【新华东师大版】九年级数学上册:第25章《概率初步》导学案合集(含答案)
新华师大版数学九年级上册优秀导学案:第25章《随机事件的概率》(第3课时)频率及其概率
频率及其概率
一、学习目标
进一步体会理论分析与重复试验结果的一致性。
二、学习重点
用理论分析的方法预测结果。
三、自主预习
仔细阅读教材141-147,完成下列各题。
1.认真理解问题2中树状图是如何画出来的,并“先两个正面,再一个反面”和“两个正
面,一个反面”一样吗?
2.回答142-143页中“问题3”中的“思考”。
3.完成书中问题4。
四、合作探究
实验:两位同学之间进行“石头”、“剪刀”、“布”的游戏,并将实验数据记录下表中。
(表格可由同学们自行设计)
11
由实验中统计出数据,完成填空:平均______次中有_______次双方不分胜负,经过十八次实验,估计这个概率是________. 这个估计值与其他小组分析得到的概率值_________。
结论:
1.通过重复试验用频率估计概率,必须要求:。
2.在相同的条件下,实验次数越多,就越可能,但是不同的小组实验所得的估计值也不一定相同。
五、巩固反馈(当堂检测)
1.教材147页课后习题。
2.在口袋装有两个不同编号的白球,两个不同编号的黑球(这四球的形状、大小、质量都相同),从中任取两球,恰好颜色相同,请预测可能会出现的情况。
2016年秋九年级数学上册 第25章 随机事件的概率 概率及其意义导学案 (新版)华东师大版
概率及其意义【学习目标】1.理解概率的意义;2.知道稳定时的频率值可以估计为概率值;3.培养动手、动脑的能力及合作交流的意识.【学习重点】理解概率的定义及会用分析法计算简单事件发生的概率.【学习难点】理解概率的定义及其意义.情景导入 生成问题周末市体育场有一场精彩的篮球比赛,我手中有一张球票,小强和小明都是班里的篮球迷,两人都想去,我很为难,真不知道该把球票给谁.请大家想个办法来解决把球票给谁. 学生:抓阄、抽签、猜拳、投硬币等等.我对同学的较好想法给予肯定.如抓阄、投硬币.追问:为什么要用抓阄、投硬币的方法呢?因为这样做公平,能保证小强与小明得到球票的可能性一样大.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还是“反面朝上”,但同学很容易感觉到或猜测到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大. 自学互研 生成能力知识模块 概率的意义阅读教材P 136~141的内容.1.抛掷一枚硬币,出现正面朝上的机会(可能性)有多大?出现反面朝上的可能性有多大?2.投掷一枚骰子,出现“6”朝上的机会是多大?我们知道,抛一枚硬币“出现正面”与“出现反面”的可能性是一样的,可能性均为50%.把表示一个事件发生的可能性大小的这个数叫做概率,如抛掷一枚硬币“出现反面”的概率为12,可记为P(出现反面)=12. 投掷一枚骰子,六个面朝上的机会相同,所以出现“6”朝上的概率为16,记为P(掷得“6”)=16.1.如何求出某个事件发生的机会大小?1它的意思:当实验的次数很大时,平均每抛6次有一次掷得“6”.范例:班里有20位女同学和22位男同学,班上每位同学的名字都被分别写在一张小纸条上,放入一个盒中搅匀,如果老师随机地从盒中取出一张纸条,那么抽到男同学名字的概率大还是抽到女同学名字的概率大? 解:P(抽到男同学的名字)=2220+22=1121,P(抽到女同学的名字)=2020+22=1021.∵1121>1021,∴抽到男同学名字的概率大.仿例1:一个布袋中放着8个红球和16个黑球,这两种球除了颜色以外没有任何其他区别,布袋中的球已经搅匀,从布袋中任取1个球,取出黑球与取出红球的概率分别是多少?解:P(取出黑球)=168+16=23,P(取出红球)=88+16=13.∴取出黑球的概率是23,取出红球的概率是13. 仿例2:甲袋中放着22个红球和8个黑球,乙袋中放着200个红球,80个黑球和10个白球.三种球除了颜色以外没有任何其他区别.两袋中的球都已经各自搅匀,从袋中任取1个球,如果你想取出1个黑球,选哪个袋成功的机会大呢?解:在甲袋中,P(取出黑球)=822+8=415;在乙袋中,P(取出黑球)=80200+80+10=829.∵829>415,∴选乙袋成功的机会大.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块 概率的意义检测反馈 达成目标1.下列说法正确的是( D ) A .“明天降雨的概率是80%”表示明天有80%的时间降雨B .“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有一次出现正面朝上C .“彩票中奖的概率是1%”表示每买100张彩票一定会中奖D .抛一枚正方体骰子,朝上面的数为奇数的概率是0.5,表示如果这个骰子抛很多次,那么平均每2次就有1次出现朝上面的数为奇数2.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率是__12__. 3.有6张规格、质地相同的卡片,它们的背面完全相同,正面分别标有数字-1,π,3.1415926,0.4,16,227,从中任意抽取一张,抽到无理数的概率是__16__. 课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
九年级数学上册第25章随机事件的概率25.2随机事件的概率25.2.4列举所有机会均等的结果导学案
九年级数学上册第25章随机事件的概率25.2 随机事件的概率25.2.4 列举所有机会均等的结果导学案(无答案)(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第25章随机事件的概率25.2 随机事件的概率25.2.4 列举所有机会均等的结果导学案(无答案)(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第25章随机事件的概率25.2 随机事件的概率25.2.4 列举所有机会均等的结果导学案(无答案)(新版)华东师大版的全部内容。
25。
2。
4 列举所有机会均等的结果【学习目标】会用树状图或列表法求复杂情况下随机事件是概率【学习重难点】会用树状图或列表法求复杂情况下随机事件是概率【学习过程】一、课前准备1.什么是概率?,就叫这个事件的概率。
2.计算概率关键要注意两点:一是要清楚我们所关注的是哪个或哪些结果(m);二是要清楚所有机会均等的结果(n)。
3.概率的计算方法:P=二、学习新知自主学习:例4、抛掷一枚普通的硬币3次.有人说连续掷出三个正面和先掷出两个正面再掷出一个反面的概率是一样的.你同意吗?在分析这一问题的过程中,我们采用了画图的方法.这幅图好像一棵倒立的树,因此我们常把它称为树状图,也称树形图、树图.它可以帮助我们分析问题,而且可以避免重复和遗漏,既直观又条理分明.思考有的同学认为:抛三枚普通硬币,硬币落地后只可能出现4种情况:(1) 全是正面;(2)两正一反;(3)两反一正;(4) 全是反面.因此这四个事件出现的概率相等.你同意这种说法吗?为什么?问题5、口袋中装有1个红球和2个白球,搅匀后从中摸出1个球,会出现哪些可能的结果?甲说,摸出的不是红球就是白球,因此摸出红球和摸出白球这两个事件是等可能的.乙说,如果给小球编号,就可以说:摸出红球,摸出白1球,摸出白2球,这三个事件是等可能的.你认为哪种说法比较有理呢? ,如果将摸出的第一个球放回搅匀再摸出第二个球,两次都摸到的球有三个结果(1)都是红球(2)都是白球(3)一红一白这三个事件发生的概率相等吗?为什么?问题6掷两枚普通的正六面体骰子,所得点数之积有多少种可能?点数之积为多少的概率最大,其数值是多少?问题7 “石头、剪刀、布”是一个广为流传的游戏,游戏时甲乙双方每次做“石头”、“剪刀"、“布”三种手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头",同种手势不分胜负须继续比赛.假定甲乙两人每次都是等可能地做这三种手势,那么一次比赛时两人做同种手势(即不分胜负)的概率是多少?实例分析:例4:抛掷一枚普通的硬币3次.有人说连续掷出三个正面和先掷出两个正面再掷出一个反面的概率是一样的.你同意吗?【随堂练习】1。
初中数学九年级上册《25.9 概率初步》导学案
第二十五章概率初步年级:九年级内容:25.4键盘上字母的排列规律课型:新授学习目标:1.知道键盘上的字母排列,既考虑手指打字的规律,又要考虑各键的使用概率。
2.了结概率问题在生活中的应用。
学习重点:键盘各键是按什么规律排列的。
学习难点:理论联系实际思想的形式。
学习过程:一.学前准备1.自学课本,写出内容提要。
2.回答:(1)计算机或打字机的键盘的英文字母表顺序从A依次排列到Z吗?(2)空格键为什么设计在键盘的下方中央的位置?二.自学,合作探究1.小组合作(1)通常的英文书面表达中:各字母出现的概率各是多少,那些字母出现的概率较大,制成下表:(2)空格键为什么设在下方中央位置?三、应用探究1、在第一次世界大战中,士兵们流行着这样一种想法:躲在新弹坑里比躲在旧弹坑里更安全。
他们的理由是炮弹不可能在很短的时间里两次落在同点。
你认为这种想法对吗?2、我们都知道生男生女的概率都是0.5,有一位妇女一连生了6个女孩,她认为下一个生男的可能性很大,必定超过0.5。
你认为这位妇女的想法对吗?四、学习体会1、键盘上字母排列与概率之间有什么关系?2、概率在现实生活中应用的广泛性。
五、检测提高1、将4根颜色一样的细绳握在手中,只露出头和尾,另一位同学在露出的头尾中各选一根,放开手会出现什么情况?同根的概率是多少?2、杨华和张红用5张同样规格的硬纸片做拼图游戏,正面如图所示,背面完全一样,将它们背当两张硬纸片上的图形可以拼成电灯或小人时,杨华得1分;1分;房子小山问题:游戏规则对双方公平吗?请说明理由,若你认为不公平怎样修改游戏规则才能对双方公平?数学选择题解题技巧1、排除法。
是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。
排除法是解选择题的间接方法,也是选择题的常用方法。
2、特殊值法。
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
【华东师大版】九年级上册:第25章《随机事件的概率》(第1-4课时)导学案(全集)
【华东师大版】九年级上册:第25章《随机事件的概率》(第1-4课时)导学案(全集)在重复试验中观察不确定现象课型一、学习目标获得“在相同实验条件下,随着实验次数的增大,随机事件发生的频率会逐渐趋于稳定”的认识,体会随机事件中所隐含的确定性内涵。
二、学习重点通过大量实验,体会随着重复实验次数的增大,事件发生的频率将呈现逐渐稳定的趋势,可以由此来预测机会的大小。
三、自主预习仔细阅读教材126页至127页,回答下列问题。
1.确定事件包括和,它们发生的可能性分别是和;随机事件是指:。
2.你买一张彩票中特等奖是事件。
3.投掷一枚骰子,正好是“6”的可能性。
4.频率= ÷。
四、合作探究实验1:“抛一枚硬币”游戏这是一个不确定事件,那么不确定事件是否就无规律可寻了呢?下面我们就通过实验探索不确定现象背后隐含的规律:(2)利用表格中的频率绘制折线统计图。
(3)出现反面的频数和频率怎么求?(4)你发现了什么规律。
读一读:书128-129小结:当实验次数越多,“出现正面”的频率在0.5附近波动。
(体会随机事件中所隐含的确定性内涵问题)实验2:抛“两枚硬币”游戏(1)预测一下“出现两个正面”和“出现一正一反”的频率?(2)抛掷两枚硬币,看看当抛掷次数很多以后.“出现两个正面”和“出现一正一反”这两30(3)制作折线统计图。
(4)你发现了什么规律?和你的预测相符吗?(6)在实验过程中有哪些问题需要注意?完成书中129思考题。
五、巩固反馈(当堂检测)1.教材132页课后习题。
2.在一个装有 2 个红球,2 个白球的袋子里任意摸出一个球,摸出红球的可能性为__。
3.不可能发生是指事件发生的机会为_____。
4.“明天会下雨”,这个事件是_____事件。
(填“确定”或“不确定”)5.下列事件是必然发生的是()A、明天是星期一B、十五的月亮象细钩C、早上太阳从东方升起D、上街遇上朋友6.写出一个必然事件:_______________。
九年级数学上册25.2随机事件的概率1 精品导学案 华东师大版9
25.2随机事件的概率(1)学习目标:1.了解频率与概率的关系,进一步提高用数学知识解决实际问题的能力。
2.初步学理由频率对一个简单的问题的概率进行估计。
3.提高学生动手能力,加强集体合作意识,丰富知识面,激发学习兴趣。
学习重难点:重点:通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率。
难点:理解频率与概率的关系。
学习过程:一、提出问题1.在硬币还未抛出前,猜想当硬币抛出后是正面朝上,还是反面朝上?为什么?假如你已经抛掷了1000次,你能否预测到第l001次抛掷的结果?2.假如你已经抛掷了400次,你能否猜测出“出现正面”的频数是多少?频率是多少?800次呢?随着我们抛掷一枚硬币的次数逐渐增多,你猜想有什么规律?3.当我们抛掷两枚硬币时,猜一猜当抛掷次数很多以后,“出现正面”和“出现一正一反”这两个不确定事件的频率是多少?是否比较稳定?1.通过实验,你发现了随机事件在每次实验中发生与否具有什么特点?2.保持实验条件不变,随机事件的发生频率会表现出什么规律?四、巩固练习1.某林业部门要考察某种幼树的移植成活率,制作了下面的根据统计表,请完成表中的空从表中发现,幼树移植成活的频率在______左右摆动,并且随着统计数值的增加,这规律越明显,所以幼树移植成活的概率为:_______________.根据上表:柑橘损坏的频率在______ 常数左右摆动,并且随统计量的增加逐渐明显。
因此可以估计柑橘损坏率为:________;则柑橘完好的概率为:________。
五、课堂小结:(学生畅所欲言)六、达标检测:一、选一选(请将唯一正确答案的代号填入题后的括号内)1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为 ( )A.90个 B.24个 C.70个 D.32个2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为().A.11000B.1200C.12D.153.下列说法正确的是( ).A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B .为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C .彩票中奖的机会是1%,买100张一定会中奖;D .中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论. 4.小亮把全班50名同学的期中数学测试成绩,绘成如图所示的条形图,其中从左起第一、二、三、四个小长方形高的比是1∶3∶5∶1.从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是( ).A .110、110 B .110、12 C .12、110 D .12、125.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ).A .10粒B .160粒C . 450粒D .500粒6.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学的概率是53,这个53的含义是( ). A .只发出5份调查卷,其中三份是喜欢足球的答卷; B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8; C .在答卷中,喜欢足球的答卷占总答卷的53; D .在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为51,四位同学分别采用了下列装法,你认为他们中装错的是( ). A .口袋中装入10个小球,其中只有两个红球;B .装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;C .装入红球5个,白球13个,黑球2个;D .装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5, 5,2,5,6,5,5,0,6,5,6,5,2,5,0.分)假如老师随机问一个同学的零用钱,老师最有可能得到的回答是().A. 2元 B.5元 C.6元 D.0元二、填一填9.同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:由上表结果,计算得出现“2个正面”、“1个正面”和“没有正面”这3种结果的频率分别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.10.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上从中任选一头猪,质量在65kg以上的概率是___________.11.为配和新课程的实施,某市举行了“应用与创新”知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数)。
华师版九年级数学上册(HS)导学案 第25章 随机事件的概率 列举所有机会均等的结果
第25章随机事件的概率25.2 随机事件的概率3.列举所有机会均等的结果学习目标:1.会用列表法和树状图法求随机事件的概率(重点).2.当问题较复杂时,简洁的用列表或树状图法求出所有可能结果(难点).自主学习一、知识链接1.一般的当试验结果是有限个,而且各种结果发生的可能性相等时,怎么得出事件发生的概率?2.当试验的所有可能结果是无限个,或者各种可能结果发生的可能性不相等时,常常是怎么得出事件发生的概率的?合作探究一、探究过程探究点:用树状图或列表法求概率【类型一】摸球问题 【典例精析】一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )A.14B.13C.12D.34解析:先列表列举出所有可能的结果,再根据概率计算公式计算.列表分析如下:由列表可知,两次摸出小球的号码之积共有4种等可能的情况,号码之积为偶数共有3种:(1,2),(2,1),(2, 2). 【针对训练】1.在一个不透明的袋子里装有5个完全相同的乒乓球,把它们分别标号为1,2,3,4,5,从中随机摸出两个小球,标号均为单数的概率为 .【类型二】转盘问题 【典例精析】(除所标数字外)的转盘A 、B ,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?【方法总结】树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.【针对训练】2.如图,甲、乙两个转盘分别被平均分成4份与3份,每个转盘分别标有不同的数字.转动两个转盘,当转盘停止后,甲转盘指针指向的数字作为m,乙转盘指针指向的数字作为n,则为非负整数的概率为.【类型三】游戏公平性的判断【典例精析】小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树状图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利?解析:(1)设红笔为A1,A2, A3, 黑笔为B1,B2, 根据抽取过程不放回,可列表或作树状图,表示出所有可能结果;(2)根据树状图或列表得出两人所取笔颜色相同的情况,求出小明和小军获胜的概率,比较概率大小判断是否公平,概率越大对谁就有利.画树状图如下:【方法总结】用列表法或树状图法分别求出两个人获胜的概率,进行比较.若相等,则游戏对双方公平;若不相等,则谁胜的概率越大,对谁越有利.【针对训练】3.甲、乙两同学手中各有分别标注1,2,3三个数字的纸牌,甲制定了游戏规则:两人同时各出一张牌,当两纸牌上的数字之和为偶数时甲赢,奇数时乙赢.你认为此规则公平吗?并说明理由.当堂检测1.掷两枚质地均匀的硬币,则两枚硬币全部正面朝上的概率等于()A.1 B.C.0 D.2.小明将分别标有“爱”“我”“中”“华”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外都相同,每次摸球前先搅拌均匀,随机摸出一球记下汉字后放回,再随机摸出一球,两次摸出的球上的汉字能组成“中华”的概率是()A.B.C.D .3.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于7”的概率是.4.合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,求学生B坐在2号座位且C 坐3号座位的概率是.第4题图第5题图5.小明和小亮用如图所示两个转盘(每个转盘被分成四个面积相等的扇形)做游戏,转动两个转盘各一次,若两次数字之和为奇数,则小明胜,否则,小亮胜,这个游戏公平吗?答:(填“公平”或“不公平”).6.有一个可以自由旋转的圆盘,被分成面积相等的3个扇形区,分别标有数字1,2,3,另有一个不透明的口袋中装有4个完全相同的小球,分别标有数字1,2,3,4(如图所示),小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一个人转动圆盘,另一人从口袋中摸出一个小球,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用画树状图或列表的方法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由.7.现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是;(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率(请用画树状图或列表等方法求解).参考答案自主学习一、知识链接1.若事件的结果有n 种可能,记事件为A,则P (A )=n1. 2.通过统计频率估计 合作探究 一、探究过程 【典例精析】【针对训练】 1.【典例精析】解:选择A 转盘.画树状图如下:∵共有9种等可能的结果,A 大于B 的有5种情况,A 小于B 的有4种情况,∴P (A 大于B)=59,P (A 小于B)=49,∴选择A 转盘.【针对训练】 2. 【典例精析】解:(1)根据题意,设红笔为A 1,A 2, A 3, 黑笔为B 1,B 2, 作树状图如下:一共有20种可能.(2)从树状图可以看出,两次抽取笔的颜色相同的有8种情况,则小明获胜的概率为820=25,小军获胜的概率大小为35,显然本游戏规则不公平,对小军有利.【针对训练】3. 不公平.因为出现偶数的概率为,而出现奇数的概率为.当堂检测1.D2.B3.3615 4. 5. 公平6.解:(1)画树状图如下:∵共有12种等可能的结果,所指数字之和小于4的有3种情况,∴P(和小于4)==,∴小颖参加比赛的概率为.(2)不公平,∵P(和小于4)=,P(和不小于4)=.∴P(和小于4)≠P(和不小于4),∴游戏不公平.7.解:(1)(2)画树状图如图所示:由树形图可知三次传球共有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,∴篮球传到乙的手中的概率为.。
九年级数学上册第二十五章概率初步知识点归纳总结(精华版)(带答案)
九年级数学上册第二十五章概率初步知识点归纳总结(精华版)单选题1、七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,如果在此正方形中随机取一点,那么此点取自黑色部分的概率为( )A .932B .516C .38D .716答案:C分析:首先设正方形的面积,再表示出阴影部分面积,然后可得概率.解:设“东方模板”的面积为4,则阴影部分三角形面积为1,平行四边形面积为12,则点取自黑色部分的概率为:1+124=38,故选C .小提示:此题主要考查了概率,关键是表示图形的面积和阴影部分面积.2、在一个不透明的口袋中,放置3个黄球,1个红球和n 个蓝球,这些小球除颜色外其余均相同,课外兴趣小组每次摸出一个球记录下颜色后再放回,并且统计了蓝球出现的频率(如图所示),则n 的值最可能是( )A .4B .5C .6D .7 答案:C分析:根据图知,经过大量实验,蓝球出现的频率稳定在0.6附近,再根据频率公式逐项判断即可.解:根据图知,经过大量实验,蓝球出现的频率稳定在0.6附近, 则n1+3+n =0.6,当n =4时,41+3+4=0.5≠0.6,故A 不符合题意; 当n =5时,51+3+5=59≠0.6,故B 不符合题意; 当n =6时,61+3+6=0.6,故C 符合题意; 当n =7时,71+3+7=711≠0.6,故D 不符合题意;∴n 的值最可能是6, 故选:C .小提示:本题考查频数与频率,能从图中获取到蓝球出现的频率稳定在0.6附近是解答的关键.3、如图,电路连接完好,且各元件工作正常.随机闭合开关S 1,S 2,S 3中的两个,能让两个小灯泡同时发光的概率为( )A .16B .12C .23D .13答案:D分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两个小灯泡同时发光的情况,再利用概率公式求解即可求得答案. 解:画树状图得:∵共有6种等可能的结果,能让两个小灯泡同时发光的有2种情况,∴能让两个小灯泡同时发光的概率为26=13;故选:D.小提示:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.4、一只不透明的袋子中装有若干个白球和红球,共计20个,这些球除颜色外都相同.将球搅匀,每次从中随机摸出一个球,记下颜色后放回、再搅匀、再摸球,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.3,由此可估计袋子中红球的个数约为()A.6B.14C.5D.20答案:B分析:根据白球的概率可估计红球的概率,即可求解.解:红球的个数为:20×(1−0.3)=14(个),故选:B.小提示:本题考查用频率估计概率,当进行大量重复试验时,频率稳定在概率附近.5、一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回,不断重复上述过程.小明共摸了100次,其中80次摸到白球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个答案:C分析:小明共摸了100次,其中80次摸到白球,20次摸到黑球,摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.解:由题可得:3÷100−8080=12(个).所以答案是:12.小提示:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.6、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( ) A .12B .23C .16D .56答案:C分析:利用列表法或树状图即可解决.分别用r 、b 代表红色帽子、黑色帽子,用R 、B 、W 分别代表红色围巾、黑色围巾、白色围巾,列表如下:1种,根据概率公式,恰好为红色帽子和红色围巾的概率是16. 故选:C .小提示:本题考查了简单事件的概率,常用列表法或画树状图来求解.7、不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( ) A .ba+b B .ba C .aa+b D .ab 答案:A分析:根据概率公式直接求解即可. ∵共有(a +b)个球,其中红球b 个∴从中任意摸出一球,摸出红球的概率是ba+b . 故选A .小提示:本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.8、如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是( )A .38B .12C .58D .1 答案:A分析:根据阴影部分的面积所占比例得出概率即可. 解:由图知,阴影部分的面积占图案面积的38,即这个点取在阴影部分的概率是38,故选:A .小提示:本题主要考查几何概率的知识,熟练根据几何图形的面积得出概率是解题的关键. 9、如图,若随机向8×8正方形网格内投针,则针尖落在阴影部分的概率为( )A .12B .58C .9π64D .2564 答案:D分析:利用割补法求得阴影面积,再根据几何概率计算求值即可; 解:将上边和左边的弓形面积补到下边和右边可得阴影面积为5×5=25, 该图形总面积为8×8=64, ∴针尖落在阴影部分的概率=2564, 故选: D .小提示:本题考查了几何概率:事件的概率可以用部分线段的长度(部分区域的面积)和整条线段的长度(整个区域的面积)的比来表示.10、如图是一个游戏转盘.自由转动转盘,当转盘停止转动后,指针落在数字1,2,3,4所示区域内可能性最大的是( )A.1号B.2号C.3号D.4号答案:C分析:根据圆周角可得1区域的圆心角度数,然后计算各个区域的可能性,比较大小即可得.解:1区域的圆心角为:360°−50°−125°−65°=120°,∴落在1区域的可能性为:120°360°=13,落在2区域的可能性为:50°360°=536,落在3区域的可能性为:125°360°=2572,落在4区域的可能性为:65°360°=1372,∵536<1372<13<2572,∴落在3区域的可能性最大,故选:C.小提示:题目主要考查可能性的计算及大小比较,理解题意,掌握可能性的计算方法是解题关键.填空题11、一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是___________.答案:0.32分析:由题意依据大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率进行分析即可.解:一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是0.32.所以答案是:0.32.小提示:本题考查利用频率估计概率,解答本题的关键是掌握频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.12、如图,数学活动小组自制了一个飞镖盘.若向飞镖盘内投掷飞镖(落在边界线重新投掷),则飞镖落在阴影区域的概率是_____.答案:13分析:利用阴影部分面积除以总面积=投掷在阴影区域的概率,进而得出答案.解:由题意可得,投掷在阴影区域的概率是:39=13.所以答案是:13.小提示:此题主要考查了几何概率,求出阴影部分面积与总面积的比值是解题关键.13、疫情期间,进入学校都要进入测温通道,体温正常才可进入学校.某校有3个测温通道,分别记为A,B,C通道.学生可随机选取其中的一个通道测温进校园,某日早晨,小王和小李两位同学在进入校园时,恰好选择不同通道测温进校园的概率是_____________.答案:23分析:画树状图展示所有9种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可.画树状图为:共有9种等可能的情况,其中小王和小李从不同通道测温进校园的有6种情况,侧小王和小李两位同学在进入校园时,恰好选择不同通道测温进校园的概率是69=23,所以答案是:23.小提示:本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.14、小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面向上和一个反面向上,则小亮赢;若出现一个正面向上和两个反面向上,则小文赢.有下列说法:①小强赢的概率最小;②小文和小亮赢的概率相等;③小文赢的概率是38;④这是一个公平的游戏.其中,正确的是__________(填序号). 答案:①②③分析:利用树状图得出三人分别赢得概率,然后依次判断即可. 解:画树状图得:所以共有8种可能的情况.三个正面向上或三个反面向上的情况有2种,所以P (小强赢)=28=14;出现2个正面向上一个反面向上的情况有3种,所以P (小亮赢)=38;出现一个正面向上2个反面向上的情况有3种,,所以P (小文赢)=38, ∵14<38,∴小强赢的概率最小,①正确; 小亮和小文赢的概率均为38,②正确; 小文赢的概率为38,③正确;三个人赢的概率不一样,这个游戏不公平,④错误; 所以答案是:①②③.小提示:题目主要考查利用树状图求概率,熟练掌握运用树状图求概率的方法是解题关键.15、有三张完全一样正面分别写有字母A ,B ,C 的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是_________. 答案:13分析:根据题意列出图表得出所有等情况数和抽取的两张卡片上的字母相同的情况数,然后根据概率公式即可得出答案.解:根据题意列表如下:3种情况, 所以P (抽取的两张卡片上的字母相同)=39=13.小提示:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验. 解答题16、寒冬战疫,西安常安,感谢每一位为这座城拼命的人!一个不透明的口袋里装有分别标有汉字“西”、“安”、“常”、“安”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球. (1)若从中任取一球,球上的汉字刚好是“安”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用画树状图或列表法,求出甲取出的两个球上的汉字恰能组成“西安”的概率。
华师大版初中数学九年级上册第25章随机事件的概率导学案(全章)
华师大版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!华师大初中数学和你一起共同进步学业有成!川底中学问题解决导学案年级:九年级学科:数学课型:新授时间:主备:史靖审定:闫鹤峰课题: 25.1什么是概率教师寄语: 千里之行,始于足下!一、目标导学:(知道学什么)学习目标: 1、感受理论概率的意义,知道获得概率的办法有两种:逻辑分析法和通过多次实验,用频率去估计概率。
2、理解用分析法求概率的两个关键,以及机会均等的事件。
学习重点:要能够看清所有机会均等的结果,并能指出其中你所关注的结果学习难点:要能够看清所有机会均等的结果,并能指出其中你所关注的结果二、自主学习(一)课前热身(新知识,早知道!)1、必然事件发生的可能性是_________________________,不可能事件发生的可能性是_________________________,可能事件发生的可能性是_________________________,2、“守株待兔”是_____________事件,“公鸡下蛋” 是_____________事件3、公平游戏的标准是____________________(二)课堂探究(我自信,我参与,我快乐!)1、从课本中找出概率的定义和获得概率的方法?2、说说概率和频率的联系3、投掷一枚一元硬币,出现“正面朝上”的概率是_________,可记为_______________________。
如果你投掷的是一枚骰子,出现数字为“4”的概率是_________,可记为_______________________。
4、通过学习教材表26.1.1,分析得到概率时,最关键的两点:(1)___________________________________________(2)__________________________________________15、投掷一枚骰子出现数字为“5” 的概率是,它表示什么意思?6三、合作交流(众人拾柴火焰高,小组合作智慧多)四、探究展示(一) 展示讲解(张扬个性,创新学习,让我们一起分享成功的喜悦!)(二)课堂小结(一份耕耘,一份收获,仔细梳理,收获一定不小吧!)五、巩固训练(试一试,你一定行!)1、判断题(1)某种彩票中奖的概率为1,因此买100张该种彩票一定会中奖。
九年级数学第25章《概率初步》全章导学案
随机事件(1)学习目标:通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
学习过程:一、课前准备:1. 下列问题哪些是必然发生的哪些是不可能发生的(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。
2.在一定条件下必然发生的事件,叫做;在一定条件下不可能发生的事件,叫做;在一定条件下可能发生也可能不发生的事件,叫做;二、课堂探究:例1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。
请考虑以下问题:(1)抽到的序号是0,可能吗这是什么事件(2)抽到的序号小于6,可能吗这是什么事件(3)抽到的序号是1,可能吗这是什么事件(4)你能列举与事件(3)相似的事件吗例2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗这是什么事件(2)出现的点数大于0,可能吗这是什么事件(3)出现的点数是4,可能吗这是什么事件(4)你能列举与事件(3)相似的事件吗三、巩固新知:1.下列事件是必然发生事件的是()(A)打开电视机,正在转播足球比赛(B)小麦的亩产量一定为1000公斤(C)在只装有5个红球的袋中摸出1球是红球(D)农历十五的晚上一定能看到圆月2.下列事件中是必然事件的是( )A.早晨的太阳一定从东方升起B.安阳的中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D·小红今年14岁了她一定是初中生3.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破( ) A.可能性很小B.绝对不可能C.有可能D.不太可能4.下列各语句中是必然事件的是( )A.两个分数相加和一定是整数B.两个分数相乘积一定是整数C.两个互为相反数的和为0 D.两个互为相反数的积为05.下列说法正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生6.下列事件:A.袋中有5个红球,能摸到红球B.袋中有4个红球,1个白球,能摸到红球C.袋中有2个红球,3个白球,能摸到红球D.袋中有5个白球,能摸到红球问上述事件哪些事件是必然事件哪些是随机事件哪些是不可能事件7.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。
HS华师版 初三九年级数学 上册第一学期(教学设计 教案)第25章 随机事件的概率(全章教案 分课时 含反思)
第25章随机事件的概率25.1 在重复试验中观察不确定现象1.通过对生活中各种事件的概率的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断.2.知道事件发生的可能性是有大小的.一、情境导入在一些成语中也蕴含着事件类型,例如瓮中捉鳖、拔苗助长、守株待兔、水中捞月所描述的事件分别属于什么类型事件呢?二、合作探究探究点:事件的分类【类型一】必然事件的识别下列事件是必然事件的是( )A.如果|a|=|b|,那么a=bB.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.圆的半径为3,圆外一点到圆心的距离是5,过这点引圆的切线,则切线长为4 D.三角形的内角和是360°解析:由于互为相反数的两个数绝对值也相等,因此绝对值相等的两个数可能不相等,A选项错误;平分的弦若是直径,那么两条直径互相平分,很明显,它们不一定互相垂直,B选项错误;直接利用勾股定理计算可得,C选项正确;三角形内角和等于180°,D选项错误,故选择C.方法总结:一定发生的是必然事件,一定不发生的是不可能事件,可能发生也可能不发生的是随机事件.一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是( )A.摸出的4个球中至少有一个是白球B.摸出的4个球中至少有一个球是黑球C.摸出的4个球中至少有两个是黑球D.摸出的4个球中至少有两个是白球解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件,故选B.方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的.若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件);若是不确定的,则该事件是不确定事件.【类型二】随机事件的识别下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是________.(填序号)解析:书的页码可能是奇数,也有可能是偶数,所以事件①是随机事件;100℃的气温人不能生存,所以不可能测得这样的气温,所以事件②是不可能事件,属于确定事件;骰子六个面的数字分别是1、2、3、4、5、6,因此事件③是随机事件;四边形内角和总是360°,所以事件④是必然事件,属于确定事件.故答案是:①③.【类型三】不可能事件的识别下列事件中不可能发生的是( )A.打开电视机,中央一台正在播放新闻B.我们班的同学将来会有人当选为劳动模范C.在空气中,光的传播速度比声音的传播速度快D.天上掉馅饼解析:“天上掉馅饼”这个事件一定不会发生,所以它是一个不可能事件.故选D.【类型四】判断一个事件的类型下列事件中,哪些是不可能事件?哪些是必然事件?哪些是不确定事件?(1)从一副扑克牌中任意抽出一张牌,花色是红桃;(2)在一年出生的367名学生中,至少有两个人的生日在同一天;(3)好梦成真;(4)任意买一张电影票,座位号是偶数;(5)太阳从西边升起;(6)当室外温度低于-10℃时,将一碗清水放在室外会结冰.解析:(1)一副扑克牌中,有4种花色,也就是说“抽出一张牌,花色是红桃”可能发生,也可能不发生;(2)一年最多366天,367名学生中,每天出生一个只能出生366个,还有一名同学是哪天出生,哪天至少出生2名同学,所以“一年出生的367名学生中,至少有两个人的生日在同一天”一定发生;(3)“好梦成真”只是人的一种愿望,可能会发生,也可能不发生;(4)电影票的座位号有奇数,也有偶数,即“任意买一张电影票,座位号是偶数”可能发生,也可能不发生;(5)太阳都是从东边升起,绝不会从西边升起,即“太阳从西边升起”一定不发生;(6)水在0℃就开始结冰,低于0℃一定会结冰,即当室外温度低于-10℃时“将一碗清水放在室外会结冰”一定发生.解:(5)是不可能的事件;(2)(6)是必然事件;(1)(3)(4)是不确定事件.三、板书设计教学过程中,结合生活实际,对身边事件发生的情况作出判断,分类,巩固所学概念.25.2 随机事件的概率1.概率及其意义1.知道随机事件发生的可能性是有大小的.2.理解、掌握概率的意义及计算.3.会进行简单的概率计算及应用.一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是否公平.二、合作探究探究点一:可能性的大小【类型一】可能性大小的意义的理解气象台预报“本市明天降雨可能性是80%”.对此信息,下列说法正确的是( ) A.本市明天将有80%的地区降雨B.本市明天将有80%的时间降雨C.本市明天肯定下雨D.本市明天降水的可能性比较大解析:一个事件的发生的可能性的范围在0~1,80%应该是比较大,所以“本市明天降雨可能性是80%”是指“本市明天降雨的可能性比较大”.故选D.方法总结:某事发生的可能性大小是指其发生的概率大小.【类型二】利用面积关系判断可能性大小在如图所示(A,B,C三个区域)的图形中随机撒一把豆子,豆子落在________区域的可能性最大(填A或B或C).解析:先分别算出A,B,C三部分的面积,面积最大的就是豆子落入可能性最大的.S C =π×22=4π,S B=π(42-22)=12π,S A=π(62-42)=20π,由此可见,A的面积最大,则豆子落入可能性最大,故填A.探究点二:概率【类型一】概率的简单计算小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( )A.120B.15C.14D.13解析:总共有20种情况,抽中数学题有5种可能,所以是520=14,故选择C.方法总结:等可能性事件的概率的计算公式:P(A)=nm,其中m是总的结果数,n是该事件成立包含的结果数.【类型二】利用面积求概率一儿童行走在如图所示的地板上,当他随意停下时,最终停在地板上阴影部分的概率是( )A.13B.12C.34D.23解析:观察这个图可知:阴影区域(3块)的面积占总面积(9块)的13,故其概率为13.故选A.方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目;二者的比值就是其发生的概率.三、板书设计教学过程中,强调简单的概率的计算应确定事件总数及事件A包含的数目.事件A发生的概率P(A)的大小范围是0≤P(A)≤1.2.频率与概率1.进一步理解有限等可能事件概率的意义.2.会用树状图或列表法求出一次试验中涉及多个因素时,不重复不遗漏地求出所有可能的结果,从而正确地计算问题的概率.3.理解试验次数较大时试验频率趋于稳定这一规律,能结合具体情境掌握如何用频率估计概率.一、情境导入养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?二、合作探究探究点一:用树状图或列表法分析随机事件的所有等可能结果【类型一】用树状图求概率一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.12B.14C.16D.112解析:用树状图或列表法列举出所有可能情况,然后由概率公式计算求得.画树状图(如图所示):∴两次都摸到白球的概率是212=16,故选C.【类型二】用列表法求概率从0,1,2这三个数中任取一个数作为点P的横坐标,再从剩下的两个数中任取一个数作为点P的纵坐标,则点P落在抛物线y=-x2+x+2上的概率为________.解析:用列表法列举点P坐标可能出现的所有结果数和点P落在抛物线上的结果数,然共有6种等可能结果,其中点落在抛物线上的有(2,0),(0,2),(1,2)三种,故点P 落在抛物线上的概率是36=12,故答案为12.方法总结:用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果.探究点二:用频率估计概率 【类型一】用频率估计概率掷一枚质地均匀的硬币10次,下列说法正确的是( ) A .可能有5次正面朝上 B .必有5次正面朝上C .掷2次必有1次正面朝上D .不可能10次正面朝上解析:掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是错误!,因此,平均每两次中可能有1次正面向上或有1次反面向上.选项B 、C 、D 不一定正确,选项A 正确,故选A .方法总结:随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.【类型二】推算影响频率变化的因素“六·一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是________个.解析:因为大量重复摸球实验后,摸到红球的频率逐渐稳定在0.2,说明红球大约占总数的0.2,所以球的总数为1000×0.2=200,故答案为:200.方法总结:解题的关键是知道在大量重复摸球实验后,某个事件发生的频率就接近于该事件发生的概率.概率与频率的关系是:(1)试验次数很大时,频率稳定在概率附近;(2)用频率估计概率.【类型三】频率估计概率的实际应用 为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.解析:设鱼塘中估计有x 条鱼,则5∶200=30∶x ,解得:x =1200,故答案为:1200. 方法总结:求出带标记的鱼占的百分比,运用了样本估计总体的思想.三、板书设计1.用树状图或列表法分析随机事件的所有等可能结果2.概率与频率的关系:(1)试验次数很大时,频率稳定在概率附近;(2)用频率估计概率.教学过程中,强调频率与概率的联系与区别.会用频率估计概率解决实际问题.25.3 列举所有机会均等的结果1.会用树状图或列表法在一次试验中涉及多个因素时,不重复不遗漏地列举所有可能的结果,从而正确地计算问题的概率.2.进一步提高运用分类思想解题的能力,掌握有关数学技能.一、情境导入学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则重转一次.在该游戏中乙获胜的概率是多少?二、合作探究探究点:用树状图或列表法求概率 【类型一】摸球问题一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸出一个小球,则两次摸出小球的号码之积为偶数的概率是( )A.14B.13C.12D.34解析:先列表列举出所有可能的结果,再根据概率计算公式计算.列表分析如下:3种:(1,2),(1,2),(2, 2),∴P =34,故选D.【类型二】转盘问题有两个构造完全相同(除所标数字外)的转盘A 、B ,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?解析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果.其中A 大于B 的有5种情况,A 小于B 的有4种情况,再利用概率公式即可求得答案.解:选择A 转盘.画树状图得:∵共有9种等可能的结果,A 大于B 的有5种情况,A 小于B 的有4种情况, ∴P (A 大于B )=59,P (A 小于B )=49,∴选择A 转盘.方法总结:树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.【类型三】学科间综合题如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是( )A .0.25B .0.5C .0.75D .0.95解析:先用列表法表示出所有可能的结果,再根据概率计算公式计算.列表表示所有可能的结果如下:根据上表可知共有4种等可能的结果,其中至少有一个灯泡发光的结果有3种,∴P (至少有一个灯泡发光)=34,故选择C.方法总结:求事件A 的概率,首先列举出所有可能的结果,并从中找出事件A 包含的可能结果,再根据概率公式计算.【类型四】游戏公平性的判断小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树状图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利?解析:(1)设红笔为A1,A2, A3, 黑笔为B1,B2, 根据抽取过程不放回,可列表或作树状图,表示出所有可能结果;(2)根据树状图或列表得出两人所取笔颜色相同的情况,求出小明和小军获胜的概率,比较概率大小判断是否公平,概率越大对谁就有利.解:(1)根据题意,设红笔为A1,A2, A3, 黑笔为B1,B2, 作树状图如下:一共有20种可能.(2)从树状图可以看出,两次抽取笔的颜色相同的有8种情况,则小明获胜的概率大小为820=25,小军获胜的概率大小为35,显然本游戏规则不公平,对小军有利.方法总结:用树状图法分别求出两个人获胜的概率,进行比较.若相等,则游戏对双方公平;若不相等,则谁胜的概率越大,对谁越有利.三、板书设计用树状图或列表法求概率:1.树状图:面对多步完成的事件时,通常选择树状图求概率2.列表法:对于一次实验需要分两个步骤完成的,一般用列表法.教学过程中,强调在生活、学习中的很多方面均用到概率的知识,学习概率要从身边的现象开始.。
华师大版2020-2021年九年级数学上册导学案:25.2.1 概率及其意义【含答案】
华师大版2020-2021年九年级数学上册导学案第25章随机事件的概率25.2 随机事件的概率1.概率及其意义学习目标:1.理解概率的意义(重点);2.理解等可能情形下的随机事件的概率(重点);3.在具体情境中预测概率(难点).自主学习一、知识链接1.得到一个随机事件发生机会的大小的方法有哪些?2.通过多次反复试验估计的事件发生机会的大小和理论上事件发生机会的大小有什么区别?合作探究一、要点探究探究点1:概率的定义例1 根据电视台天气预报:某市明天降雨的概率为90%,对此信息,下列几种说法中正确的是()A.该市明天一定会下雨B.该市明天有90%地区会降雨C.该市明天有90%的时间会阵雨D.该市明天下雨的可能性很大【要点归纳】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.根据概率的意义可知,概率指的是发生的可能性,不是时间和地点.【针对训练】1.小刚是一名学校足球队的队员,根据以往比赛数据统计,小刚每场比赛进球率为15%,他明天将参加一场学校足球队比赛,下面说法正确的是()A.小刚明天肯定进球B.小刚明天每射球15次必进球1次C.小刚明天有可能进球D.小刚明天一定不能进球2.下列说法:①“可能性是1%的事件在一次试验中一定不会发生”;②“某抽奖活动声称中奖率99%,小明抽一次一定会中奖”,其中不正确的是(填序号).探究点2:等可能情形下的随机事件的概率例2 袋中有3个球,2黄1白,除颜色外完全相同,随意从中抽出一个球,抽到黄球的概率是多少?那抽到白球的概率又是多少呢?【要点归纳】一般的,如果在一次试验中,含有n种可能的结果,并且这些结果发生的可能性相等,其中使事件A发生的结果有m(m≤n)种,那么事件A发生的概率为:P(A)=m/n.其中,当A是必然事件,P(A)=1;当A时不可能事件,P(A)=0;所以0≤P(A)≤1.【针对训练】3.从单词“zhongguo”中随机抽取一个字母,抽中o的概率为()A.B.C.D.4.抛掷一枚质地均匀的硬币,若抛掷99次都是正面朝上,则抛掷第100次正面朝上的概率是()A.小于B.等于C.大于D.无法确定二、课堂小结内容概率的定义一个事件发生的可能性研究一个事件的概率的途径1.凭主观经验估计概率(主观概率);2.通过多次反复试验用频率稳定值估计概率(试验概率);3.通过理论分析预测概率(理论概率).当堂检测1.下列说法中,正确的是()A.概率很小的事件不可能发生B.随机事件发生的概率为C.必然事件发生的概率是1D.投掷一枚普通硬币10次,正面朝上的次数一定为5次2.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出绿球的概率为()A.B.C.D.3.下列事件概率为1的是()A.射击运动员射击一次,命中靶心B.任意画一个三角形,其外角和是360°C.扔一枚硬币,硬币立在桌子上D.丢一个骰子,向上一面的点数为74.一枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子1次,向上一面的点数大于4的概率是.5.若质量抽检时任意抽取一件西服成品为合格品的概率为0.9,则200件西服中大约有件合格品.6.一只不透明的袋子中装有1个白球、2个黄球和3个红球,每个球除颜色外都相同,将球摇匀,从中摸出一个球.A该球是白球;B该球是黄球;C该球是红球.估计上述事件发生的可能性大小,将这些事件的序号按发生的可能性从小到大的顺序排列.7.按照事件发生概率的大小,将表示该事件的序号标在数轴适当位置:A.4月25日太阳从西边升起B.从高处抛出的物体落回到地面C.在10瓶饮料中,有2瓶已过了保质期,从中任取一瓶,恰好是已过保质期的饮料D.某小组有3名女生,2名男生,随机地指定一人为组长,恰好是女生.E.小邦制作了十张卡片,上面分别标有1-10这十个数字,从这十张卡片中随机抽取一张恰好能被3整除参考答案自主学习一、知识链接1.反复实验,可以使随机事件发生机会的大小趋于稳定.2.实际和理论值会有偏差,因为实验中会有不可控的因素,而且通过多次反复试验估计的事件发生机会的大小只是接近理论上事件发生机会的大小.合作探究二、要点探究 探究点1: 概率的定义 【典例精析】例1 D【针对训练】 1.C 2.①②例2 解:抽出的球共有3种可能的结果:黄1、黄2、白,而且这三种结果的可能性相等.若我们记抽到黄球为事件A ,抽到白球为事件B ,在三种结果中有两个结果使事件A 发生,有一个结果使事件B 发生,所以抽到黄球的概率为2/3,抽到白球的概率为1/3,即:P(A)=2/3,P(B)=1/3.【针对训练】 3.B 4.B当堂检测 1.C 2.D 3.B 4. 5. 1806.解:∵不透明的袋子中装有1个白球、2个黄球和3个红球,∴摸到白球的概率为61,摸到黄球的概率为62=31,摸到红球的概率为63=21, ∴这些事件的序号按发生的可能性从小到大的顺序排列是:A <B <C .7.解:A 的概率为0;B 的概率为1;C 的概率为=;D 的概率为=,在数轴上表示为: .。
华师大版初中数学九年级上册第25章随机事件的概率导学案
2、甲、乙两人进行掷骰子游戏,甲的骰子六个面有两个面是红色,其余
TB:小初高题库
华师大版初中数学
关注的结果个数 精讲点拨:( 1 ) P(关注的结果)=
所有机会均等的结果的个数 ( 2 ) 实验频率跟理论概率是统一的。 练习达标:(分层练习)
A组 1.掷一枚普通正六面体骰子,求出下列事件出现的概率:
P(掷得点数是 6) =________ ;
TB:小初高题库
华师大版初中数学
P(掷得点数小于 7)= _________ ; P(掷得点数为 5 或 3)= _________ ; P(掷得点数大于 6)= ___________ . 2.甲产品合格率为 98 ,乙产品的合格率为 80 ,你认为买哪一种产品更可 靠? 3.阿强在一次抽奖活动中,只抽了一张,就中了一等奖,能不能说这次抽奖活 动的中奖率为百分之百?为什么? 4.从一副扑克牌(除去大小王)中任抽一张· P(抽到红心) = ________ P(抽到黑桃) = _______ P(抽到红心 3)= ________ P 抽到 5)= __________ 5.有 5 张数字卡片,它们的背面完全相同,正面分别标有 1,2,2,3,4·现 将它们的背面朝上,从中任意摸到一张卡片,则: P(摸到 1 号卡片)= _______ P(摸到 2 号卡片)= ________ P(摸到 3 号卡片)= _______ P(摸到 4 号卡片)= ________ 6. 任意翻一下日历,翻出 1 月 6 日的概率为________.翻出 4 月 31 日的概率为 ________.
华师大版2020-2021年九年级数学上册导学案:25.2.2 频率与概率【含答案】
华师大版2020-2021年九年级数学上册导学案第25章随机事件的概率25.2随机事件的概率2 频率与概率学习目标:1.进一步理解等可能事件概率的意义;2.会用树状图或列表法求概率(重点);3.能结合具体情境掌握如何用频率估计概率(难点).自主学习一、知识链接1.理论分析与重复试验得到的结果是否一致?2.一个鱼缸里有2条鱼,只要数一数就知道,但是要估计一个池塘里有多少鱼,该怎么办?合作探究一、要点探究探究点1:用树状图或列表法分析随机事件的所有等可能结果【类型一】用树状图求概率【典例精析】例1 一个盒子内装有除颜色外均相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.12B.14C.16D.112解析:用树状图或列表法列举出所有可能情况,然后由概率公式计算求得.画树状图(如图所示):∴共有12种等可能的情况,两次都摸到白球的情况有2种.【针对训练】1.一个不透明的袋中只装有1个红球和2个蓝球,它们除颜色外其余均相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是()A.B.C.D.【类型二】用列表法求概率【典例精析】例2 从0,1,2这三个数中任取一个数作为点P的横坐标,再从剩下的两个数中任取一个数作为点P的纵坐标,则点P落在抛物线y=-x2+x+2上的概率为.解析:用列表法列举点P坐标可能出现的所有结果数和点P落在抛物线上的结果数,然后代入概率计算公式计算.用列表法表示如下:01 20——(0,1)(0,2)1(1,0)——(1,2)2(2,0)(2,1)——共有6种等可能结果,其中点P落在抛物线上的有(2,0),(0,2),(1,2)三种.【要点归纳】用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果.【针对训练】2.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为()A.B.C.D.1探究点2:用频率估计概率【类型一】用频率估计概率【典例精析】例3 “六·一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是.解析:因为大量重复摸球实验后,摸到红球的频率逐渐稳定在0.2,说明红球大约占总数的0.2,所以红球的总数为1000×0.2=200.【要点归纳】解题的关键是知道在大量重复摸球实验后,某个事件发生的频率就接近于该事件发生的概率.【针对训练】3.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有20个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到白色、黑色球的频率分别稳定在25%和45%,则口袋中红色球很可能有个.4. 为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.内容列表法把所有结果用列表的形式表示出来的方法叫做列表法画树状图法从上至下每条路径就是一个可能的结果,我们把它称为树状图频率与概率的联系与区别联系:在同样条件下,大量重复试验时,随机事件的会逐渐稳定到一个数附近,所以可以用这个来估计这一随机事件的概率.区别:频率是通过试验得到的一个试验数值,这个数值和概率相接近.概率是一个事件发生的理论值,是一个固定数值.当堂检测1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A .频率就是概率B .频率与试验次数无关C .概率是随机的,与频率无关D .随着试验次数的增加,频率一般会越来越接近概率2.一个不透明的袋子里装有质地、大小都相同的3个红球和1个绿球.随机从中摸出一个球,不再放回,充分搅匀后再随机摸出一球,则两次都摸到红球的概率是( ) A .B .C .D .3.袋子里有10个红球和若干个蓝球,小明从袋子里有放回地任意摸球,共摸100次,其中摸到红球次数是25次,则袋子里蓝球的个数大约是( )A .20B .30C .40D .504每批粒数n 100 300 400 600 1000 2000 3000 发芽的粒数m 96 282 382 570 948 1912 2850 发芽的频率mn0.9600.9400.9550.9500.9480.9560.950则绿豆发芽的概率估计值是 (精确到0.01).5.在“阳光体育”活动时间,张海亮、张红武、李优、王安进行一次羽毛球单打比赛,要从中选出两位同学打第一次比赛,则恰好选中李优、王安两位同学的概率是 .6.某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A ,B ,C 依次表示这三首歌曲).比赛时,将A ,B ,C 这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是 ;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.能力提升7.从1,2,3,4四个数中随机选取两个不同的数,分别记为a ,c ,请用树状图或列表法求关于x 的一元二次方程ax 2+4x +c =0有实数根的概率.参考答案自主学习一、知识链接1.基本一致,但实验发生时,会有干扰因素,所以不一定相同.2.若先捕a 条鱼做记号,放回池塘中.一段时间后捕了b 条鱼,其中有c 条鱼作了记号, 此时池塘鱼的数量为cab . 合作探究一、要点探究 【典例精析】例1 C 【针对训练】 1.A 【典例精析】例221【针对训练】 2.B 【典例精析】 例3 200 【针对训练】 3.6 4.1200二、课堂小结频率 频率稳定值当堂检测1.D2.C3.B4.0.955. 616.解:(1)(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率==.7.解:画树状图为:共有12种等可能的结果数,其中满足∆=16﹣4ac≥0的结果有6种,则关于x的一元二次方程ax2+4x+c=0有实数根的概率==.。
推荐九年级上数学(华师大版)导学案-25-2 随机事件的概率第2课时
第2课时 在复杂情况下列举所有机会均等的结果学前温故1.一般地,如果在一次实验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)=________.2.当A 为必然事件时,P(A)=______;当A 为不可能事件时,P(A)=______;当A 为随机事件时,______.新课早知1.在复杂事件中,要使事件发生的结果做到不重不漏,经常使用的方法是:(1)______;(2)__________.2.一个布袋里装有颜色不同的5个球,其中3个红球,2个白球,从中任意摸出1个球,记下颜色后放回,搅匀,再任意摸出1个球,则摸出的2个球都是红球的概率是().A .35B .310C .425D .9253.从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其和为奇数的概率是__________.答案:1.m n2.100<P(A)<1新课早知1.(1)列表法 (2)画树状图法2.D3.23求复杂事件的概率【例题】有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4,另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为零的概率;(2)小亮和小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则小红赢.你认为该游戏公平吗?为什么?如果游戏不公平,请你修改游戏规则,使游戏公平.解:(1)画树状图如下:或列表如下:由表(图)可知,所有等可能结果有12种,其中积为零的有4种,所以,P(积为0)=412=13. (2)不公平.因为P(积为偶数)=812=23,P(积为奇数)=412=13,因为13≠23,所以游戏不公平. 游戏规则可修改为:若两个数的积为0,则小亮赢;积为奇数,则小红赢.点拨:游戏是否公平关键是看事件是否等可能,即概率是否相等.若相等,游戏公平;若不相等,游戏不公平.我们可借助树状图或列表法来分析复杂事件等可能性中概率的大小.1.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是().A .78B .67C .17D .182.2010年11月1日,《扬州晚报》报道,甲型H 3N 2流感会成为今冬明春流感“主流”.为了防控甲型H 3N 2流感,市立医院成立了防控小组,决定从内科5位骨干医师中(含有甲)抽调3人组成,则甲一定抽调到防控小组的概率是().A .35B .25C .45D .153.三名同学同一天生日,她们做了一个游戏:买来3张相同的贺卡,各自在其中一张内写上祝福的话,然后放在一起,每人随机拿一张.则她们拿到的贺卡都不是自己所写的概率是________.4.在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是45,则n =________. 5.如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正方体.从这些小正方体中任意取出一个,求取出的小正方体:(1)三面涂有颜色的概率;(2)两面涂有颜色的概率;(3)各个面都没有颜色的概率.答案:1.A 不含辣椒的概率为25+30+1525+30+10+15=78. 2.A3.13画树形图如下.共有6种可能,其中符合要求的有2种,所以其概率为13. 4.8摸到黄球的概率是45,说明摸到白球的概率是15,所以球的总个数为2÷15=10. 5.解:(1)因为三面涂有颜色的小正方体有8个,所以P(三面涂有颜色)=864=18(或0.125). (2)因为两面涂有颜色的小正方体有24个, 所以P(两面涂有颜色)=2464=38(或0.375). (3)因为各个面都没有涂颜色的小正方体共有8个,所以P(各个面都没有涂颜色)=864=18(或0.125).。
数学九年级上册第二十五章概率初步 导学案
第二十五章概率初步25.1 随机事件与概率25.1.1 随机事件1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.能根据随机事件的特点,辨别哪些事件是随机事件.3.有对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作定性分析.难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.一、自学指导.(10分钟)自学:阅读教材P127~129.归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的事件,叫做__随机事件__.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)自然条件下,水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解.解:(1)(4)(6)是必然发生的;(2)(3)(5)是不可能发生的.2.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个.搅匀后,从中随机摸出1个小球,请你写出这个摸球活动中的一个随机事件:__摸出红球__.3.一副去掉大小王的扑克牌(共52张),洗匀后,摸到红桃的可能性__>__摸到J,Q,K的可能性.(填“>”“<”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( D)A.抽出一张红桃B.抽出一张红桃KC.抽出一张梅花J D.抽出一张不是Q的牌5.某学校的七年级(1)班,有男生23人,女生23人.其中男生有18人住宿,女生有20人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是( A)A.cab B.acb C.bca D.cba点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?点拨精讲:必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.2.袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大约有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大、必须怎么做?点拨精讲:(4)进行大量的、重复的试验.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.下列事件中是必然事件的是( A)A.早晨的太阳一定从东方升起B.中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破( B)A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是( C)A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4.20张卡片分别写着1,2,3,…,20,从中任意抽出一张,号码是2的倍数与号码是3的倍数的可能性哪个大?解:号码是2的倍数的可能性大.5.指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件.(1)两直线平行,内错角相等;(2)刘翔再次打破110米跨栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同; (6)经过有信号灯的十字路口,遇见红灯; (7)在装有3个球的布袋里摸出4个球; (8)物体在重力的作用下自由下落; (9)抛掷一千枚硬币,全部正面朝上.解:必然事件:(1)(5);随机事件:(2)(3)(4)(6)(8)(9);不可能事件:(7).6.已知地球表面陆地面积与海洋面积的比值为3∶7.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?解:“落在海洋里”可能性更大.学生总结本堂课的收获与困惑.(2分钟)1.必然事件、随机事件、不可能事件的特点. 2.对随机事件发生的可能性大小进行定性分析. 3.理解大量重复试验的必要性.学习至此,请使用本课时对应训练部分.(10分钟)25.1.2 概率(1)1.了解从数量上刻画一个事件发生的可能性的大小.2.理解P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的意义.重点:对概率意义的正确理解.难点:对P(A)=mn(在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的正确理解.一、自学指导.(10分钟)自学:阅读教材第130至132页. 归纳:1.当A 是必然事件时,P(A)=__1__;当A 是不可能事件时,P(A)=__0__;任一事件A 的概率P(A)的范围是__0≤P(A)≤1__.2.事件发生的可能性越大,则它的概率越接近__1__;反之,事件发生的可能性越小,则它的概率越接近__0__.3.一般地,在一次试验中,如果事件A 发生的可能性大小为__m n __,那么这个常数mn 就叫做事件A 的概率,记作__P(A)__.4.在上面的定义中,m ,n 各代表什么含义?mn的范围如何?为什么?点拨精讲:(1)刻画事件A 发生的可能性大小的数值称为事件A 的概率.(2)__必然__事件的概率为1,__不可能__事件的概率为0,如果A 为__随机__事件,那么0<P(A)<1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是__16__.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯恰是黄灯亮的概率为__112__.3.袋中有5个黑球,3个白球和2个红球,它们除颜色外,其余都相同.摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球的概率为__15__.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为2;(2)点数为奇数; (3)点数大于2小于5. 解:(1)16;(2)12;(3)13.2.一个桶里有60个弹珠,其中一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?解:红:21;蓝:15;白:24.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(12分钟) 1.袋子中装有24个和黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?解:摸到黑球的概率大.摸到黑球的可能性为1213,摸到白球的可能性为113,1213>113,故摸到黑球的概率大.(结论略)点拨精讲:要判断哪一个概率大,只要看哪一个可能性大.学生总结本堂课的收获与困惑.(2分钟)一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率为P(A)=__mn__且 __0__≤P(A)≤__1__.学习至此,请使用本课时对应训练部分.(10分钟)25.1.2 概率(2)1. 进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.2.运用P(A)=mn解决一些实际问题.重点:运用P(A)=mn解决实际问题.难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟) 自学:阅读教材P 133.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?解:5种;15.2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少? 解:6种;16.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.解:(1)14;(2)34;(3)12.点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发生的可能性相等.因此,它可以运用“P(A)=mn”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A 区域(划线部分),A 区域外的部分记为B 区域,数字3表示在A 区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A 区域还是B 区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率: A .两枚硬币全部正面朝上; B .两枚硬币全部反面朝上;C .一枚硬币正面朝上,一枚硬币反面朝上. 思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是( D )A .116B .516C .38D .582.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是( D )A .536B .38C .1536D .17363.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为__34__.4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.解:(1)16;(2)12;(3)13.学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)25.2 用列举法求概率1. 会用列表法求出简单事件的概率.2. 会用树状图法求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率.重点:运用列表法或树状图法计算简单事件的概率. 难点:用树状图法求出所有可能的结果.一、自学指导.(10分钟) 自学:阅读教材P 136~139.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?解:两种结果:白球、黄球.2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?解:三种结果:两白球、一白一黄两球、两黄球.3.一个盒子里有4个除颜色外其余都相同的玻璃球,一个红色,一个绿色,两个白色,现随机从盒子里一次取出两个球,则这两个球都是白球的概率是__16__.4.同时抛掷两枚正方体骰子,所得点数之和为7的概率是__16__.点拨精讲:这里2,3,4题均为两次试验(或一次两项),可直接采用树状图法或列表法.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数相同; (2)两个骰子点数的和是9; (3)至少有一个骰子的点数为2.讨论:(1)上述问题中一次试验涉及到几个因素?你是用什么方法不重不漏地列出了所有可能的结果,从而解决了上述问题?(2)能找到一种将所有可能的结果不重不漏地列举出来的方法吗?(介绍列表法求概率,让学生重新利用此法做上题).(3)如果把上例中的“同时掷两个骰子”改为“把一个骰子掷两次”,所得到的结果有变化吗?点拨精讲:当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列表法. 列表法是将两个步骤分别列在表头中,所有可能性写在表格中,再把组合情况填在表内各空格中.2.甲口袋中装有2个相同的小球,他们分别写有A 和B ;乙口袋中装有3个相同的小球,分别写有C ,D 和E ;丙口袋中装有2个相同的小球,他们分别写有H 和I .从3个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个、3个元音字母的概率分别是多少? (2)取出3个小球上全是辅音字母的概率是多少?点拨:A ,E ,I 是元音字母;B ,C ,D ,H 是辅音字母.分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?打算用什么方法求得?点拨精讲:第一步可能产生的结果会是什么?——(A 和B ),两者出现的可能性相同吗?分不分先后?写在第一行.第二步可能产生的结果是什么?——(C ,D 和E ),三者出现的可能性相同吗?分不分先后?从A 和B 分别画出三个分支,在分支下的第二行分别写上C ,D 和E .第三步可能产生的结果有几个?——是什么?——(H 和I ),两者出现的可能性相同吗?分不分先后?从C ,D 和E 分别画出两个分支,在分支下的第三行分别写上H 和I .(如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数.再找出符合要求的种数,就可计算概率了.合作完成树状图.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.将一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次能配成“紫色”(提示:只有红色和蓝色可配成紫色)的概率是__118__.2.抛掷两枚普通的骰子,出现数字之积为奇数的概率是__14__,出现数字之积为偶数的概率是__34__.3.第一盒乒乓球中有4个白球2个黄球,第二盒乒乓球中有3个白球3个黄球,分别从每个盒中随机的取出一个球,求下列事件的概率:(1)取出的两个球都是黄球;(2)取出的两个球中有一个白球一个黄球.解:16;12.4.在六张卡片上分别写有1~6的整数,随机地抽取一张后放回,再随机的抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?解:718.点拨精讲:这里第4题中如果抽取一张后不放回,则第二次的结果不再是6,而是5. 5.小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?解:P(积为奇数)=13,P(积为偶数)=23.1 2 3 1 1 2 3 224613×2=1×23.∴这个游戏对双方公平.学生总结本堂课的收获与困惑.(2分钟)1. 一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的.通常可用列表法和树状图法求得各种可能的结果.2.注意第二次放回与不放回的区别.3.一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,通常采用树状图法.学习至此,请使用本课时对应训练部分.(10分钟)25.3 用频率估计概率1. 理解当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2. 了解用频率估计概率的方法与列举法求概率的区别,并能够通过对事件发生频率的分析,估计事件发生的概率.重点:了解用频率估计概率的必要性和合理性.难点:大量重复试验得到频率稳定值的分析,对频率与概率之间关系的理解.一、自学指导.(20分钟)自学:阅读教材P142~146.归纳:对于一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示出一定的稳定性.当重复试验的次数大量增加时,事件发生的频率就稳定在相应的概率附近,因此,可以通过大量重复试验,用一个事件发生的频率来估计这一事件发生的概率.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)1.小强连续投篮75次,共投进45个球,则小强进球的频率是__0.6__.2.抛掷两枚硬币,当抛掷次数很多以后,出现“一正一反”这个不确定事件的频率值将稳定在__0.5左右.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)红星养猪场400头猪的质量(质量均为整数:千克)频率分布如下,其中数据不在分点上.组别频数频率46 ~ 50 40 0.151 ~ 55 80 0.256 ~ 60 160 0.461 ~ 65 80 0.266 ~ 70 30 0.07571~ 75 10 0.025从中任选一头猪,质量在65 以上的概率是__0.1 .二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1) 计算并完成表格:转动转盘的次数n 100 150 200 500 800 1000 落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率错误!0.68 0.74 0.68 0.69 0.6825 0.701(2)请估计,当次数很大时,频率将会接近多少?中考(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°)【答案】:(2)0.69;(3)0.69;(4)0.69×360°≈248°.学生总结本堂课的收获与困惑.(2分钟)尽管随机事件在每次试验中发生与否具有不确定性,但只要保持试验条件不变,那么这一事件出现的频率就会随着试验次数的增大而趋于稳定,这个稳定值就可以作为该事件发生概率的估计值.学习至此,请使用本课时对应训练部分.(10分钟)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.1在重复试验中观察不确定现象学习目标导航:了解随机事件、必然事件、不可能事件、等可能性事件、确定事件等基本概念。
本节重点是随机事件、必然事件、不可能事件、等基本概念;形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。
1.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。
1.客观世界中的事件分为、、三类.其中与是确定事件。
【例1】指出下列事件是必然事件、不可能事件,还是随机事件.(1)在标准大气压下且温度低于0℃时,冰融化;(2)在常温下,焊锡熔化;(3)掷一枚硬币,出现正面;(4)某地12月12日下雨;(5)如果a>b,那么a-b>0;(6)导体通电后发热;(7)没有水分,种子发芽;活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。
请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?摸球试验:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。
问题:把“摸到白球”记为事件A,把“摸到黑球”记为事件B:(1)事件A和事件B是随机事件吗?(2)哪个事件发生的可能性大?在经过大量重复摸球以后,我们可以确定,事件A发生的可能性(大于还是小于)事件B发生的可能性,请分析一下其原因是什么?三、应用练习,巩固新知1:指出下列事件中,哪些是必然事件,是不可能事件有,是随机事件的有。
(1)两直线平行,内错角相等;(2)刘翔再次打破110米栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球(8)物体在重力的作用下自由下落。
(9)抛掷一千枚硬币,全部正面朝上。
2、下列事件是随机事件的是( )A: 人长生不老 B: 2008年奥运会中国队获100枚金牌C: 掷两枚质地均匀的正方体骰子朝上一面的点数之积为21D: 一个星期为七天3、指出下列事件各是哪类事件?①小王数学小考100分②多哈亚运会中国队金牌总数第一名③一年有四季④明天下雨⑤一袋中在若干球,其中有2个红球,小红从中摸出3个球,都是红球4、.下列试验能够构成事件的是()A.掷一次硬币B.射击一次C.标准大气压下,水烧至100℃D.摸彩票中头奖5、.在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是()A.必然事件B.不可能事件C.随机事件D.以上选项均不正确6、下面事件是必然事件的有()①如果a、b∈R,那么a·b=b·a②某人买彩票中奖③3+5>10A.①B.②C.③D.①②7、下面事件是随机事件的有()①连续两次掷一枚硬币,两次都出现正面朝上②异性电荷,相互吸引③在标准大气压下,水在1℃时结冰A.②B.③C.①D.②③8、下列事件中,是随机事件的是( )①从10个玻璃杯(其中8个正品,2个次品)中,任取3个,3个都是次品②同一门炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标③某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码④异性电荷,相互吸引⑤体操运动员滕海滨将在2008年奥运会上夺得冠军⑥某人购买福利彩票中得大奖A.②③④B.①③⑤⑥C.②③⑤⑥D.②③⑤9、下列说法错误的是( )A.“在标准大气压下,水加热到100 ℃时沸腾”是必然事件B.“姚明在一场比赛中投球的命中率为60%”是随机事件C.“在不受外力作用的条件下,做匀速直线运动的物体改变其匀速直线运动状态”是不可能事件D.“三台县明年今天的天气与今天一样”是必然事件10、一个袋子里装有20个形状、质地、大小一样的球,其中4个白球,2个红球,3个黑球,其它都是黄球,从中任摸一个,摸中哪种球的可能性最大?11、一个人随意翻书三次,三次都翻到了偶数页,我们能否说翻到偶数页的可能性就大?12、袋子里装有红、白两种颜色的小球,质地、大小、形状一样,小明从中随机摸出一个球,然后放回,如果小明5次摸到红球,能否断定袋子里红球的数量比白球多?怎样做才能判断哪种颜色的球数量较多?13、已知地球表面陆地面积与海洋面积的比均为3:7。
如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?25.2随机事件的概率(1)学习目标:1.了解频率与概率的关系,进一步提高用数学知识解决实际问题的能力。
2.初步学理由频率对一个简单的问题的概率进行估计。
3.提高学生动手能力,加强集体合作意识,丰富知识面,激发学习兴趣。
学习重难点:重点:通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率。
难点:理解频率与概率的关系。
学习过程:一、提出问题1.在硬币还未抛出前,猜想当硬币抛出后是正面朝上,还是反面朝上?为什么?假如你已经抛掷了1000次,你能否预测到第l001次抛掷的结果?2.假如你已经抛掷了400次,你能否猜测出“出现正面”的频数是多少?频率是多少?800次呢?随着我们抛掷一枚硬币的次数逐渐增多,你猜想有什么规律?3.当我们抛掷两枚硬币时,猜一猜当抛掷次数很多以后,“出现正面”和“出现一正一反”这两个不确定事件的频率是多少?是否比较稳定?二、实验验证。
1.通过实验,你发现了随机事件在每次实验中发生与否具有什么特点?2.保持实验条件不变,随机事件的发生频率会表现出什么规律?四、巩固练习1.某林业部门要考察某种幼树的移植成活率,制作了下面的根据统计表,请完成表中的空缺,并完成表后的问题。
所以幼树移植成活的概率为:_______________.2.某公司以2元/千克的成本新进了一批柑橘,为估算橘子损坏统计如下表:估计柑橘损坏率为:________;则柑橘完好的概率为:________。
五、课堂小结:(学生畅所欲言)六、达标检测:一、选一选(请将唯一正确答案的代号填入题后的括号内)1.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为 ( )A .90个B .24个C .70个D .32个2.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( ). A .11000 B .1200C .12D .153.下列说法正确的是( ).A .抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;B .为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;C .彩票中奖的机会是1%,买100张一定会中奖;D .中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,于是他得出全市拥有空调家庭的百分比为100%的结论. 4.小亮把全班50名同学的期中数学测试成绩,绘成如图所示的条形图,其中从左起第一、二、三、四个小长方形高的比是1∶3∶5∶1.从中同时抽一份最低分数段和一份最高分数段的成绩的概率分别是( ). A .110、110 B .110、12 C .12、110 D .12、125.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有( ).A .10粒B .160粒C . 450粒D .500粒6.某校男生中,若随机抽取若干名同学做“是否喜欢足球”的问卷调查,抽到喜欢足球的同学分)的概率是53,这个53的含义是( ). A .只发出5份调查卷,其中三份是喜欢足球的答卷; B .在答卷中,喜欢足球的答卷与总问卷的比为3∶8; C .在答卷中,喜欢足球的答卷占总答卷的53; D .在答卷中,每抽出100份问卷,恰有60份答卷是不喜欢足球.7.要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为51,四位同学分别采用了下列装法,你认为他们中装错的是( ). A .口袋中装入10个小球,其中只有两个红球;B .装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;C .装入红球5个,白球13个,黑球2个;D .装入红球7个,白球13个,黑球2个,黄球13个.8.某学生调查了同班同学身上的零用钱数,将每位同学的零用钱数记录了下来(单位:元):2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,5,8,6,5,2,5, 5,2,5,6,5,5,0,6,5,6,5,2,5,0.假如老师随机问一个同学的零用钱,老师最有可能得到的回答是( ). A . 2元 B .5元 C .6元 D .0元 二、填一填9. 同时抛掷两枚硬币,按照正面出现的次数,可以分为“2个正面”、“1个正面”和“没有正面”这3种可能的结果,小红与小明两人共做了6组实验,每组实验都为同时抛掷两枚硬币10次,下表为实验记录的统计表:别是___________________.当试验组数增加到很大时,请你对这三种结果的可能性的大小作出预测:______________.10.红星养猪场400头猪的质量(质量均为整数千克)频率分布如下,其中数据不在分点上11.为配和新课程的实施,某市举行了“应用与创新”知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数)。
为了解本次竞赛成绩情况,从中随机抽取了部分学生的竞赛成绩,进行统计,整理见下表:表中a=________,等奖,估计全市获一等奖的人数为___________.三、做一做12.小颖有20张大小相同的卡片,上面写有1~20这20个数字,她把卡片放在一个盒子中搅匀,每次从盒中抽出一张卡片,记录结果如下:(1(2)频率随着实验次数的增加,稳定于什么值左右?(3)从试验数据看,从盒中摸出一张卡片是3的倍数的概率估计是多少?(4)根据推理计算可知,从盒中摸出一张卡片是3的倍数的概率应该是多少?参考答案1.D 2.B 3.B 4.A 5.C 6.C 7.C 8.B9.3113,,102020;111,,42410. 0.1,0.2,0.4,0.2,0.075,0.025;0.111.50,10,0.26;20012.(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31; (2)0.31;(3)0.31;(4)0.325.2 随机事件的概率(2)学习目标:学会可能出现的结果数较大时,可以采用列表法来列出各种可能的结果,以避免重复或漏计。