一种简单验证变压器差动保护方法

合集下载

通过变压器一次通流试验效验变压器各种差动保护的方法

通过变压器一次通流试验效验变压器各种差动保护的方法

通过变压器一次通流试验效验变压器各种差动保护的方法2009年第1期西北电建?49?通过变压器一次通流试验效验变压器各种差动保护的方法赵东升(西北电力建设调试施工研究所西安市710032)【摘要】在以往的调试试验及交接规程中并没有明确要对变压器进行一次通流试验,一般都是在对变压器的各项常规试验完成后及对二次保护及回路检查完成后,直接就对变压器进行启动试验,在试验中经常发生cT极性接错等问题,虽然不会造成很大的损失,但还是造成了一定的负面影响.在国外工程中由于广泛投入的变压器零序差动保护,CT极性的接错就有可能导致严重的事故.本文通过变压器一次通流试验效验CT极性这个方法,可以较好的解决这个问题.【关键词】变压器一次通流变压器零序纵联差动保护0概述变压器一次通流试验的目的主要是为了检验变压器高低压侧的CT变比和校验变压器差动保护CT接线的正确性,除此之外,还可以复查变压器的变比及变压器的短路阻抗的大小.在以往的调试经验中,对变压器的套管CT极性确认通常是由安装单位或制造厂家提供,但是经常由于制造厂家资料不全或安装单位交接试验不完善,造成套管CT极性无法确认,使得进行变压器启动试验时具有相当的盲目性,往往是等到变压器带负荷后,才能确认变压器保护用CT极性.但是在国外工程中,由于变压器零序差动保护的广泛投入,造成这种带负荷后再确认保护用CT极性的方法变的相当的危险,因为变压器零序CT只有在变压器故障时才有电流,如果零序CT极性错误就会导致变压器区内故障时保护拒动,区外故障时保护误动,有可能造成严重的事故.随着笔者在印度DURGAPUR和SAGARDIGHI电厂调试期间,发生的几起由于零序CT极性的错误造成变压器零序差动误动而导致的事故中,更凸显了在变压器启动试验前确认变压器保护用CT极性的重要性.1变压器零序纵联差动保护简介变压器星形接线的一侧,如中性点直接接地,则可装设变压器零序纵联差动保护.零序差动回路由变压器中性点侧零序CT和变压器星形侧CT的零序回路组成.该保护对变压器绕组接地故障反映较灵敏.同样,对自耦变也可设置零序纵联差动保护,由于现在保护装置多采用其高压侧,中压侧及公共绕组侧CT的自产零序电流组成零序差动保护,故中性点侧零序CT极性不用考虑,其零序差动保护用CT极性不易接错,所以不在本文讨论范围内.根据长期运行经验说明,零序纵联差动保护用工作电压和负荷电流检验零序纵联差动保护接线的正确性较困难.在外部接地故障,有由于极性接错而造成的误动作.故该保护的正确动作率较低.检查变压器差动保护及零序差动保护的极性的方法主要是变压器一次通流试验,下面我们将介绍几种变压器一次通流试验的方法.SAGARDIGHI电厂起备变和高厂变保护采用的是南瑞继保的RCS900系列保护装置,差动保护设置如图1,2,其中变压器差动保护用CT极性为180.接线,变压器零序差动CT极性为0o接线. 2变压器一次通流的方法2.1变压器三相短路试验法该试验方法是先将变压器的低压侧三相短接接地,利用一路专用的试验电源(通常是380V 试验电源)加入变压器的高压侧,这样在变压器高低压侧都将有短路电流流过,通过这个电流就可以校验差动保护的接线极性,试验接线如图1.这个试验中最重要的一点就是要选择容量足够的试验电源,在试验前可以通过试验电压及变压器的额定参数计算出变压器高低压侧短路电流的大小(式l及式2),然后通过高压侧短路电流来计算理论试验容量(式3),但考虑到安全性,试验电源的容量一般要在理论试验容量的基础上再放大1.5倍以上.?50?西北电建2009年第1期图lS厂l起备变差动保护用CT极性图图2S厂#1A高厂变差动保护用CT极性图SFZ10-25000/20图3变压器三相短路试验接线图……………………………………………………式2St=1.5x√×Ut×Ihxnht………………………………………式3××2009年第1期西北电建?51?其中:Ij,I1分别为变压器高低压侧的CT二次短路电流;Uf,Uh,Ul,Ud%分别为试验电压,变压器高压侧额定电压,低压侧额定电压以及变压器的短路阻抗电压;nlnI.分别为变压器高低压侧差动保护用TA的变比;s,S分别为试验电源的容量及变压器的额定容量.2.2变压器单相短路试验法该试验方法是在三相短路试验时短路电流太小的情况下,采用专门的试验仪器提高试验电源的电压从而达到提高短路电流的目的,试验接线如图所示,校验A相的差动C1’的接线极性时,由于变压器高压侧是三角形型接线方式,所以高压侧电压应加在AB相上(DY-1变压器),将低压侧a 相接地或与变压器低压侧的中性点相连,这样高压侧A相线圈中就有比较大的短路电流,其他两相绕组虽然也加了电压,但由于变压器低压侧是空载状态,电流很小,几乎为零.校验B,C相的差动CT极性接线的方法类似.如果变压器的中性点是经高阻接地或低压侧短接接地点距离变压器中性点太远无法直接相连,也可直接将低压侧三相短接接地,不过这种试验方法要求试验电源的容量比单相接地时的要大,在这种试验方法下,低压侧B,C相均有电流流过,其大小是A相电流的一半,角度相差180度.图4变压器单相短路试验接线图(YD.11)通过变压器单相短路试验方法,我们可以通过钳型相位表检查高低压侧保护用CT二次电流相位应为150.,低压侧CT与低压侧零序CT二次电流相位应为0Oo起备变单相短路试验接线图如图5,通过钳型表可以分别检测高压侧与低压侧各分支CT二次电流相位应为180.,高压侧,低压侧保护用CT和与之对应的零序CT二次电流相位应为Oo.2.3变压器高低压侧短接通流法在变压器带负荷试验或机组启动试验时才进行变压器的差动CT极性的校验,这时一旦差动CT的极性接错,将对调试工作造成很大的被动:在这里为大家介绍一种实用有效的小电流的测量方法,该方法理论上可以保证对无限小的电流的准确测量,利用该方法任何变压器的一次通流试验都可以顺利进行.实际上,方法很简单,就是将小电流的回路在保护屏的端子断开,用我们事先准备好的导线串联到该回路中,不过我们的导线不是普通的一根线,而是绕了N个圈的导线(具体绕多少圈视具体情况而定),这样在用钳型相位表测电流时,只要用钳型相位表测这N个圈的电流,因为电流已经扩大了N 倍,在理论一k只要绕的圈足够多,无论多小的电流都能测出.其试验接线如图7所示.图7测试小电图接线图3.1应用及效果在SAGARDIGHI电厂的400kV升压站一次通流试验中,我们采用以上的这种用钳型相位表测量极小电流测试方法,取得了良好的结果.由于升压站CT变比较大,而我们使用的一次通流设备容量较小,CT的二次电流还不到10mA,首先我们在没有串接导线的情况下采用钳型相位表测量了一次高低压侧的电流及相角,可以看出测量的数据与理论的数据相差很大,相角也根本不正确,于是我们在保护屏将一根绕了5圈的试验导线串接进CT的二次电流回路中,然后重新用钳型电流表测量了2次,电流值与实际计算电流基本一致,相角也正确.(上接13页)2009年第1期西北电建?13?其目的是首先检查发变组主系统所有保护,测量用CT二次电流回路接线,变比,极性,相序的正确性,保证保护装置的正确投入.其次动态检查发变组短路特性曲线符合厂家设计要求.3.3-3发电机空载特性试验其目的是首先检查发电机,主变,PT等一次系统及其设备承受额定电压的能力以及PT二次回路接线,变比,电压相位,相序的正确性.其次是动态录制发电机空载特性曲线符合厂家设计要求. 3.3.4发电机励磁系统动态试验主要包括A VR自动方式下的起励试验,A VR自动方式下的电压调节范围检查,手动方式下起励试验,手动方式下的电压调节范围检查,通道切换试验,10%阶跃试验,逆变灭磁试验等.3.3.5发电机同期系统试验将发电机电压通过发变组一次系统升至系统空母线上,对PT二次回路和同期系统进行动态检查.3.3.6假同期试验此试验是用隔离刀闸将发电机与系统实际隔离,模拟发电机与系统进行”同期”并列的全过程.通过此项试验,进一步确认发变组一次系统,特别对”自动准同期装置”的工作性能,进行检查确认.通过人为改变发电机频率,电压,观测同期装置的调节性能.3-3.7发电机与电网系统同期并列完成上述试验后,恢复系统正常运行工况,进行发电机与电网系统的并列操作,建议在并网前解除发电机逆功率保护.在发电机并网之后,及时检查发变组逆功率保护的方向性是否正确,确认无误后投入运行.同时检查相应的功率表,电能表运行的正确性.3.4电气带负荷试验3.4.1进行保护回路及测量回路检查,注意检查差动保护的不平衡电流,并做好相应的记录.3.4.2完成励磁调节器的带负荷试验.3.4.3在不同负荷下,测量发电机轴电压.3-4.4完成厂用电源带负荷切换试验.3.4.5在机组甩负荷试验时,测录甩负荷前后发电机励磁调节器有关的电气量的变化,超调量,振荡次数及稳定时间等.3.5完成机组14天可靠性试运行根据中印合同要求,机组要进行14天可靠性试运行,其中三天要求满负荷运行,其余时间将根据业主要求进行负荷调整.做为电气专业,主要解决试运期间出现的技术问题.同时做好机组记录,定期采录运行数据,统计电气保护,自动控制装置的投入情况.4结束语在电力系统基建中,调试作为一个关键的环节,直接关系到机组的安全,稳定,可靠,经济.尤其涉外的工程,我们更应该通过科学合理的组织,精心的准备,细致的工作,圆满地完成这一关键性的步序,不仅是对业主方负责,更是体现我们国家在这一领域调试技术的水平,代表着国家的荣誉和利益.………i…in………i………一n…iin…i…………(下转52页)’4结语变压器一次通流试验可以真实的模拟变压器的正常运行工况,因此利用变压器的一次通流试验可以安全高效的校验变压器的接线组别,变比以及其TA二次接线的极性,保护装置定值的整定等,尤其针对于国外工程中变压器零序差动保护TA二次接线的极性效验,因此笔者认为该方法应在以后的调试中得到推广应用.至于关于小电流的测试方法,其原理很简单,每一个做调试的人都知道,因此这种方法也很容易推广,而且特别在对变压器进行一次通流试验时可能应用的比较多.。

完整的变压器差动保护调试和验证方法

完整的变压器差动保护调试和验证方法

完整的变压器差动保护调试和验证方法变压器差动保护是一种常用的保护装置,用于保护变压器免受内部故障以及外部短路故障的影响。

为了确保差动保护能够可靠地工作,需要对其进行调试和验证。

下面将详细介绍完整的变压器差动保护调试和验证方法。

一、调试方法:1.检查保护装置的接线是否正确。

检查差动保护装置与变压器的CT (电流互感器)接线是否正确,确保保护装置能够准确测量输入和输出电流。

2.对CT进行检定。

使用专业的CT测试仪对CT进行检定,测量CT的变比、二次回路电阻等参数,确保CT工作正常。

3.调整差动保护装置的参数。

根据变压器的参数和保护装置的要求,设置合适的差动电流定值和时间延迟等参数。

4.模拟故障事件进行测试。

通过人工模拟变压器的内部短路故障或外部短路故障,观察差动保护装置的动作情况。

同时,还可以利用保护回路测试仪模拟故障事件,测试保护装置的灵敏度和可靠性。

二、验证方法:1.进行整套装置的一次性测试。

通过对整个差动保护装置进行一次性测试,包括保护装置的所有功能和功能组合的验证,确保差动保护装置能够正常工作。

2.进行稳态和动态特性测试。

测试差动保护装置的稳态特性,包括固定和变化的负荷电流等情况下的响应速度和误动作情况。

同时,还需要测试差动保护装置的动态特性,包括起动和闭锁时的动作时间和误动作情况。

3.进行电流差动特性测试。

通过让一定量的故障电流流过变压器的输入和输出侧CT,并观察差动保护装置的动作情况,验证其能够可靠地检测和保护变压器。

4.进行接地故障测试。

在变压器的输入或输出线路中引入接地故障,并观察差动保护装置的动作情况,以验证其对接地故障的保护能力。

5.进行保护可靠性测试。

通过长时间的持续运行和重复测试,验证差动保护装置的稳定性和可靠性。

同时,进行周期性的差动保护装置的校验和定期的维护,确保其长期可靠工作。

总结:变压器差动保护调试和验证方法包括接线检查、CT检定、参数调整、故障模拟测试等步骤,通过这些步骤可以确保差动保护装置能够可靠地保护变压器。

变压器差动保护试验方法

变压器差动保护试验方法

变压器差动保护试验方法第一,绕组电压比差动试验。

该试验是通过加载不同的变压器绕组,在不同测点进行电压测量,然后计算电压差值来验证绕组之间的电压比差动。

具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置等。

2.进行变压器空载试验,记录各测点的电压值。

3.按照试验参数设置电流,对绕组进行加载试验。

4.在各测点测量电压,计算电压差值。

5.比较计算得到的电压差值与设定的差动值,如差值在允许范围内,则差动保护正常。

第二,同侧相位关系试验。

该试验是通过对变压器同侧绕组的相位关系进行检查,以保证差动保护系统的相位一致。

具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置等。

2.进行变压器空载试验,记录各测点的相位关系。

3.按照试验参数设置电流,对绕组进行加载试验。

4.在各测点测量电压和相位,检查相位关系是否一致。

5.如相位关系一致,则差动保护正常。

第三,误差变换试验。

该试验是通过对差动保护变压器继电器进行误差变换试验,以验证差动保护系统的测量误差是否满足要求。

具体试验步骤如下:1.确定试验参数,包括试验电流、绕组的连接模式和相对位置以及变比等。

2.进行变压器空载试验,记录各测点的电压和相位值。

3.按照试验参数设置电流,对绕组进行加载试验。

4.在继电器的输出端口测量电流,计算误差。

5.比较计算得到的误差与设定的误差范围,如误差在合理范围内,则差动保护正常。

第四,保护性校验试验。

该试验是通过在差动保护系统感应线圈内引入额外的故障源,观察差动保护系统的动作情况,以确保差动保护装置对变压器故障进行准确快速的切除。

1.在差动保护系统的感应线圈内接入故障源。

2.设置故障源的类型和参数,例如短路故障。

3.观察差动保护系统的动作情况,包括动作时间、动作电流等。

4.比较观察结果与设定的保护动作要求,如满足要求,则差动保护正常。

总结起来,变压器差动保护试验方法主要包括绕组电压比差动试验、同侧相位关系试验、误差变换试验以及保护性校验试验等。

变压器保护校验方法

变压器保护校验方法

RCS-978系列变压器保护测试、RCS-978型超高压线路成套保护RCS-978 配置:主保护:稳态比率差动,工频变化量比率差动,零序比率差动,谐波制动,后备保护:复合电压闭锁(启动)方向过流零序方向过流保护间隙零序过流过压保护零序过压稳态比率差动一、保护原理基尔霍夫电流定律,流入=流出(1)差动元件的动作特性在国内生产的微机型变压器差动保护中,差动元件的动作特性较多采用具有二段折线的动作特性曲线,如下图:在上图中,I .为差动元件起始动作电流幅值,也称为最小动作电流;op.minI 为最小制动电流,又称为拐点电流;res.minK=tan a为制动特性斜率,也称为比率制动系数。

微机变压器差动保护的差动元件采用分相差动,其动作具有比率制动特性。

动作特性为:拐点前(含拐点):' >一忆V JmJ拐点后: I op - I op mn + K (I es — JmJ / J .mJ式中 I op ——差动电流的幅值I res ——制动电流的幅值也有某些变压器差动保护采用三折线的制动曲线。

(2)动作方程和制动方程:差动电流Iop 和制动电流Ires 的获取差动电流(即动作电流):取各侧差动电流互感器(TA )二次电流相量和的绝对值。

以双绕组变压器为例,在微机保护中,变压器制动电流的取得方法比较灵活。

国内微机保护有以下几种取得方 式:I = I —I /2I = (I + I )/2resIres二、测试要点:标么值的概念另:注意,978可以自动辅助计算当前的差流,但其同时显示的“制流X 相”并不是当前X 相的制动电流,而是当前X 相制动电流下的动作电流边界!! !三、试验举例:保护定值:动作门槛:0.3差动速断电流:4I 侧(Y 接线)二次侧额定电流:3.935;II 侧(Y 接线)二次侧额定电流:3.765;III 侧(D 接线)二次侧额定电流:3.955由于该保护的补偿系数由标么值的方式计算,则每一侧的补偿系数是该侧二次侧额定 电流的倒数。

变压器差动保护试验方法

变压器差动保护试验方法

p r o t e c t i o n o f t h e t r a n s f o m e r r .T h e r e f o r e ,t h e d i f f e r e n t i a l p r o t e c t i o n me t h o d o f t h e t r a n s f o m e r r i s s t u d i e d .
Ke y wo r ds: T r a n s f o r me r ;Di f f e r e n t i a l ;Pr o t e c t i o n;Te s t
1 基 本 原 理
对于 双绕 组 Y / A 一1 1变 压器 保 护 , 变压 器 高 、 低
压侧 电流互感 器 Y接 线 , 保 护装 置 Y侧 补 偿 。差 动 与

I 2 e= I e /n
y 0 侧: , =( , 一, )
表 1 变压器参数计算
T a b. 1 Tr a n s f o r me r p a r a me t e r c a l c u l a t i o n
I B =( 、 I B —I C / , / 3
相 位方 法 :
制动 电流 的计 算公 式 如下 : 差流 I d=l I A +I a l, 制 动 电流 I r = O . 5 I I A —I a I , I A变 压器 Y侧二 次 额定 电
流, I a变压 器 △侧 二 次额 定 电流 。
2 调 试 方 法
公式 : I ・ e S e
取1 , 实 际应 在高 侧加 入 1 3 . 6 4 A( 高 侧 的额定 电流 )

3 . 6 4 A三相 电流 , 在低 压侧 加 入 1 1 . 5 3 A( 低压 侧 取0 . 5 , 实 际应在 高 侧 加 入 0 . 5¥3 . 6 4 A( 高 侧 的额

变压器差动保护校验方法

变压器差动保护校验方法

变压器差动保护校验方法变压器差动保护是变压器保护中常用的一种保护方式,它能够有效地检测变压器内部的故障,并及时采取措施,保护变压器的安全运行。

而差动保护的准确性和可靠性则需要通过校验方法进行验证。

变压器差动保护校验方法主要包括以下几个方面:一、校验差动保护系统的接线是否正确。

差动保护系统由变压器主绕组、变压器副绕组和差动保护装置组成,其接线的准确性对于保护系统的正常运行至关重要。

在校验中,需要检查差动保护装置与主、副绕组的连接是否正确,保证信号的准确传递。

二、校验差动保护装置的参数设置是否合理。

差动保护装置中包含了多个参数,如差动电流定值、时间定值等,这些参数的设置对于差动保护的灵敏度和可靠性有着重要影响。

在校验中,需要根据变压器的实际情况,结合差动保护装置的技术要求,合理设置差动保护装置的参数。

三、校验差动保护系统的测试功能是否正常。

差动保护装置通常具备自检功能和定期测试功能,通过这些功能可以检测差动保护系统是否正常工作。

在校验中,需要对差动保护装置进行自检,并定期进行测试,确保差动保护系统的测试功能正常。

四、校验差动保护系统的可靠性和稳定性。

差动保护系统的可靠性和稳定性是保证变压器正常运行的关键因素。

在校验中,需要进行一系列的实验和测试,如故障模拟测试、动作试验等,以验证差动保护系统的可靠性和稳定性。

通过以上校验方法,可以有效地验证变压器差动保护的准确性和可靠性。

在实际应用中,校验工作应该与差动保护装置的选型、安装和调试配合进行,确保差动保护系统的正常运行。

变压器差动保护校验方法是保证差动保护系统正常运行的重要环节。

通过正确的接线、合理的参数设置、正常的测试功能以及可靠的可靠性和稳定性测试,可以保证差动保护系统的准确性和可靠性。

在实际应用中,需要严格按照校验方法进行操作,并不断总结和改进,提高差动保护系统的性能和可靠性,以确保变压器的安全运行。

变压器差动保护校验方法

变压器差动保护校验方法

变压器差动保护校验方法变压器差动保护是一种常用的电力系统保护方式,用于检测变压器的内部故障并及时采取保护措施,避免故障扩大导致设备损坏甚至事故发生。

为了确保差动保护的准确性和可靠性,需要进行校验。

变压器差动保护的校验方法主要包括以下几个方面:1. 参数设置校验:差动保护系统的参数设置是保证其正常运行的基础。

在校验过程中,应对差动保护装置的参数进行检查和确认,包括变压器的额定电压、额定容量、变比等参数,确保与实际情况相符。

同时,还需要校验差动保护装置的动作电流、动作时间等设置参数,确保其与设备的故障特性相匹配。

2. 运行情况监测:差动保护装置应能实时监测变压器的运行情况,包括电流、电压、温度等参数。

校验时,需要检查差动保护系统的监测功能是否正常,监测数据是否准确可靠。

此外,还需要检查差动保护装置与变压器之间的连接线路是否良好,是否存在接触不良或线路故障等情况。

3. 动作特性校验:差动保护是通过检测电流差值来判断设备是否发生故障的。

在校验过程中,需要模拟不同类型的故障,如短路、接地故障等,观察差动保护装置的动作情况是否符合预期。

同时,还需要校验差动保护装置的灵敏度和可靠性,确保在故障发生时能及时动作,保护设备安全。

4. 报警和保护功能校验:差动保护装置应具备报警和保护的功能,当设备发生故障时能及时报警并采取保护措施。

在校验过程中,需要检查差动保护装置的报警和保护功能是否正常,是否能准确判断故障类型,并能发出相应的报警信号或动作指令。

5. 联锁功能校验:差动保护装置通常需要与其他保护装置进行联锁,以实现全面的保护。

在校验过程中,需要检查差动保护装置的联锁功能是否正常,是否与其他保护装置实现了正确的联锁逻辑。

同时,还需要校验差动保护装置的自检功能和自动复归功能,确保系统能够及时发现故障并自动进行恢复。

变压器差动保护的校验方法是一个多方面的工作,从参数设置到运行情况监测,再到动作特性、报警保护以及联锁功能的校验,需要全面而系统地检查差动保护装置的各项功能和性能。

变压器保护整定中的差动保护的整定与校验方法

变压器保护整定中的差动保护的整定与校验方法

变压器保护整定中的差动保护的整定与校验方法在变压器保护装置中,差动保护是一种常见且重要的保护方式。

为了确保差动保护能够发挥其应有的保护作用,需要对差动保护进行整定和校验。

本文将从整定和校验两个方面介绍变压器差动保护的相关方法。

一、差动保护的整定方法差动保护的整定是为了确保在变压器正常运行时不发生误动作,同时能够在发生故障时能够准确可靠地动作。

以下是差动保护整定的一般步骤:1. 确定保护区域:根据变压器的接线图和实际情况,确定差动保护所要覆盖的保护区域。

通常情况下,保护区域应包括变压器的高压侧和低压侧。

2. 确定整定电流:根据变压器的额定电流和负载情况,确定差动保护的整定电流。

整定电流一般设置为变压器额定电流的百分之几,具体数值根据实际情况而定。

3. 确定动作特性:根据差动保护的动作特性曲线,确定差动保护的整定参数。

常见的动作特性曲线有梯形曲线、平板曲线等,具体选择应考虑变压器的性能和运行要求。

4. 确定整定参数:根据变压器的特性、接线方式和运行要求,确定差动保护的整定参数。

整定参数包括时间定值、灵敏系数等,可以根据经验值或者故障模拟等方法确定。

二、差动保护的校验方法差动保护的校验是为了验证整定参数的准确性和保护装置的可靠性。

以下是差动保护校验的一般步骤:1. 检查接线:首先,检查差动保护装置的接线情况,确保连接正确可靠。

同时,还应检查变压器主绕组和各侧绕组之间的连接,确保变压器内部电路的连通性。

2. 模拟故障:通过模拟故障的方式进行校验,例如在变压器的高压侧或低压侧接入故障电阻、故障电容等。

模拟故障时,需要记录差动保护的动作时间和动作电流,与整定参数进行对比。

3. 调整整定参数:如果校验结果与整定参数存在较大偏差,需要进行整定参数的调整。

可以通过调整灵敏系数、时间定值等参数来准确匹配差动保护的整定与校验结果。

4. 验证保护可靠性:校验完成后,需要进行保护可靠性的验证。

可以通过变压器的正常运行和模拟故障实验等方式来验证差动保护的可靠性和准确性。

变压器比率差动保护原理及校验方法分析

变压器比率差动保护原理及校验方法分析

变压器比率差动保护原理及校验方法分析摘要:电力系统的发展突飞猛进,大型发电机变压器投入运行,发变组差动保护在发变组保护中的地位越来越重要,运行中的发电机变压器发生故障,做为主保护的发变组比率差动保护应在第一时间动作,将故障的发电机或者变压器从系统中切除,保证电力系统的稳定运行。

近年在电网系统中,国电南自,国电南瑞,许继发变组保护在现场中得到了大量的应用,不同的厂家,针对保护的原理会有所不同,算法也各不相同,这对继电保护人员在保护校验中提出了更高的要求,本文针对变压器比率差动保护,以主变比率差动保护校验方法为例,研究国电南自,国电南瑞,许继主变比率差动保护的不同,校验方法的不同。

关键词:国电南自;国电南瑞;许继;变压器比率差动保护;检验1 保护配置某发电厂300MW机组,采用发电机-变压器-线路组形式接入220KV地区电网,主变采用Y/Δ-11点钟接线,主变比率差动保护TA取自发电机机端侧TA变比15000/5,高厂变高压侧TA变比1500/5,主变高压侧TA变比1200/5,变压器各侧电流互感器二次接线均采用星型接线,二次电流直接接入装置,变压器各侧TA二次电流相位由软件自调整,装置采用Y/Δ变化调整差流平衡。

(图一)2国电南瑞主变比率差动保护校验方法现场班组一般配置ONLLY A460系列继电保护校验仪,以(图一)为例,主变比率差动保护检验需要分别检验:发电机机端侧和主变高压侧比率差动,高厂变高压侧和主变高压侧比率差动,发电机机端侧和高厂变高压侧比率差动。

下面都以发电机机端侧和主变高压侧比率差动为例,研究单相法主变比率差动校验方法。

(1)从南瑞RCS-985发电机综合保护装置中读取主变差动定值:差动启动定值和差动速断定值是标幺值(2)南瑞RCS-985发电机综合保护装置,主变比率差动保护计算公式I d>Kbl×Ir+Icdqd(Ir<nIe)Kbl=Kbl1+Kblr×(Ir/Ie)Id>Kbl2×(Ir-nIe)+b+Icdqd (Ir≥nIe)Kblr=(Kbl2-Kbl1)/(2×n)b=(Kbl1+Kblr×n) ×nIe(公式一)Id----差动电流;Ir----制动电流;Kbl1----比率差动起始斜率Kbl2----比率差动最大斜率n----最大斜率时的制动电流倍数取6差动电流取各侧相量和的绝对值制动电流取各侧数值绝对值相加除以2(3)从计算定值中读取各侧额定电流:I主变高压侧=3.43A I发电机侧=4.33A(4)软件校正差动各侧电流相位差与平衡系数,校正方法:对于Y侧电路:ⅰ’A=(ⅰA-ⅰB)/√3ⅰ’B=(ⅰB-ⅰC)/√3ⅰ’C=(ⅰC-ⅰA)/√3ⅰA、ⅰB、ⅰC——为Y侧TA二次电流ⅰ’A、ⅰ’B、ⅰ’C­——为Y侧校正后各相电流(公式二)(5)保护动作特性:图二比率差动保护动作特性(6)打开校验仪,按照下表在保护装置上输入数值,设置步长:(表一)在校验仪上设置好数值之后,从保护装置上观测两侧电流平衡,差流位零,制动电流为两侧电流绝对值之和除以2,缓慢的调节步长(增加或减少都可),制动电流不变,差流逐渐增大,直至发电机保护动作,记录校验仪所加动作值,从微机保护装置上读取动作电流和制动电流。

两种变压器差动保护原理比较与校验方法

两种变压器差动保护原理比较与校验方法

0 引 言
12 相 位 补 偿 .
差动 保护 因其 具有 的选择 性好 、灵 敏度 高等 一 系列 优 点成 为
变 压器 电动机 及母 线等 元件 的主 保护 ,这里 差动 保 护 的基本 原理 是相 同的 。 但变 压器 差动 保护还 要考 虑接 线组 别 、 比及励磁 涌流 变 等 因素 的影 响 , 以 同其 他差 动 保护相 比实现起 来更 复杂 些 。 所 各个 厂家差动 保 护实现 原理 和装 置结 构有 很大 差异 ,现 场校 验 时必须 认真 区别对 待 ,因此需 要掌 握各 个厂 家实现 保护 的原理 和计 算 方
() 2 然后计 算各 侧平 衡系 数 :
1 高压侧 平衡 系数 : 1 ) K 。 2 中、 ) 低压 侧平 衡系 数 :
两种 保护 差 动 曲 线的 测试 方 法相 同 ,只 是 接线 方 法 不 同 , 本
1Xn A L K ̄ : U L T
Ul H
() 。
t : = l = l l / - 、 YO l l | l = e/ o
法 的 异 同 。 本 文 比 较 了 具 有 代 表 性 的 南 瑞 R s9 8和 四 方 c 一7
C C 3 6 种型 号变 压器 差动保 护 的不 同点 , S -2 两 并从 不 同点入 手 , 以
Y / — 1 接线 三绕组 变 压器 为例 ,分析 了主 变差 动保 护 在校 验 0A l 型
时应 该注意 的 问题 。
1 南 瑞 和 四 方 实 现 差 动 保 护 原 理 的 异 同
11 幅值 归算 .
A : fl / 3 ; I x - ; 1 f 3 。 l= 3 v: I=q 7 /3 l=( l

变压器差动保护校验方法

变压器差动保护校验方法

变压器差动保护校验方法变压器差动保护是电力系统中常用的一种保护方式,它在变压器的正常运行和保护方面起着重要的作用。

为了确保差动保护的准确性和可靠性,需要进行校验。

本文将介绍变压器差动保护校验的方法。

一、差动保护的基本原理变压器差动保护是利用变压器两侧电流的差值来判断变压器是否发生故障。

当变压器正常运行时,两侧电流的差值非常小,接近于零;而当变压器发生故障时,差流会显著增大。

通过监测差流的大小,可以及时判断变压器是否存在故障,并采取相应的保护措施。

二、差动保护校验的目的差动保护校验的目的是验证差动保护的准确性和可靠性,确保其在变压器故障时能够及时、准确地判断并进行保护动作。

校验的过程主要包括以下几个方面:差动保护装置的参数设置、差动电流互感器的校验、差动保护装置的动作试验等。

三、差动保护装置的参数设置差动保护装置的参数设置是差动保护校验中的重要环节。

首先需要根据变压器的额定容量、变比等信息,计算出合适的参数值。

具体的参数包括:差动电流互感器的一次/二次变比、滞后/超前动作角、差动电流保护装置的动作电流等。

在设置这些参数时,需要参考相关标准和规范,确保参数的合理性和正确性。

四、差动电流互感器的校验差动电流互感器是差动保护中的重要组成部分,其准确性直接影响到差动保护的可靠性。

为了保证差动电流互感器的准确性,需要进行定期的校验。

校验的方法主要有:比率校验、相位校验和零序校验。

比率校验是通过比对互感器的一次/二次电流比值,判断其准确性;相位校验是通过比对互感器的一次/二次电流相位差,判断其准确性;零序校验是通过比对互感器的零序漏电流,判断其准确性。

五、差动保护装置的动作试验差动保护装置的动作试验是校验差动保护的有效手段之一。

在试验时,需要模拟变压器的故障情况,观察差动保护装置的动作情况。

常用的试验方法包括:一次侧短路试验、二次侧短路试验和变压器内部故障试验。

试验时需要注意安全,确保试验过程的可靠性和准确性。

变压器差动保护试验接线及测试方法

变压器差动保护试验接线及测试方法

变压器差动保护试验接线及测试方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

本文下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documentscan be customized and modified after downloading, please adjust and use it accordingto actual needs, thank you!In addition, our shop provides you with various types of practical materials, suchas educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!差动保护是电力系统中一项关键的保护措施,它能够有效地检测和定位电力系统中的故障,并及时采取措施以保护设备和人员的安全。

变压器保护比率差动试验方法

变压器保护比率差动试验方法

变压器保护比率差动试验方法CSC326变压器保护比率差动试验方法1.比率差动保护特性:采用常规的三段式折线,如下图:K I DI sdI cdK b1= 0.2Kb 3= 0.7I I zd2.平衡系数的计算:计算变压器各侧一次额定电流:nn nU S I113=式中,nS 为变压器最大额定容量,nU 1为变压器各侧额定电压(应以运行的实际电压为准)。

以高压侧为基准,计算变压器中、低压侧平衡系数:1111TAH TAM U U K nH nM phM ⋅=;1111TAH TAL U U K nH nL phL ⋅=;TAH1、TAM1、TAL1分别为高压侧TA 、中压侧TA 和低压侧TA 的原边值。

3.变压器绕组接线方式的影响:若使用软件做TA 星三角变换,则装置对星型接线侧做变换,对三角接线侧不作变换。

以11点接线为例,软件对星型侧做以下变换:3/)('B A AI I I•••-=3/)('C B BI I I•••-= 3/)('A C CI I I•••-=式中,AI •、BI •、CI •为Y 侧TA 二次电流,AI •'、BI •'、CI •'为Y 侧校正后的各相电流。

其它接线方式可以类推。

装置中可通过“变压器接线方式”控制字以及“接线方式钟点数”定值来选择接线方式。

差动电流与制动电流的相关计算,都是在电流相位校正和平衡补偿后的基础上进行。

4.动作电流和制动电流的计算方法动作电流和制动电流的计算方法如下:⎪⎪⎩⎪⎪⎨⎧-==∑∑-=••=•11max 121N i izdN i idz I I I I I式中:m axI &为所有侧中最大的相电流,∑-=•11N i iI 为其它侧(除最大相电流侧)相电流之和。

5.动作判据比率差动保护的动作判据如下:⎪⎭⎪⎬⎫<+⨯+-+-≥≤<+⨯+-≥≤+≥zde cde b e e e zd b dz e zd e cde b e zd dz e zd cdzd b dz I I I I K I I KID I I K I I I I I I K I I KID I I I I I K I 56.0)6.05()5(56.06.0)6.0(6.01311 其中: cdI 为差动保护电流定值,dzI 为动作电流,zdI 为制动电流,1b K 为第一段折线的斜率(固定取0.2),KID 为第二段折线的斜率其值等于比例制动系数定值,3b K 为第三段折线的斜率(固定取0.7)。

完整的变压器差动保护调试和验证方法

完整的变压器差动保护调试和验证方法

完整的变压器差动保护调试和验证方法变压器差动保护是保护变压器正常运行和防止故障的重要措施之一、它通过比较发往变压器和变压器的输出之间的差异来判断变压器是否发生故障。

下面将详细介绍变压器差动保护的调试和验证方法。

一、调试方法1.检查安装位置:首先需要检查变压器差动保护的安装位置,确保安装位置正确,设备与变压器之间的连接线路正确牢固。

2.检查接线:仔细检查变压器差动保护设备的接线是否正确,包括数字量输入和输出模块、变压器接线柜中的CT(电流互感器)接线等。

3.测试连接:将模拟量和数字量的连接进行测试,确保变压器差动保护设备可以正常接收和处理来自CT和PT(电压互感器)的模拟量信号。

4.参数设置:根据实际情况,设置变压器差动保护设备的参数,包括差动保护动作电流、动作时间等参数。

5.检查稳态运行:确认变压器正常运行后,记录各相电流、相电压、接地电流等参数,以便日后与故障时的参数进行对比分析。

6.切换至差动模式:通过操作变压器差动保护设备的面板,将其切换至差动保护模式。

7.测试差动保护:模拟一次变压器内部故障,注入差动电流,观察差动保护设备是否能够及时动作,并通过信号输出模块输出信号。

8.人工确认:在差动保护动作后,需要手动确认是否为真实故障,避免误动作。

二、验证方法1.发电机保护功能测试:通过模拟发电机运行现场的实际运行条件,注入不同频率和不同相位的模拟量信号,检查差动保护设备的保护功能是否正常。

2.发电机保护动作测试:通过模拟故障信号,注入差动保护设备,观察差动保护设备是否能够及时动作,并且是否正确地输出保护信号。

3.发电机保护恢复测试:在发电机保护动作后,检查差动保护设备的复位功能是否正常,保护信号是否正确地恢复至正常状态。

4.防误动能力测试:通过模拟故障信号注入,检查差动保护设备的防误动能力,确保在正常工作状态下不会误动作。

5.与其他保护设备协调运行测试:检查差动保护设备与其他保护设备的协调运行情况,包括过电流保护、过温保护等。

变压器比率差动保护的校验方法

变压器比率差动保护的校验方法

变压器比率差动保护的校验方法一、一次侧和二次侧线圈变比校验一、变压器一次侧和二次侧线圈的变比校验是差动保护校验的基础,通过检查变压器的一次侧和二次侧线圈的额定变比是否一致,可以确定差动保护的校验结果。

1.校验仪器准备:需要准备一个变比表或变比测试仪,这个仪器可以测量一次侧和二次侧的变比是否一致。

2.操作步骤:(1)将一次侧的一个线圈与测试仪连接,将另一个线圈与二次侧的变比表或变比测试仪连接。

(2)将测试仪或变比测试仪的探头放在一次侧的一个线圈上,观察到的变比应该是变压器一次侧的额定变比。

(3)将变比表或变比测试仪的探头放在二次侧的一个线圈上,观察到的变比应该是变压器二次侧的额定变比。

(4)将测试结果与变压器铭牌上的额定变比进行比较,如果误差在允许范围内,说明差动保护线圈的变比校验合格。

(5)如果测试结果不在允许范围内,说明差动保护线圈的变比存在问题,需要进一步检查和修复。

二、差动流保护测试方法差动流保护是变压器差动保护的核心部分,通过对差动电流进行监测和比较,来判断变压器是否存在故障或事故。

差动流保护测试的目的是验证差动保护的准确性和可靠性。

1.测试仪器准备:需要准备一个差动流模拟器和一个差动保护测试仪。

2.操作步骤:(1)首先检查差动保护测试仪的工作状态和参数设置,确保测试仪能正常工作。

(2)将差动流模拟器的模拟电流线圈与变压器的一次侧和二次侧线圈连接。

(3)根据变压器的额定容量和负载情况,设置差动流模拟器输出的模拟差动电流。

(4)观察差动保护测试仪的显示结果,如果差动电流的值与设置的模拟值相等或非常接近,并且没有误差报警,说明差动保护的测试合格。

(5)如果测试结果不符合要求,说明差动保护的测试不合格,需要进一步检查和调整。

三、变压器有载分接开关检查变压器有载分接开关是变压器调整电压比例的重要设备,也会影响差动保护的工作方式和准确性。

因此,对有载分接开关进行定期检查和校验是一种有效的差动保护校验方法。

变压器差动保护试验方法

变压器差动保护试验方法

我们知道,变压器、发电机的电气主保护为纵向电流差动保护,该保护原理成熟,动作成功率高,从常规的继电器保护到晶体管保护再到现在的微机保护,保护原理都没有多大改变,只是实现此保护的硬件平台随着电子技术的发展在不断升级,使我们的日常操作维护更方便、更容易。

传统继电器差动保护是通过差动CT的接线方式与变比大小不同来进行角度校正及电流补偿的,而微机保护一般接入保护装置的CT全为星型接法,然后通过软件移相进行角差校正,通过平衡系数来进行电流大小补偿,从而实现在正常运行时差流为零,而变压器内部故障时,差流很大,保护动作。

由于变压器正常运行和故障时至少有6个电流(高、低压侧),而我们所用的微机保护测试仪一般只能产生3个电流,因此要模拟主变实际故障时的电流情况来进行差动试验,就要求我们对微机差动保护原理理解清楚,然后正确接线,方可做出试验结果,从而验证保护动作的正确性。

下面我们以国电南京自动化设备总厂电网公司的ND300系列的发变组差动保护为例来具体说明试验方法,其他厂家的应该大同小异。

这里我们选择ND300系列数字式变压器保护装置中的NDT302型号作为试验对象。

该型号的差动保护定值(已设定)见表1:表1NDT302变压器保护装置保护定值单下面我们先来分析一下微机差动保护的算法原理(三相变压器)。

这里以Y/△-11主变接线为例,传统继电器差动保护是通过把主变高压侧的二次CT接成△,把低压侧的二次CT接成Y型,来平衡主变高压侧与低压侧的30度相位差的,然后再通过二次CT变比的不同来平衡电流大小的,接线时要求接入差动继电器的电流要相差180度,即是逆极性接入。

具体接线见图1:图1而微机保护要求接入保护装置的各侧CT均为Y型接线,显而易见移相是通过软件来完成的,下面来分析一下微机软件移相原理。

ND300系列变压器差动保护软件移相均是移Y型侧,对于∆侧电流的接线,TA二次电流相位不调整。

电流平衡以移相后的Y型侧电流为基准,△侧电流乘以平衡系数来平衡电流大小。

变压器比率差动试验方法

变压器比率差动试验方法

随着综合自动化装置的普遍推广使用,变压器比率差动保护得到了广泛的使用,但是由于厂家众多,计算方法和保护原理略有差异,而且没有统一的实验方法,尤其是比率制动中制动特性实验不准确,给运行和维护带来了不便,下面介绍两种比较简单和实用的,用微机继电保护测试装置测试差动保护的实验方法.比率差动原理简介:差动动作方程如下:Id>Icd (IrIcd+k*(Ir-Ird) (Ir>Ird)式中:Id——差动电流Ir——制动电流Icd——差动门槛定值(最小动作值)Ird——拐点电流定值k——比率制动系数多数厂家采用以下公式计算差动电流;Id=| h+ l| (1)制动电流的公式较多,有以下几种:Ir=| h- l|/2 (2)Ir=| h- l| (3)Ir=max{| 1|,| 2|,| 3|…| n|} (4)为方便起见,以下就采用比较简单常用的公式(3).由于变压器差动保护二次CT为全星形接线,对于一次绕组为Y/ ,Y/Y/ ,Y/ / ,Y形接线的二次电流与形接线的二次电流有30度相位差,需要软件对所有一次绕组为Y形接线的二次电流进行相位和幅值补偿,补偿的方式为:A=( A'— B')/1.732/KhpB=( B'— C')/1.732/KhpC=( C'— A')/1.732/Khp其中 A, B, C为补偿后的二次电流(即保护装置实时显示的电流), A', B', C'为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流.Khp为高压的平衡系数(有的保护装置采用的是乘上平衡系数),一般设定为1.这样经过软件补偿后,在一次绕组为Y形的一侧加入单相电流时,保护会同时测到两相电流,加入A相电流,则保护同时测到A,C两相电流;加入B相电流,则保护同时测到B,A两相电流;加入C相电流,则保护同时测到C,B两相电流.对于绕组为形接线的二次电流就不需要软件补偿相位,只要对由于CT变比不同引起的二次电流系数进行补偿了,电流计算公式为:a= a' /Klpa'为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流; a为补偿后的二次电流(即保护装置实时显示的电流).唯一要注意的是保护装置要求低压侧电流与高压侧电流反相位输入,高压侧的A相与低压侧的A相间应相差150度.Klp为低压的平衡系数(有的保护装置采用的是乘上平衡系数),与保护用的CT变比大小有关.这样,差动保护差流的计算公式就可写成:Ida=| hA+ la| =|( A'— B')/1.732/Khp + la/Klp| (5)Idb=| hB+ lb| =|( B'— C')/1.732/Khp + lb/Klp| (6)Idc=| hC+ lc| =|( C'— A')/1.732/Khp + lc/Klp| (7)制动电流的计算公式为:Ida=| hA— la| =|( A'— B')/1.732/Khp — la/Klp| (8)Idb=| hB— lb| =|( B'— C')/1.732/Khp— lb/Klp| (9)Idc=| hC— lc| =|( C'— A')/1.732/Khp— lc/Klp| (10)实验方法简介:下面以变压器一次绕组接线方式为Y/ 的形式为例介绍比率差动保护性能的实验方法:最小动作电流(Icd):高压侧实验公式为:I=1.732*Icd/Khp低压侧实验公式为:I=Icd/Klp式中:I为实验所施加的实验电流值;Khp,Klp为高压及低压侧的平衡系数;Icd为最小动作电流整定值.按变压器各侧A,B,C分别施加电流I,保护应可靠动作,误差应符合技术条件的要求,必须注意的高压侧实验与低压侧实验不同的是:通入A相电流,A,C相动作;通入B相电流,B,A相动作;通入C相电流,C,B相动作; 制动特性斜率K制动特性斜率实验时,要同时输入两侧电流,而且要注意两侧电流的相位关系,但是一般的保护测试仪只能同时输出三相电流,这样就要找出一种能满足测试要求的实验方法.根据式(5),(6),(7)及差动保护动作方程:在做A相的实验时:令 B'= C'=0,则Idb=0,如要求Idc=0,则 A' /1.732/Khp= lc/Klp即 lc= Klp* A' /1.732/Khp因此高压侧A相加电流I1 0 ,低压侧A,C相电流分别为I2 -150 ,I3 - 3 0 ,固定I1 ,I3大小为I3= Klp* I1 /1.732/Khp,改变I2的大小,测出保护刚好动作时的电流大小,就可计算出制动特性斜率K,然后改变I1 ,I3大小,再测出另外的动作点.制动特性斜率K的公式为:K=(Id-Icd)/(Ir-Ird)=( I1 /1.732/Khp- I3/ Klp- Icd)/ I1 /1.732/Khp+ I3/ Klp-Ird)如果根据以上的公式推导就可得到一种只需同时输出三相电流就可测试差动保护的实验方法了.具体的接线方法为:同理,如果令 B'= C',则Idb=0,C=( C'— A')/1.732/Khp=( B'— A')/1.732/Khp=— A假设 bl=0, cl=- al则有 a=- c,所以 Ida=| hA+ la|Idb=| hB+ lb|=0Idc=| hC+ lc|=|- hA+(- la)|=Ida为达到 B'= C' , bl=0, cl=- al可用下面的接线方式:注意形绕组电流回路的N没有接到Y形绕组电流回路的N上,而是用Ic接到N上,这样才能满足假设条件.于是就可以在高压侧A相加电流I1 0 ,B,C相并联后加I3 - 12 0 ,低压侧A相电流为I2 -150 ,固定I1 ,I3, I3大小为I3= 2* I1,改变I2的大小,测出保护刚好动作时的电流大小,就可计算出制动特性斜率K,K值计算公式同上法.结论:两种实验方法没有本质的区别,都是通过公式推导,找出补偿电流的补偿方式,计算补偿电流的大小和角度关系,然后再应用到实际中去;但通过比较不难发现后一种方法比前一种方法所加补偿电流计算方法简单,相位角与实际运行时一致,而且可同时测量两相的差动保护.总之只要通过了解保护的原理,掌握其内在的关系就不难找到简单而实用的方法. IrIdIcdIrd动作区Y形绕组电流回路形绕组电流回路I1 0IBICIcIbIaNNIAI2 -150I3 - 3 0IANICIBY形绕组电流回路NIcIbIa形绕组电流回路I1/0I3/-120I2/-150。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一种简单验证变压器差动保护方法
发表时间:2018-11-19T10:01:19.267Z 来源:《建筑学研究前沿》2018年第19期作者:陈官喜戴景王旭峰
[导读] 变压器一次通流试验,主要是在变压器的一次侧通入一个低电压(要求容量足够大),在变压器二次侧进行三相短接。

中国核工业第五建设有限公司上海 201512
摘要:差动保护是变压器的主保护,通过在变压器高低压侧安装电流互感器,将大电流转化成小电流,再连接到保护装置里。

由于电流互感器都是带极性的,互感器方向安装错误和电缆接线错误都会引起变压器差动保护误动作。

为了验证差动保护的正确性,一般在变压器投用前需做一次通流试验。

然而对于容量大、电压等级高的大型变压器,进行一次通流时,对试验电源的容量要求高,且由于要在变压器二次侧进行短路试验,对试验电源输出电压要求线性可调。

在某国外项目部,启备变联结组别为YNyn0-yn0+d,由于试验电源无法满足启备变的一次通流试验,针对该类型变压器,采用了一种简易的通流方法验证变压器差动保护。

关键词:变压器;差动保护;一次通流
变压器一次通流试验,主要是在变压器的一次侧通入一个低电压(要求容量足够大),在变压器二次侧进行三相短接,使在变压器的高低压侧都产生一个比较大的电流,经过变压器两侧的电流互感器转化成一个可以通过仪器检测的小电流,在变压器保护机柜中验证差动保护动作的正确性。

但在试验过程中,往往会由于变压器两侧一次或二次接线错误,造成在实施一次通流过程会产生很大的风险。

本文介绍某国外核电厂启备变保护一次通流校验方法,通过一个很小容量的试验电源就完成了YNyn0-yn0+d型启备变通流试验,成功的解决了现场无大容量试验电源问题、减少了试验工作量和极大的降低试验风险。

1.一次通流方案设计
1.1变压器参数
图1 变压器差动保护配置形式
1.3变压器一次通流方案
根据变压器参数及差动保护配置形式,发现此类型变压器两侧的电气量方向一致,且用于差动保护电流互感器不在变压器内部。

根据这些特点,可以采用电缆将变压器高低压侧短接,在开关站接地刀处通入连续可调电压,在低压侧中压开关柜里依次进行三相短接,通过电缆备用芯线将高压侧输入的电压特征量引入到低压侧,通过用高精度双钳相位表检查高低压侧电流互感器二次侧电流值与高压侧电压方向角来验证电流互感器二次接线正确性。

图2 变压器一次通流接线图
2.变压器一次通流试验验证
2.1试验准备
在一次通流试验开始前,应检查电流互感器二次接线是否准备牢靠准确,应进行电流互感器二次通流。

由于电流互感器变比较大,高压侧电流互感器变比为1200/1A,低压侧电流互感器变比为4000/1A,根据双钳相位表的测量精度,应保证电流互感器二次侧的电流要在5mA左右,折算成一次侧电流应在20A以上。

在该项目部调试设备中,正好有一台15KVA三相自耦调压变压器,该变压器输出额定电流为25A,电压为0到400V。

根据上述通流方案,线路中主要是感性阻抗,且阻抗非常小,通过计算发现调压变压器输出电压为7V时,三相电流为25A,折算到二次侧电流分别为20mA和5mA。

基准电压的选择。

应选择一个基准电压作为参考,检查每个电流互感器二次电流与基准电压的相位角,三个相位角差值应为正序差120度。

2.2试验实施
在试验前,应将所有的接地刀分闸,解锁GIS装置接地开关与断路器连锁,将自耦调压变压器串接到接地刀上,注意自耦变压器先调整输出为0,以免由于短路电流大损毁试验设备。

将自耦变压器输出电压的一相与GIS装置备用芯线相连,注意此备用芯线是从GIS装备到保护装置里,并在保护装置里将该芯线断开。

将变压器高压侧、低压侧短接。

在将中压柜三相短接,将中压柜进线断路器合闸。

缓慢调整自耦变压器的电压输出,并监测自耦变压器输出电流,当输出电流为25A时,停止升压。

通过双钳相位表在差动保护装置上测量电流互感器二次电流值及与基础电压方向角,同时在差动保护装置里检查电流。

2.3试验数据
表格中数据为在进差动保护电流互感器二次电流值和与基准电压的夹角,通过计算发现进入差动保护装置电流差流为0,检查差动保护装置里差流也是为0。

因此,证明差动保护接线完全正确。

3.结语
本文介绍的通流方法简单,风险系数低,工作量少,试验结果符合要求,但由于将变压器高低压侧短接,造成在通流试验中不能检测安装在变压器上的电流互感器,如果,用于变压器差动保护的电流互感器是安装在变压器升高座上,此方法就不能验证变压器差动保护。

参考文献
[1] 《变压器保护一次通流校验方法的研究》占金涛
[2] 《电机学》李发海朱东起
[3] 《电力系统暂态分析》李光琦
[4] PC3-EE-D203-001 《变压器交工资料》。

相关文档
最新文档