正交试验怎么做?-不会的进来看看

合集下载

正交试验设计方法(详细步骤)

正交试验设计方法(详细步骤)
C2 (y2+ y4)/2 =(0.448+0.516)/2=0.482
A2
(y5+ y7)/2 =(0.472+0.554)/2=0.513 (y6+ y8)/2 =(0.480+0.552)/2=0.516
阐明:
表头设计中旳“混杂”现象(一列安排多种原因或交互作 用)
高级交互作用 ,如A×B× C,一般不考虑 r水平两原因间旳交互作用要占r-1列 ,当r>2时,不宜
(1)选正交表
要求: 原因数≤正交表列数 原因水平数与正交表相应旳水平数一致 选较小旳表
选L9(34)
(2)表头设计
将试验原因安排到所选正交表相应旳列中 因不考虑原因间旳交互作用,一种原因占有一列(能够随
机排列) 空白列(空列):最佳留有至少一种空白列
(3)明确试验方案
(4)按要求旳方案做试验,得出试验成果
(1)等水平正交表: 各原因水平数相等旳正交表 ①记号 :Ln( r m ) L——正交表代号 n——正交表横行数(试验次数) r——原因水平数 m——正交表纵列数(最多能安排旳因数个数)
②等水平正交表特点
表中任一列,不同旳数字出现旳次数相同 表中任意两列,多种同行数字对(或称水平搭配)出现旳
1 n
(
n i 1
yi )2
QP
n
设: Q yi2 i 1
n
T yi i 1
P
1 n
n
(
i 1
yi )2
T2 n
②各原因引起旳离差平方和
第j列所引起旳离差平方和 :
SS j
rr (
n i1
Ki2
)
T2 n
rr (

正交实验流程

正交实验流程

正交实验流程
嘿,各位朋友,今天咱们来摆摆龙门阵,说说这个正交实验流程的事儿。

说起正交实验,那可是个科学的东西,得讲究个流程,不能乱来。

咱们先从四川话开始说起。

正交实验,说白了,就是要找出一个实验的最佳条件。

就像咱们四川人吃火锅,得找对那个最辣的底料,最香的辣椒,最麻的花椒,才能吃出那个味儿来。

正交实验也是这样,得把各种因素都考虑进去,看看哪个组合最好。

然后咱们再聊聊贵州话。

在贵州,人们常说“一物降一物”,这正交实验里头,也就是一个因素克制一个因素。

你得把所有因素都摆出来,看它们怎么相互作用,最后才能找到那个最合适的条件。

再来说说陕西方言。

在陕西,人们讲究个“实实在在”,做实验也是这样,得实实在在地去试,不能马马虎虎。

正交实验就是让你实实在在地去试各种条件,看哪个最好。

最后咱们来点儿北京味儿。

在北京,人们说话直接,喜欢“一针见血”。

正交实验也是这样,直接找出影响实验的关键因素,然后调整它,让实验效果达到最好。

所以呀,正交实验流程,说简单也简单,说复杂也复杂。

你得先把所有因素都考虑进去,然后设计实验,再去做实验,最后分析结果。

就像咱们做饭一样,得先把材料准备好,然后按照菜谱来,最后才能做出好吃的饭菜。

正交实验也是这样,得按照流程来,才能找出最佳的实验条件。

好了,今天咱们就聊到这儿,希望大家都能明白这个正交实验流程是怎么回事儿。

要是还有啥不明白的,咱们下次再聊!。

正交试验方法

正交试验方法

多因素优化试验设计—正交试验法上一章我们介绍了单因素优化试验设计方法。

但是在实际生产和科学试验中,往往有多个因素同时影响结果,在这种情况下采用单因素试验方法就难以满足要求。

本章将介绍在多因素寻优试验中,用尽量少的试验尽快获得最优结果的科学试验方法。

第一节正交试验设计正交试验法,就是在多因素优化试验中,利用数理统计学与正交性原理,从大量的试验点中挑选有代表性和典型性的试验点,应用“正交表”科学合理地安排试验,从而用尽量少的试验得到最优的试验结果的一种试验设计方法。

例3-2-1 已知碳、硅、锰含量影响铸铁的力学性能,我们把这三种元素分别用A、B、C表示。

我们根据生产经验将三种元素分别选两种含量(见表3-2-1),分别表示为A1、A2、B1、B2、C1、C2。

现在我们研究这三种元素两种含量如何组合,铸铁的性能最优。

表3-2-1 铸铁性能试验参数在例3-2-1中,我们称碳硅锰含量为因素,其两种含量称为水平,这个试验就是三因素二水平试验。

如果按照普通的方法将三个因素的两个水平分别搭配进行试验,需要进行8次试验,如图3-2-1长方体的8个顶点所示。

显然这是十分繁琐的。

如果试验的因素和水平更多,那么试验量将更加惊人。

但是在正交试验中,如果三个因素之间没有交互作用,我们只要选择其中的以下4个试验(图3-2-1中红点所示)A1B1C1、A1B2C2、A2B1C2、A2B2C1就可以代替全部8个试验。

图3-2-1 正交试验点示意图这是为什么呢?仔细观察图3-2-1可以发现,在长方体的六个面上,每个面都有两个试验点。

而在长方体的12个边上,每个边上都有1个试验点。

进一步观察4个试验点,可以发现,每个因素的各个水平参加试验的次数一样多,都是二次。

各个数据对,如(A1,B1)、(A1,B2)、(A2,B1)、(A2,B2)、(B1,C1)、(B2,C2)、(B1,C2)、(B2,C1)、(A1,C1)、…、(A2,C1)出现的次数也一样多,都是1次。

正交试验法(含案例)

正交试验法(含案例)

正交试验设计法一、定义:正交试验设计法就是利用正交表来合理安排多因素试验的一种方法。

二、常用术语1、指标:指标就是试验要考察的效果。

常用X、Y、Z……来表示。

▼定量指标:能够用数量来表示的试验指标,如重量、尺寸、温度。

▼定性指标:不能用数量来表示的试验指标,如颜色、味道、外观。

●定性指标量化:可用打分法、分等法。

2、因素:因素是指对试验指标可能产生影响的原因。

因素是在试验中应当加以考察的重点内容。

一般用大写字母A、B、C……来表示。

3、水平(位级):位级是指因素在试验中所处的状态或条件。

常用阿拉伯数字1、2、3……来表示。

如: A1、A2、A3、B1、B2、B3。

三、正交表 (已设计好的标准化表格,是进行正试验法的基本工具)1、日本型正交表:由日本质量管理专家田口玄一博士创立。

该正交试验设计法,除需试验的因素外,还要研究分析因素与因素之间的交互作用,一起上列,对试验结果的分析用方差分析等方法,过程较复杂。

2、中国型正交表是由以我国张千里教授为首的中国专家所创立。

它不考虑因素之间的交互作用,而将其交互作用融于试验之中,对试验结果的分析采用极差分析法,简单的用“看一看”与“算一算”相结合的分析、简单、易行、同样能得到满意的结论,是一种实用的试验方法,很适合现场应用。

四、正交表的特点:1、均衡分散性:每一列中各种字码出现的次数相同,保证试验条件均衡地分散在配合完全的位级组合之中,因而代表性强,容易出现好条件。

2、整齐可比性:任意两列中全部有序数字对出现次数都是相同的。

保证了在各个位级的效果之中,最大限度地排除了其他因素的干扰,能最有效地进行比较,作出展望。

五、用中国型正交表安排试验的步骤 1、明确试验目的 2、确定考察指标 3、挑因素、选位级,制定因素位级表 ①挑因素的原则: ▼分析影响指标的各种因素,排除: 不可控因素 对指标影响不大的因素 已掌握得好的因素(让其固定在适当位置上) ▼选对指标可能影响大,又无把握的因素。

正交试验设计方法讲义及举例

正交试验设计方法讲义及举例

正交试验设计方法讲义及举例正交试验设计方法是一种多因素试验设计方法,它能够有效地减少试验所需的样本数量,提高试验结果的精确性和可靠性。

正交试验设计方法是在已知因素水平的情况下选择对试验结果影响最大的因素进行研究的一种方法。

以下是正交试验设计方法的讲义及举例:一、正交试验设计方法的原理及步骤:1.原理:正交试验设计方法通过选择适当的正交表,将多个因素的不同水平组合进行排列,使各因素的变化对试验结果影响均匀化,从而获得准确可靠的试验结果。

2.步骤:a.确定试验因素及其水平:根据试验目的确定需要研究的因素及其水平。

b.选择正交表:根据试验因素的个数和水平确定适用的正交表,正交表能够保证试验结果的均匀性和可靠性。

c.设计试验方案:根据选择的正交表,将试验因素的水平进行组合,获得试验方案。

d.进行试验:按照试验方案进行实际试验。

e.分析试验结果:对试验结果进行统计分析,获得对试验因素的影响程度及其交互作用等信息。

f.微调试验方案:根据试验结果微调试验方案,迭代优化试验过程。

二、正交试验设计方法的优点:1.降低样本数量:正交试验设计方法能够通过对试验水平的排列组合,使试验因素的水平均匀分布,从而减少试验所需的样本数量。

2.提高试验效率:正交试验设计方法能够在有限样本量下获得更多的试验信息,提高试验效率。

3.确保结果可靠:正交试验设计方法通过保证试验因素的均匀分布,减少人为因素的干扰,从而保证试验结果的可靠性和准确性。

4.揭示因素交互作用:正交试验设计方法能够揭示因素之间的交互作用,进一步优化设计过程。

三、正交试验设计方法的举例:例如,公司要研究一种新的洗发水对头发柔顺度的影响,试验主要包括3个因素:洗发水品牌(A、B、C)、洗发水用量(X、Y、Z)和洗发水停留时间(T1、T2、T3)。

根据正交试验设计方法,按照以下步骤进行设计:1.选择正交表:根据3个因素和各因素的水平,选择适用的正交表,如L9正交表。

2.设计试验方案:根据L9正交表,将3个因素的水平进行组合,得到9个试验方案,每个方案分别测试一种组合情况。

正交试验基本方法PPT课件

正交试验基本方法PPT课件
✓ 这两点称为正交性: ✓ 均衡分散,整齐可比,代表性强,效率高
✓ 均衡分散:试验点在试验范围内排列规律整齐 ✓ 整齐可比:试验点在试验范围内散布均匀
四、用正交表安排试验
• (1)明确试验目的,确定试验指标 例1-1中,试验目的是搞清楚A、B、C对转化率的影响,试验指标为转化率
• (2)确定因素-水平表
2
3(7%)
1
1(5%)
3
3(7%)
3
1(5%)
2
2(6%)
1
转化率(x%) 31 53 57 54 49 62 38 42 64
同理可以算出:
TB1 x1 x2 x3 31 53 57 141 xB1 TB1 / 3 141 / 3 47 TB2 x4 x5 x6 54 49 62 165 xB2 TB2 / 3 165 / 3 55 TB3 x7 x8 x9 38 42 64 144 xB3 TB3 / 3 183 / 3 48
L8(27)
正交表的代号
正交表的纵列数 (最多允许安排因素的个数)
字码数(因素的水平数) 正交表的横行数
三、正交表的正交性(以L9 (34 )为例)
编号
1
2
1
1
1
2
1
2
3
1
3
4
2
1
5
2
2
6
2
3
7
3
1
8
3
2
9
3
3
3
4
1
1
2
2
3
3
2
3
3
1
1
2
3
2
1
3
2

正交试验设计方法(详细步骤)

正交试验设计方法(详细步骤)

④误差的自由度:
(3)计算均方

以A因素为例 : MS A SS A df A

以A×B为例
MS AB
SS AB df AB

误差的均方:
SSe MSe df e
注意:

若某因素或交互作用的均方≤MSe,则应将它们归入误差 列 计算新的误差、均方 例:若MSA ≤MSe 则:
(1)等水平正交表:

各因素水平数相等的正交表 L——正交表代号 n——正交表横行数(试验次数) r——因素水平数 m——正交表纵列数(最多能安排的因数个数)
①记号 :Ln( r m )

②等水平正交表特点

表中任一列,不同的数字出现的次数相同 表中任意两列,各种同行数字对(或称水平搭配)出现的 次数相同 两性质合称为“正交性” :使试验点在试验范围内排列 整齐、规律,也使试验点在试验范围内散布均匀
(7)进行验证试验,作进一步的分析


优方案往往不包含在正交实验方案中,应验证
优方案是在给定的因素和水平的条件下得到的,若不限定 给定的水平,有可能得到更好的试验方案

对所选的因素和水平进行适当的调整,以找到新的更优方 案
趋势图

正交试验设计的基本步骤: (1) 明确试验目的,确定评价指标
(2) 挑选因素(包括交互作用),确定水平

选L9(34)
(2)表头设计

将试验因素安排到所选正交表相应的列中 因不考虑因素间的交互作用,一个因素占有一列(可以随 机排列) 空白列(空列):最好留有至少一个空白列

(3)明确试验方案
(4)按规定的方案做试验,得出试验结果 注意 :

《化工技术基础实验》课件-第三章正交试验法

《化工技术基础实验》课件-第三章正交试验法

投曲量w/%
八、正交试验结果的方差分析法
★适宜操作条件 发酵时间取4水平:72h
初始pH值取1水平: pH=4 投曲量取2水平: 10% 发酵温度:20~50℃ ★ 进一步试验方向
发酵时间>72h 投曲量>10% 效果怎样? 方差分析与极差分析的比较: ①在方差分析中必须有不安排因素或交互作用的空列,作为误 差列;②在极差分析中以极差大小确定因素或交互作用的重要 性,而在方差分析中,以各因素的显著程度决定因素或交互作 用的显著程度。
1
三种方案 数据点的分布
全面搭配法 简单比较法
正交设计正法交的实数验据法点分布
正交试验法能回答的问题:
用正交表做实验,除了搭配均衡、实验次数少之 外,还可以回答以下问题: ▲ 因素的主次,即各因素对指标影响的哪个大
哪个小; ▲ 指标随因素取不同水平的变化规律; ▲ 适宜的操作条件; ▲ 进一步的实验方向。
接上表
列号 1 试验号 T
2
3
456 789
总酸度/ %
τ
pH e e e e e w
y
9
3
1
3 122 22
1
12.08
(30) (12) (5)
(5%)
10
3
2
4 121 11
2
13.13
(30) (24) (4)
(10%)
11
3
3
1 212 21
2
8.03
(30) (48) (7)
(10%)
大于所考察的因素和交互作用列;用极差法分析 实验结果时,正交表的列数要大于或等于因素和 交互作用列。 ★对试验精度要求高的,要选实验次数多的大表。
五、正交表的表头设计

正交试验设计的流程

正交试验设计的流程

正交试验设计的流程正交试验设计是一种有效的统计方法,用于确定影响某个过程或系统的多个因素的最佳组合。

它可以帮助研究人员在有限的实验次数中获得尽可能多的信息,从而优化产品或过程的性能。

在本文中,我们将介绍正交试验设计的流程,以帮助读者更好地理解和应用这一方法。

第一步:确定实验目标和因素在进行正交试验设计之前,首先需要明确实验的目标和需要研究的因素。

实验目标可以是改进产品的性能、降低生产成本、提高工艺效率等。

因素则是影响实验结果的各种变量,例如材料的种类、温度、压力等。

在确定因素时,需要考虑到可能的相互作用效应,以确保实验结果的准确性。

第二步:选择正交表正交表是正交试验设计的基础,用于确定实验的运行次数和因素的水平。

根据实验因素的个数和水平数,可以选择合适的正交表。

常用的正交表有Taguchi L9、L12、L16等。

选择正交表时,需要考虑因素个数和水平数的平衡性,以及实验次数的可行性。

第三步:确定试验方案在确定了正交表之后,需要根据具体的实验目标和因素,确定试验方案。

试验方案包括确定实验的次数、因素的水平和实验的顺序。

通常情况下,每个因素的水平应该均匀分布在正交表的各个列中,以保证各个因素的效应能够被准确估计。

第四步:进行实验在正交试验设计中,实验次数通常是有限的,因此需要合理安排实验的顺序。

一般来说,应该先进行主要因素的实验,然后再进行次要因素的实验。

在实验过程中,需要记录每次实验的结果和观察值,以便后续的数据分析和结果解释。

第五步:数据分析和结果解释在完成实验后,需要对实验数据进行统计分析和结果解释。

常用的分析方法包括方差分析、回归分析和假设检验等。

通过分析实验数据,可以确定各个因素对实验结果的影响程度,并找出最佳的因素组合。

第六步:优化和验证根据实验结果,可以进行产品或过程的优化。

通过调整因素的水平和组合,可以进一步改进产品的性能或降低生产成本。

此外,还需要进行实验结果的验证,以确保实验结果的可靠性和稳定性。

正交试验设计方法(详细步骤)

正交试验设计方法(详细步骤)
第6章 正交试验设计
6.1 概述
适合多因素试验 全面试验 : ➢ 每个因素的每个水平都相互搭配进行试验
例:3因素4水平的全面试验次数≥43=64次 正交试验设计(orthogonal design) : ➢ 利用正交表科学地安排与分析多因素试验的方法
例:3因素4水平的正交试验次数:16
6.1.1 正交表(orthogonal table)
R越大,因素越重要 若空列R较大,可能原因: ➢ 漏掉某重要因素 ➢ 因素之间可能存在不可忽略的交互作用
(6)优方案的确定
优方案:在所做的试验范围内,各因素较优的水平组合 若指标越大越好 ,应选取使指标大的水平 若指标越小越好,应选取使指标小的水平 还应考虑:降低消耗、提高效率等
(7)进行验证试验,作进一步的分析
③如何对每个指标评出分数
非数量性指标:依靠经验和专业知识给出分数 有时指标值本身就可以作为分数 ,如回收率、纯度等 用“隶属度”来表示分数 :
隶 属 度 指 指 标 标 最 值 大 值 指 标 指 最 标 小 最 值 小 值
④例
两个指标:取代度、酯化率 两个指标重要程度不同 综合分数=取代度隶属度×0.4+酯化率隶属度× 0.6
(1)选正交表
要求: 因素数≤正交表列数 因素水平数与正交表对应的水平数一致 选较小的表
选L9(34)
(2)表头设计
将试验因素安排到所选正交表相应的列中 因不考虑因素间的交互作用,一个因素占有一列(可以随
机排列) 空白列(空列):最好留有至少一个空白列
(3)明确试验方案
(4)按规定的方案做试验,得出试验结果
注意 : 按照规定的方案完成每一号试验 试验次序可随机决定 试验条件要严格控制
(5)计算极差,确定因素的主次顺序

简易正交试验设计方法

简易正交试验设计方法

每一个交互作用在正交表中应占一列或两列。要看所选的正交表是否足够大,能否容纳得下所考虑的因素和交互作用。为了对试验结果进行方差分析或回归分析,还必须至少留一个空白列,作为“误差”列,在极差分析中要作为“其他因素”列处理。 要看试验精度的要求。若要求高,则宜取实验次数多的L表。 若试验费用很昂贵,或试验的经费很有限,或人力和时间都比较紧张,则不宜选实验次数太多的L表。
202X
CIICK HERE TO ADD A TITLE
单击添加副标题
§2.5 正交试验设计方法
一、试验设计方法概述
试验设计是数理统计学的一个重要的分支。多数数理统计方法主要用于分析已经得到的数据,而试验设计却是用于决定数据收集的方法。试验设计方法主要讨论如何合理地安排试验以及试验所得的数据如何分析等。
Ⅰj Ⅱj kj Ⅰj / kj Ⅱj / kj 极差(Dj)
Ⅰ1=y1+y2 Ⅱ1=y3+y4 k1=2 Ⅰ1/ k1 Ⅱ1/ k1 max{ }-min{ }
选择正交表的基本原则
一般都是先确定试验的因素、水平和交互作用,然后选择适用的L表。在确定因素的水平数时,主要因素宜多安排几个水平,次要因素可少安排几个水平。
先看水平数。若各因素全是2水平,就选用L(2*)表;若各因素全是3水平,就选L(3*)表。若各因素的水平数不相同,就选择适用的混合水平表。
1
2
在化工生产中, 因素之间常有交互作用。 如果上述的因素T的数值和水平发生变化时,试验指标随因素p变化的规律也发生变化,或反过来,因素p的数值和水平发生变化时,试验指标随因素T变化的规律也发生变化。这种情况称为因素T、p间有交互作用,记为T×p 。
三、正交表
使用正交设计方法进行试验方案的设计,就必须用到正交表。正交表可查阅有关参考书。(如《数学手册》)

测试用例设计方法正交试验法详解

测试用例设计方法正交试验法详解

测试用例设计方法--正交试验法详解正交试验法介绍正交试验法是研究多因素、多水平的一种试验法,它是利用正交表来对试验进行设计,通过少数的试验替代全面试验,根据正交表的正交性从全面试验中挑选适量的、有代表性的点进行试验,这些有代表性的点具备了“均匀分散,整齐可比”的特点。

正交表是一种特制的表格,一般用L n (m k)表示,L 代表是正交表,n 代表试验次数或正交表的行数,k 代表最多可安排影响指标因素的个数或正交表的列数,m 表示每个因素水平数,且有n=k*(m-1)+1。

正交表的特点正交表具有以下两个特点。

正交表必须满足这两个特点,有一条不满足,就不是正交表。

每列中不同数字出现的次数相等。

这一特点表明每个因素的每个水平与其它因素的每个水平参与试验的几率是完全相同的,从而保证了在各个水平中最大限度地排除了其它因素水平的干扰,能有效地比较试验结果并找出最优的试验条件。

在任意2列其横向组成的数字对中,每种数字对出现的次数相等。

这个特点保证了试验点均匀地分散在因素与水平的完全组合之中,因此具有很强的代表性。

使用正交试验法的原因对于单因素或两因素试验,因其因素少,试验的设计、实施与分析都比较简单。

但在实际工作中,常常需要同时考察3个或3个以上的试验因素,若进行全面试验,试验的规模很大,由于时间和成本的限制我们不可能进行全面试验,但是具体挑其中的哪些测试用例进行测试我们心里拿不准,总担心不做不挑选的那些测试用例会遗漏一些严重缺陷。

为了有效的、合理地减少测试的工时与费用,我们利用正交试验法来设计测试用例。

正交试验法就是安排多因素试验、寻求最优水平组合的一种高效率的试验设计方法。

我们用测试实例来进行说明使用正交试验法设计测试用例的好处。

测试需求:某所大学通信系共2个班级,刚考完某一门课程,想通过“性别”、“班级”和“成绩”这三个查询条件对通信系这门课程的成绩分布,男女比例或班级比例进行人员查询: 根据“性别”=“男,女”进行查询 根据“班级”=“1班,2班”查询 根据“成绩”=“及格,不及格”查询按照传统设计——全部测试分析上述测试需求,有3个被测元素,被测元素我们称为因素,每个因素有两个取值,我们称之为水平值,所以全部测试用例个数是2*2*2=8,参见下表序号性别班级成绩1女1班及格2女1班不及格3女2班及格4女2班不及格5男1班及格6男1班不及格7男2班及格8男2班不及格利用正交表设计测试用例,我们得到的测试用例个数是n=3*(2-1)+1=4,对于三因素两水平的刚好有L4(23)的正交表可以套用,于是用正交表试验法得出4个测试用例如下:序号性别班级成绩1女1班及格2女2班不及格3男1班不及格4男2班及格根据实际需要可以在用正交试验法设计用例的基础上补充一些测试用例。

实验设计方法-正交法实验法

实验设计方法-正交法实验法

实验设计方法—正交实验法概述正交实验法就是利用排列整齐的表-正交表来对试验进行整体设计、综合比拟、统计分析,实现通过少数的实验次数找到较好的生产条件,以到达最高生产工艺效果。

正交表能够在因素变化范围内均衡抽样,使每次试验都具有较强的代表性,由于正交表具备均衡分散的特点,保证了全面实验的某些要求,这些试验往往能够较好或更好的到达实验的目的。

正交实验设计包括两局部内容:第一,是怎样安排实验;第二,是怎样分析实验结果。

正交试验设计法的根本思想正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行数据分析的一种方法。

它简单易行,计算表格化,使用者能够迅速掌握。

下边通过一个例子来说明正交试验设计法的根本想法。

[例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反响温度(A),反响时间(B),用碱量(C),并确定了它们的试验范围:A:80-90℃B:90-150分钟C:5-7%试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。

试制定试验方案。

这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平:A:Al=80℃,A2=85℃,A3=90℃B:Bl=90分,B2=120分,B3=150分C:Cl=5%,C2=6%,C3=7%当然,在正交试验设计中,因子可以是定量的,也可以是定性的。

而定量因子各水平间的距离可以相等,也可以不相等。

这个三因子三水平的条件试验,通常有两种试验进行方法:(Ⅰ)取三因子所有水平之间的组合,即AlBlC1,A1BlC2,A1B2C1,……,A3B3C3,共有33=27次试验。

用图表示就是图1 立方体的27个节点。

这种试验法叫做全面试验法。

全面试验对各因子与指标间的关系剖析得比拟清楚。

但试验次数太多。

特别是当因子数目多,每个因子的水平数目也多时。

试验量大得惊人。

简易正交试验设计方法【共46张PPT】

简易正交试验设计方法【共46张PPT】
最好能使用一种叫做随机化的方法。所谓随机化就
是采用抽签或者查随机数值表的办法,来决定排列
的顺序。
(3)试验进行的次序没必要完全按照正交表上试验号码
的顺序。为减少试验中由于先后实验操作熟练的程度不
匀带来的误差干扰,理论上推荐用抽签的办法来决定试
验的次序。 ③可用相应的极差分析方法、方差分析方法、回归分析方法等对试验结果进行分析,引出许多有价值的结论。
表3 L 9(3 4)表头设计方案
列号
1
2
3
4
1
T
p
m

方2

T
p
m
案3
m

T
p
4
P
m

T
四、正交试验的操作方法
(1)分区组。对于一批试验,如果要使用几台不同的 机器,或要使用几种原料来进行,为了防止机器或原 料的不同而带来误差,从而干扰试验的分析,可在开 始做实验之前,用L表中未排因素和交互作用的一个 空白列来安排机器或原料。
图2 简单比较法方案
固定T1和m2,改变p的三次实验如图2(2)
所示,发现p=p3时的实验效果最好,因 此认为因素p应取p3水平。
固定p3和m2,改变T 的三次实验如图2 (3)所示,发现因素T 宜取T2水平。
因此可以引出结论:为提高合格产品的
产量,最适宜的操作条件为T2p3m2。与
全面搭配法方案相比,简单比较法方案的
标按某种规律发生变化的那些原因。如例1的温度、压 力、碱的用量。
水平:指试验中因素所处的具体状态或情况,又称为等 级。如例1的温度有3个水平。温度用T表示,下标1、2、 3表示因素的不同水平,分别记为T1、T2、T3。

正交试验设计的基本程序和步骤

正交试验设计的基本程序和步骤

正交试验设计的基本程序和步骤1、前言正交试验设计(Orthogonal experimental design,OED)是一种重要的统计学方法,它可以有效地降低试验次数和成本,并且在较短时间内获得较为全面的试验结果。

在实际的工程应用中,正交试验设计被广泛地应用于产品设计、工艺优化、性能分析等方面。

在本文中,将分析正交试验设计的基本程序和步骤,以便读者更好地了解和应用它。

2、正交试验设计的基本概念和目的正交试验设计是一种实验设计方法,它的核心思想是在尽量少的试验次数内,获得尽量全面的试验结果。

正交试验设计的目的是确定试验因素对试验结果的影响关系,以便在最短的时间内找到最优的试验方案。

在正交试验设计中,试验因素是指影响试验结果的因素,它包括五个要素,即A(B)、B(C)、C(A)、D(E)、E(D),其中ABC是三因素正交设计,DE是两因素正交设计。

试验因素水平是指了试验因素的取值,例如低水平(-1)和高水平(1)。

3、正交试验设计的基本步骤(1)确定试验因素和水平在正交试验设计中,首先需要明确试验的主要因素,以及试验因素的水平。

在实际的试验中,因素的数量和水平的设置应该根据具体试验问题来确定,同时,要注意试验因素个数的控制,以避免试验运行过多。

(2)构建试验方案矩阵试验方案矩阵是正交设计的核心,它是一种特殊的矩阵,将试验因素和水平按照一定的规则排列组合。

在构建试验方案矩阵时,需要考虑多个因素对试验结果的影响,以避免试验设计的偏差。

(3)实施试验方案并收集数据在实际的试验中,需要根据试验方案进行试验并收集数据。

在试验过程中要注意严格的试验控制和数据收集,以避免实验结果的不准确性。

(4)数据分析数据分析是正交试验设计的关键步骤,通过数据分析可以确定试验因素的影响关系,并找到最优的试验方案。

数据分析的过程一般包括方差分析、回归分析等统计学方法。

(5)确定优化方案根据数据分析结果,确定试验因素的优化方案,找到最优的试验方案。

如何进行正交实验

如何进行正交实验

谈如何进行正交试验设计刘先龙2013年7月16日现今,面对企业对产品要求的愈发提高,产品的创新与改进成为企业在行业内竞争的一把亮剑。

如何从行业内上数家企业中抢占先机,如何尽快的完善产品质量,如何减少实验过程中人材物的投入,这就需要通过试验设计来完成。

一个产品的产生与完善,是工作者投入大量的精力,不断的徘徊于成败间最终完成的,而这一过程中往往遇到试验次数太多的问题,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验,因此就出现了分式析因设计,但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。

由此,日本著名统计学家田口玄一将正交试验设计引入企业,并将水平组合制成正交表,方便了该方法在企业中的广泛运用。

正交试验设计是分式析因设计的主要方法,是一种高效率、快速、经济的实验设计方法。

它是根据正交性从多因素多水平的全面试验中挑选出部分有代表性的点进行试验,这些点需具备“均匀分散,齐整可比”的特点。

与独立重复试验(全面性试验)不同,正交试验设计通过理论计算、系统分析合理安排试验而大大简化试验,解决了全面性试验盲目性大、耗时耗力、操作性差等缺点。

在正交试验过程中,最关键的就是正交表的使用。

正交表是一整套规则的设计表格,是正交试验设计用来安排试验因素和水平数并分析试验结果的基本工具,符号为Ln(r m):L为正交符号(latin的缩写),n代表总试验数,r代表水平数(同一因素考察量),m代表列数(试验考察因素)。

为方便试验人员使用,统计学家已构造了部分常用正交表,试验者只需根据试验相关考虑因素选择适当的正交表即可。

正交表选择原则包括第一:观察水平数:各因素水平数相同则选用Ln(rm),若各因素水平数不同,则选用混合水平表Ln(s×rm)。

第二:每一个交互作用在正交表中应占一列或二列。

要看所选的正交表是否足够大,能否容纳得下所考虑的因素和交互作用。

正交实验法详解

正交实验法详解

正交实验法的由来一、正交表的由来拉丁方名称的由来古希腊是一个多民族的国家,国王在检阅臣民时要求每个方队中每行有一个民族代表,每列也要有一个民族的代表。

数学家在设计方阵时,以每一个拉丁字母表示一个民族,所以设计的方阵称为拉丁方。

什么是n阶拉丁方?用n个不同的拉丁字母排成一个n阶方阵(n<26 ),如果每行的n个字母均不相同,每列的n个字母均不相同,则称这种方阵为n*n拉丁方或n阶拉丁方。

每个字母在任一行、任一列中只出现一次。

什么是正交拉丁方?设有两个n阶的拉丁方,如果将它们叠合在一起,恰好出现n2个不同的有序数对,则称为这两个拉丁方为互相正交的拉丁方,简称正交拉丁方。

例如:3阶拉丁方(图1)用数字替代拉丁字母:(图2)二、正交实验法正交试验设计(Orthogonal experimental design)是研究多因素多水平的又一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验设计是分式析因设计的主要方法。

是一种高效率、快速、经济的实验设计方法。

日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。

例如作一个三因素三水平的实验,按全面实验要求,须进行33=27种组合的实验,且尚未考虑每一组合的重复数。

若按L9(33) 正交表按排实验,只需作9次,按L18(37) 正交表进行18次实验,显然大大减少了工作量。

因而正交实验设计在很多领域的研究中已经得到广泛应用。

利用因果图来设计测试用例时, 作为输入条件的原因与输出结果之间的因果关系,有时很难从软件需求规格说明中得到。

往往因果关系非常庞大,以至于据此因果图而得到的测试用例数目多的惊人,给软件测试带来沉重的负担,为了有效地,合理地减少测试的工时与费用,可利用正交实验设计方法进行测试用例的设计。

正交实验设计方法:依据Galois理论,从大量的(实验)数据(测试例)中挑选适量的、有代表性的点(例),从而合理地安排实验(测试)的一种科学实验设计方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

退 出
1.3.2.2 代表性
一方面: (1)任一列的各水平都出现,使得部 分试验中包括了所有因素的所有水平; (2)任两列的所有水平组合都出现, 使任意两因素间的试验组合为全面试验。 另一方面:由于正交表的正交性,正交试验的试 验点必然均衡地分布在全面试验点中,具有很强 的代表性。因此,部分试验寻找的最优条件与全 面试验所找的最优条件,应有一致的趋势。
例如,要考察增稠剂用量、pH值和杀菌温度对豆奶稳
定性的影响。每个因素设置3个水平进行试验 。 A因素是增稠剂用量,设A1、A2、A3 3个水平;B因 素是pH值,设B1、B2、B3 3个水平;C因素为杀菌温度, 设C1、C2、C3 3个水平。这是一个3因素3水平的试验,各
因素的水平之间全部可能组合有27种 。
表10-1
上一张 下一张 主 页
退 出
图10-1
3 因 素 3 水 平 的 全 面试验水平组合数为33=27, 4 因素3水平的全面试验水平组合数为34=81 ,5因素3 水平的全面试验水平组合数为35=243,这在科学试验 中是有可能做不到的。
上一张 下一张 主 页 退 出
正交设计就是从选优区全面试验点(水平 组合)中挑选出有代表性的部分试验点(水平
全面试验:可以分析各因素的效应 ,交互作用,也可 选出最优水平组合。但全面试验包含的水平组合数较多, 工作量大 ,在有些情况下无法完成 。 若试验的主要目的是寻求最优水平组合,则 可利用
正交表来设计安排试验。
正交试验设计的基本特点是:用部分试验 来代替全面试验,通过对部分试验结果的分析, 了解全面试验的情况。
上一张 下一张 主 页 退 出
1 正交试验设计的概念及原理
1.1 正交试验设计的基本概念
正交试验设计是利用正交表来安排与分 析多因素试验的一种设计方法。它是由试 验因素的全部水平组合中,挑选部分有代
表性的水平组合进行试验的,通过对这部
分试验结果的分析了解全面试验的情况,
找出最优的水平组合。
上一张 下一张 主 页 退 出
代表正交表;L右下角的数字“8”表示有8行 ,用这张 正交表安排试验包含8个处理(水平组合) ;括号内的底 数“2” 表示因素的水平数,括号内2的指数“7”表示 有7列 ,用这张正交表最多可以安排7个2水平因素。
上一张 下一张 主 页 退 出
表10-2
上一张 下一张 主 页
退 出
常用的正交表已由数学工作者制定出来,供进行 正交设计时选用。2水平正交表除L8(27)外,还有L4(23)、 L16(215) 等 ; 3 水 平 正 交 表 有 L9(34) 、 L27(213)…… 等 (详见附表14及有关参考书)。 1.3.2 正交表的基本性质
第十章 正交试验设计
对于单因素或两因素试验,因其因素少 ,试验 的设计 、实施与分析都比较简单 。但在实际 工作中 ,常常需要同时考察 3个或3个以上的 试验因素 ,若进行全面试验 ,则试验的规模 将很大 ,往往因试验条件的限制而难于实施 。 正交试验设计就是安排多因素试验 、寻求最优 水平组合 的一种高效率试验设计方法。
验点;在立方体的每条线上也恰有一个试验点。
9个试验点均衡地分布于整个立方体内 ,有很强
的代表性 , 能 够比较全面地反映选优区内的基本情 况。
上一张 下一张 主 页 退 出
1.3 正交表及其基本性质
1.3.1 正交表
由于正交设计安排试验和分析试验结果都要用正
交表,因此,我们先对正交表作一介绍。
表10-2是一张正交表,记号为L8(27),其中“L”
退 出
上一张 下一张 主 页
上述选择 ,保证了A因素的每个水平与B因素、C
因素的各个水平在试验中各搭配一次 。对于A、B、C 3个因素来说 , 是在27个全面试验点中选择9个试验 点 ,仅 是全面试验的 三分之一。 从图10-1中可以看到 ,9个试验点在选优区中分
布是均衡的,在立方体的每个平面上 ,都恰是3个试
正因为正交试验是用部分试验来代替全面
试验的,它不可能像全面试验那样时,
有可能出现交互作用的混杂。虽然正交试验设
计有上述不足,但它能通过部分试验找到最优
水平组合 ,因 而 很 受实际工作者青睐。
上一张 下一张 主 页 退 出
如对于上述3因素3水平试验,若不考虑交互作用, 可利用正交表 L9(34)安排,试验方案仅包含 9个水平组 合,就能反映试验方案包含 27个水平组合的全面试验 的情况,找出最佳的生产条件。
组合)来进行试验。图 10-1 中标有试验号的九
个“ (·)”,就是利用正交表 L9(34) 从 27个试验点
中挑选出来的9个试验点。即:
(1)A1B1C1 (2)A2B1C2 (3)A3B1C3
(4)A1B2C2
(7)A1B3C3
(5)A2B2C3
(8)A2B3C1
(6)A3B2C1
(9)A3B3C2
1.3.2.1 正交性
(1)任一列中,各水平都出现,且出现的次数相等 例如L8(27)中不同数字只有1和2,它们各出现4次; L9(34)中不同数字有1、2和3,它们各出现3次 。
上一张 下一张 主 页
退 出
(2)任两列之间各种不同水平的所有可能组合 都出现,且对出现的次数相等
例如 L8(27)中(1, 1), (1, 2), (2, 1), (2, 2)各出现两
1.2 正交试验设计的基本原理
在试验安排中 ,每个因素在研究的范围内选几个 水平,就好比在选优区内打上网格 ,如果网上的每个 点都做试验,就是全面试验。如上例中,3个因素的选 优区可以用一个立方体表示(图10-1),3个因素各取 3个水平,把立方体划分成27个格点,反映在 图10-1 上就是立方体内的27个“.”。若27个网格点都试验, 就是全面试验,其试验方案如表10-1所示。
次;L9(34) 中 (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2,
3), (3, 1), (3, 2), (3, 3)各出现1次。即每个因素的一个 水平与另一因素的各个水平所有可能组合次数相等, 表明任意两列各个数字之间的搭配是均匀的。
上一张 下一张 主 页
相关文档
最新文档