩大并且无需变速机构,在失电时将蓄压器作为备用动力源对桨叶进行全顺桨作业而无需设计备用电源。
风力发电机液压变桨系统简介
风力发电机液压变桨系统简介全球投入商业运行的兆瓦级以上风力发电机均采用了变桨距技术,变桨距控制与变频技术相配合,提高了风力发电机的发电效率和电能质量,使风力发电机在各种工况下都能够获得最佳的性能,减少风力对风机的冲击,它与变频控制一起构成了兆瓦级变速恒频风力发电机的核心技术。
液压变桨系统具有单位体积小、重量轻、动态响应好、转矩大、无需变速机构且技术成熟等优点。
本文将对液压变桨系统进行简要的介绍。
风机变桨调节的两种工况风机的变桨作业大致可分为两种工况,即正常运行时的连续变桨和停止(紧急停止)状态下的全顺桨。
风机开始启动时桨叶由90°向0°方向转动以及并网发电时桨叶在0°附近的调节都属于连续变桨。
液压变桨系统的连续变桨过程是由液压比例阀控制液压油的流量大小来进行位置和速度控制的。
当风机停机或紧急情况时,为了迅速停止风机,桨叶将快速转动到90°,一是让风向与桨叶平行,使桨叶失去迎风面;二是利用桨叶横向拍打空气来进行制动,以达到迅速停机的目的,这个过程叫做全顺桨。
液压系统的全顺桨是由电磁阀全导通液压油回路进行快速顺桨控制的。
液压变桨系统液压变桨系统由电动液压泵作为工作动力,液压油作为传递介质,电磁阀作为控制单元,通过将油缸活塞杆的径向运动变为桨叶的圆周运动来实现桨叶的变桨距。
液压变桨系统的结构变桨距伺服控制系统的原理图如图1所示。
变桨距控制系统由信号给定、比较器、位置(桨距)控制器、速率控制器、D/A转换器、执行机构和反馈回路组成。
图1 控制原理图液压变桨执行机构的简化原理图如图2所示,它由油箱、液压动力泵、动力单元蓄压器、液压管路、旋转接头、变桨系统蓄压器以及三套独立的变桨装置组成,图中仅画出其中的一套变桨装置。
图2 液压原理图结束语液压变桨系统与电动变桨系统相比,液压传动的单位体积小、重量轻、动态响应好、扭矩大并且无需变速机构,在失电时将蓄压器作为备用动力源对桨叶进行全顺桨作业而无需设计备用电源。
风力发电机的构造及工作原理_风能发电的原理
风力发电机的构造及工作原理_风能发电的原理风力发电机是很多人都熟悉的发电机种类,但是大多数的人不清楚风力发电机是如何发电的。
下面一起来看看小编为大家整理的风力发电机的构造及工作原理,欢迎阅读,仅供参考。
风力发电机结构机舱:机舱包容着风力发电机的关键设备,包括齿轮箱、发电机。
维护人员可以通过风力发电机塔进入机舱。
机舱左端是风力发电机转子,即转子叶片及轴。
转子叶片:捉获风,并将风力传送到转子轴心。
现代600千瓦风力发电机上,每个转子叶片的测量长度大约为20米,而且被设计得很象飞机的机翼。
轴心:转子轴心附着在风力发电机的低速轴上。
低速轴:风力发电机的低速轴将转子轴心与齿轮箱连接在一起。
在现代600千瓦风力发电机上,转子转速相当慢,大约为19至30转每分钟。
轴中有用于液压系统的导管,来激发空气动力闸的运行。
齿轮箱:齿轮箱左边是低速轴,它可以将高速轴的转速提高至低速轴的50倍。
高速轴及其机械闸:高速轴以1500转每分钟运转,并驱动发电机。
它装备有紧急机械闸,用于空气动力闸失效时,或风力发电机被维修时。
发电机:通常被称为感应电机或异步发电机。
在现代风力发电机上,最大电力输出通常为500至1500千瓦。
偏航装置:借助电动机转动机舱,以使转子正对着风。
偏航装置由电子控制器操作,电子控制器可以通过风向标来感觉风向。
通常,在风改变其方向时,风力发电机一次只会偏转几度。
电子控制器:包含一台不断监控风力发电机状态的计算机,并控制偏航装置。
为防止任何故障(即齿轮箱或发电机的过热),该控制器可以自动停止风力发电机的转动,并通过电话调制解调器来呼叫风力发电机操作员。
液压系统:用于重置风力发电机的空气动力闸。
冷却元件:包含一个风扇,用于冷却发电机。
此外,它包含一个油冷却元件,用于冷却齿轮箱内的油。
一些风力发电机具有水冷发电机。
塔:风力发电机塔载有机舱及转子。
通常高的塔具有优势,因为离地面越高,风速越大。
现代600千瓦风汽轮机的塔高为40至60米。
引风机结构原理
液压调节装置部分外表 面及其油管和轴承箱一样, 由装在风机一侧的另一台冷 却风机进行冷却。
一、引风机本体机构
调节机构工作原理:如图上所示,伺服阀恰将油道C与D的油孔堵住,活塞左右两侧 的工作油无进油、回油,因此动叶安装角固定不变。
关闭叶片时,电信号传递至伺服电机使控制轴发生旋转。控制轴的旋转带动拉杆 向右移动,定位轴及与之相连的齿套是静止不动的。所以齿轮只能以A为支点,推动 与之啮合的齿条往右移动,于是压力油口与油道D相通,回油口与油道C相通。压力油 从油道D不断进入活塞右侧的液压缸容积内,使液压缸不断向右移动,活塞左侧的液压 缸容积内的工作油从油道C通过回油孔返回油箱。液压缸与叶轮上每个动叶片的调节 杆相连,当液压缸向右移动时,动叶片的安装角关小,轴流风机输送的流量与全压随 即降低。
失速:固有特性,一般发生在动叶可调轴流风机,主要 是动叶指令过大,叶片进风冲角过大引起叶片尾部脱流, 产生风机失速。
四、引风机工作动画
当轴承箱油位超过最高油位 时,润滑油将通过回油管流回油站。
三、引风机失速
失速,流体绕流翼型流动如左图所
示。在零冲角下,流体只受翼型表面 摩擦阻力影响,离开翼型时基本不产 生漩涡。而随着冲角的增大,开始在 翼型后缘附近产生旋涡,此后流体在 翼型表面A点分离,随冲角的增大分 离点A逐渐向前移动。在此后的过程 中,由于尾部旋涡范围逐渐扩大,阻 力增加,升力减小。当冲角增加到某 一份临界值时,流体在叶片凸面的流 动遭到了破坏,边界层严重分离,阻 力大大增加,升力急剧减小,这种现 象称为脱流或失速
当液压缸向右移动时,定位轴被拖住并一起向右移动。但由于拉杆静止,所以齿 轮以B点为支点,齿条往左移动。往左移动的齿条,又使伺服阀将油道C与D的油孔堵 住,液压缸随之处在新的平衡位置不再移动,而叶片也处在角度关小的新状态下工作, 这就是反馈过程。在反馈时,齿轮带动指示轴使之旋转,将动叶片关小的角度显示出 来。若锅炉负载增大,需要增加轴流风机的流量与全压时,其动作过程与上述分析相 反。
风机动叶调节机构及工作原理
风机动叶调节机构及工作原理我公司#5、6炉引、送风机均采用动叶可调轴流式风机。
#7、8炉送风机也采用动叶可调轴流式风机。
为了充分掌握动叶可调轴流式风机的动叶调节机构和工作原理,首先我们要了解动叶可调轴流式风机的有关特性。
一.引、送风机的结构:引、送风机由吸入烟风道、进气室、扩压器、叶轮、主轴、动叶调节机构、传动组、自动控制机构等部分组成。
二.引送风机的工作原理:引送风机的工作原理是基于机翼型理论:当气体以一个攻角α进入叶轮,在翼背上产生一个升力,同时必定在翼腹上产生一个大小相等方向相反的作用力使气体排出叶轮呈螺旋形沿轴向向前运动。
与此同时,风机进口处由于差压的作用,使气体不断地被吸入。
动叶可调轴流式风机,攻角越大,翼背的周界越大,则升力越大,风机的压差越大,风量则小。
当攻角达到临界值时,气体将离开翼背的型线而发生涡流,此时风机压力大,幅度下降,产生失速现象。
三.引送风机相关参数:四.引、送风机液压油系统图:五.引、送风机动叶调节机构工作原理:从液压调节机构来看,液压调节结构可分为两部分:一部分为控制头,它不随轴转动。
另一部分为油缸及活塞,它们与叶轮一起旋转,但活塞没有轴向位移,叶片装在叶柄的外端。
每个叶片用6个螺栓固定在叶柄上,叶柄由叶柄轴承支撑,平衡块与叶片成一定角装设,两者位移量不同,平衡块用于平衡离心力,使叶片在运转中成为可调。
液压调节机构的调节原理大致如下:1.当讯号从控制轴输入要求“+”向位移时分配器左移、压力油从进油管A经过通路2送到活塞左边的油缸,由于活塞无轴向位移,油缸左侧的油压就上升,使油缸向左移动,带动调节连杆偏移,使动叶片向“+”向位移。
与此同时,调节杆(反馈杆)也随着油缸左移,而齿条将带动控制轴的扇齿轮反时针转动,但分配器带动的齿条却要求控制轴的扇齿做顺时针转动因而调节杆就起到“弹簧”的限位作用。
当调节力大时,“弹簧”限不住位置,所以叶片仍向“+”向位移,即为叶片调节正终端位置,但由于“弹簧”的牵制作用,在一定时间后油缸的位移自动停止,由此可以避免叶片调节过大,防止小流量时风机进入失速区。
火电厂送引风机及排粉机工作原理
动叶调节和静叶调节的区别:
静叶是改变流通面积和入口气流导向,是改变 了入口的阻力条件使风机的工况改变,风机是被动 的调节,有节流损失,静叶结构简单,调节故障率 低,引风机的输送工质是烟气,所含杂质较多,温 度高,工作环境较恶劣,故引风机调节选用静叶。
送风机动叶液压调节机构的工作原理:
液压调节机构可分为二部分,一为控制头,它不随轴转动, 另一部分为液压缸。液压缸由叶片、曲柄、活塞、缸体、轴、 主控箱(即控制阀)、带齿条的反馈拉杆、位置指示轴和控制轴 等组成,液压缸的轴线上钻有5个孔,中心孔是为了安装位置 反馈杆,此反馈杆一端固定于缸体上,另一端通过轴承与反馈 齿条连接。这样,位置反馈齿条做轴向往返移动,反馈齿条带 动输出轴(显示轴),输出轴与一传递杆弹性连接在机壳上显示 出叶片角度的大小,同时又可转换成电信号引到控制室作为叶 片角度的开度指示。另一方面,反馈齿条又带动传动伺服阀 (错油门)齿条的齿轮,使伺服阀复位。而液压缸中心周围的4个 孔是使缸体做轴向往返运动的供油回路。叶片装在叶柄的外端, 每个叶片用6个螺栓固定在叶柄上、叶柄由叶柄轴承支承。平 衡块用于平衡离心力,使叶片在运转过程中可调。液压缸的轴
二、排粉机及其附件结构
离心风机主要构件及作用:
排粉机的工作原理:
叶轮内的气粉混合 物随叶轮一起旋转,受离 心力作用被甩向叶轮外缘, 叶轮中心形成真空,气粉 混合物在大气压作用下, 沿吸入管补充叶轮中心, 吸入的气粉混合物在叶轮 入口处折转90度后进入叶 道,在叶片作用下获得动 能和压能,从叶道甩出的 气粉混合物进入蜗壳,经 集中导流后,从出风口排 出,形成连续工作过程。
粗粉分离器结构:
粗粉分离器工作原理:
从磨煤机出来的气粉混合物以一定的速度自下而上 进入粗粉分离器,在内外椎体之间流过,由于截面不断 扩大,其速度降低,气粉混合物中的大颗粒煤粉从气流 中落下,从外椎体回粉口经两道锁气器回至磨煤机,气 粉混合物再经折向挡板沿切向进入内椎体,由于离心力 的作用,较大颗粒的煤粉被分离出来由内椎体底部的回 粉口返回磨煤机,气粉混合物由上部引出进入细粉分离 器。改变折向挡板的开度,可以调节粗粉分离器出口煤 粉的细度。
风电液压系统原理简介
05 辅助元件与系统设计
辅助元件类型及作用
过滤器
用于清除液压系统中的杂质和 污染物,保证油液的清洁度,
维护系统的正常运行。
油箱
储存液压系统所需的油液,具 有散热、沉淀杂质和分离水分 的作用。
热交换器
用于液压系统的加热和冷却,保 持系统油温在适宜范围内,提高 系统的工作效率和稳定性。
蓄能器
储存压力能,在需要时释放能 量,以补充系统泄漏或用作应
风电液压系统原理简介
contents
目录
• 风电液压系统概述 • 液压泵与马达 • 液压阀与控制系统 • 液压缸与执行机构 • 辅助元件与系统设计 • 风电液压系统维护与故障处理
01 风电液压系统概述
风电液压系统定义与作用
定义
风电液压系统是利用液体压力能 来传递动力和进行控制的一种系 统,是风力发电机组中的重要组 成部分。
按照设计图纸制造液压系统,进行现场安装 调试和试运行,确保系统正常运行。
06 风电液压系统维护与故障 处理
风电液压系统维护方法
定期检查
对液压系统的关键部件进行定期 检查,包括液压泵、液压马达、 液压缸、阀门等,确保其工作正
常。
清洁保养
保持液压系统的清洁,定期更换液 压油,清洗油箱和滤清器,防止杂 质和污染物进入系统。
急能源。
风电液压系统设计原则
安全性原则
确保系统在各种工况下的安全稳定运 行,防止因液压故障导致风机损坏或 人员伤亡。
可靠性原则
选用高品质的液压元件和先进的控制 技术,提高系统的可靠性和稳定性。
经济性原则
在满足系统性能要求的前提下,尽量 降低制造成本和运行费用。
可维护性原则
简化系统结构,方便日常维护和检修, 降低维修成本和时间。
金风2.5MW机组液压、偏航及润滑控制系统
一、金风2.5MW机组液压系统
顺序阀(13)
进销控制线 圈/手动机 构(22.1)
叶轮刹车电磁换 向球阀(19.1)
截止阀(18) 偏航控制换向电 磁球阀(16.2)
发讯器(3.1)
液压泵电源进 线
压力继电器 (10) 节流阀(14) 减压阀(20)
截止阀(8) 减压阀(11)
过滤器(3)
一、金风2.5MW机组液压系统
一、金风2.5MW机组液压系统 液压系统控制电路
二、金风2.5MW机组偏航系统及润滑系统
风力发电机组的偏航控制系统是一随动系统,当风向与风轮轴线偏离一个角 度时,控制系统经过一段时间确认后,会控制偏航电机将风轮调整到与风向一致 方位。
二、金风2.5MW机组偏航系统及润滑系统
金风2.5MW机组液压、偏航及 润滑控制系统
1
一、金风2.5MW机组液压系统 金风2.5MW机组液压系统原理图
一、金风2.5MW机组液压系统
序号 1
1.2 1.3
3 3.1 3.2
4 5 7 8 9 10 11 12 13
名称 油箱 液位开关 放油软管及球阀 过滤器 发讯器(过滤器堵塞) 旁通阀 单向阀 溢流阀(系统保护) 蓄能器 截止阀 单向阀 压力继电器(系统压力) 减压阀 减压阀 顺序阀
一、金风2.5MW机组液压系统 金风2.5MW机组液压系统的压力继电器
一、金风2.5MW机组液压系统 1.8 过滤器
一、金风2.5MW机组液压系统 哈威液压站上使用的过滤器
一、金风2.5MW机组液压系统
1.9 压差发讯器(过滤器堵塞发讯器)
过滤器的发信装置有机械式、磁铁式和电信号式等几种形式。当滤芯堵塞后,发讯器 会发出堵塞信号。 符号
风力发电机组液压系统的组成
风力发电机组液压系统的组成导语:风力发电机使用两个驱动系统,即制动系统(偏转器和主轴一高速轴回转系统)和叶片角度控制及机舱偏转器回转控制系统。
风电液压系统风机是有许多转动部件的。
机舱在水平面旋转,随时跟风。
风轮沿水平轴旋转,以便产生动力。
在变桨矩风机,组成风轮的叶片要围绕根部的中心轴旋转,以便适应不同的风况。
在停机时,叶片尖部要甩出,以便形成阻尼。
液压系统就是用于调节叶片桨矩、阻尼、停机、刹车等状态下使用。
1、驱动系统风力发电机使用两个驱动系统,即制动系统(偏转器和主轴一高速轴回转系统)和叶片角度控制及机舱偏转器回转控制系统。
制动系统用液压控制,而叶片和偏转器的控制则用液压或电气驱动方式。
采用那一种传动的争论在风力发电机的设计中也不例外。
至于采用液压还是电气来控制叶片角度的输出功率、速度或频响,一般取决于制造厂家的经验而定。
2、变桨控制系统叶片角度(变桨)控制系统设计时主要应考虑当风力发电机遇到像台风等强风力时,机组能立即停止运行,以使电源中断,而此时的叶片需要控制在和风向相平行的位置上,确保叶片不再转动,电源中断后,机组的能量贮存系统开始工作,如液压蓄能器或蓄电池。
用液压控制时,用液压直线驱动器(液压缸),用电气控制时,采用电气回转式驱动器。
装在主轴内的液压直线驱动器,及停止时应用的蓄能器也装在轴内。
国外液压直线驱动器是将液压、电子、电气的优点融合在一起的液压直线驱动装置(Electro-hydraulicsystem),简称Hybrid系统,这种系统节能是值得提倡。
这种由液压缸、液压泵、AC马达、蓄能器、电磁阀、传感器和动力源组成的集成式电气液压伺服驱动系统具有动态性能好,输出功率大,电气安装性和维护性好等优点。
它可以降低液压系统的缺点,如漏油和油污染的影响,使可靠性得到显著提高,而当电力中断时,又能充分显示出液压传动的优点,即和液压缸串联的液压缸,从蓄能器获得供油,使叶片迎风面和风向平行,使叶轮停止转动。
风力发电机液压系统
(2)过滤器 液压油中含有杂质是造成液压系统故障的 重要原因。因为杂质的存在会引起相对运动零件的急剧磨损、 划伤、破坏配合表面的精度。颗粒过大时甚至会使阀芯卡死, 节流阀节流口以及各阻尼小孔堵塞,造成元件动作失灵。影 响液压系统的工作性能,甚至使液压系统不能工作。因此, 保持液压油的清洁是液压系统能正常工作的必要条件。过滤 器可净化油液中的杂质,控制油液的污染。
四、液压系统的常见故障
1.出现异常震动和噪声
原因可能是:旋转轴连接不同心;液压泵超载或吸油受 阻;管路松动;液压阀出现自激震荡;液面低;油液粘度高; 过滤器堵塞;油液中混有空气等。
2.输出压力不足
原因可能是:液压泵失效;吸油口漏气;油路有较大的 泄露;液压阀调节不当;液压缸内泄等。
3.油温过高
原因可能是:系统内泄露过大;系统冷却能力不足;在 保压期间液压泵未卸荷;系统的油液不足;冷却水阀不起作 用;温控器设置过高;没有冷却水或制冷风扇失效;冷却水 温度过高;周围环境温度过高;系统散热条件不好。
4.液压泵的启停太频繁
原因可能是:系统内泄露过大;在蓄能系统中,蓄能器 和泵的参数不匹配;蓄能器充气压力过低;气囊(或薄膜) 失效;压力继电器设置错误等。
三、液压系统的维护
1.设备的检查
在启动前的项目检查有:油位是否正常,行程开关和限 位块是否紧固,手动和自动循环是否正常,电磁阀是否处在 原始状态等。
在设备中监视工况的项目有:系统压力是否稳定并在规 定范围中,设备有无异常震动和噪声,油温是否在允许的范 围内(一般为35-55ºC范围内,不得大于60ºC),有无漏油, 电压是否保持在额定值的+5%--15%的范围内等。
2.液压油
液压系统的介质是液压油,一般采用专门用于液压系统 的矿物油。液压系统的液压油应与生产企业制定的牌号相符
4 SL3000风电机组液压系统介绍 (2)解析
b.齿轮箱高速轴刹车释 放 如图蓝色线所示 :电磁 阀15处于通位,同时电 磁阀7处于止位,制动 器液压缸活塞在弹簧作 用下退回,缸内压力油 经回油通路流回油箱。
11
c.齿轮箱高速轴制动器
制动钳
制动盘
联轴器
12
制动过程 :液压油推动主动钳内的活塞把摩擦片1 推向制 动盘一侧。 当摩擦片1 接触到制动盘一侧表面后,持续的 液压油压力提供了反向力使上述的整体组件在滑动轴上向 反方向移动,从而带动被动钳内的摩擦片2 压紧在制动盘 的另一侧。这样两片摩擦片各自压紧在制动盘的两侧,从 而提供了制动力。
9
4.2 齿轮箱高速轴刹车工作原理 a.齿轮箱高速轴刹车 如图红色线所示 :电动 泵18启动,系统油压建 立,电磁阀7处于通位, 电磁阀15处于止位。主 油路中的压力油通过单 向阀9、节流阀10进入 制动器液压缸并保持油 压,液压缸活塞外伸, 制动器开始制动,并一 直保持该状态直到电磁 阀15处于通位。
SL3000风电机组 液压系统
华锐风电科技有限公司
1
1.液压系统简介
SL3000风电机组液压系统包括:
齿轮箱高速轴刹车与偏航刹车液压系统 叶轮锁液压系统
2
2.液压系统的作用
• 齿轮箱高速轴刹车用来在紧急情况下使叶 轮完全停止 • 偏航刹车的主要工作是固定机舱在其偏航 位置 • 叶轮锁用于风机在停机检修过程中将叶轮 与主机架进行机械固定 ,从而实现叶轮的 锁死
控制回路
4.3 偏航刹车工作原理
a.极端风载时的驻车制 动 如图红色线所示 :电动 泵18启动,系统油压建 立,电磁阀26处于通位, 电磁阀32、33处于止位。 主油路中的压力油通过 单向阀22进入制动器液 压缸并保持油压,液压 缸活塞外伸,制动器开 始制动并保持该状态直 到电磁阀32处于通位。
风机液压机构原理
目前在市场上比较常见的动叶调节轴流风机厂商有:豪顿华工程公司、沈阳鼓风机厂、上海鼓风机厂、成都电力设备总厂;豪顿华工程公司和沈阳鼓风机厂是使用同一种调节技术,其技术主要是来自丹麦,且目前的专利是属于英国豪顿公司,上海鼓风机厂的技术主要是来自德国TLT公司,成都电力设备总厂的技术主要是来自德国KKK公司,三种形式的调节机构都有各自的特点和优缺点,下面详细介绍三种调节形式的油路走向以及调节原理。
豪顿华、沈鼓液压调节机构(一次风机、送风机液压缸):1-拉叉 2-旋转油封 3-拉叉接头 4-限位螺栓 5-调节阀阀芯 6-调节臂部 7-错油孔 8-错油孔 9-弹簧 10-活塞 11-液压缸缸体 12-詛油孔 13-液压缸连接盘 14-调节盘 15-滑动衬套 16-旋转油封连接螺栓 17-端盖 18-连接螺栓 19-调节阀阀体 20-风机机壳21-连接螺栓2-(增压风机、引风机液压缸):此液压缸分为三部分:旋转油封、调节阀芯、主缸体,其功能主要如下:旋转油封:其作用是将高压油(P)、回油(O)、润滑油(T)引出或引入高速旋转的缸体,由一高速旋转的轴心和固定不动的壳体在滚动轴承的支撑下组成的,其精度很高,内泄不能太大,长期运行温度不能超过滚动轴承的承受温度。
国产的旋转油封使用寿命大概在2~3年左右,豪顿进口的旋转油封,其内部有W形弹簧垫片,可以保证旋转油封的轴向串动,此弹簧垫为豪顿专利,目前国内无法生产,只有豪顿公司可以生产,而且弹簧垫可以提高旋转油封的寿命,故进口的旋转油封价格高于国产旋转油封的10倍以上。
3-调节阀芯:它是一负遮盖换向阀。
在正常状态下(动叶不动),进油路(P)常开而回油路(O)常闭,润滑油路(T)常开;负遮盖方式使回油路有一很小的开口量,因而有一定的回油量来循环冷却缸体,此开口量的大小决定了在平衡状态下,液压油的油压;目前国产液压缸,由于加工精度的原因,无法在加工上实现,所以基本是在加工好液压缸后,通过使用来决定开口的大小,以保证工作油压;而豪顿生产的液压缸,其加工精度可以实现在机械加工上直接开口,此即为国产缸与进口缸直接的区别,在国产缸的调阀第二道槽的上边缘有一个小开口,为后期磨出来的,如果大家看到了,不要以为是加工缺陷或者磨损掉的,那个开口是故意留出来的,进口缸就不存在。
风力发电机液压变桨系统与电动变桨系统对比分析
风力发电机液压变桨系统与电动变桨系统对比分析摘要:风力发电机组变桨系统通过对叶片桨距角的控制调节发电机输出的扭矩和功率,使其能够控制发电机转速使其跟踪风速变化。
文章针对目前流行的两种变桨系统进行研究,并指出液压变桨系统和电动变桨系统在使用维护中存在的优缺点。
关键词:风力发电机组叶片桨距角控制扭矩和功率控制并网型风力发电机组是将风的动能转换成机械能,再把机械能转换成电能并入电网。
由于风速随时发生变化,因此长期运行在野外的风力发电机组承受着十分复杂恶劣的交变载荷。
所以风力发电机组各个部件的疲劳强度、材料结构和控制策略是影响风力发电机组寿命的主要因素。
叶轮是扑捉风能的关键部件,叶轮是由叶片和轮毂组成。
叶片具有空气动力外形,在气流的作用下产生力矩驱动叶轮转动,通过轮毂和主轴将扭矩传递到齿轮箱增速来驱动发电机,再经过变流器把电压转换成和电网电压频率,幅值和相位完全一致后经箱变并入电网,由此完成能量的变换。
变桨控制系统通过控制对叶片的迎风角度能够获取更多的风能,并减小因阵风引起的载荷,因此取得了广泛应用。
变桨系统能够控制发电机转速使其跟踪风速变化,时刻跟踪风能利用系数Cp,通过对变桨系统的控制可以对输出扭矩和功率进行控制,保持最佳功率曲线。
变桨距控制系统通过控制连接在轮毂轴承机构转动叶片来控制叶片桨距角,由此来减小翼型的升力来控制叶轮的转速达到控制输出扭矩和功率的目的。
变桨距系统可根据风速连续调节叶片的桨距角,以便达到在额定风速以上能够保持输出功率恒定的的目的。
一般在额定风速以下,叶片的启动桨距角是87度左右,当风力发电机在启动的过程中桨距角逐渐向0度方向转动,此时气流在轮毂上产生的提升力逐渐增加,叶轮越转越快,当达到额定转速时风机并网运行,所以控制叶片的桨距角是变桨控制系统的关键。
1 液压变桨系统的原理与结构液压变桨距的控制原理就是控制系统通过检测信号驱动液压系统,使液压系统变桨缸直接运行,从而通过一个运动装置将直线运动变为圆周运动,来推动带有轴承的叶片转动,实现调节桨距角的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目前在市场上比较常见的动叶调节轴流风机厂商有:豪顿华工程公司、沈阳鼓风机厂、上海鼓风机厂、成都电力设备总厂;豪顿华工程公司和沈阳鼓风机厂是使用同一种调节技术,其技术主要是来自丹麦,且目前的专利是属于英国豪顿公司,上海鼓风机厂的技术主要是来自德国TLT公司,成都电力设备总厂的技术主要是来自德国KKK公司,三种形式的调节机构都有各自的特点和优缺点,下面详细介绍三种调节形式的油路走向以及调节原理。
豪顿华、沈鼓液压调节机构(一次风机、送风机液压缸):1-拉叉 2-旋转油封 3-拉叉接头 4-限位螺栓 5-调节阀阀芯 6-调节臂部 7-错油孔 8-错油孔 9-弹簧 10-活塞 11-液压缸缸体 12-詛油孔 13-液压缸连接盘 14-调节盘 15-滑动衬套 16-旋转油封连接螺栓 17-端盖 18-连接螺栓 19-调节阀阀体 20-风机机壳21-连接螺栓2-(增压风机、引风机液压缸):此液压缸分为三部分:旋转油封、调节阀芯、主缸体,其功能主要如下:旋转油封:其作用是将高压油(P)、回油(O)、润滑油(T)引出或引入高速旋转的缸体,由一高速旋转的轴心和固定不动的壳体在滚动轴承的支撑下组成的,其精度很高,内泄不能太大,长期运行温度不能超过滚动轴承的承受温度。
国产的旋转油封使用寿命大概在2~3年左右,豪顿进口的旋转油封,其内部有W形弹簧垫片,可以保证旋转油封的轴向串动,此弹簧垫为豪顿专利,目前国内无法生产,只有豪顿公司可以生产,而且弹簧垫可以提高旋转油封的寿命,故进口的旋转油封价格高于国产旋转油封的10倍以上。
3-调节阀芯:它是一负遮盖换向阀。
在正常状态下(动叶不动),进油路(P)常开而回油路(O)常闭,润滑油路(T)常开;负遮盖方式使回油路有一很小的开口量,因而有一定的回油量来循环冷却缸体,此开口量的大小决定了在平衡状态下,液压油的油压;目前国产液压缸,由于加工精度的原因,无法在加工上实现,所以基本是在加工好液压缸后,通过使用来决定开口的大小,以保证工作油压;而豪顿生产的液压缸,其加工精度可以实现在机械加工上直接开口,此即为国产缸与进口缸直接的区别,在国产缸的调阀第二道槽的上边缘有一个小开口,为后期磨出来的,如果大家看到了,不要以为是加工缺陷或者磨损掉的,那个开口是故意留出来的,进口缸就不存在。
主缸体:主缸体是一个上下腔面积不等的差动缸,送风机、一次风机液压缸上下腔面积比为1:2,引风机、增压风机液压缸上下腔面积比为2:1,其这两种缸的形式不一样,后面会详细解释。
当上下腔同时进油的时候,由于压力一样,面积不一样,所以大腔收到的力大,膨胀,小腔的油通过詛油孔进入大腔,加剧了大腔的膨胀,这个时候,大腔为缸腔而小腔为泵功能向大腔供油,但大腔回油的时候,小腔有变为缸功能,这一特征使得双向运动的时间及对外作用力一致。
4-液压缸工作原理:(送风机、一次风机液压缸,特点:活塞固定,缸体动作,叶片的动作是通过缸体的移动来调节的,缺点:油缸的功率受到轮毂大小和工作油压大小的影响,功率受到限制;优点:相对移动的密封面只有活塞与缸体内壁、调节阀体和活塞两个地方,泄漏点较少,密封性好.)正常状体(平衡状态):叶片无调节,此时阀芯的位置使进油口(P)与小腔接通,回油口(O)关闭,但与大腔有个小切口,以保证循环冷却和较低的工作油压。
此时压力油从P口进入小腔,通过詛油孔,进入大腔,从回油的小切口,通过冷油器后回到油箱中,泄漏及润滑油的通过T口直接回油箱,工作油压的大小,由回油切口的大小来决定,一般都是在3~4MPa左右。
开启叶片:执行机构带动拉叉(旋转油封、调节阀芯)向左拉,此时P口与小腔接通,O口与大腔接通(全部接口,不是小切口),此时小腔进油,大腔回油,小腔膨胀(活塞是固定的)带动缸体向左移动,叶片往开方向走,由于阀体和缸体是一体的,缸体的移动也带动阀体的移动,使阀体与阀芯位置回到平衡时的位置。
关闭叶片:执行机构带动拉叉向右压,此时P口与大、小腔都接通,O口全部关闭(小切口都关闭),此时大小腔都进油,由于大腔的左右面积大,所以大腔膨胀,带动缸体向右移动,从而叶片往关方向走,缸体带动阀体向右走,使阀体与阀芯位置回到平衡时的位置。
(增压风机、引风机液压缸,特点:缸体固定,活塞动作,叶片的动作是通过活塞的移动来调节的,优点:缸体的大小不受轮毂内径的大小限制,可以把缸体做的较大,油缸的功率不受到轮毂大小和工作油压大小的影响,功率较大,所以比较适合用在增压风机,引风机等需较大功率的风机上,且采用缸外油循环来解决高温问题;缺点:相对移动的密封面比较多,有活塞与缸体内壁、调节阀体和缸活塞、活塞与缸体三个密封面,泄漏概率较大.)正常状体(平衡状态):叶片无调节,此时阀芯的位置使进油口(P)与小腔接通,回油口(O)关闭,但与大腔有个小切口,以保证循环冷却和较低的工作油压。
此时压力油从P口进入小腔,通过詛油孔,进入大腔,从回油的小切口,通过冷油器后回到油箱中,泄漏及润滑油的通过T口直接回油箱,工作油压的大小,由回油切口的大小来决定,由于缸体较大,受力面积大,一般都是在2~3MPa左右。
开启叶片:执行机构带动拉叉(旋转油封、调节阀芯)向左拉,此时P口与小腔接通,O口与大腔接通(全部接口,不是小切口),此时小腔进油,大腔回油,小腔膨胀(缸体是固定的)带动活塞向左移动,叶片往开方向走,由于阀体和活塞是一体的,活塞的移动也带动阀体的移动,使阀体与阀芯位置回到平衡时的位置。
关闭叶片:执行机构带动拉叉向右压,此时P口与大、小腔都接通,O口全部关闭(小切口都关闭),此时大小腔都进油,由于大腔的左右面积大,所以大腔膨胀,带动活塞向右移动,从而叶片往关方向走,活塞带动阀体向右走,使阀体与阀芯位置回到平衡时的位置。
上海鼓风机厂(TLT)液压调节机构上海鼓风机厂的动调机构是引进德国TLT公司的技术,其技术特点是伺服阀阀体和阀芯不随液压缸转动,其阀体是固定不动的,通过阀芯的相对移动来切换进回油管路,从而实现液压缸的动作。
与其他调节机构不同的是,TLT技术的调节过程由调阀移动和负反馈两个过程来实现调节。
液压缸结构:液压缸内的活塞由轴套及活塞轴的凸肩沿轴向定位。
液压缸可以在活塞上左右移动,但活塞不能作轴向移动。
为了防止液压缸左、右移动时,液压油从活塞与液压缸间隙处泄漏,活塞上装有两列带槽密封圈。
当叶轮旋转时,液压缸同步旋转,活塞由于护罩和活塞轴的旋转带动与叶轮一起作旋转运动。
风机在某工况下稳定工作时,活塞与液压缸无相对运动。
活塞轴中心装有定位轴,当液压缸左、右移动时会带动定位轴一起移动。
控制头等零件是静止不动的。
风机如在某工况下稳定工作时,动叶片也在某一角度下运转。
此时伺服阀将油道C和D的油孔关闭,活塞左右两侧的工作油无进油、回油,动叶片的角度固定不变。
液压缸的工作原理:在正常状态下,进回油管路均与液压缸切断,活塞位置固定不变。
关闭叶片时,电动头驱动控制盘7逆时针旋转,带动滑块12向右移动。
此时液压缸只随叶轮作旋转运动,定位轴1及与之相连的双面齿条8静止不动。
于是大齿轮10只能以A为支点,推动与之啮合的单面小齿条13往右移动。
压力油口与兰色油道相通,红色油道与回油口接通,压力油从兰色油道不断进入活塞3右侧的液压油缸内,使液压油缸不断向右移动。
活塞左侧液压油缸内的工作油从红色油道通过回油孔返回油箱。
液压油缸与叶轮上的每个动叶片的调节杆相连,当液压油缸向右移动时,动叶片的角度减小。
(反馈过程)当液压缸向右移动时,定位轴被带动同时向右移动。
但由于滑块不动,所以齿轮以B为支点,单面齿条向左移动。
这样又使伺服阀将油道兰色与红色油道的油孔关闭,液压油缸随之处在新的平衡位置不再移动。
而动叶片亦在关小的状态下工作,这就是反馈过程。
在反馈时齿轮带动指示轴旋转,将动叶片关小的角度显示出来。
增大动叶角度时.电动头带动控制轴顺时针旋转,带动滑块向左移动.此时,由于液压缸只随叶轮做旋转运动,所以定位轴及齿套静止不动.齿轮只能以A为支点,推动与之啮合的单面齿条向左移动,使压力油口与红色油口接通,兰色油口与回油口相连.压力油从红色油道不断进入活塞左侧的液压缸内,液压缸不断向左移动.同时活塞右侧液压缸内的工作油从兰色油道通过回油孔返回油箱,液压缸向左移动,动叶片的角度增大.(反馈过程)当液压缸向左移动时,定位轴也同时向左移动.齿轮以B为支点,齿条向右移动,于是伺服阀又将油道C和D的油孔关闭,动叶片又在新的角度下稳定工作.调节原理图:TLT液压伺服系统的特点:1﹑液压伺服系统是一个跟踪系统.液压缸的位置(输出)完全跟踪伺服阀口的位置(输入)而运动.2﹑液压伺服系统是一个力放大系统.推动伺服阀所需要的力很小,只需要几个N,但液压缸克服阻力,完成推动叶片转动的力则很大,可以达到25巴.推动液压缸的能量由液压泵提供.3﹑液压伺服系统是一个反馈系统.电动头旋转运动最终变成了齿条的直线运动,使伺服阀油口的缝隙发生变化,液压缸移动.而液压缸运动的结果又使油口缝隙保持原来的比例关系.使液压缸停止运动,这种作用称做负反馈.因为反馈是由于缸体和阀体的刚性连接而完成的,所以这种反馈又称为刚性负反馈.负反馈的结果总是输入信号变小以至消除.如果没有这个负反馈,液压缸是无法工作的.成都电力机械设备厂(KKK)液压调节机构成都电力机械厂根据我国电力工业的迫切需要,上世纪九十年代中期,分别对世界上各大著名的风机制造商的动调风机技术进行了调研对比,最终选择引进了代表着国际上最先进的动调轴流风机的设计、制造技术水平的德国KKK公司的AP动调轴流风机专有技术(简称AP风机)。
KKK技术的液压缸是结合了豪顿技术和德国TLT技术的优点,液压缸采用缸体静止,活塞动作的方式,这样液压缸的面积可以做的很大,不受轮毂内径大小的影响(这点和豪顿的增压引风机液压缸有相似之处),调节阀部分采用了调节阀与旋转油封相结合的设计,结构紧凑,安装的时候只需找正一次,安装方便。
但因为旋转油封和调节阀的结合设计,导致调节阀处精度较高,特别是密封的地方。
阀芯是跟随液压缸一起旋转,阀体相对壳体不旋转,只做前后轴向动作,从而使调节阀的设计要求更高。
液压缸工作原理:在平衡状态下,液压缸左右腔的进油及回油管路都切断,润滑油路开启,液压缸不动作。
当叶片需要开的时候,执行机构使调节阀体向左移动,这时右腔油路与进油口联通,左腔油路与回油口接通,右腔膨胀,面积变大,由于缸体是固定的,活塞就向左移动,由于阀芯与活塞是一体的,所以阀芯也向左移动,从而使调节阀阀芯和阀体的位置到平衡位置。
当叶片需要关的时候,执行机构使调节阀体向右移动,这时左腔油路与进油口联通,右腔油路与回油口接通,左腔膨胀,活塞向右移动,带动阀芯也向右移动,从而使阀芯与阀体回到平衡的位置。