ARCH自回归条件异方差模型

合集下载

金融风险预测与监测中的自回归条件异方差模型研究

金融风险预测与监测中的自回归条件异方差模型研究

金融风险预测与监测中的自回归条件异方差模型研究金融领域中的风险预测和监测一直都是重要的课题,自回归条件异方差模型(Autoregressive Conditional Heteroskedasticity,简称ARCH模型)在金融风险预测和监测中具有广泛应用的潜力。

本文将探讨金融领域中的风险预测和监测问题,并研究ARCH模型在解决这些问题中的作用。

金融风险预测和监测的目的是为了识别并评估可能对金融市场产生影响的各种风险。

这些风险包括股票价格波动、汇率波动、利率波动等。

了解这些风险对金融市场的影响至关重要,因为它们可能导致投资损失、市场动荡甚至金融危机。

自回归条件异方差模型是由Engle(1982)首先引入的,它被广泛应用于金融风险的建模和预测。

ARCH模型的基本思想是,波动性(volatility)是随时间变化的,并且与之前的波动性存在相关性。

在ARCH模型中,波动性被建模为一个随时间变化的方差序列,这使得我们能够更好地理解金融市场的风险特征。

ARCH模型的核心是建立波动性方程,其中包含了两个重要的部分:一个是自回归项(ARCH项),用于刻画过去波动性对当前波动性的影响;另一个是白噪声项(误差项),用于表示当前波动性的随机部分。

通过估计ARCH模型的参数,我们可以预测未来的波动性,并采取相应的风险管理策略。

在金融风险预测和监测中,ARCH模型有许多优点。

首先,ARCH模型能够捕捉金融市场的波动性特征,对于更好地理解和解释金融市场的波动具有重要意义。

其次,ARCH模型能够提供波动性的预测,帮助投资者和风险管理者制定相应的决策。

此外,ARCH模型的参数估计方法相对简单,计算效率较高。

然而,ARCH模型也存在一些限制。

首先,ARCH模型假设波动性是随时间变化的,但实际中的金融市场波动性可能受到多种因素的影响,包括经济环境、政治因素等。

因此,ARCH模型难以完全捕捉到金融市场波动性的多样性。

其次,ARCH模型基于对波动性方程的参数估计,当样本数据较少或者波动性序列过于复杂时,参数估计的准确性可能受到限制。

arch检验步骤例题

arch检验步骤例题

arch检验步骤例题在时间序列分析中,ARCH模型(自回归条件异方差模型)是一种用于描述时间序列数据的波动性的模型。

在使用ARC H模型进行检验时,可以按照以下步骤进行:数据准备:首先,需要准备时间序列数据,并进行适当的预处理,如去除异常值、缺失值等。

数据可视化:使用图表展示时间序列数据,观察数据的趋势和波动性。

平稳性检验:使用统计方法检验时间序列数据是否平稳。

如果数据不平稳,需要进行差分或取对数等转换。

绘制自相关和偏自相关函数图:使用相关函数计算时间序列的自相关系数和偏自相关系数,并绘制函数图。

这些函数图可以帮助识别时间序列的潜在模式和季节性。

AIC准则给ARIMA模型定阶:使用AIC准则(赤池信息准则)确定ARIMA模型的阶数。

AIC准则是一种用于模型选择的统计方法,通过最小化模型复杂度和数据拟合程度的平衡来选择最佳模型。

用AIC准则定阶GARCH模型:在确定了ARIMA模型的阶数之后,使用AIC准则确定GARCH模型的阶数。

GARCH模型是一种用于描述时间序列波动性的模型,它可以捕捉到时间序列数据的条件异方差性。

建立模型:根据选定的ARIMA和GARCH模型阶数,建立模型并进行拟合。

可以使用统计软件包(如EViews、Stata 等)来进行拟合和参数估计。

残差检验:在拟合模型后,对残差进行检验,以确定是否存在ARCH效应。

如果残差具有显著的ARCH效应,则说明原始时间序列数据存在波动聚集性,即大的波动后面往往跟随大的波动,小的波动后面往往跟随小的波动。

诊断检验:进行诊断检验以检查模型的适用性和潜在的异常值。

这包括检验模型的残差是否独立、残差的正态性和异方差性等。

预测:使用拟合的模型进行预测,并评估预测结果的准确性和可靠性。

下面是一个使用EViews软件进行ARCH模型检验的例题:假设我们有一个股票收益率的时间序列数据,我们想要检验该数据是否存在ARCH效应。

在EViews中打开时间序列数据。

使用ARCH模型进行金融计算

使用ARCH模型进行金融计算

使用ARCH模型进行金融计算ARCH模型是金融领域中常用的一种计量经济学方法,用于分析和预测金融时间序列数据的波动性。

ARCH模型的全称是自回归条件异方差模型(Autoregressive Conditional Heteroskedasticity Model),它能够捕捉到金融市场中的波动性聚集现象,帮助投资者更好地理解和应对市场风险。

首先,ARCH模型的基本思想是,金融市场中的价格和收益率并不是随机波动的,而是存在一定的波动性聚集现象。

也就是说,市场的波动性在某个时期内可能会比其他时期更高或更低。

ARCH模型通过引入条件异方差的概念,能够对这种波动性聚集进行建模。

ARCH模型的核心是条件异方差,即波动性的方差是与过去的波动性有关的。

在ARCH模型中,通过引入滞后期的平方误差项来捕捉波动性的变化。

具体来说,ARCH模型可以表示为:σt^2 = α0 + α1ε(t-1)^2 + α2ε(t-2)^2 + ... + αpε(t-p)^2其中,σt^2表示第t期的条件异方差,ε(t-i)表示第t-i期的误差项,α0、α1、α2...αp是模型的参数,p是滞后期数。

ARCH模型的核心思想是,过去的波动性会对当前的波动性产生影响,通过对过去波动性的建模,可以更好地预测未来的波动性。

ARCH模型的应用范围非常广泛,包括股票、债券、汇率、商品等金融市场中的各种时间序列数据。

例如,在股票市场中,投资者可以利用ARCH模型对股票的波动性进行建模,从而制定更合理的投资策略。

在外汇市场中,投资者可以利用ARCH模型对汇率的波动性进行预测,从而进行有效的风险管理。

此外,ARCH模型还可以与其他模型相结合,进行更复杂的金融计算。

例如,可以将ARCH模型与随机游走模型相结合,构建GARCH模型(GeneralizedARCH Model),从而更准确地描述金融市场中的波动性聚集现象。

GARCH模型在金融风险管理、期权定价等领域有着广泛的应用。

SAS实验指导-Arch建模要点

SAS实验指导-Arch建模要点

ARCH建模及SAS实现一.Arch模型Arch模型即自回归条件异方差模型,是金融市场中广泛应用的一种特殊非线性模型。

1982年,R.Engle在研究英国通货膨胀率序列规律时提出ARCH模型,其核心思想是残差项的条件方差依赖于它的前期值的大小。

1986年,Bollerslev在ARCH模型基础上对方差的表现形式进行了线性扩展,并形成了更为广泛的GARCH模型。

1. 金融时间序列的异方差性特征金融时间序列,无恒定均值(非平稳性),呈现出阶段性的相对平稳的同时,往往伴随着出现剧烈的波动性;具有明显的异方差(方差随时间变化而变化)特征:尖峰厚尾:金融资产收益呈现厚尾和在均值处呈现过度波峰;波动丛聚性:金融市场波动往往呈现簇状倾向,即波动的当期水平往往与它最近的前些时期水平存在正相关关系。

杠杆效应:指价格大幅度下降后往往会出现同样幅度价格上升的倾向。

因此,传统线性结构模型(以及时间序列模型)并不能很好地解释金融时间序列数据。

2. ARCH(p)模型考虑k 变量的回归模型011t t k kt t y x x γγγε=++++若残差项t ε的均值为0,对y t 取基于t-1时刻信息的期望:1011()t t t k kt E y x x γγγ-=+++该模型中,y t 的无条件方差是固定的。

但考虑y t 的条件方差:22110111var(|)()t t t t t k kt t t y Y E y x x E γγγε---=----=其中,1var(|)t t y Y -表示基于t-1时刻信息集合Y t-1的y t 的条件方差,若残差项t ε存在自回归结构,则y t 的条件方差不固定。

假设在前p 期所有信息的条件下,残差项平方2t ε服从AR(p )模型:22211t t p t p t εωαεαεν--=++++ (*)其中t ν为0均值、2νσ方差的白噪声序列。

则残差项t ε服从条件正态分布:()2211~0,t t p t p N εωαεαε--+++ 残差项t ε的条件方差:22211var()t t t p t p εσωαεαε--==+++由两部分组成:(1)常数项ω;(2)ARCH 项——变动信息,前p 期的残差平方和21pi t i i αε-=∑注:未知参数01,,,p ααα和01,,,k γγγ利用极大似然估计法估计。

自回归条件异方差模型在经济统计学中的应用

自回归条件异方差模型在经济统计学中的应用

自回归条件异方差模型在经济统计学中的应用自回归条件异方差模型(ARCH)是一种经济统计学中常用的时间序列模型,用于分析和预测金融市场波动性。

本文将探讨ARCH模型的应用,以及其在经济统计学中的重要性。

首先,我们来了解一下ARCH模型的基本原理。

ARCH模型是由罗伯特·恩格尔于1982年提出的,用于描述时间序列数据中的异方差性。

在传统的线性回归模型中,假设误差项的方差是恒定的,但实际上,金融市场的波动性往往是不稳定的。

ARCH模型通过引入滞后期的方差来捕捉时间序列数据中的异方差性,从而更准确地描述和预测金融市场的波动性。

ARCH模型的核心思想是,当前时刻的波动性受到过去一段时间内波动性的影响。

具体而言,ARCH模型假设波动性的变化是由过去一段时间内的波动性决定的,而不是由其他因素决定的。

这种模型的优势在于能够捕捉到金融市场中的波动性聚集效应,即波动性在一段时间内呈现出明显的聚集或离散的特征。

ARCH模型的应用非常广泛,尤其在金融领域中发挥着重要的作用。

首先,ARCH模型可以用于金融市场的风险度量和风险管理。

通过对金融资产的波动性进行建模,可以更准确地估计风险水平,为投资者提供更可靠的风险评估指标。

其次,ARCH模型可以用于金融市场的波动性预测。

通过对过去一段时间内的波动性进行建模,可以预测未来的波动性水平,为投资者提供投资决策的参考依据。

此外,ARCH模型还可以用于金融市场的高频交易策略。

通过对短期波动性的建模,可以捕捉到市场中的短期交易机会,实现高频交易的盈利。

除了金融领域,ARCH模型在宏观经济学中也有着重要的应用。

例如,ARCH模型可以用于对宏观经济数据中的波动性进行建模和预测。

通过对经济数据的波动性进行分析,可以更好地理解经济的周期性波动和结构性变化,为宏观经济政策的制定提供参考。

此外,ARCH模型还可以用于对宏观经济风险的度量和管理,为国家和地区的宏观经济政策提供支持。

总之,自回归条件异方差模型在经济统计学中具有重要的应用价值。

精品课件-数学建模EViews中估计ARCH模型

精品课件-数学建模EViews中估计ARCH模型
是t2的分布滞后模型,我们就能够用一个或两个t2的滞后
值代替许多ut2的滞后值,这就是广义自回归条件异方差模型 (generalized autoregressive conditional heterosce- dasticity model,简记为GARCH模型)。在GARCH模型中,要考虑 两个不同的设定:一个是条件均值,另一个是条件方差。
例,即在条件方差方程中不存在滞后预测方差t2的说明。
在EViews中ARCH模型是在误差是条件正态分布的假定下, 通过极大似然函数方法估计的。例如,对于GARCH(1,1),t 时期 的对数似然函数为:
lt 1 2 lo 2 π g 1 2 )(lot2g 1 2 (y t x tγ )2/
有两个可供选择的方差方程的描述可以帮助解释这个模 型:
为了刻画这种相关性,恩格尔提出自回归条件异方差(ARCH)模型。
ARCH的主要思想是时刻 t 的ut 的方差(= t2 )依赖于时刻(t 1)的残差平 方的大小,即依赖于 ut2- 1 。
(一) ARCH模型 为了说得更具体,让我们回到k -变量回归模型:
y t 0 1 x 1 t k x k t u t
以它被称作条件方差。
(6.1.6)中给出的条件方差方程是下面三项的函数:
1.常数项(均值):
2.用均值方程(6.1.5)的残差平方的滞后来度量从前
期得到的波动性的信息: ut2-1(ARCH项)。
3.上一期的预测方差: t2-1 (GARCH项)。
GARCH(1,1)模型中的(1,1)是指阶数为1的GARCH项 (括号中的第一项)和阶数为1的ARCH项(括号中的第 二项)。一个普通的ARCH模型是GARCH模型的一个特

ARCH

ARCH

GARCH模型ARCH模型由美国加州大学圣迭哥分校罗伯特·恩格尔(Engle)教授1982年在《计量经济学》杂志(Econometrica)的一篇论文中首次提出。

此后在计量经济领域中得到迅速发展。

所谓ARCH模型,按照英文直译是自回归条件异方差模型。

粗略地说,该模型将当前一切可利用信息作为条件,并采用某种自回归形式来刻划方差的变异,对于一个时间序列而言,在不同时刻可利用的信息不同,而相应的条件方差也不同,利用ARCH 模型,可以刻划出随时间而变异的条件方差。

作为一种全新的理论,ARCH模型在近十几年里得到了极为迅速的发展,已被广泛地用于验证金融理论中的规律描述以及金融市场的预测和决策。

ARCH模型是获得2003年诺贝尔经济学奖的计量经济学成果之一。

被认为是最集中反映了方差变化特点而被广泛应用于金融数据时间序列分析的模型。

ARCH模型是过去20年内金融计量学发展中最重大的创新。

目前所有的波动率模型中,ARCH类模型无论从理论研究的深度还是从实证运用的广泛性来说都是独一无二的。

[编辑本段]ARCH模型的基本思想ARCH模型的基本思想是指在以前信息集下,某一时刻一个噪声的发生是服从正态分布。

该正态分布的均值为零,方差是一个随时间变化的量(即为条件异方差)。

并且这个随时间变化的方差是过去有限项噪声值平方的线性组合(即为自回归)。

这样就构成了自回归条件异方差模型。

由于需要使用到条件方差,我们这里不采用恩格尔的比较严谨的复杂的数学表达式,而是采取下面的表达方式,以便于我们把握模型的精髓。

见如下数学表达:Yt = βXt+εt (1)其中,★Yt为被解释变量,★Xt为解释变量,★εt为误差项。

如果误差项的平方服从AR(q)过程,即εt2 =a0+a1εt-12 +a2εt -22 +…… +aqεt-q2 +ηt t =1,2,3…… (2)其中,ηt独立同分布,并满足E(ηt)= 0, D(ηt)= λ2 ,则称上述模型是自回归条件异方差模型。

arch模型的原理 -回复

arch模型的原理 -回复

arch模型的原理-回复ARCH模型,即自回归条件异方差模型(Autoregressive Conditional Heteroskedasticity Model),是为了捕捉时间序列数据中异方差(heteroskedasticity)现象而生的一种经济计量模型。

在本文中,将一步一步回答“ARCH模型的原理”。

第一步,我们先了解什么是异方差。

异方差是指时间序列数据中,随着时间的推移,序列的方差出现明显变化的情况。

在金融市场,股票价格或金融资产的收益率常常呈现出异方差现象,即在某些时期波动较小,而在其他时期波动较大。

这种异方差现象对于风险度量和预测模型的构建都有很大的影响。

第二步,ARCH模型的基本思想是通过引入时间序列自己的过去序列的方差来解释序列的异方差现象。

也就是说,ARCH模型假设时间序列数据的方差是由过去的误差平方项决定的。

如果过去的方差较大,那么未来的方差也会较大;反之,如果过去的方差较小,那么未来的方差也会较小。

第三步,ARCH模型的具体形式是通过引入一个滞后期数的误差项平方的线性组合来表示方差的变化。

以ARCH(p)模型为例,其表达式为:σ^2_t = α_0 + α_1 * ε^2_(t-1) + α_2 * ε^2_(t-2) + ... + α_p * ε^2_(t-p)其中,σ^2_t表示时间t的方差,α_0为常数项,α_i(i=1,2,...,p)为参数,ε_t(t=1,2,...,p)为误差项。

在ARCH(p)模型中,根据过去p期的误差项平方的线性组合来估计当前时间的方差。

第四步,ARCH模型的参数估计可以使用最大似然估计法(Maximum Likelihood Estimation,简称MLE)进行。

MLE的思想是找到一组参数值,使得模型产生的数据的概率最大化。

对于ARCH模型,我们需要对误差项的平方进行参数估计,然后利用MLE来求解最优的参数。

第五步,ARCH模型的估计和预测过程需要进行模型检验。

ARCH模型 计量经济学 EVIEWS建模课件

ARCH模型 计量经济学 EVIEWS建模课件

例如Engle-Ito-Lin(1990)在对日元兑美元汇率
的研究中得到如下结果,
st2= 0.0006 + 0.1169et-12- 0.0627 et-22 - 0.0047 et-32 0.0181 et-42 + 0.9581st-12
虽然参数的和是0.9895,小于1。但δi, i = 2, 3, 4 是负的。Nelson-Cao(1992)认为参数非负的约束
可以放宽要求。对于GARCH(1, q) 模型,
t2
=
δ0
+
δ1
εt
–1
2
+

+
δq
εt
–q
2
+
1
t
2 -1
t2非负的充分与必要条件是:δ0 0;1 0;
k
ki i1 1
0, k
0,1,q
1
i0
二、ARCH模型的建立
㈠检验均值模型的残差ARCH效果
⒈ 残差的分布及其假设 选择Y=XB或A(L)Y=W(L)ε对均值模型的估计会 得到残差的估计值,如果模型的残差具有异方差 性,那么使用非线性的估计才是有效的。 在模型的误差项服从ARCH过程的情况下,如 果模型仍然服从其他的基本假设,则OLS估计仍然 有效,即使误差项非正态也会渐近有效。
1
2ht
exp
(Yt
Yt )2
2ht
⑵对于误差服从t分布的GARCH(1,1)过程,在 k→∞时,接近正态分布,其对数似然函数为:
容量为T。
εt ARCH (q)可以表示为:εt=σtvt。要注意:
E(εt) = 0;vt iidN(0, 1);2t = E(ε2t) = ht;

条件异方差模型分析解析

条件异方差模型分析解析

条件异方差模型分析解析第三节自回归条件异方差(ARCH)模型金融时间序列数据通常表现出一种所谓的集群波动现象。

模型随机误差项中同时含有自相关和异方差。

一、ARCH 模型(Auto-regressive Conditional Heteroskedastic —自回归条件异方差模型)对于回归模型t kt k t t x b x b b y ε++++= 110 (3.3.1)若2t ε服从AR (q )过程t q t q t t νεαεααε++++=--221102 (3.3.2)其中tν独立同分布,并满足0)(=t E ν , 2)(σν=tD 则称(3.3.2)式为ARCH 模型,序列t ε服从q 阶ARCH 过程,记为t ε~ARCH (q )。

(3.3.1)和(3.3.2)称为回归—ARCH 模型。

注:不同时点t ε的方差2)(tt D σε=是不同的。

对于AR (p )模型t p t p t t y y y εφφ+++=-- 11 (3.3.3)如果tε~ARCH (q ),则(3.3.3)与(3.3.2)结合称为AR (p )-ARCH (q )模型。

ARCH (q )模型还可以表示为 *t t h = εt ν (3.3.4) 21022110j t q j q t q t t h -=--∑+=+++=εααεαεααα (3.3.5)其中,tν独立同分布,且0)(=t E ν,1)(=t D ν,00>α 0≥j α)2,1(q j = 且11<∑=q j j α(保证ARCH 平稳)。

有时,(3.3.5)式等号右边还可以包括外生变量,但要注意应保证th 值是非负的。

如:p t p t q t q t t h h h ----++++++=θθεαεαα 1122110 1011<+<∑∑==p j j q i iθα对于任意时刻t ,条件期望E (tε| ,1-t ε)=0)(*=t t E h ν (3.3.6)条件方差t t t t t h E h E ==-)(*),|(2212νεσ (3.3.7)(3.3.7)式反映了序列条件方差随时间而变化。

GARCH模型

GARCH模型
AFra bibliotekCH模型

二、ARCH过程
Engle(1982)提出的ARCH模型,正是在不使用特定变量 xt 或数据转 换的情况下,同时对序列的均值和方差进行建模。要理解Engle的方 法,首先我们要估计平稳ARCH模型 yt a0 a1 yt 1 t 并预测 yt 1 , 则 yt 1 的条件均值为 Et yt 1 a0 a1 yt ,若我们用这个条件均值去预 测 yt 1 ,则预测误差方差为 Et [( yt 1 a0 a1 yt )2 ] Ett21 2。 ˆt 表示模型 yt a0 a1 yt 1 t 的残差估计值,那么 yt 1的条件方 若用 差为: var( y y ) E [( y a a y )2 ] E ( )2
GRACH模型



三、GRACH模型
Bollerslev广义自回归条件异方差(Generalized ARCH,GARCH)模型。 GARCH类模型最早是Engle提出的ARCH模型,即自回归条件异方差 模型。设标的资产时间序列为{ yt } , Engle年建立了回归模型ARCH(q),

y t 是因变量,x t 是解释变量的向量, 其中, 是未知参数的向量, 假设 t 的在给定 (t 1) 时间内的信息 t 1 满足正态分布, t | t 1 ~ N ( 0, ht ) , 但其条件方差为:
ARCH模型

一、金融时间序列的异方差性特征

现实金融市场上,许多金融时间序列并没有恒定的均值,大多数 序列在呈现出阶段性的相对平稳的同时,往往伴随着出现剧烈的 波动性。 金融市场中,波动率(volatility)是金融时间序列最重要的特征 之一,因而模拟和预测股票市场的波动性已经成为众多理论和实 证研究的重要领域。然而,金融市场时间序列存在非平稳性,样 本均值并不恒定,有明显的异方差性特征。因此,传统线性结构 模型(以及时间序列模型)并不能很好地解释金融数据的重要特 征。

【时间序列】波动率建模之ARCH模型

【时间序列】波动率建模之ARCH模型

【时间序列】波动率建模之ARCH模型1. ARCH1.1 异方差在传统计量经济学模型中,都假设干扰项的方差为常数(同方差)。

但是在现实世界中,许多经济时间序列的波动具有丛聚性等特征。

例如:股市中可能存在的涨跌,当遇到结构性风险,股票价格可能存在大涨或者大跌的情况,这种类时间序列被称为条件异方差,即使无条件异方差是恒定的,但是也会存在方差相对较高的时候,而这个波动率是通常会呈现出持续性,这被称为波动丛聚性。

1.2 ARCH过程ARCH (atuoregressive conditional heteroskedastic,自回归条件异方差)模型可以描述一个序列阶段性的稳定和波动:表示白噪音过程,满足 ;相互独立,和都为常数,且把代入到中可得:这便是序列的一阶自回归异方模型ARCH(1),推广到高阶则可得我们为什么要用条件异方差呢,首先来考虑估计一个平稳的ARMA模型,则的条件均值为,用条件均值去预测下一期,则预测误差的方差为如果使用无条件预测,结果一般是时间序列的长期均值。

则无条件预测误差方差为其中白噪音过程,,,可得由此可得无条件预测方差大于条件预测方差,所以使用条件预测结果更好。

所以针对一些时间序列的异方差性,可以使用一些模型去拟合条件方差。

1.3 ARCH性质1.ARCH模型,误差项的条件均值和无条件均值都等于0.对于所有,因此,序列具有序列不相关性,但是误差并不相互独立(误差),换个角度看, ARCH(1) 的方差是等于AR(1)的:2.为条件异方差将导致也为异方差,所以ARCH模型可以表示出序列中阶段性的稳定和波动3.ARCH误差和序列的自相关参数相互作用。

的变化和序列的持续较大的方差有关,越大,持续时间越长,的变化越持久。

ARCH是使用AR(P)来对条件方差建模,如果加上MA(q) 过程又会如何呢?由此衍生出了GARCH2. GARCH假设误差过程为:表示白噪音过程,均值为0,方差为1,因此的条件与无条件均值都为0.此模型将自回归以及异方差的移动平均项结合了起来。

arch

arch
2 t
2 t −1
可以看出, 的条件分布是正态的, 可以看出, ε t 的条件分布是正态的,但其条件方差是过 去平方误差的线性函数,是随时间而变化的函数。 而变化的函数 去平方误差的线性函数,是随时间而变化的函数。
5
RCH模型 (二)ARCH模型 RCH
ARCH类模型一般由两个方程组成 ARCH类模型一般由两个方程组成 ( ) 条件均值方程: 如 AR(p)模型
16
(三)扩展的ARCH模型 扩展的ARCH模型 ARCH
1.指数的GARCH模型 GARCH模型 1.指数的GARCH模型— E( Exponential )GARCH模型 指数的GARCH模型 ε t = ht vt 其中, 独立同分布, ),t 其中,{ vt}独立同分布,且 vt ~N(0,1), = 1, 独立同分布 ( , ), , 有下面的形式: 2,.......,T。并设条件方差 ht 有下面的形式: , , 。 p q ε t −i ε t −i log(ht ) = α 0 + ∑θ j log ht − j + ∑ α i + ϕi ht −i ht −i j =1 i =1
计算标准化残差序列( ˆ 计算标准化残差序列( vt )的JB统计量 统计量 模型判定 AIC SC
10
4. 预测 的值, 只要知道参数 a 0 , a1 ,...... ,a q 的值,就可以在 2 ε t2−q , (t — 1)时刻,利用给定的数据 ε t −1 ,...… , )时刻, 2 在时刻t的条件方差 预测 ε t 在时刻 的条件方差 σ t 。
18
3. TARCH模型 模型 TARCH(Threshold ARCH)模型最先由 ( ( )模型最先由Zakoian( 1990)提出,它具有如下形式的条件方差 )提出,

条件异方差模型

条件异方差模型

条件异方差模型条件异方差模型是一种用于描述时间序列数据的统计模型,它考虑到了不同时间点上的方差可能是不同的。

这种模型可以用来分析股票价格、汇率等金融数据,也可以用来分析环境变量、气象数据等自然科学数据。

在条件异方差模型中,方差是一个随时间变化的函数,通常被称为条件方差。

这意味着,在给定一些先前观察到的数据之后,我们可以预测未来观测值的方差。

这种方法比传统的线性回归模型更加准确,因为它能够捕捉到随着时间推移而发生变化的不确定性。

条件异方差模型最常见的形式是ARCH(自回归条件异方差)和GARCH(广义自回归条件异方差)模型。

ARCH模型是一种基于过去观测值的平方误差来预测未来观测值误差方差的模型。

GARCH模型则扩展了ARCH模型,并允许过去多个时间点上的平方误差对当前观测值误差方差产生影响。

在实际应用中,我们通常使用最小二乘法或极大似然估计法来拟合条件异方差模型。

最小二乘法是一种通过最小化残差平方和来确定模型参数的方法,而极大似然估计法则是一种基于观测到的数据来估计未知参数的方法。

需要注意的是,条件异方差模型并不适用于所有类型的时间序列数据。

例如,在具有周期性变化或季节性变化的数据中,方差通常是稳定的,因此不需要使用条件异方差模型。

此外,在具有明显趋势或趋势突变的数据中,也可能需要使用其他类型的时间序列模型。

总之,条件异方差模型是一种强大而灵活的统计工具,可以用于分析各种类型的时间序列数据。

它能够捕捉到随着时间推移而发生变化的不确定性,并且可以通过最小二乘法或极大似然估计法来拟合模型参数。

但需要注意,它并不适用于所有类型的时间序列数据,并且在实际应用中需要谨慎选择合适的模型。

ARCH自回归条件异方差模型

ARCH自回归条件异方差模型

使函数达到最大值的参数 和 值,就是参数 的极大似然估计。
ARCH模型在EVIEWS中的操作

例:对自回归模型的残差序列建立ARCH模型。 选择Quick/Estimate Equation,在方程的定义对话框中 打开Method下拉菜单,点击ARCH项进入条件异方差 模型定义对话框。 在窗口上方的Mean Equation Specification框中输入 主体模型,如 y y(-1) y(-2),在ARCH Specification下 定义对残差序列建立ARCH模型的阶数,并将GARCH 后的1改为0,对话框中其他选项采用默认值。 在模型的输出结果中,由于模型包含因变量的滞 后项,所以DW检验失效。


假如模型旨在解释一项金融资产(如股票或债 券)的回报率,那么增加 ht 的原因是每个投 资者都期望资产回报率是与风险度紧密联系的, 而条件方差 代表了期望风险的大小。 ht Eviews中建立(G)ARCH-M模型的方法与一般 GARCH(p,q)的建模过程相同。只需要将条件 方差或标准差纳入回归或其他形式的方程。操 作时,在对话框右上角的ARCH-M term框中 进行相应的选择。

检验的原假设和备择假设为:
H0 : 1 2 q 0
H1 : i 0, (1 i q)
检验统计量
LM nR2 ~ 2 (q)
其中,n是计算辅助回归(4)时的样本 数据个数, R 2 是辅助回归(4)的可决系 数(采用最小二乘估计)。

给定显著性水平 和自由度 q,如果 2 LM (q) ,则拒绝 H 0 ,认为序列存在ARCH 2 LM 效应;如果 (q),则不能拒绝 H 0 ,说 明序列不存在ARCH效应。 在Eviews 上的操作:首先用LS估计模型,然 后对残差序列进行ARCH检验。在方程结果的 输出窗口选择View/ResidualTests/ARCH LM 2 Test,屏幕提示用户指定 检验阶数即q值。输 出结果第一行F统计量不是精确分布,仅供参 考。第二行是LM统计量的值以及检验的相伴 概率。

Eviews数据统计与分析教程9章条件异方差模型ARCHGARCH

Eviews数据统计与分析教程9章条件异方差模型ARCHGARCH

EViews统计分析基础教程
三、ARCH模型的其他扩展形式
2. TARCH模型
TARCH(Threshold ARCH)模型是门限自回归条件异 方差模型,可用来分析数据的剧烈波动性。 模型中条件方差的形式为
其中,dt-1是一个虚拟变量,满足的条件为 1 ,如果μt-1<0
dt-1= 0,如果μt-1>=0
EViews统计分析基础教程
一、自回归条件异方差模型(ARCH)
2.ARCH模型检验
(2)残差平方的相关图(Q)检验法
在EViews操作中,要实现残差平方的相关图(Q)检验,需 在 方 程 对 象 窗 口 中 选 择 “ View”|“Residual Tests”|“Correlogram – Q – statistics”选项。
GARCH(1,1)模型在金融领域应用广泛,可以对金融时 间序列的数据进行描述。
EViews统计分析基础教程
二、广义自回归条件异方差模型(GARCH)
2.GARCH模型的建立
当上述辅助回归方程进行ARCH效应检验时,如果ARCH的 滞后阶数q很大,检验结果依然显著,即残差序列依然存在 ARCH(q)效应。此时可采用GARCH(p,q)模型重新进 行估计。
在“Options”中输入ARCH和GARCH的阶数 。
在“Variance”的编辑栏中可列出方差方程中的外生变量。
EViews统计分析基础教程
一、自回归条件异方差模型(ARCH)
3.ARCH模型的建立
Options选项卡
如果选中“Backcasting”(回推) 中的复选框,MA初始扰动项 和GARCH项中的初始预测方 差将使用回推(“Backcasting”) 方法确定初始值。

arch检验原理

arch检验原理

arch检验原理ARCH(自回归条件异方差模型)模型是对传统线性模型的一种扩展,它允许误差项的方差与其自身的历史取值有关,具有更好地描述时间序列数据特点的能力。

本文将围绕ARCH模型的检验原理展开阐述。

ARCH模型建立在以下几个基本假设上:1.误差项的均值为零:ARCH模型假设时间序列数据的误差项独立同分布,且均值为零。

2.误差项的方差是时间的函数:ARCH模型假设误差项的方差是时间的函数,而不是常数。

它认为,方差会受到历史误差项的影响,即方差存在异方差性。

ARCH模型的检验原理主要包括样本自相关图、样本偏自相关图、单位根检验、模型诊断等几个方面。

首先,可以通过样本自相关图和样本偏自相关图对时间序列数据进行初步的分析和判断。

自相关图反映了时间序列数据的相关性,偏自相关图则反映了两个时间序列数据直接相关的度量。

通过观察自相关图和偏自相关图,可以初步判断是否存在ARCH效应,即误差项的方差与其自身历史相关。

其次,可以进行单位根检验来判断时间序列数据是否平稳。

单位根检验常用的有ADF检验和Phillips-Perron检验。

如果时间序列数据不平稳,可以进行差分操作,将其转化为平稳序列。

然后,可以通过模型诊断来检验ARCH模型的适用性。

模型诊断常用的方法有残差平方自相关图、LB统计量、ARCH-LM检验等。

残差平方自相关图用于判断ARCH效应是否存在,如果存在ARCH效应,则残差的平方应该呈现出自相关的特性。

LB统计量和ARCH-LM检验用于检验残差项是否存在自相关。

最后,进行参数估计与显著性检验。

可以通过最大似然估计法对ARCH模型的参数进行估计,并进行参数显著性检验。

通常需要对ARCH模型中的自回归项进行显著性检验,以确定模型的有效性。

总结起来,ARCH模型的检验原理主要包括样本自相关图、样本偏自相关图、单位根检验、模型诊断以及参数估计与显著性检验。

通过这些方法,可以对时间序列数据是否存在ARCH效应进行判断,并对ARCH模型的适用性进行检验。

arch模型的原理 -回复

arch模型的原理 -回复

arch模型的原理-回复ARCH模型是一种用于时间序列分析和波动性建模的经济学模型。

它的全称是“Autoregressive Conditional Heteroscedasticity Model”,即自回归条件异方差模型。

ARCH模型由Robert F. Engle于1982年提出,并因此获得了2003年诺贝尔经济学奖。

ARCH模型的核心思想是利用过去时期的波动度来估计当前时期的波动度,通过将条件异方差引入模型,能更准确地描述金融市场中真实的波动性。

ARCH模型的基本形式可以表示为:\[y_t=\sigma_t\varepsilon_t\] 其中,\(y_t\)是时间序列的观测值,\(\sigma_t\)是条件标准差,\(\varepsilon_t\)是服从独立同分布的白噪声序列。

ARCH模型的关键在于如何建模条件标准差\(\sigma_t\)。

ARCH模型假设其平方等于过去一段时间内的残差平方的加权和。

具体地,ARCH(p)模型可以表示为:\[ \sigma_t^2=\omega+\sum_{i=1}^{p}\alpha_i\varepsilon_{t-i}^2 \] 其中,\(\omega\)是模型的截距项,\(\alpha_i\)是条件异方差参数,表示过去i个残差对当前时期波动度的影响。

ARCH模型的估计通常使用最大似然估计法。

最大似然估计通过最大化给定观测序列的条件下模型预测的概率来确定模型参数。

具体而言,最大似然估计需要将ARCH模型转化为正态分布的形式,然后使用数值优化方法求解参数的最大似然估计。

ARCH模型的估计结果可以用于许多金融市场的应用。

例如,可以利用ARCH模型预测未来波动性,从而为投资者制定风险管理策略提供依据。

此外,ARCH模型还可以用于构建波动率指数,如沪深300指数的VIX指数,用于衡量市场风险。

然而,ARCH模型也有一些局限性。

首先,它基于正态分布的假设,忽略了金融市场中的非线性和尖峰厚尾现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节 其它类型的条件异方差模型
一、ARCH-M模型 ARCH-M(ARCH-in-mean)模型是在(1)式 右边增加一项 ht ,表达式为:
yt x ht t
' t
其中
ht 的结构与(3)相同,即:
ht 0
i 1 q 2 i t i
则称模型为ARCH-M(q)模型。
i
yt 1 yt 1 p yt p t
如果 t ~ ARCH(q) ,则序列 yt 可以用 AR( p) ARCH(q) 模型描述。其他情况类推。

为方便研究并与其他拓展形式相联系, ARCH(q)模型又可表示为:
ht var( t | Ft 1 )
2 q t q
如果随机扰动项的平方服从AR(q)过程,即
0
2 t 2 1 t 1
t (2)
其中 t 独立同分布,并满足
E(t ) 0,D(t) 2 , IID(0, 2 ) 则称模型(2)为自回归条件异方差模型,简记为 ARCH模型。称序列 t 服从q阶的ARCH过程,记作 t ~ ARCH(q) 。(1)和(2)构成的模型称为回 归—ARCH模型。 ARCH模型通常用于对主体模型的随机扰动项进行 建模,以更充分地提取残差中的信息,使最终的模型 残差项 t 成为白噪声。所以,对于AR(p),模型
第二节 广义自回归条件异方差模型 当用ARCH模型描述某些时间序列, 阶数q需取一个很大的值时,可以采 用Bollerslev(1986)提出的广义 (Generalized)自回归条件异方差模 型即GARCH模型。
一、GARCH模型的基本形式

与ARCH模型一样,GARCH模型通常也用于对回归或自回归模 型的随机扰动项进行建模。若(3)式为下面形式:
这里 Ft 1为到t-1时刻过去信息的集合。 利用过去的方差 t2i , i 1,2q 对条件方 差 ht 作自回归模型:
ht 0
q i 1
2 1 t 1

2 q t q
0 i t2i
(3)

其中
0 0,i 0, (i 1,2, q)
第一节 自回归条件异方差模型
在各种条件异方差模型中,Engle于1982年提出的自 回归条件异方差(ARCH:Auto-regressive Conditional Heteroskedastic)模型是最基础的。 一、ARCH模型 ' 对于通常的回归模型 t t t
y x ( 1 )
p q
模型中条件方差采用了自然对数的形式,意味着 ht 非 负且随机冲击对波动的影响是指数型的。若 0 , 说明信息作用非对称。当 0 时,负的随机冲击对波 动将会有更大的影响。


使用EVIEWS建立EGARCH模型时,同 TARCH模型类似,只需在ARCH Specification框中点选EGARCH即可。 输出结果中,RES/SQR[GARCH](i)表 示杠杆系数 i 的估计值 |RES|/SQR[GARCH](i)表示αi的估计 值 ,EGARCH(j)代表 j 的估计值,i 和j一般取值都是1。
二、非对称的ARCH模型


对于股票市场的研究发现,股价下跌和上涨的幅度相 同时,股票价格下跌过程往往会伴随着更剧烈的波动 性。为解释这种现象,可以引入非对称的ARCH模型。 1、TARCH模型 TARCH(Threshold ARCH)模型是由Zakoian等(1993) 提出,它具有如下形式的条件方差
二、模型的建立与估计

对某个模型的随机扰动项是否存在GARCH效应的判 断,可以采用检验ARCH效应的LM检验。如果LM检 验的辅助回归方程的q值很大时,检验依然显著,即 残差序列存在高阶ARCH(q)效应,这时应该考虑采 用GARCH模型。GARCH模型的参数估计仍然采用极 大似然法。 在EVIEWS中建立GARCH模型:选择 Quick/Estimate Equation,进入条件异方差模型定义对 话框,在Mean Equation Specification框中输入主体方 程,在Order ARCH和GARCH后面分别输入q和p的相 应数值。
t 0 t 0
2、EGARCH模型

EGARCH模型,即指数(Exponential) GARCH模型, 由Nelson在1991年提出。模型的条件方差表达式为:
log(ht ) 0 j log(ht j ) i t i i t i ht i ht i j 1 i 1
ht 0 i t2i t21dt 1 j ht j
i 1 j 1
q
p
其中dt 是一个虚拟变量
dt
1 0
由于引入 dt ,股价上涨信息( t 0 )和下跌信 息( t 0 )对条件方差的作用效果不同。当 0 时,说明信息作用是非对称的,而当 >0时,负的随 机冲击较正的随机冲击对波动将会有更大的影响。 在Eviews中估计TARCH模型时,在ARCH Specification框中点选TARCH项即可。输出结果中的 ( RESID 0)* ARCH( 1 ) 项代表杠杆效应系数 的估计值。
自回归条件异方差模型
资产收益率的波动性是金融经济学家们长期关注的 一ቤተ መጻሕፍቲ ባይዱ焦点问题。资产选择理论试图通过用方差或协方 差关系描述收益率的波动性来寻找最优资产组合, CAPM模型和其他资产定价理论说明投资者怎样从承 担与自己的资产组合存在某种协方差联系的系统性风 险中获得补偿。然而,传统的金融计量学模型对风险 或收益波动性特征的理解却是简单而粗糙的,一般把 方差视为是随时间的变化而独立、同分布的常量。20 世纪60年代以来,大量关于金融市场价格行为的经验 研究结果证实:方差是随时间的变化而变化的。 Mandelbrot(1963)首先发现了金融资产收益率的波动存 在时间序列上的“簇聚(clustering)现象”,即幅度较 大的波动会相对集中在某些时段,而幅度较小的波动 会集中在另一些时段。这种金融变量随市场波动的特 点是金融市场中常见的、规律性的现象。

检验的原假设和备择假设为:
H0 : 1 2 q 0
H1 : i 0, (1 i q)
检验统计量
LM nR2 ~ 2 (q)
其中,n是计算辅助回归(4)时的样本 数据个数, R 2 是辅助回归(4)的可决系 数(采用最小二乘估计)。

给定显著性水平 和自由度 q,如果 2 LM (q) ,则拒绝 H 0 ,认为序列存在ARCH 2 LM 效应;如果 (q),则不能拒绝 H 0 ,说 明序列不存在ARCH效应。 在Eviews 上的操作:首先用LS估计模型,然 后对残差序列进行ARCH检验。在方程结果的 输出窗口选择View/ResidualTests/ARCH LM 2 Test,屏幕提示用户指定 检验阶数即q值。输 出结果第一行F统计量不是精确分布,仅供参 考。第二行是LM统计量的值以及检验的相伴 概率。
三、ARCH模型的参数估计

ARCH模型的参数估计一般采用极大似然方法 估计。 设样本量是n,回归—ARCH(q)模型参数估 计的对数似然函数为:
n t 1 1 n 1 n 2 ln L( , | y, x) n ln(2 ) ln(ht ) ( t / ht ) ln 2 2 t 1 2 t 1 yt t 1
q
i 1 (保证ARCH过程平稳)。 且: i 1 t 的条件方差是滞后误 在ARCH模型中, 差项的增函数。因此,较大(小)的误 差项一般后面紧跟着较大(小)的误差, 回归阶数q决定了冲击的影响存留于后续 误差项方差中的时间长度,q越大,波动 持续的时间也就越长。
二、 ARCH效应检验
使函数达到最大值的参数 和 值,就是参数 的极大似然估计。
ARCH模型在EVIEWS中的操作

例:对自回归模型的残差序列建立ARCH模型。 选择Quick/Estimate Equation,在方程的定义对话框中 打开Method下拉菜单,点击ARCH项进入条件异方差 模型定义对话框。 在窗口上方的Mean Equation Specification框中输入 主体模型,如 y y(-1) y(-2),在ARCH Specification下 定义对残差序列建立ARCH模型的阶数,并将GARCH 后的1改为0,对话框中其他选项采用默认值。 在模型的输出结果中,由于模型包含因变量的滞 后项,所以DW检验失效。
ht 0
2 1 t 1
q p i 1 j 1
2 q t q
1ht 1 p ht p t
0 i t2i j ht j t
则称序列服从GARCH(p,q)过程。实际应用中,GARCH模 型中的阶数q值远比ARCH模型中的q值要小。一般地,GARCH (1,1)模型就能够描述大量的金融时间序列数据。


假如模型旨在解释一项金融资产(如股票或债 券)的回报率,那么增加 ht 的原因是每个投 资者都期望资产回报率是与风险度紧密联系的, 而条件方差 代表了期望风险的大小。 ht Eviews中建立(G)ARCH-M模型的方法与一般 GARCH(p,q)的建模过程相同。只需要将条件 方差或标准差纳入回归或其他形式的方程。操 作时,在对话框右上角的ARCH-M term框中 进行相应的选择。

罗伯特· 恩格尔于1942年出生于美国纽约州的中部城市 锡拉丘兹,目前是纽约大学财经系的教授。瑞典皇家 科学院表示,他之所以得奖是因为他发明了一种计量 方法,能够预测并分析随时间变化的股票价格、外汇 汇率以及利率的波动。由于传统的计量经济学模式无 法解释金融市场价格的波动规律,恩格尔在1982年提 出一种 “ 自回归条件异方差模型 ” (简记 ARCH 模型)。 这个模型被认为是一项重大突破,经过近二十年的发 展,已经被广泛应用于经济与金融领域的时间序列分 析。恩格尔的发明使得市场分析师以及投资人能够预 测股票波动并评估风险。瑞典皇家科学院称,他“不仅 是研究人员学习的光辉典范,而且也是金融分析家的 楷模,他的 ARCH模型不仅为研究者,而且为市场分 析师们在资产定价和投资组合风险评估方面提供了不 可或缺的工具。”
相关文档
最新文档