第三章假设检验作业

合集下载

假设检验习题及答案

假设检验习题及答案

第三章 假设检验3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。

已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。

{}0100001:1000, H :1000X u=950 100 n=25 1000950-1000u= 2.510025 V=u 0.05H nx u αμμμσσμα-≥<-====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。

3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为01011020: 3.25 H :t X t=13.252, S=0.0117, n=53.252-3.25t= 0.34190.011751H S n x μμμμσμ==≠--==-提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t (1)0.01,(4) 4.6041, 3.25n t t tH ααα-⎧⎫-⎨⎬⎩⎭==<∴ 本题中,接受认为这批矿砂的镍含量为。

3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S ==2N(,),μσ设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii μμσσ≥<≥<{}00.95()10.452% S=0.035%-4.1143(1)0.05 n=10 t (9) 1.833i t S n X n ασμα--==-==1-构造统计量:本文中未知,可用检验。

第三章假设检验

第三章假设检验

《数理统计》试题库假设检验1设2521,,,ξξξ 取自正态母体)9,(μN 其中μ为未知参数,ξ为子样均值,对检验问题0100:,:μμμμ≠=H H 取检验的拒绝域:{}c x x x C ≥-=0251:)(μ , 试决定常数c 使检验的显著性水平为0.05.解:因为),,(9N ~μξ所以),(259N ~μξ 在0H 成立下, ,05.03512C 3553P C P 000=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛Φ-=⎪⎪⎪⎭⎫⎝⎛≥-=≥-C μξμξ)( 96.135,975.035==⎪⎭⎫⎝⎛ΦC C , 所以 C=1.176. 2.设子样),,(1n ξξ 取自正态母体2020),,(σσμN 已知,对检验假设0100:,:μμμμ>=H H 的问题,取临界域{}01:)(c x x x C n ≥= .(i )求此检验犯第一类错误的概率α,犯第二类错误的概率β,并讨论它们之间的关系.(ii )设9,05.0,04.0,5.0200====n ασμ,求65.0=μ时不犯第二类错误的概率.解: (i).在0H 成立下, ),(nN ~200σμξ()⎪⎪⎭⎫⎝⎛-≥-=≥=n C n P C P 0000000σμσμξξα, 0100100μμσμσμαα+=∴=-∴--nC n C其中αμ-1是N (0,1)分布的α-1分位点。

在H 1成立下,),(nN ~20σμξ,()⎪⎪⎭⎫⎝⎛-<-=<=n C n P C P 00011σμσμξξβ =⎪⎪⎭⎫⎝⎛--Φ=⎪⎪⎪⎪⎭⎫⎝⎛-+Φ=⎪⎪⎭⎫ ⎝⎛-Φ--n n n n C 001001000σμμμσμμμσσμαα 当α增加时,αμ-1减少,从而β减少;反之当α减少时,将导致β增加。

(ii )不犯第二类错误的概率为1-β。

⎪⎭⎫ ⎝⎛⨯--Φ-=⎪⎪⎭⎫ ⎝⎛--Φ-=--32.05.065.011105.0001μσμμμβαn =()()().7274.0605.0605.0125.2645.11=Φ=-Φ-=-Φ-3.设一个单一观测的子样ξ取自密度函数为f(x)的母体,对f(x)考虑统计假设:⎩⎨⎧≤≤=≤≤⎩⎨⎧=其它)(:其它10021001)(:1100x x x f H x x f H 试求一个检验函数使犯第一,二类错误的概率满足min 2=+βα,并求其最小值。

假设检验作业习题

假设检验作业习题

假设检验与方差分析一、单选题1、假设检验的基本思想是()A、中心极限定理B、小概率原理C、大数定律D、置信区间2、如果一项假设规定的显著水平为0.05,下列表述正确的是()A、接受H0时的可靠性为95%B、接受H1时的可靠性为95%C、H1为假时被接受的概率为5%D、H0为真时被拒绝的概率为5%3、假设检验的步骤()A、建立假设、选择和计算统计量、确定P值和判断结果B、建立原假设、备择假设,确定检验水准C、确定单侧检验或双侧检验、选择t检验或u检验、估计一类错误和二类错误D、计算统计量、确定P值、做出推断结果4、在一次假设检验中,当显著水平设为0.05时,结论是拒绝原假设,现将显著水平设为0.1,那么()A、仍然拒绝原假设B、不一定拒绝原假设C、需要重新进行假设检验D、有可能拒绝原假设5、进行假设时,在其他条件不变的情形下,增加样本量,检验结论犯两类错误的概率将()A.都减小B. 都增加C.都不变D.一个增加一个减少6、在假设检验中,1-α是指()A.拒绝了一个真实的原假设的概率B.接受了一个真实的原假设概率C.拒绝了一个错误的原假设的概率D.接受了一个错误的原假设概率7、在假设检验中,1-β是指()A.拒绝了一个正确的原假设的概率B.接受了一个正确的原假设的概率C.拒绝了一个错误的原假设的概率D. 接受了一个错误的原假设的概率8.将由显著性水平所规定的拒绝域平分为两部分,置于概率分布的两边,每边占显著性水平的二分之一,这是()。

A. 单侧检验B.双侧检验C.右侧检验D.左侧检验9.方差分析要求()A.各个总体方差相等B.各个样本来自同一总体C.各个总体均数相等D.两样本方差相等二、多项选择题1.显著性水平与检验拒绝域关系()A. 显著性水平提高(α变小),意味着拒绝域缩小B. 显著性水平降低,意味着拒绝域扩大C. 显著性水平提高,意味着拒绝域扩大D. 显著性水平降低,意味着拒绝域扩大化E. 显著性水平提高或降低,不影响拒绝域的变化2. β错误()A. 是在原假设不真实的条件下发生B. 是在原假设真实的条件下发生C. 决定于原假设与真实值之间的差距D. 原假设与真实值之间的差距越大,犯β错误的可能性就越小E. 原假设与真实值之间的差距越小,犯β错误的可能性就越大3、假设检验的三个关键点()A.找到一个合适的统计量,使该统计量包括所要检验的参数和与之对应的样本估计量B.从犯“弃真”错误的角度考虑问题,使得弃真的概率很小。

参数估计假设检验练习题

参数估计假设检验练习题

第三章 假设检验例子例1:某糖厂用自动打包机装糖。

已知每袋糖的重量(单位:千克)服从正态分布()2~,X N μσ。

今随机抽查9袋,称出它们的重量并计算得到*48.5, 2.5x s ==。

取显著性水平0.05α=。

在下列两种情形下分别检验()01:50 :50H H μμ=≠22(1) 4 (2)σσ=未知解:()()2*01220.97512~,48.5, 2.5,9,0.05:50 :50(1) 4 (2)(1) 2.251.962.25 1.96X N x s n H H u uu αμσαμμσσ-=====≠======>糖的重量,现在已知显著性水平,在两种情形下检验:未知解:计算检验统计量的观测值 临界值,因为,所以拒绝原假设即不能认为糖的重量50的平均值是千克,即打包机工作不正常。

()()()()2*0120.97512~,48.5, 2.5,9,0.05:50 :50(2) 1.818 2.306 1.8 2.306X N x s n H H t t n t αμσαμμσ-=====≠===-==<糖的重量,现在已知显著性水平,在两种情形下检验:未知解:计算检验统计量的观测值 临界值,因为,所以不能拒绝原假设,即不能认为打包机工作不正常。

例2:在上题中,试在显著性水平0.1α=下检验()2201: 4 :4H H σσ=>()()()()*2201*22202210.948.5, 2.5,9,0.1: 4 :4112.51813.36212.513.362.x s n H H n s n αασσχσχχ-=====>-==-==<显著性水平,解:计算检验统计量的观测值 临界值,因为,所以不能拒绝原假设,即不能认为打包机工作不正常例3:监测站对某条河流每日的溶解氧(DO )质量浓度记录了30个数据,并由此算得 2.52, 2.05x s ==。

已知这条河流的每日DO 质量浓度服从()2,N μσ,试在显著性水平0.05α=下检验()01: 2.7 : 2.7H H μμ=≠。

第三章假设检验例子

第三章假设检验例子

试问,在显著性水平
25%下,能否认为每匹布上的疵点数服从泊松分布。
例:一位环保工程师要考察某条河流的污染情况。 他收集了河流与某个居民点的距离 X (单位:公里) 及河流该处的生化需氧量 Y (单位: 104 mL / L )的 15 对数据如下表:
xi yi 65 2 9 18 20 25 28 50
显著性水平 =0.1 下,对总体 X 是否服从二项分 布 B 2, 0.5 作 2 拟合优度检验,其中 X 表示两 个孩子的家庭中男孩个数,并对结论作直观解释。
例:某厂在全面质量管理工作中,抽查了 50 匹布, 记录下它们的疵点数:
疵点数 频数 0 1 2 3 4
21 18 7 3 1
更新设备后,从新生产的产品中随机抽取 100 个,
测得平均重量 x 12.5 克 , 如果方差不变,问更新 设备后,产品的平均重量是否有显著变化 X ~ N , 2 , 今从一批产品中抽查 10 根测其折断力,算得
均未知,试问在显著性水平 5%下,能否认为距离与 生化需氧量无关?
例:为了考察某地区 50 岁以上的成年人吸烟 习惯与患肺癌之间的关系,调查了 112 名对象, 得列联表如下:
人数 吸烟 不吸烟 n j
患肺癌 未患肺癌 18 12 4 78
ni
,试问在
n 112
显著性水平 1%下,能否认为吸烟习惯与患肺癌无关?
例:为了检查一颗骰子是否均匀,把这颗骰子掷了 100 次,得结果如下表:
出现点数 频数 1 2 3 4 5 6
14 15 13 20 18 20
试在显著性水平
=0.05 下作 2 拟合优度检验。
例:为了检验某厂生产的灯泡的使用寿命是否服从 指数分布,随机地抽查了 150 只灯泡,测得它们的 平均使用寿命 x 200 小时 ,把这 150 个数据 分组整理后如下表:

应用数理统计作业题及参考答案(第三章)

应用数理统计作业题及参考答案(第三章)

第三章 假设检验P1313.2 一种元件,要求其使用寿命不得低于1000(小时)。

现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。

已知该种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。

解:本题需检验0H :0μμ≥,1H :0μμ<.元件寿命服从正态分布,0σ已知,∴当0H成立时,选取统计量X u μ-=,其拒绝域为{}V u u α=<.其中950X =,01000μ=,25n =,0100σ=.则 2.5u ==-.查表得0.05 1.645u =-,得0.05u u <,落在拒绝域中,拒绝0H ,即认为这批元件不合格。

3.3 某厂生产的某种钢索的断裂强度服从正态分布()2N μσ,,其中40σ=(kg / cm 2)。

现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(kg / cm 2)。

设总体方差不变,问在0.01α=下能否认为这批钢索质量有显著提高?解:本题需检验0H :0μμ=,1H :0μμ>.钢索的断裂强度服从正态分布,0σ已知,∴当0H成立时,选取统计量u =,其拒绝域为{}1V u u α-=>.其中040σ=,9n =,020X μ-=,0.01α=.则 1.5u ==.查表得10.990.01 2.33u u u u αα-==-=-=,得0.99u u <,未落在拒绝域中,接受0H ,即认为这批钢索质量没有显著提高。

3.5 测定某种溶液中的水分。

它的10个测定值给出0.452%X =,0.035%S =。

设总体为正态分布()2N μσ,,试在水平5%检验假设:(i )0H :0.5%μ>; 1H :0.5%μ<. (ii )0H :0.04%σ≥; 1H :0.04%σ<. 解:(i )总体服从正态分布,0σ未知,当0H成立时,选取统计量t =(){}1V t t n α=<-.查表得()()0.050.9599 1.8331t t =-=-.而()4.114 1.83311t t n α==-<-=-.落在拒绝域中,拒绝0H .(ii )总体服从正态分布,μ未知, 当0H 成立时,选取统计量222nSχσ=,其拒绝域为(){}221V n αχχ=<-.查表得()20.059 3.325χ=.而()()()2222100.035%7.65610.04%n αχχ⨯==>-.未落在拒绝域中,接受0H .3.6 使用A (电学法)与B (混合法)两种方法来研究冰的潜热,样品都是-0.72℃的冰块,下列数据是每克冰从-0.72℃变成0℃水的过程中的吸热量(卡 / 克):方法A :79.98,80.04,80.02,80.04,80.03,80.03,80.04,79.97,80.05,80.03,80.02,80.00,80.02方法B :80.02,79.94,79.97,79.98,79.97,80.03,79.95,79.97假定用每种方法测得的数据都服从正态分布,且它们的方差相等。

假设检验例题 (3)

假设检验例题 (3)

假设检验例题引言假设检验是统计学中常用的一种方法,用于通过对样本数据进行推断来判断某个假设是否成立。

在实际应用中,假设检验可以用于验证某个新的产品是否与现有产品相同、进行医学研究是否有显著的治疗效果等。

本文将通过一个例题来介绍假设检验的基本概念和步骤,并以Markdown文本格式输出。

例题描述假设某个公司改变了产品包装的设计,认为新的包装可以提高产品的销售量。

为了验证这个假设,该公司进行了一项实验,在两个不同的市场中随机选择了一部分店铺,其中一部分店铺使用新的包装,另一部分店铺继续使用旧的包装。

经过一段时间的实验,记录下两组店铺的销售量。

以下是两组店铺的销售量数据:新包装店铺销售量:50, 52, 55, 48, 57, 55, 54, 53, 51, 56旧包装店铺销售量:45, 46, 44, 46, 42, 48, 43, 41, 47, 44现在的问题是,是否可以通过这些数据来判断新的包装是否显著地提高了产品的销售量?假设检验步骤进行假设检验的步骤如下:步骤1:建立零假设和备择假设在这个例题中,零假设表示新的包装不会显著地提高产品的销售量,备择假设表示新的包装显著地提高了产品的销售量。

假设检验的目标是通过样本数据来决定是拒绝零假设还是接受备择假设。

零假设 (H0):新的包装不会显著地提高产品的销售量。

备择假设 (H1):新的包装显著地提高了产品的销售量。

步骤2:选择显著性水平显著性水平是假设检验中的一个重要概念,用于决定拒绝或接受零假设的标准。

通常情况下,我们会选择一个合适的显著性水平,常见的显著性水平有0.05和0.01。

在这个例题中,我们选择显著性水平为0.05,表示要求95%的置信水平。

步骤3:计算检验统计量假设检验的目标是通过样本数据来计算一个统计量,并与一个期望的分布进行比较。

在这个例题中,我们可以使用两组店铺的平均销售量作为检验统计量。

步骤4:计算p值p值是一个概率值,表示当零假设为真时,观察到比检验统计量更极端结果的概率。

第三章 总体均数的估计与假设检验

第三章 总体均数的估计与假设检验
2
Sd
d
d Sd / n
2

(
d)
n
n 1
S d 0.1087 t 2.7424 0.1087/ 10 7.925
v 10 1 9
3)确定P值,作出推断结论 T0.05,9=2.262, 7.925>2.262,故P<0.05.可以认为两种 方法对脂肪含量的测定结果不同。
167.41, 2.74
165.56, 6.57
168.20, 5.36 n j=10
…. 165.69, 5.09
将上述100个样本均数看成新变量值,则这个 100个样本均数构成一新分布,绘制直方图
样本均数的抽样分布具有如下特点:
1) 各样本均数未必等于总体均数
2) 各样本均数间存在差异
3) 样本均数的分布很有规律,围绕着总体均 数,中间多,两边少,左右基本对称,也 服从正态分布
假设检验的基本步骤:
1、建立检验假设
H0: 检验假设, 无效假设,零假设 μ=μ0
H1: 备择假设,对立假设
μ≠μ0
2、确定检验水准 α=0.05 单双侧
3、选定检验方法和计算检验统计量
4、确定P值和作出推论结论。
P值是指从H0所规定的总体进行随机抽样,获 得大于(或等于及小于)现有样本获得的检验 统计量值的概率。
(1012/L)
血红蛋白 (g/L)

男 女
255
360 255
4.18
134.5 117.6
0.29
7.1 10.2
4.33
140.2 124.7
*标准值:使用内科学(1976年)所载均数(转位法定单位)
1)说明女性的红细胞数与血红蛋白的变异程度何者为大? 2)抽样误差是? 3)试估计该地健康成年女性红细胞数的均数? 4) 该地健康成年男女血红蛋白含量是否不同? 5)该地男性两项血压指标是否均低于上表的标准值(若测 定方法相同)?

第三章 假设检验

第三章    假设检验

第三章 假设检验一、填空题1、在假设检验中,第一类错误(即弃真错误)是 。

2、在假设检验中,第二类错误(即取伪错误)是 。

3、在假设检验中,βα,分别为犯第一类错误和第二类错误的概率,n 为样本容量,则有当n 固定时,βα, ; 当n 增大时,βα, 。

4、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中2σ未知,则对于假设00:μμ=H 01:μμ≠H ,所采用的检验统计量为 。

5、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中2σ未知,则对于假设00:μμ=H 01:μμ≠H ,拒绝域为 。

6、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中2σ未知,则对于假设00:μμ≥H 01:μμ<H ,所采用的检验统计量为 。

7、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中2σ未知,则对于假设00:μμ≥H 01:μμ<H ,拒绝域为 。

8、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中2σ未知,则对于假设00:μμ≤H 01:μμ>H ,所采用的检验统计量为 。

9、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中2σ未知,则对于假设00:μμ≤H 01:μμ>H ,拒绝域为 。

10、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中μ未知,则对于假设2020:σσ=H 2021:σσ≠H ,所采用的检验统计量为 。

11、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中μ未知,则对于假设2020:σσ=H 2021:σσ≠H ,拒绝域为 。

12、检验一个总体X 服从正态分布,可用的方法有(给出两种方法即可) 。

13、设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值12(,,,)n X X X 落入W 的概率为0.15,则犯第一类错误的概率为_____________________。

第三章(3) 假设检验

第三章(3) 假设检验

解:H0 : 0.5, H1 : 0.5
n=16 ,0.05 ,t (15) 1.753
t x 0 s* 0.56 0.5 2 >1.753 n 0.12 16
否定H0
即该服务系统工作不正常
42/27
(三)关于方差的检验
1、检验假设 H0: ,H1:
42/31
ns 选取 = 2 0
2
2
ns2 当2= 2 b时,否定H0 0
当2 b时,不能否定H0
42/32
例6 葡萄酒厂用自动装瓶机装酒,每瓶规定重量为500克,标 准差不超过10克,每天定时检查。某天抽得9瓶,测得平均重 量为x 499克,标准差为s* 16.03克。假设瓶装酒的重量服从 正态分布。问这台机器工作是否正常?(=0.05)
H0 : EX 0.5, H1 : EX 0.5
样本平均值X 0.6
由于
X 0.5 0.1 0.224

DX 0.25 0.224 n 100 0.05
不能否定H0
42/10
二、参数检验
☆8
42/11
参数检验
• 参数估计与参数检验都利用样本的信 息
估计量 样本 信息 样本 统计量 检验统计量 参数检验 参数估计
解:
提出假设 H0:2 0.1082 ,H1:2 0.1082
n5 0.05
*2
s 0.2282
*2
查表可得
a=0.484
2
b=11.1
ns (n 1)s 4 0.2282 17.83 >11.1 2= 2 2 2 0 0 0.108
否定H0,即方差不能认为是0.1082

《应用数理统计》第三章假设检验课后作业参考答案

《应用数理统计》第三章假设检验课后作业参考答案

第三章 假设检验课后作业参考答案3.1 某电器元件平均电阻值一直保持2.64Ω,今测得采用新工艺生产36个元件的平均电阻值为2.61Ω。

假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。

已知改变工艺前的标准差为0.06Ω,问新工艺对产品的电阻值是否有显著影响?(01.0=α)解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u uu u u V (4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。

3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。

已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。

解:{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。

3.3某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。

现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。

设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高? 解:(1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13/4020/u 00==-=nX σμ (3)否定域{}α->=1u u V(4)给定显著性水平01.0=α时,临界值33.21=-αu(5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。

第三章多元正态总体参数的假设检验

第三章多元正态总体参数的假设检验

第三章 多元正态总体参数的假设检验3.1 几个重要统计量的分布一、正态变量二次型的分布1、分量独立的n 维随机向量X 的二次型设),,1)(,(~21n i N X i i =σμ,且相互独立,记⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n X X X 1,则),(~2n n I N X σμ,其中)',,(1n μμμ =。

X 的二次型具有以下一些结论:结论1 当),,1(0n i i ==μ,12=σ时,则)(~'212n XX X ni iχξ∑===;当),,1(0n i i ==μ,12≠σ时,则)(~'122n X X χσ(或记为)(~'22n X X χσ)。

结论2 当),,1(0n i i =≠μ,X X '的分布常称为非中心2χ分布。

Def3.1.1 设n 维随机向量)0)(,(~≠μμn n I N X ,则称随机向量X X '=ξ为服从n 个自由度、非中心参数∑===ni i 12'μμμδ的2χ分布,记为)(~'),(~'22δχδχn X X n X X 或。

若时且1),0)(,(~22≠≠σμσμn n I N X ,有)(~'122δχσn X X 。

结论3 设),0(~2n n I N X σ,A 为对称矩阵,且r A rank =)(,则二次型 A A r AX X =⇔222)(~/'χσ(A 为对称幂等矩阵)。

结论4 设),(~2n n I N X σμ,'A A =,则),(~'122δχσr AX X ,其中A A A =⇔=22'1μμσδ,且)()(n r r A rank ≤=。

结论5 二次型与线性函数的独立性:设),(~2n n I N X σμ,A 为n 阶对称矩阵,B 为n m ⨯矩阵,令)(,'维随机向量为m Z BX Z AX X ==ξ,若O BA =,则AX X BX '和相互独立。

第三章 假设检验

第三章 假设检验
n
近似服从标准正态分布N(0,1)。
给定小概率 ,查附表1可得
u
2
P{U u }
2
,使

上式中花括号内是小概率事件。
m p0 n P{ u } p0 1 p0 2 n
m 进行一次抽样后得到子样废品率 的数值, n
如果使上面小概率事件发生,那么拒绝假设 H0 ,否则接受H0 。这就是说,若
10
假设H0 ,即能化。这 个例子的目的是要检验正态母体的平均数。 2 2 2 假定母体X的分布是 N , ,且 0 2 ( 0 是已知数)。在母体上作 假设H0 : 0 0是已知数 u 给定 ( 是小概率),查附表1可得 2 进行一次抽样后获得子样平均值 x 。若
1 2
n1 n2 2 的t分布,其中
1 1 * S n1 n2
S
*
n1 1S
给定显著水平 ,由附表2可得 t n1 n2 2 2 使 P{T t n1 n2 2} 即
P{ X1 X 2
2
n2 1S n1 n2 2
x 0 u
2
0
则拒绝假设H0 ,即不能认为母体平均数 0 0 若 x u
0
n n

则接受假设H0 ,即可认为母体平均数是 0
2
例2 某种产品在通常情况下废品率是5%, 现从生产出的一批中随意地抽取50个,检验 得知有4个废品,问能否认为这批产品的废 品率为5%?(取小概率 =5%) 母体X的分布是二点分布B(1,p),即 P{X=1}=p, P{X=0}=1-p 在母体上作 假设H0 :p=p0(取 p0=0.05) 2 p0 (1 p0 ) E X p0 , D X n n m p0 故 U n p0 1 p0

医学统计学 第六讲 第三章 计量资料的统计推断假设检验

医学统计学 第六讲 第三章 计量资料的统计推断假设检验
计量资料假设检验之二
样本与总体的关系
N(μ0,σ02)
x n1
1
x n2
2
x n3
3
x n4
4
...
...
n
xn
N(μ,σ2) x
2
假设检验的一般步骤 ▲ 建立假设(反证法): ▲ 确定显著性水平( ): ▲ 计算统计量:u, t,2 ▲ 确定概率值: ▲ 做出推论
3
第三节 t 检验和u检验 4
8
假设检验: ▲ 建立假设:
检验假设 H0:两组药物镇痛时间相同, 1=2 备择假设 H1:两组药物镇痛时间不同; 1≠2 ▲ 确定显著性水平( ):0.05
▲ 计算统计量t 值 9
计算公式: 合并标准误
t X1 X2 S
X1 X2
S X1X2
SC2n11
1
n2
合并方差
SC2s12(n1n 11 ) n2S 22(2n21)
合并自由度 10
t X1 X2 SX1X2
X1 X2
S12
(n1 1) S22(n2 n1 n2 2
1)
1 n1
1 n2
6.23.5
7.859
1.423011.22(281) 1 1
30282 30 28
11
▲ 确定概率值:自由度:30+ 28 –2 = 56 t 0.05(56) = 2.005 7.859 > t 0.05(56) , p < 0.05; ▲ 做出推论: 按=0.05水准, 拒绝H0,接受H1, 可以认为 两组药物镇痛疗效不同。
F=s12(较大)/s22( 较小) = 0.832/0.642 = 1.682
23

第三章 4 假设检验的基本原理与步骤A版

第三章 4 假设检验的基本原理与步骤A版

假设检验的基本原理和步骤●某一样本均数是否来自于某已知均数的总体?●两个不同样本均数是否来自均数不相等的总体?要回答这类问题:----参数估计----假设检验(hypothesis test)假设检验过去称显著性检验。

它是利用小概率反证法思想,从问题的对立面(H0)出发间接判断要解决的问题(H1)是否成立。

然后在H0成立的条件下计算检验统计量,最后获得P值来判断。

例1某医生测量了36名从事铅作业男性工人的血红蛋白含量,算得其均数为130.83g/L,标准差为25.74g/L。

问从事铅作业工人的血红蛋白是否不同于正常成年男性的均数140g/L?本例:μ=140g L,X=130.83g Lμ?①单纯抽样误差造成的(μ=μ0);造成X≠μ0的情况有二:②抽样误差和本质异造成的(μ≠μ0)。

假设检验的目的就是判断差别是由哪种情况造成的。

男性铅作业工人血红蛋白μ=140g/L一种假设H 0:μ=μ0男性铅作业工人血红蛋白μ≠140g/L另一种假设H 1:μ≠μ0 X=130.83 g L 抽样误差抽样误差总体不同1.建立检验假设,确定检验水准(选用单侧或双侧检验)(1)无效假设又称零假设,记为H0;(2)备择假设又称对立假设,记为H1。

对于检验假设,须注意:①检验假设是针对总体而言,而不是针对样本;②H0和H1是相互联系,对立的假设,后面的结论是根据H0和H1作出的,因此两者不是可有可无,而是缺一不可;③H1的内容直接反映了检验单双侧。

若H1中只是μ>μ0或μ<μ0,则此检验为单侧检验。

它不仅考虑有无差异,而且还考虑差异的方向。

例如表1 样本均数(代表未知总体均数μ)与已知总体均数μ比较的t 检验目的H0H1双侧检验单侧检验是否μ≠μ0是否μ>μ0是否μ<μ0μ=μ0μ=μ0μ=μ0μ≠μ0μ>μ0μ<μ0表2 两样本均数(分别代表未知总体均数μ1与μ2)比较的t 检验目的H0H1双侧检验单侧检验是否μ1≠μ2是否μ1>μ2是否μ1<μ2μ1=μ2μ1=μ2μ1=μ2μ1≠μ2μ1>μ2μ1<μ2④单双侧检验的确定,首先根据专业知识,其次根据所要解决的问题来确定。

spss整理(大题目)

spss整理(大题目)

spss整理(大题目)Spass整理第三章统计假设检验二、两样本平均数统计假设检验例3-11.随机抽取 2 个品种的苹果果实的果肉硬度(磅/cm 2),试比较2 品种苹果的果肉硬度是否存在显著差异?SPSS 操作:菜单Analyze —Independent-Samples T Test在独立样本T检验(成组T检验)比较中,结果会分2种情况输出,对应着结果表的数据是2行,第一行是假设方差相等的数据,第二行是假设方差不相等的数据。

最终的结果是看第一行还是第二行,需要看Levene's Test for Equality of Variances(方差齐性检验)的结果。

如果Levene's Test for Equality of Variances 结果是方差相齐的,则看第一行数据,否则看第二行数据。

分析过程:首先,Levene's Test for Equality of Variances H0:2组数据方差相等(相齐),检验结果显著值(Sig.)为0.947 > 0.05,接受H0,2组数据方差相等,看第一行数据. 其次,T检验的显著值(Sig.)是0.458 > 0.05,说明接受T检验的H0:2组数据对应总体的均值无显著差异,即2个品种的苹果果实的果肉硬度无显著差异。

例3-12. 选用10个品种的草莓进行电渗处理和传统方法对草莓果实中钙离子含量的影响,结果如下,请问电渗处理和传统处理方法对草莓果实中钙离子含量是否有显著的差异?SPSS 操作:因为该试验是对10 个品种的每个品种进行2种方法测试,因此需要使用成对样本均值的T 检验,而不能用成组样本的T检验在成对样本T 检验结果表中,需要看T检验的显著值。

分析过程:成对样本T 检验(Paired-Samples T T est)结果,显著值(Sig.)为0 < 0.05 ( 0.01 ),否定H0:2种处理方法对应的总体均值相等,说明传统方法和电渗处理2种方法测试的草莓果实中钙离子含量之间有显著(极显著)差异,根据分析结果,对照—电渗处理的均值小于0,说明电渗处理法测试的草莓果实中钙离子含量显著提高。

假设检验习题及答案.doc

假设检验习题及答案.doc

_950-1000 _100/V25 = —2.50.3419第三章假设检验3.2 一种元件,要求其使用寿命不低于1000 (小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950 (小时)。

已知这种元件寿命服从标准差6 = 100(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。

提出假设:H o-.ju> 1000, H]:〃<1000构造统计量:此问题情形属于u检验,故用统计量:u=^ —此题中= 950 cr0 =100 n=25 用=1000代入上式得:拒绝域:V={|u| > "胡本题中:a = 0.05 u 0 95 = 1.64即,|u|>"°.95拒绝原假设%认为在置信水平0.05下这批元件不合格。

3.4某批矿砂的五个样品中镣含量经测定为(%):3.25 3.27 3.24 3.26 3.24设测定值服从正态分布,问在a = 0.01下能否接受假设,这批矿砂的镣含量为提出假设:气:〃]=为=3.25构造统计量:本题属于W未知的情形,可用t检验,即取检验统计量为:t= X")本题中二= 3.252, S=0.0117, n=5代入上式得:_ 3.252-3.25—0.0117/7^1否定域为:V=< t>t >本题中,a = 0.01 角.995(4) = 4.6041••• V «1--2接受丑0,认为这批矿砂的镣含量为3.25。

0.035%,= -4.114310*(0.035% 尸=7.6563 否定域v={z 2>zL(»-i)}本题中,%”1)=就5 ⑼= 16.919接受也3.9设总体X N(〃,4),X I ,...,X]6为样本,考虑如下检验问题:3.5确定某种溶液中的水分,它的10个测定值X = 0.452%,S设总体为正态分布试在水平5%检验假设:(z)H 。

第三章假设检验作业

第三章假设检验作业

1.一种机床加工的零件尺寸绝对平均误差为1.35mm。

生产厂家现采用一种新的机床进行加工以期进一步降低误差。

为检验新机床加工的零件平均误差与旧机床相比是否有显著差异,从某天生产的零件中随机抽取50个进行检验。

利用这些样本数据,检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著差异?如果想检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低,结果会如何?( =0.01)。

2.一种汽车配件的平均长度要求为12cm,高于或低于该标准均被认为是不合格的。

汽车生产企业在购进配件时,通常是经过招标,然后对中标的配件提供商提供的样品进行检验,以决定是否购进。

现对一个配件提供商提供的10个样本进行了检验。

假定该供货商生产的配件长度服从正态分布,在0.05的显著性水平下,检验该供货商提供的配件是否符合要求?12.210.812.011.811.912.411.312.212.012.33.对消费者的一项调查表明,17%的人早餐饮料是牛奶。

某城市的牛奶生产商认为,该城市的人早餐饮用牛奶的比例更高。

为验证这一说法,生产商随机抽取550人的一个随机样本,其中115人早餐饮用牛奶。

在显著性水平0.01下,检验该生产商的说法是否属实?4.甲、乙两台机床同时加工某种同类型的零件,已知两台机床加工的零件直径(单位:cm)分别服从正态分布,并且方差相等。

为比较两台机床的加工精度有无显著差异,分别独立抽取了甲机床加工的8个零件和乙机床加工的7个零件,通过测量得到如下数据。

在=0.05的显著性水平下,样本数据是否提供证据支持“两台机床加工的零件直径不一致”的看法?两台机床加工零件的样本数据(cm)甲20.519.819.720.420.120.019.019.9乙20.719.819.520.820.419.620.25.某饮料公司开发研制出一新产品,为比较消费者对新老产品口感的满意程度,该公司随机抽选一组消费者(8人),每个消费者先品尝一种饮料,然后再品尝另一种饮料,两种饮料的品尝顺序是随机的,而后每个消费者要对两种饮料分别进行评分(0分~10分),评分结果如下表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章假设检验作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
1.一种机床加工的零件尺寸绝对平均误差为1.35mm。

生产厂家现采用一种新的机床进行加工以期进一步降低误差。

为检验新机床加工的零件平均误差与旧机床相比是否有显著差异,从某天生产的零件中随机抽取50个进行检验。

利用这些样本数据,检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著差异如果想检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低,结果会如何? (
50个零件尺寸的误差数据 (mm)
1.26 1.19 1.31 0.97 1.81
1.130.96 1.06 1.000.94
0.98 1.10 1.12 1.03 1.16
1.12 1.120.95 1.02 1.13
1.230.74 1.500.500.59
0.99 1.45 1.24 1.01 2.03
1.98 1.970.91 1.22 1.06
1.11 1.54 1.08 1.10 1.64
1.70
2.37 1.38 1.60 1.26
1.17 1.12 1.230.820.86
2.一种汽车配件的平均长度要求为12cm,高于或低于该标准均被认为是不合格的。

汽车生产企业在购进配件时,通常是经过招标,然后对中标的配件提供商提供的样品进行检验,以决定是否购进。

现对一个配件提供商提供的10个样本进行了检验。

假定该供货商生产的配件长度服从正态分布,在0.05的显著性水平下,检验该供货商提供的配件是否符合要求
10个零件尺寸的长度 (cm)
12.210.812.011.811.9
12.411.312.212.012.3
3.对消费者的一项调查表明,17%的人早餐饮料是牛奶。

某城市的牛奶生产商认为,该城市的人早餐饮用牛奶的比例更高。

为验证这一说法,生产商随机抽取550人的一个随机样本,其中115人早餐饮用牛奶。

在显著性水平0.01下,检验该生产商的说法是否属实?
4.甲、乙两台机床同时加工某种同类型的零件,已知两台机床加工的零件直径(单位:cm)分别服从正态分布,并且方差相等。

为比较两台机床的加工精度有无显著差异,分别独立抽取了甲机床加工的8个零件和乙机床加工的7个零件,通过测量得到如下数据。

在=0.05的显著性水平下,样本数据是否提供证据支持“两台机床加工的零件直径不一致”的看法?
两台机床加工零件的样本数据(cm)
甲20.519.819.720.420.120.019.019.9
乙20.719.819.520.820.419.620.2
5.某饮料公司开发研制出一新产品,为比较消费者对新老产品口感的满意程度,该公司随机抽选一组消费者(8人),每个消费者先品尝一种饮料,然后再品尝另一种饮料,两种饮料的品尝顺序是随机的,而后每个消费者要对两种饮料分别进行评分(0分~10分),评分结果如下表。

取显著性水平=0.05,该公司
两种饮料平均等级的样本数据
旧饮料54735856
新饮料66743976
6.有两种方法生产同一种产品,方法1的生产成本较高而次品率较低,方法2的生产成本较低而次品率则较高。

管理人员在选择生产方法时,决定对两种方法的次品率进行比较,如方法1比方法2的次品率低8%以上,则决定采用方法1,否则就采用方法2。

管理人员从方法1生产的产品中随机抽取300个,发现有33个次品,从方法2生产的产品中也随机抽取300个,发现有84个次品。

用显著性水平=0.01进行检验,说明管理人员应决定采用哪种方法进行生产
7、一家房地产开发公司准备购进一批灯泡,公司打算在两个供货商之间选择一家购买。

这两家供货商生产的灯泡平均使用寿命差别不大,价格也很相近,考虑的主要因素就是灯泡使用寿命的方差大小。

如果方差相同,就选择距离较近的一家供货商进货。

为此,公司管理人员对两家供货商提供的样品进行了检
测,得到的数据如下。

检验两家供货商灯泡使用寿命的方差是否有显著差异(=0.05)
两家供货商灯泡使用寿命数据
样本1
650569622630596
637628706617624
563580711480688
723651569709632
样本2
568540596555
496646607562
589636529584
681539617。

相关文档
最新文档