初中数学《函数》教案
初中六年级数学教案函数初步
初中六年级数学教案函数初步初中六年级数学教案:函数初步1. 教学目标:通过本课的学习,学生将能够:- 了解函数的定义和基本概念;- 掌握函数的表示法和常用符号;- 理解函数图像和定义域与值域的关系;- 能够应用函数解决实际问题。
2. 教学准备:- 教师准备:教案、黑板、彩色粉笔、教具、学生作业本、多媒体设备等;- 学生准备:学生作业本、课堂练习册。
3. 教学过程:3.1 导入新知介绍函数的基本概念和定义,通过生活中的实例引发学生对函数的认识。
例如,身高与年龄的关系、体重与身高的关系等。
3.2 函数的表示法和符号- 函数的关系可以用公式、图表、图像等多种方式表示;- 函数常用的符号有:f(x)、y、y=f(x)等;- 示范板书一个函数公式,并帮助学生理解函数的表示方法。
3.3 函数图像与定义域、值域- 通过多媒体设备展示函数的图像,并解释图像中的横纵坐标表示的含义;- 引导学生观察函数图像,讨论图像中的特点,进而引出定义域与值域的概念;- 定义域是自变量可能的取值范围,值域是函数对应的因变量可能的取值范围。
3.4 应用实例- 出示一个实际问题,引导学生通过建立函数模型解决问题;- 学生进行讨论、合作,找出解决方法,并给出答案;- 鼓励学生进行扩展思考,提高解决实际问题的能力。
3.5 拓展练习在黑板上进行练习板书,让学生尝试解决一些简单的函数题目,巩固所学知识。
4. 巩固和评价:通过布置课后练习,每位学生逐个回答问题,互相评价,鼓励积极参与,并及时纠正错误。
老师可以结合学生的实际表现,评价学生的学习情况。
5. 课堂总结:教师对本节课学习内容进行总结,强调函数的基本概念和应用,复习重点知识点。
6. 课后作业:布置相应的课后作业,要求学生继续强化所学知识,巩固复习,并完成相关习题。
7. 教学反思:教师根据上述教案的实施情况,总结教学的优点和不足,以便对今后的教学进行改进和提升。
本堂课教学目标清晰,内容丰富,通过引导学生观察实际问题、建立函数模型,培养学生解决实际问题的能力。
数学八年级上册《函数》教案
基于课程标准的学科教学设计义,能根据所给信息确定一次函数表达式.4.能画一次函数的图象,理解一次函数图象的变化情况,并利用一次函数图象解决简单的实际问题.5.在画一次函数的图象、探索一次函数图象的变化情况、利用一次函数的图象解决实际问题等过程,体会数形结合的思想方法与一次函数中k与b的实际意义.3.单元整体教学思路(教学结构图)课时教学设计课题《一次函数》第一课时课型新授课☑章/单元复习课□专题复习课□习题/试卷讲评课□学科实践活动课□其它1.课程标准分析1.体验从具体情境中抽象出数学符号的过程,理解函数的概念;探索具体问题中的数量关系和变化规律,掌握用函数进行表述的方法.2.通过用函数表述数量关系的过程,体会建模思想,建立符号意识;能独立思考,体会数学的基本思想和思维方式.6.学习活动设计教师活动学生活动环节一:创设情境、导入新课教的活动1播放洋葱数学有关函数的数学史。
学的活动1观看洋葱数学有关函数的数学史。
活动意图说明:承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。
环节二:展现背景,提供概念抽象的素材教的活动1问题 1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?问题2.在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式2300vs ,其中v表示刹车前汽车的速度(单位:千米/时).(1)公式中有几个变化的量?计算当v分别为50,60,100时,相应的滑行距离s是多少?学的活动1畅所欲言,分享体验。
举手回答:摩天轮上一点的高度h与旋转时间t之间的关系。
(完整版)人教版初中数学《函数》教案
人教版八年级数学上册《函数》教案]教学目标1.知识与技能了解函数的概念,弄清自变量与函数之间的关系.2.过程与方法经历探索函数概念的过程,感受函数的模型思想.3.情感、态度与价值观培养观察、交流、分析的思想意识,体会函数的实际应用价值.重、难点与关键1.重点:认识函数的概念.2.难点:对函数中自变量取值范围的确定.3.关键:从实际出发,由具体到抽象,建立函数的模型.教学方法采用“情境──探究”的方法,让学生从具体的情境中提升函数的思想方法.教学过程一、回顾交流,聚焦问题1.变量(P94)中5个思考题.【教师提问】同学们通过学习“变量”这一节内容,对常量和变量有了一定的认识,请同学们举出一些现实生活中变化的实例,指出其中的常量与变量.【学生活动】思考问题,踊跃发言.(先归纳出5个思考题的关系式,再举例)【教师活动】激发兴趣,鼓励学生联想,2.在地球某地,温度T(℃)与高度d(m)的关系可以挖地用T=10-来表示(如图),请你根据这个关系式回答下列问题:(1)指出这个关系式中的变量和常量.(2)填写下表.高度d/m 0 ,200,400,600,800,1000温度T/℃(3)观察两个变量之间的联系,当其中一个变量取定一个值时,另一个变量就______.3.课本P7“观察”.【学生活动】四人小组互动交流,踊跃发言二、讨论交流,形成概念【函数定义】一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.【教师活动】归纳出函数的定义.强调在上述活动中的关系式是函数关系式.提问学生,两个变量中哪个是自变量呢?哪个是这个自变量的函数?【学生活动】辨析理解,如:T=10-这个函数关系式中,d是自变量,T是d的函数等.弄清函数定义中的问题。
三、继续探究,感知轻重课本P8探究题.【学生活动】使用计算器进行探索活动,回答问题,理解函数概念.(1)y=2x+5,y是x的函数;(2)y=2x+1,y是x的函数.四、范例点击,提高认知【例1】一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.11L/km.(1)写出表示y与x的函数关系的式子.(2)指出自变量x的取值范围.(3)汽车行驶200km时,油箱中还有多少汽油?【教师活动】讲例,启发引导学生共同解决上述例1.五、随堂练习,巩固深化课本P99练习.六、课堂总结,发展潜能1.用数学式子表示函数的方法叫做表达式法(解析式法),它只是函数表示法的一种.2.求函数的自变量取值范围的方法.(1)要使函数的表达式有意义;(2)对实际问题中的函数关系,要使实际问题有意义.3.把所给自变量的值代入函数表达式中,就可以求出相应的函数值.七、布置作业,专题突破课本P106习题14.1第1,2,3,4题.板书设计14.1.2 函数1、函数的概念例:2、函数中自变量取值范围的确定。
初中数学函数备课教案
初中数学函数备课教案知识与技能:1. 学生能理解函数的概念,掌握常量和变量的定义。
2. 学生能够通过实际问题建立函数模型,解决简单的生活问题。
过程与方法:1. 学生通过实例感受函数的模型思想,培养观察、交流、分析的思想意识。
2. 学生能通过列表、图像等方式表现函数关系,培养数形结合的思维方式。
情感、态度与价值观:1. 学生培养对数学的兴趣和积极参与数学活动的热情。
2. 学生在解决问题的过程中体会数学的应用价值,感受成功的喜悦,建立自信心。
二、教学重难点重点:认识函数的概念,了解常量与变量的含义。
难点:对函数中自变量取值范围的确定。
三、教学准备教具:PPT、黑板、粉笔、函数图像展示板。
学具:每人一份函数实例材料、练习题。
四、教学过程1. 导入:以生活中的实例引入,如“气温与海拔的关系”、“票价与购票数量的关系”等,让学生感受到函数在日常生活中的应用。
2. 探索函数概念:让学生通过实例,分析常量与变量的关系,引导学生发现函数的定义。
3. 理解函数概念:通过PPT展示函数的定义,让学生明确自变量与函数的关系。
4. 函数模型的建立:让学生通过实例,建立函数模型,如“y = 2x + 1”。
5. 函数图像的展示:通过函数图像展示板,展示函数图像,让学生直观地理解函数。
6. 练习与巩固:让学生通过练习题,巩固所学知识,提高解题能力。
7. 总结与反思:让学生总结本节课所学内容,反思自己的学习过程。
五、教学评价1. 学生能正确理解函数的概念,掌握常量和变量的定义。
2. 学生能通过实际问题建立函数模型,解决简单的生活问题。
3. 学生能通过列表、图像等方式表现函数关系,培养数形结合的思维方式。
4. 学生培养对数学的兴趣和积极参与数学活动的热情。
《函数》教学设计 (八年级数学精品教案)
八上第四章第一节:《函数》教学设计一、学生起点分析在七年级上期学习了用字母表示数,体会了字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用符号进行了表示;在七年级下期又学习了“变量之间的关系”,使学生在具体的情境中,体会了变量之间的相依关系的普遍性,感受了学习变量之间的关系的必要性和重要性,并且积累了一定的研究变量之间关系的一些方法和初步经验,为学习本章的函数知识奠定了一定的基础。
二、教学任务分析《函数》是义务教育课程标准北师大版实验教科书八年级(上)第四章《一次函数》第一节的内容。
●教材内容本节内容安排了1个学时。
教材中的函数是从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量之间关系,进而抽象出函数的概念。
与原传统教材相比,新教材更注重感性材料,让学生分析了大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,它们的表示方式是多样地,如可以通过列表的方法表示,可以通过画图像的方法表示,还可以通过列解析式的方法表示,但都有着共性:其中一个变量依赖于另一个变量。
●教材地位及作用函数是研究现实世界变化规律的一个重要模型,对它的学习一直是初中阶段数学学习的一个重要内容。
本节内容是在七年级知识的基础上,继续通过对变量间的关系的考察,让学生初步体会函数的概念,为后续学习打下基础。
同时,函数的学习可以使学生体会到数形结合的思想方法,感受事物是相互联系和规律的变化。
三、教学目标分析教学目标:●知识与技能目标1.初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;2.根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;3.了解函数的三种表示方法。
●过程与方法目标1.通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;2.经历从具体实例中抽象概括的过程,进一步发展学生的抽象思维能力,体会函数的模型思想;3.通过对函数概念的学习,培养学生的语言表达能力。
函数的表示法教案三篇
函数的表示法教案三篇函数的表示法教案一篇一、目的要求1、使学生初步理解一次函数与正比例函数的概念。
2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。
二、内容分析1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。
2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。
第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。
3、函数及其图象这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。
另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。
通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。
函数概念教案
函数概念教案《函数的概念》教案篇一教学目标:1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域;3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.教学重点:两集合间用对应来描述函数的概念;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.正方形的边长为a,则正方形的周长为,面积为.2.问题.在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的函数模型有哪些?二、学生活动1.复述初中所学函数的概念;2.阅读课本23页的问题(1)、(2)、(3),并分别说出对其理解;3.举出生活中的实例,进一步说明函数的对应本质.三、数学建构1.用集合的语言分别阐述23页的问题(1)、(2)、(3);问题1某城市在某一天24小时内的气温变化情况如下图所示,试根据函数图象回答下列问题:(1)这一变化过程中,有哪几个变量?(2)这几个变量的范围分别是多少?问题2略.问题3略(详见23页).2.函数:一般地,设a、b是两个非空的数集,如果按某种对应法则f,对于集合a中的每一个元素x,在集合b中都有惟一的元素和它对应,这样的对应叫做从a到b的一个函数,通常记为=f(x),x∈a.其中,所有输入值x组成的集合a叫做函数=f(x)的定义域.(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系;(2)函数的本质是一种对应;(3)对应法则f可以是一个数学表达式,也可是一个图形或是一个表格(4)对应是建立在a、b两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f(x)=2x,(x=0).3.函数=f(x)的定义域:(1)每一个函数都有它的定义域,定义域是函数的生命线;(2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没有指明定义域,那么就认为定义域为一切实数.四、数学运用例1.判断下列对应是否为集合a到b的函数:(1)a={1,2,3,4,5},b={2,4,6,8,10},f:x→2x;(2)a={1,2,3,4,5},b={0,2,4,6,8},f:x→2x;(3)a={1,2,3,4,5},b=n,f:x→2x.练习:判断下列对应是否为函数:(1)x→2x,x≠0,x∈r;(2)x→,这里2=x,x∈n,∈r。
北师大版数学八年级上册《1 函数》教案1
北师大版数学八年级上册《1 函数》教案1一. 教材分析北师大版数学八年级上册《1 函数》是学生在学习了初中数学基础知识后,对函数概念、性质和应用进行初步了解的一节课。
本节课的内容包括函数的定义、函数的性质和函数图像的识别。
通过本节课的学习,学生将对函数有更深入的认识,为今后的数学学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了实数、方程、不等式等基础知识,具备了一定的逻辑思维能力和抽象思维能力。
但函数概念较为抽象,学生可能难以理解。
因此,在教学过程中,教师需要运用生动形象的教学手段,帮助学生建立函数概念,引导学生理解函数的性质和图像。
三. 教学目标1.了解函数的定义,掌握函数的基本性质。
2.能够识别和绘制简单的函数图像。
3.培养学生的逻辑思维能力和抽象思维能力。
4.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.函数的定义及其性质。
2.函数图像的识别和绘制。
五. 教学方法1.情境教学法:通过生活实例引入函数概念,激发学生兴趣。
2.讲授法:讲解函数的定义、性质和图像,引导学生理解。
3.实践操作法:让学生动手绘制函数图像,加深对函数的理解。
4.小组讨论法:分组讨论函数问题,培养学生的合作意识。
六. 教学准备1.教学PPT:包含函数的定义、性质、图像及实例。
2.练习题:包括简单函数的识别和绘制。
3.教学用具:黑板、粉笔、直尺、圆规等。
七. 教学过程1.导入(5分钟)通过一个生活实例,如温度随时间的变化,引入函数的概念。
引导学生思考:如何表示这种变化关系?引出函数的定义。
2.呈现(10分钟)讲解函数的定义、性质和图像,引导学生理解。
用PPT展示函数图像,让学生观察、分析。
3.操练(10分钟)让学生动手绘制一些简单函数的图像,如正比例函数、一次函数、二次函数等。
在绘制过程中,引导学生掌握函数图像的特点。
4.巩固(10分钟)出示一些练习题,让学生识别和绘制函数图像。
教师巡回指导,解答学生疑问。
初中《函数》教案设计
初中《函数》教案设计教学目标:1. 理解函数的概念,能够识别函数的各个组成部分。
2. 掌握函数的表示方法,包括解析式和表格法。
3. 能够运用函数解决实际问题,提高解决问题的能力。
教学重点:1. 函数的概念及组成部分。
2. 函数的表示方法。
教学难点:1. 函数概念的理解。
2. 函数表示方法的运用。
教学准备:1. 教学课件或黑板。
2. 函数相关例题和练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾之前学过的数学知识,如变量、自变量、因变量等。
2. 提问:同学们,你们认为什么是函数呢?函数有哪些组成部分?二、新课讲解(15分钟)1. 讲解函数的概念,引导学生理解函数的定义。
2. 解释函数的各个组成部分,如定义域、值域、对应关系等。
3. 举例说明函数的表示方法,包括解析式和表格法。
4. 引导学生通过实例理解函数的实际应用。
三、课堂练习(10分钟)1. 布置一些简单的函数题目,让学生独立完成。
2. 选取部分学生的作业进行讲解和点评。
四、巩固知识(10分钟)1. 通过课件或黑板,展示一些常见的函数图像,如正比例函数、一次函数、二次函数等。
2. 引导学生观察图像,分析函数的特点和性质。
五、拓展提高(10分钟)1. 引导学生思考:函数在实际生活中有哪些应用?2. 举例说明函数在生活中的应用,如温度与海拔的关系、商品价格与数量的关系等。
六、总结(5分钟)1. 回顾本节课所学的内容,让学生总结函数的概念和表示方法。
2. 强调函数在实际生活中的重要性。
教学反思:本节课通过讲解、练习、巩固和拓展等环节,帮助学生理解和掌握函数的基本概念和表示方法。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和积极性。
同时,结合实际生活中的例子,让学生感受函数的应用价值,提高学生的数学素养。
湘教版(2012)初中数学八年级下册 4.1.1 函数 教案
教学设计《函数》的教学设计《函数》的教学设计一、学情分析:在七年级上册学习了用字母表示数,体会了用字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用字母进行了表示。
在七年级下册有学习了”变量之间的关系“,使学生在具体的情景,体会了变量之间相依关系的普遍性,感受了学习变量之间的关系的必要性和重要性,并积累了研究变量之间的关系的一些一方法和初步经验,为学习本章的函数知识奠定了一定的基础。
二、教学目标:1.知识与技能目标:(1).初步掌握函数概念,能判断两个变量间的关系是否为函数关系。
(2).了解函数的三种表示方法,引导学生通过对比不同表示方法,从而理解函数概念的实质.2.过程与方法目标:通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神.3.情感与态度价值观目标:采用自学与小组合作学习相结合的方法,激发学生对数学的好奇心及求知欲,培养学生主动参与、勇于探究的精神.三、教学的重点与难点:1、重点:理解函数的概念,会判断两个变量间的关系是否是函数关系.2、难点:函数概念的形成过程,能把实际问题抽象概括为函数问题.四、关于教法与学法:学生是学习的主人,教师是组织者、引导者、合作者。
学生对变量有一定的了解,为调动学生的积极参与,我采用的教法是:引导发现法、实验法、讨论法、练习法等多种教学方法优化组合。
学法是:自主探索、合作交流的学习方式。
五、教学过程二、尝试探究一尝试探究二用模型,了解变量之间的关系可以帮助我们更好地认识世界,服务于我们的生活.因此,让我们一起走进函数天地吧!你坐过摩天轮吗?你坐在摩天轮上时,随着时间的变化,你离开地面的高度是如何变化的?下图反映了摩天轮上一点的高度h(米)与旋转时间t(分)之间的关系。
问题1、图象表示的是哪些量之间的关系?其中哪个量是自变量,哪个是因变量?问题2、根据图像填写下表:问题3、对于给定的时间t,相应的高度h确定吗?问题4、对于t的每一个值,h都有唯一确定的值与之对应吗?罐头盒等圆柱形的物体,常常如右图这样堆放,随着层数的增加,物体的总数是如何变。
初中数学函数教案范文
初中数学函数教案范文教学目标:1. 知识与技能:学生能够理解函数的概念,明确自变量与函数之间的关系。
2. 过程与方法:学生通过探索函数概念的过程,能够体验函数的模型思想。
3. 情感、态度与价值观:学生能够培养观察、交流、分析的思想意识,理解函数在实际应用中的价值。
教学重、难点与关键:1. 重点:使学生认识函数的概念。
2. 难点:对函数中自变量取值范围的确定。
3. 关键:从实际出发,由具体到抽象,建立函数的模型。
教学方法:采用情境探究的方法,让学生从具体的情境中提升函数的思想方法。
教学过程:一、回顾交流,聚焦问题1. 教师提问:同学们通过学习变量这一节内容,对常量和变量有了一定的认识,请同学们举出一些现实生活中变化的实例,指出其中的常量与变量。
2. 学生活动:思考问题,踊跃发言(先归纳出5个思考题的关系式,再举例)。
3. 教师活动:激发兴趣,鼓励学生联想。
二、探究新知,建构概念1. 教师活动:在地球某地,温度T与高度d的关系可以用T=10-d/2来表示(如图),请你根据这个关系式回答下列问题:(1)指出这个关系式中的变量和常量。
(2)填写下表(高度d/m 0,200,400,600,800,1000)。
(3)观察两个变量之间的联系,当其中一个变量取定一个值时,另一个变量就随之确定。
2. 学生活动:根据关系式回答问题。
三、巩固新知,内化概念1. 教师活动:出示一些具体实例,让学生判断其中的变量关系是否可以看作函数。
2. 学生活动:对实例进行判断。
四、练习与提高1. 教师活动:出示练习题,让学生独立完成。
2. 学生活动:完成练习题,小组内交流讨论。
五、总结与反思1. 教师提问:通过本节课的学习,同学们对函数有了哪些认识?2. 学生活动:总结函数的概念,明确函数的模型思想。
教学评价:通过学生在课堂上的发言、练习题的完成情况以及小组讨论的表现,评价学生对函数概念的理解和运用情况。
北师大版八年级数学上册:4.1《函数》教学设计1
北师大版八年级数学上册:4.1《函数》教学设计1一. 教材分析《函数》是北师大版八年级数学上册第4章的内容,本节主要介绍了函数的概念、性质和简单的函数图像。
函数是初中数学的重要内容,也是高中数学的基础。
通过本节的学习,学生能够理解函数的基本概念,了解函数的性质和图像,为后续学习更复杂的函数知识打下基础。
二. 学情分析八年级的学生已经学习了代数和几何的基础知识,具备一定的逻辑思维能力和空间想象能力。
但是,对于函数这一概念,学生可能比较陌生,难以理解函数的的本质。
因此,在教学过程中,需要引导学生从实际问题中抽象出函数的概念,并通过大量的例子让学生感受函数的性质和图像。
三. 教学目标1.了解函数的概念,能够说出函数的定义。
2.了解函数的性质,能够判断一个函数的性质。
3.能够画出一些简单函数的图像,了解函数图像的特点。
4.能够运用函数解决实际问题。
四. 教学重难点1.函数的概念和性质。
2.函数图像的画法和特点。
五. 教学方法1.情境教学法:通过实际问题引入函数的概念,让学生感受函数的应用。
2.实例教学法:通过大量的例子让学生理解函数的性质和图像。
3.小组合作学习:让学生在小组内讨论和探究函数的问题,培养学生的合作能力。
六. 教学准备1.PPT课件:制作相关的PPT课件,展示函数的定义、性质和图像。
2.实例材料:准备一些实际的例子,让学生分析和探究。
3.练习题:准备一些练习题,让学生巩固所学知识。
七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如电梯的运行、温度变化等,引导学生思考这些问题背后的数学模型。
通过学生的思考和讨论,引出函数的概念。
2.呈现(10分钟)用PPT课件呈现函数的定义,让学生了解函数的基本概念。
然后,用PPT课件展示一些简单函数的图像,让学生观察和分析函数图像的特点。
3.操练(10分钟)让学生分组讨论和探究,分析给定的实际问题中的函数关系。
每组选择一个实际问题,分析其中的函数关系,并画出函数的图像。
函数数学教案
函数数学教案函数数学教案1教学目标:知识与技能1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。
2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。
3、会对一个具体实例进行概括抽象成为数学问题。
过程与方法1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。
2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。
情感与价值观1、经历函数概念的抽象概括过程,体会函数的模型思想。
2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。
教学重点:1、掌握函数概念。
2、判断两个变量之间的关系是否可看作函数。
3、能把实际问题抽象概括为函数问题。
教学难点:1、理解函数的概念。
2、能把实际问题抽象概括为函数问题。
教学过程设计:一、创设问题情境,导入新课『师』:同学们,你们看下图上面那个像车轮状的物体是什么?函数数学教案2教学目标1.知识与技能理解一次函数与一元一次不等式的关系,发展学生的认知体系.2.过程与方法经历探索一次函数与一元一次不等式的关系的过程,掌握其应用方法.3.情感、态度与价值观培养良好的数学抽象思维,体会本节课知识在现实生活中的应用价值.重、难点与关键1.重点:一次函数与一元一次不等式的关系.2.难点:如何应用一次函数性质解决一元一次不等式的解集问题.3.关键:从一次函数的图象出发,直观地呈现出一元一次不等式的解的范围.教具准备采用“问题解决”的教学方法.教学过程一、回顾交流,知识迁移问题提出:请思考下面两个问题:(1)解不等式5x+6>3x+10;(2)当自变量x为何值时,函数y=2x-4的值大于0?学生活动观察屏幕,通过思考,得到(1)、(2)的答案,回答问题.教师活动在学生充分探讨的基础上,引导学生思考:“一元一次不等式与一次函数之间有何内在联系?”思路点拨在问题(1)中,不等式5x+6>3x+10可以转化为2x-4>0,•解这个不等式得x>2;问题(2)就是解不等式2x-4>0,得出x>2时函数y=2x-4的值大于0,•因此这两个问题实际上是同一个问题,从直线y=2x-4(如图)可以看出.当x>2时,•这条直线上的点在x轴的上方,即这时y=2x-4>0.问题探索教师叙述:由上面两个问题的关系,能进一步得到“解不等式ax+b>0”与“求自变量x在什么范围内,一次函数y=ax+b的值大于0”有什么关系?学生活动小组讨论,观察上述问题的图象,联系不等式、函数知识,解决问题.师生共识由于任何一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看出:当一次函数值大(小)于0时,求自变量相应的取值范围.教学形式师生互动交流,生生互动.二、范例点击,领悟新知例2用画函数图象的方法解不等式5x+4<2x+10.教师活动激发思考.学生活动小组合作讨论,运用两种思维方法解决例2问题.解法1:原不等式化为3x-6<0,画出直线y=3x-6(左图),可以看出,当x<2时,这条直线上的点在x轴的下方,即这时y=3x-6<0,所以不等式的解集为x<2.解法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10(右图),可以看出,它们交点的横坐标为2,当x<2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时5x+4<2x+10,所以不等式的解集为x<2.评析两种解法都把解不等式转化为比较直线上点的位置的高低.三、随堂练习,巩固深化课本P216练习.四、课堂,发展潜能用一次函数图象来解一元一次方程或一元一次不等式未必简单,但是从函数角度看问题,能发现一次函数、一元一次方程与一元一次不等式之间的关系,能直观地看到怎样用图形来表示方程的解与不等式的解,这种用函数观点认识问题的方法,对于继续学习数学是重要的.五、布置作业,专题突破课本P129习题14.3第3,4,7,8,10题.函数数学教案3重点难点教学:1.正确理解映射的概念;2.函数相等的两个条件;3.求函数的定义域和值域。
初中教案函数导入方法
初中教案函数导入方法一、教学目标1. 让学生理解函数的定义,掌握函数的表示方法。
2. 培养学生运用函数解决实际问题的能力。
3. 引导学生感受数学与生活的联系,提高学习数学的兴趣。
二、教学内容1. 函数的定义2. 函数的表示方法3. 函数的实际应用三、教学过程1. 导入新课(1)复习相关知识:回顾小学阶段学过的统计表、统计图,引出统计图中的“对应”关系。
(2)展示实例:电梯的楼层指示灯、温度计、汽车速度表等,让学生观察这些实例中的对应关系。
(3)提问:这些实例中,有一个量随着另一个量的变化而变化,这种关系叫做什么?(4)学生回答:函数。
(5)教师总结:今天我们要学习的就是函数这种关系。
2. 探究新知(1)讲解函数的定义:在一个变化的过程中,有两个变量,其中一个变量的变化会导致另一个变量的变化,如果用数学关系式表示出来,就叫做函数。
(2)讲解函数的表示方法:① 列表法:将自变量和函数值分别列成表格,表示它们之间的对应关系。
② 解析法:用数学公式表示自变量和函数值之间的关系。
③ 图象法:用图形表示自变量和函数值之间的关系。
(3)展示实例:讲解函数的表示方法,并用实际例子进行演示。
3. 巩固新知(1)课堂练习:让学生独立完成一些简单的函数题目,巩固函数的概念和表示方法。
(2)小组讨论:让学生分组讨论,总结函数在实际生活中的应用。
4. 拓展延伸(1)讲解函数的实际应用:如物理学中的速度与时间的关系、经济学中的成本与产量关系等。
(2)让学生举例说明函数在生活中的应用,分享自己的见解。
5. 总结课堂本节课我们学习了函数的概念和表示方法,以及函数在实际生活中的应用。
通过学习,我们知道了函数是一种变量之间的对应关系,可以用列表法、解析法、图象法表示。
函数在现实生活中有着广泛的应用,我们要学会运用函数解决实际问题。
四、课后作业1. 复习本节课所学内容,巩固函数的概念和表示方法。
2. 完成课后练习题,提高运用函数解决实际问题的能力。
初中数学初二数学上册《函数》教案、教学设计
3.多元化教学方法,提高教学效果:
a.采用问题驱动法,引导学生自主探究,发现函数的性质。
b.利用信息技术,如几何画板、Excel等软件,辅助教学,让学生ቤተ መጻሕፍቲ ባይዱ观地观察函数图像的变化。
1.什么是函数?它与我们之前学过的数学概念有什么联系和区别?
2.函数在现实生活中有哪些应用?它有什么作用和价值?
3.我们如何表示和描述函数?有哪些方法可以表示函数?
(二)讲授新知
在讲授新知环节,我会按照以下步骤进行:
1.给出函数的定义,解释函数的概念,让学生理解函数是一种特殊的关系,描述两个变量之间的依赖关系。
3.学生在数形结合方面的能力。函数的学习涉及图像和解析式的结合,部分学生可能在这方面的能力较弱,需要加强训练。
4.学生的合作交流能力。在教学过程中,教师应注重培养学生的合作交流能力,提高学生的小组合作效率。
针对以上学情,教师应结合学生的实际情况,采用多样化的教学策略,帮助学生克服学习难点,提高数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.函数概念的理解:函数是描述两个变量之间依赖关系的数学模型,对于初二学生来说,理解函数的定义及其内涵是本章学习的重点和难点。如何让学生从具体的例子中抽象出函数的一般规律,形成对函数的准确理解,是教学中的关键。
2.函数图像的识别与分析:掌握不同类型函数的图像特点,能够通过图像分析函数的性质,是本章学习的另一个重点。特别是一次函数、二次函数的图像及其变化规律,需要学生通过观察、思考、实践来深入理解。
初中数学函数优秀教案
初中数学函数优秀教案一、教学目标:1. 让学生理解函数的概念,掌握函数的表示方法。
2. 让学生理解正比例函数和一次函数的性质和图像。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学内容:1. 函数的概念和表示方法。
2. 正比例函数的性质和图像。
3. 一次函数的性质和图像。
三、教学重点和难点:1. 函数的概念和表示方法。
2. 正比例函数和一次函数的性质和图像。
四、教学过程:1. 导入:通过生活中的实例,如温度随时间的变化,让学生感受函数的存在,引出函数的概念。
2. 讲解:讲解函数的概念,让学生理解函数是一种关系,其中每个输入值都有唯一的输出值。
讲解函数的表示方法,如解析式和表格。
3. 示范:以正比例函数为例,讲解其性质和图像,让学生理解正比例函数的图像是一条通过原点的直线。
4. 练习:让学生自主探究一次函数的性质和图像,引导学生发现一次函数的图像是一条斜线。
5. 总结:对本节课的内容进行总结,强调函数的概念和表示方法,以及正比例函数和一次函数的性质和图像。
6. 作业:布置相关的练习题,让学生巩固所学知识。
五、教学策略:1. 采用实例导入,激发学生的兴趣。
2. 采用讲解和示范相结合的方式,让学生理解函数的概念和表示方法,以及正比例函数和一次函数的性质和图像。
3. 引导学生自主探究,培养学生的数学思维能力和解决问题的能力。
4. 进行总结,强化所学知识。
六、教学评价:1. 课后作业的完成情况。
2. 学生在课堂上的参与度和表现。
3. 对函数概念和表示方法,以及正比例函数和一次函数的性质和图像的理解程度。
通过本节课的教学,让学生掌握函数的基本概念和表示方法,理解正比例函数和一次函数的性质和图像,培养学生解决问题的能力。
《函数的概念及其表示》教案完美版
《函数的概念及其表示》教案第一课时: 1.2.1 函数的概念(一)教学要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素;能够正确使用“区间”的符号表示某些集合。
教学重点、难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。
教学过程:一、复习准备:1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2 .回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量. 表示方法有:解析法、列表法、图象法.二、讲授新课:1.教学函数模型思想及函数概念:①给出三个实例:A .一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h (米)与时间t (秒)的变化规律是21305h t t =-.B .近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况.(见书P16页图)C .国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。
“八五”计划以来我们城镇居民的恩格尔系数如下表. (见书P17页表)②讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系? 三个实例有什么共同点?归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都与唯一确定的y 和它对应,记作::f A B →③定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).④讨论:值域与B 的关系?构成函数的三要素?一次函数(0)y ax b a =+≠、二次函数2(0)y ax bx c a =++≠的定义域与值域? ⑤练习:2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。
初中数学函数全套教案
初中数学函数全套教案教案标题:初中数学函数全套教案教案目标:1. 了解函数的定义和基本概念。
2. 掌握函数的图像、性质和表示方法。
3. 理解函数的运算和复合。
4. 能够应用函数解决实际问题。
教案一:函数的定义和基本概念1. 教学目标:- 了解函数的定义和基本概念。
- 能够识别函数和非函数的关系。
2. 教学内容:- 函数的定义和符号表示。
- 函数的自变量和因变量。
- 函数的图像和定义域、值域。
- 函数的性质:单调性、奇偶性、周期性等。
3. 教学步骤:a. 引入函数的概念,解释函数的定义和符号表示。
b. 通过具体的例子,让学生区分函数和非函数的关系。
c. 介绍函数的自变量和因变量的概念,并讨论函数的图像和定义域、值域。
d. 介绍函数的性质,如单调性、奇偶性、周期性等,并通过例题进行练习。
e. 总结本节课的内容,布置相关练习作业。
教案二:函数的图像、性质和表示方法1. 教学目标:- 掌握函数的图像、性质和表示方法。
- 能够根据函数的性质画出函数的图像。
2. 教学内容:- 函数图像的绘制方法。
- 函数的性质与图像的关系。
- 函数的表示方法:显式函数、隐式函数、参数方程等。
3. 教学步骤:a. 复习上节课的内容,引入函数图像的绘制方法。
b. 介绍函数的性质与图像的关系,如单调性对应图像的上升或下降。
c. 讲解函数的表示方法,包括显式函数、隐式函数和参数方程,并通过例题进行练习。
d. 引导学生根据函数的性质画出函数的图像,并进行练习与讨论。
e. 总结本节课的内容,布置相关练习作业。
教案三:函数的运算和复合1. 教学目标:- 理解函数的运算和复合。
- 能够进行函数的四则运算和复合运算。
2. 教学内容:- 函数的加减乘除运算。
- 函数的复合运算。
- 函数运算的性质。
3. 教学步骤:a. 复习上节课的内容,引入函数的运算和复合概念。
b. 介绍函数的加减乘除运算规则,并通过例题进行练习。
c. 讲解函数的复合运算,包括复合函数的定义和计算方法,并进行练习与讨论。
北师大版八年级数学上册:4.1《函数》教学设计3
北师大版八年级数学上册:4.1《函数》教学设计3一. 教材分析《函数》是北师大版八年级数学上册第4章的内容,本节课主要介绍函数的概念、性质及表示方法。
函数是数学中的一个重要概念,也是初中数学的核心内容之一。
通过本节课的学习,使学生理解函数的基本概念,掌握函数的表示方法,能够判断两个相关联的变量之间的关系是否为函数,并为后续学习函数的图像和性质打下基础。
二. 学情分析八年级的学生已经学习了初中数学的大部分内容,对于一些基本的数学概念和运算规则有一定的掌握。
但是,对于函数这一概念,学生可能还存在一些模糊的认识,对于函数的表示方法也较为陌生。
因此,在教学过程中,需要引导学生从实际问题出发,理解函数的概念,掌握函数的表示方法。
三. 教学目标1.理解函数的概念,掌握函数的表示方法。
2.能够判断两个相关联的变量之间的关系是否为函数。
3.培养学生的数学思维能力,提高学生解决问题的能力。
四. 教学重难点1.函数的概念及判断两个相关联的变量之间的关系是否为函数。
2.函数的表示方法。
五. 教学方法1.情境教学法:通过实际问题引入函数的概念,使学生能够从实际问题中感受到函数的存在。
2.实例教学法:通过具体的实例,使学生理解函数的表示方法。
3.小组合作学习:引导学生分组讨论,培养学生的合作意识和团队精神。
六. 教学准备1.教学PPT:制作相关的教学PPT,以便于展示和讲解。
2.实例材料:准备一些具体的实例,用于解释和展示函数的表示方法。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入函数的概念,例如:“某商店举行打折活动,原价为100元的商品打8折,求打折后的价格。
”让学生思考并回答问题,引出函数的概念。
2.呈现(10分钟)讲解函数的定义,用PPT展示函数的表示方法,如列表法、图象法、解析法等。
通过具体的实例,让学生理解函数的表示方法。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,用所学的表示方法表示函数。
初中函数数学教案
初中函数数学教案一、课时安排1. 介绍函数概念:函数的定义、它的完整表达式、方程式以及相关的化简规则。
2. 讲解函数基本几何图形:它的定义以及几何图形的重要性及参数。
3. 函数的基本性质:函数的性质包括它的增减性、最大最小值等,并且讨论如何计算函数最值。
4. 讲解一元函数与二元函数: 一元函数主要包括线性函数和二次函数,二元函数主要包括幂函数、指数函数以及根函数。
二、课前准备1. 先给学生定义什么是函数的概念,让他们理解函数是一种特殊的数学表达式,它关系起某种自变量的变化以及因变量的变化;2. 教师准备图表、案例等,让学生分析函数的基本图形以及参数;3. 准备一系列例子,教学生了解函数的增减性、最大最小值以及如何求解最值;4. 在课堂上详细讲解一元函数以及二元函数,要清楚让学生了解不同函数的特点以及求解过程。
三、教学方法1. 从实际出发:首先教师引用实际场景讲解函数的概念,经常提问学生思考以及探究;2. 全民参与:在此过程中,学生应该被积极的参与,在讲解的活动中,要有观察、分析的步骤;3. 用例子教学:采用实例教学的方式介绍函数的特点,运用相关的图表人和案例使学生有较深的认识;4. 动手实践:在学习中,学生要通过实践来锻炼自己,做一系列模拟性的练习,加深理解。
四、课堂教学1. 教师先行讲解函数的概念,了解函数的特点,理解函数的几何图形以及参数;2. 接着让他们理解函数的增减性及求解最大值和最小值;3. 讲解一元函数(线性函数和二次函数)以及二元函数(幂函数、指数函数、根函数),着重讲解函数的构成以及参数;4. 接着提做一些例题练习,帮助他们掌握相关知识;5. 最后排查学生的学习情况,结束该课堂教学,对学生进行总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学《函数》教案
初中数学《函数》教案
一、复习导入
师:上课,同学们好。
师:在上课之前,老师想请大家回顾一下我们上节课所学的知识,然后思考一下我们最后得到的表达式都有哪些?(学生思考的同学教师板书表达式)
师:很好,看大家下去都有很好的复习。
现在请大家看黑板,这两个式子是上节课我们所得到的,其中这几个字母表示的含义我们知道了,那它们在数学上应该怎么称呼呢?它们之间又存在怎样的关系呢?
生:略。
师:大家不知道。
没有关系,这就是我们这节课所要学习的新的内容——函数。
(板书课题)
二、合作探究
师:现在请大家仔细的观察这两个数学表达式,从中你可以观察到什么?请第三排靠窗户的男同学你回答。
生:略。
师:观察的很仔细,不错,请坐。
这位同学说:“这两个表达式中都有两个变量。
”还有其他同学有不同的看法吗?
生:略。
师:非常正确。
当其中一个变量取定一个值的时候,另一个变量有唯一确定的值与其对应。
那大家现在验证一下,这位同学说的对不对?
师:是对的,看大家现在的观察能力是越越强啦。
师:现在老师请大家观看大屏幕,你们看到了什么?
生:略。
师:很好,中国人口统计表,在这个表格中都有哪些变量呢?
生:略。
师;对,年份和人口数量,那年份与人口数量之间存在一个什么样的关系呢?
生:略。
师:很好,老师听到一种说法是:“也是两个变量,每一个确定的年份都对应一个确定的人口数量。
”另一种说法是:“如果用表示年份,表示人口数量,给定一个,就会有唯一一个值与其相对应。
”大家的学以致用的能力提升的很快。
这其实就是我们函数的概念。
我们一起总结一下函数的概念。
师:在一个变化的过程中,如果有两个变量与,如果对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就称是自变量,就称为是的函数。
这就是函数的概念。
师:现在老师如果现在令,我们就称是的函数值。
这是
我们今天的第二个概念。
师:大家对这两个概念能理解吗?
师:能,看大家这节课听课都非常认真。
三、巩固练习
师:现在老师在PPT上展示几幅图和表格,大家试着用我们刚才所学的知识解决。
师:大家回答的都非常正确,看大家对这节课所学的新知识理解的很清晰。
由此,大家也可以感受到数学与生活的密切联系。
四、课堂小结
师:现在我们一起回忆一下这节课我们都学了什么?
生:略。
师:大家这节课都学到了函数以及函数值的概念。
看大家这节课都收获满满。
五、布置作业
师:同学们回家之后呢,可以自行上网查阅相关函数的资料,感受生活中都有哪些变量之间的关系可以用今天所学的函数解释,此外,提前预习一下我们下节课将要学习的特殊的函数,下节课我们一起交流讨论。