高中数学必修3复习-统计的讲义与习题(含答案及详细解答过程)
(完整)高一数学必修三《统计》知识点+练习+答案,推荐文档
必修三统计知识点二、统计初步有关概念和公式:1、频数——落在各个小组的数据的个数叫~。
2、频率——每一个小组频数与数据的比值叫做这一组的~。
3、总体——所要考察对象的全体叫做~。
4、个体——每一个考察对象~。
5、样本——从总体中所抽取的一部分个体叫做总体的一个样本。
6、样本容量——样本中个体的数目叫做~。
7、众数——在一组数据中,出现次数最多的数据叫做这组数据的众数。
8、中位数——将一组数据按从小到大排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
9、总体分布——总体取值的概率分布规律通常称为~。
10、连续型总体——可以在实数区间取值的总体叫~。
11、累积频率——样本数据小于某一数值的频率,叫做~。
计算最大值与最小值的差决定组距与数据列法决定分点列表12、频率分布表试验结果频数频率表的行式分组个数累计频数频率累积频率(有时可省略)(有时可省略)横轴——实验结果纵轴频率条形图用高度表示各取值的频率适用于个体取不同值较少横轴——产品尺寸纵轴——频率/组距13、直方图用图形面积的大小表示在各个区间内取值的概率适用于个体在区间内取值横轴——产品尺寸累积频率分布图纵轴——累计频率反映一组数据的分布情况14、总体分布曲线——当样本容量无限增大、分组的组距无缩限小时、频率分布直方图就会无限趋近于一条光滑曲线,这条曲线叫总体密度曲线。
以这条曲线为图象的函数叫做总体的概率密度函数。
总体密度函数反映了总体分布,即反映总体在各个范围内取值的概率。
P(a<ξ<b)的值等于直线 x=a,x=b 与曲线、x 轴围成的图形面积。
15、累积分布曲线——当样本容量无限增大、分组的组距无缩限小时,累积频率分布图就会无限趋近于一条光滑曲线,这条曲线叫累积分布曲线。
它反映了总体的累积分布规律,即曲线上任意一点 P(a,b)纵坐标 b,表示总体取小于 a 的值的概率。
1①正态总体的概率密度函数f(x)-(x - )22 2, ∈R(其中 总体的平均数, 总体的标准差,N(μ,σ2)—正态总体,有时记作 N(μ,σ2)1)曲线在轴上方,并且关于直线 x=对称:②正态曲线的性质2)曲线在x=μ时处于最高点,由这一点向左、右两边延伸时,曲线逐渐下降:3)曲线的对称轴位置由μ确定:直线的形状由σ确定,σ越大,曲线的形状越“矮胖”反过来曲线越“高瘦”③正态曲线在几个区间上的取值:区间取值概率(μ-σ,μ+σ)68.3%(μ-2σ,μ+2σ)95.44%(μ-3σ,μ+3σ)99.7%16、质控图④小概率事件——通常指发生的概率小于5%的事件。
高中数学必修三--统计-含答案解析--zhy365
高中数学必修三--统计卷I(选择题)一、选择题(本题共计 12 小题,每题 5 分,共计60分,)1. 下列调查中,适合用全面调查方式的是()A.了解某班学生“50米跑”的成绩B.了解一批灯泡的使用寿命C.了解一批炮弹的杀伤半径D.了解一批袋装食品是否含有防腐剂2. 某单位200名职工中,年龄在50岁以上占20%,40∼50岁占30%,40岁以下占50%;现要从中抽取40名职工作样本.若用系统抽样法,将全体职工随机按1∼200编号,并按编号顺序平均分为40组(1∼5号,6∼10号,…,196∼200号).若第5组抽出的号码为22,则第8组抽出的号码应是①;若用分层抽样方法,则40岁以下年龄段应抽取②人.①②两处应填写的数据分别为()A.82,20B.37,20C.37,4D.37,503. 某学校有教师160人,其中有高级职称的32人,中级职称的56人,初级职称的72人.现抽取一个容量为20的样本,用分层抽样法抽取的中级职称的教师人数应为()A.4B.6C.7D.94. 2013年中国政府提出共建丝绸之路经济带,受到了世界各国的高度重视和积极响应,并提出打造海上丝绸之路的总体规划,被简称为“一带一路”.经调查,沿线某地区自2013年到2019年经过6年的经济新建设,经济收入增加了3倍.为更好地了解该地区经济收入变化情况,统计了该地区建设前后经济收入构成比例,得到如下表格:则2019年与2013年经济收入相比较,下面结论中正确的是( )A.石油出口收入减少B.其他收入增加了三倍以上C.百姓购物收入增加了三倍D.百姓购物收入与教育文化收入的总和超过了经济收入的一半的样本,若采用系统抽样,则分段的间隔k为()A.50B.60C.30D.406. 如图是某社区工会对当地企业工人月收入情况进行一次抽样调查后画出的频率分布直方图,其中第二组月收入在[1.5, 2)千元的频数为300,则此次抽样的样本容量为()A.1000B.2000C.3000D.40007. 一样本的所有数据分组及频数如下:[−0.5, 0.5),C50;[0.5, 1.5),C51;[1.5, 2.5),C52;[2.5, 3.5),C53;[3.5, 4.5),C54;[4.5, 5.5),C55.则在[1.5, 4.5)的频率为()A.5 8B.12C.2532D.15168. 2019年,全国各地区坚持稳重求进工作总基调,经济运行总体平稳,发展水平迈上新台阶,发展质量稳步上升,人民生活福祉持续增进,全年最终消费支出对国内生产总值增长的贡献率为57.8%.下图为2019年居民消费价格月度涨跌幅度:(同比=本期数−去年同期数去年同期数×100%,环比=本期数−上期数上期数×100%),下列结论中不正确的是()A.2019年第三季度的居民消费价格一直都在增长B.2018年7月份的居民消费价格比同年8月份要低一些C.2019年全年居民消费价格比2018年涨了2.5%以上D.2019年3月份的居民消费价格全年最低A.数据4、4、6、7、9、6的众数是4B.一组数据的标准差是这组数据的方差的平方C.数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半D.频率分布直方图中各小长方形的面积等于相应各组的频数10. 某中学就到校的方式问题对初三年级的所有学生进行了一次调查,并将调查结果制作了扇形统计图,已知步行的人数为60,则初三学生乘公交车的人数为( )A.60B.78C.132D.911. 绘制1000人的寿命直方图时,若组距均为20,60∼80岁范围的纵轴高为0.03,则60∼80岁的人数为()A.300B.500C.600D.80012. 以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月=100)变化图表,给出下列结论:其中正确的是()(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津,上海、重庆)①3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均;②4月份仅有三个城市居民消费价格指数超过102;③仅有天津市从年初开始居民消费价格指数的增长呈上升趋势;④四个月的数据显示北京市的居民消费价格指数增长幅度波动较大.A.①②B.②④C.①②④D.①③④卷II(非选择题)二、填空题(本题共计 6 小题,每题 5 分,共计30分,)13. 某城市收集并整理了该市2018年1月份至10月份各月最低气温与最高气温(单位:∘C)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是_______.①最低气温与最高气温为正相关;②10月的最高气温不低于5月的最高气温;③月温差(最高气温减最低气温)的最大值出现在1月;④最低气温低于0∘C的月份有4个.14. 为了估计鱼塘中鱼的尾数,先从鱼塘中捕出2000尾鱼,并给每条尾鱼做上标记(不影响存活),然后放回鱼塘,经过适当的时机,再从鱼塘中捕出600尾鱼,其中有标记的鱼为40尾,根据上述数据估计该鱼塘中鱼的尾数为________.15. 已知数据:x,y,10,11,9,这组数据的平均值10,方差为2,则|x−y|=________.16. 抽样统计甲,乙两个城市连续5天的空气质量指数(AQI),数据如下:17. 某校从参加高一年级期末考试的学生中抽出60名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段[50, 60),[60, 70),[70, 80),[80, 90),[90, 100]然后画出如下图的部分频率分布直方图.观察图形的信息,可知数学成绩低于50分的学生有________人;估计这次考试数学学科的及格率(60分及以上为及格)为________;18. 为了调查某野生动物保护区内某种野生动物的数量,调查人员逮到这种动物1200只作过标记后放回,一星期后,调查人员再次逮到该种动物1000只,其中作过标记的有100只,估算保护区有这种动物________只.三、解答题(本题共计 5 小题,每题 12 分,共计60分,)19. 已知甲、乙、丙三个车间一天内生产的产品分别是150件、130件、120件,为了掌握各车间产品质量情况,从中取出一个容量为40的样本,该用什么抽样方法?简述抽样过程.20. 某机构为了了解不同年龄的人对一款智能家电的评价,随机选取了50名购买该家电的消费者,让他们根据实际使用体验进行评分.(1)设消费者的年龄为x ,对该款智能家电的评分为y .若根据统计数据,用最小二乘法得到y 关于x 的线性回归方程为y ̂=1.2x +40,且年龄x 的方差为s x 2=14.4,评分y 的方差为s y 2=22.5.求y 与x 的相关系数r ,并据此判断对该款智能家电的评分与年龄的相关性强弱.(2)按照一定的标准,将50名消费者的年龄划分为“青年”和“中老年”,评分划分为“ 好评”和“差评”,整理得到如下数据,请判断是否有99%的把握认为对该智能家电的评价与年龄有关.附:线性回归直线y ̂=b ̂x +a ̂的斜率b̂=∑(x i −x ¯)n i=1(y i −y ¯)∑(x i −x ¯)2n i=1相关系数r =∑(x −x ¯)n (y −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1.独立性检验中的K 2=n(ad−bc)2(a+b)(a+c)(b+d)(c+d), 其中n =a +b +c +d .临界值表:21. 某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,⋯,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑x i 20i=1=60 ,∑y i 20i=1=1200, ∑(x i −x ¯)220i=1=80, ∑(y i −y ¯)220i=1=9000,∑(x i −x ¯)20i=1(y i −y ¯)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,⋯,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物短盖面积差异很大,为提高样本的代表性以获得附:相关系数: r =∑(x −x ¯)n (y −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1√2≈1.414.22. 某个服装店经营某种服装,在某周内获纯利y (元),与该周每天销售这种服装件数x 之间的一组数据关系见表:i i−1i i−1x i 7i−1y i =3487. (1)求x ¯,y ¯;参考公式:b ̂=∑=n ∑(ni−1x i −x ¯)2∑n ∑x i 2n i−1−nx−2,a ̂=y ¯−b ̂x ¯(2)画出散点图;(3)判断纯利y 与每天销售件数x 之间是否线性相关,如果线性相关,求出回归方程.23. 某网站欲调查网民对当前网页的满意程度,在登录的所有网民中,收回有效帖子共50000份,其中持各种态度的份数如下表所示:为了了解网民的具体想法和意见,以便决定如何更改才能使网页更完美,打算从中抽选500份,为使样本更具代表性,每类中各应抽选出多少份?并且写出具体操作过程.参考答案与试题解析高中数学必修三--统计一、选择题(本题共计 12 小题,每题 5 分,共计60分)1.【解答】A、了解某班学生“50米跑”的成绩,是精确度要求高的调查,适于全面调查;B、C、D了解一批灯泡的使用寿命,了解一批炮弹的杀伤半径,了解一批袋装食品是否含有防腐剂,都是具有破坏性的调查,无法进行普查,故不适于全面调查.2.【解答】解:若用系统抽样,则样本间隔为5,若第5组抽出的号码为22,则第8组抽出的号码应22+15=37,若用分层抽样方法,则40岁以下年龄段应抽取40×50%=20,故选:B.3.【解答】解:∵中级职称的56人,∴抽取一个容量为20的样本,用分层抽样法抽取的中级职称的教师人数为56160=n20,解得n=7,即抽取的中级职称的教师人数应为7人.故选C.4.【解答】解:假设建设前经济收入为a,则建设后经济收入为4a,所以石油出口收入在建设前为0.49a,建设后为4a×0.33=1.32a,石油出口收入较之前增加;其他收入在建设前为0.06a,建设后为0.24a,即其他收入增加了三倍;百姓购物收入建设前为0.3a,建设后为0.38×4a=1.52a,即百姓购物收入增加了四倍以上;教育文化收入建设前为0.1a,建设后为0.15×4a=0.6a,百姓购物收入与教育文化收入的总和为1.52a+0.6a=2.12a>2a,超过了经济收入的一半.故选D.5.【解答】解:由题意知本题是一个系统抽样问题,总体中个体数是3000,样本容量是100,根据系统抽样的步骤,得到分段的间隔k=3000100=30,解:由频率的意义可知,从左到右各个小组的频率之和是1,同时每小组的频率=小组的频数样本容量.∴[1.5, 2)长方形的面积为0.3.第二组月收入在[1.5, 2)千元的频数为300,所以此次统计的样本容量是300÷0.3=1000.故选A.7.【解答】解:由题意知本题共有C50+C51+C52+C53+C54+C55=25个数据,在[1.5, 4.5)的频数是C52+C53+C54∴在[1.5, 4.5)的频率为:C52+C53+C5425=2532,故选C.8.【解答】解:A,从环比看,2019年第三季度的居民消费价格一直都在增长,故A正确;B,从同比看,2018年7月份的居民消费价格比同年8月份要低一些,故B正确;C,从同比看,1.7+1.5+2.3+2.5+2.7+2.7+2.8+2.8+3.0+3.8+4.5+4.512=2.9,所以2019年全年居民消费价格比2018年涨了2.5%以上,故C正确;D,从环比看,2019年1月份的居民消费价格最低,故D错误.故选D.9.【解答】解:数据4、4、6、7、9、6的众数是4和6,故A错误;一组数据的标准差是这组数据的方差的算术平方根,故B错误;∵3,5,7,9的平均数=14(3+5+7+9)=6,∴3,5,7,9的标准差=√14[(3−6)2+(5−6)2+(7−6)2+(9−6)2]=√5.∵6、10、14、18的平均数=14(6+10+14+18)=12,∴6、10、14、18的标准差√14[(6−12)2+(10−12)2+(14−12)2+(18−12)2]= 2√5,∴数据3,5,7,9的标准差是数据6、10、14、18的标准差的一半,故C正确;频率分布直方图中各小长方形的面积等于相应各组的频率,故D错误.故选:C.10.【解答】解:调查的学生总数是:60÷20%=300(人),则乘公交车的人数为:300×(1−20%−33%−3%)=300×44%=132(人).解:因为:组距均为20,60∼80岁范围的纵轴高为0.03,所以;频率为:0.03×20=0.6.∴60∼80岁的人数为:0.6×1000=600.故选:C.12.【解答】解:根据题目所给信息,①,3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为大,不平均,①错误;②,4月份仅有三个城市居民消费价格指数超过102;③,天津市和上海从年初开始居民消费价格指数的增长呈上升趋势,③错误;④,四个月的数据显示北京市的居民消费价格指数增长幅度波动较大,④正确.故正确的有②④.故选B.二、填空题(本题共计 6 小题,每题 5 分,共计30分)13.【解答】解:由该市2018年1月份至10月份各月最低气温与最高气温(单位:∘C)的数据的折线图,得:在①中,最低气温与最高气温为正相关,故①正确;在②中,10月的最高气温不低于5月的最高气温,故②正确;在③中,月温差(最高气温减最低气温)的最大值出现在1月,故③正确;在④中,最低气温低于0∘C的月份有3个,故④错误.故答案为:④.14.【解答】解:根据题意,设该鱼塘中鱼的尾数为x,则;x 2000=60040,解得x=30000;∴估计该鱼塘中鱼的尾数为30000.故答案为:30000.15.【解答】解:由平均值10得,x+y+10+11+9=50,则x+y=20,①由方差为2得,2=15[(x−10)2+(y−10)2+0+1+1],即(x−10)2+(y−10)2=8,②设x=10+t,y=10−t,代入②2t2=8,解得t=±2,∴|x−y|=2|t|=4,故答案为:4.16.甲城市连续5天的空气质量指数是109,111,132,118,110;它的极差是132−109=23,且数据的波动性较大些;乙城市连续5天的空气质量指数是110,111,115,132,112;它的极差是132−110=22,且数据的波动性较小些;由此得出,空气质量指数较为稳定(方差较小)的城市是乙.故答案为:乙.17.【解答】解:由图可知,成绩在[50, 60)的频率为0,015×10=0.15,成绩在[60, 70)的频率为0.015×10=0.15,成绩在[70, 80)的频率为0.030×10=0.3,成绩在[80, 90)的频率为0.025×10=0.25,成绩在[90, 100]的频率为0.005×10=0.05,∴成绩不低于50分的频率为0.15+0.15+0.3+0.25+0.05=0.9,成绩不低于60分的频率为0.15+0.3+0.25+0.05=0.75∴成绩低于50分的频率为为1−0.9=0.1∵共有60名学生,∴成绩低于50分的学生数为60×0.1=6,这次考试数学学科的及格率为75%.故答案为6;75%18.【解答】解:设保护区有这种动物有x只,则由题意可得1200x =1001000,求得x=12000,故答案为12000.三、解答题(本题共计 5 小题,每题 12 分,共计60分)19.【解答】解:由于三个车间的产品有差别,故应采用分层抽样的方法,先计算抽样比:k=40150+130+120=110,再计算各车间内抽取样本的件数:甲车间:150×110=15,乙车间:130×110=13,丙车间:120×110=12,再分析使用简单随机抽样的办法在各个车间中抽取样本,最后终成一个样本.20.【解答】解:(1)相关系数r=∑(x−x¯)50(y−y¯)√∑(xi−x)250i=1∑(y i−y)250i=1;=∑(x i−x¯)50i=1(y i−y¯)∑(x i−x¯)250i=1√∑(xi−x¯)250i=1√∑(yi−y)250i=1=b̂⋅√50s x2√50s y =1.2×1215=0.96.故对该款智能家电的评分与年龄的相关性较强.(2)由列联表可得K 2=50×(8×6−20×16)224×26×28×22≈9.624>6.635.故有99%的把握认为对该智能家电的评价与年龄有关.21.【解答】解:(1)由题意可知,1个样区这种野生动物数量的平均数=120020=60,故这种野生动物数量的估计值=60×200=12000;(2)由参考公式得 ,r =∑(x i −x ¯)n i=1(y i −y ¯)√∑(x i −x )2n i=1∑(y i −y )2n i=1=80×9000=62≈0.94 ;(3)由题意可知,各地块间植物短盖面积差异很大,因此在调查时,先确定该地区各地块间植物短盖面积大小并且由小到大排序, 每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计. 22.【解答】解:(1)x ¯=17(3+4+5+6+7+8+9)=6, y ¯=17(66+69+73+81+89+90+91)=5597≈79.86;(2)把所给的7对数据写成对应的点的坐标,在坐标系中描出来,得到散点图.(3)∵ 3×66+4×69+5×73+6×81+7×89+8×90+9×91=3487,32+42+52+62+72+82+92=280,∴ b =3487−7×6×5597280−7×36=4.75,a =5597−6×4.75≈51.36,故线性回归方程为y =4.75x +51.36.23.【解答】解:每个个体被抽到的频率是 50050000=1100,10800×1100=108,12400×1100=124,15600×1100=156,11200×1100=112,每类中各应抽选出有效帖子的份数:很满意的108份,满意的124份,一般的156份,不满意的112份.在很满意的有效帖子中采用简单随机抽样的方法随机抽取108份,在满意的有效帖子中采用简单随机抽样的方法随机抽取124份,在一般的有效帖子中采用简单随机抽样的方法随机抽取156份,在不满意的有效帖子中采用简单随机抽样的方法随机抽取112份.。
高中数学必修3(人教B版)第二章统计2.3知识点总结含同步练习题及答案
描述:例题:高中数学必修3(人教B版)知识点总结含同步练习题及答案第二章 统计 2.3 变量的相关性一、学习任务1. 能通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.2. 了解线性回归的方法,了解用最小二乘法研究两个变量的线性相关问题的思想方法,会根据给出的线性回归方程系数公式建立线性回归方程(不要求记忆系数公式).二、知识清单变量间的相关关系相关关系 线性相关三、知识讲解1.变量间的相关关系2.相关关系变量与变量之间的关系一类是确定性的函数关系,像正方形的边长 和面积 的关系 .另一类是变量间确实存在关系,但又不具备函数关系所要求的确定性,它们的关系是带有随机性的.例如,人的身高不能确定体重,但一般说来“身高者,体也重”.我们说身高与体重这两个变量具有相关关系.函数关系与相关关系的异同点相同点:是两者均是指两个变量的关系;不同点:①函数关系是一种确定性的关系,相关关系是一种非确定性的关系.②函数关系式一种因果关系,而相关关系不一定是因果关系,其也可能是伴随关系.a S 给出下列关系:①正方形的边长与面积之间的关系;②水稻产量与施肥量之间的关系;③降雪量与交通事故的发生率之间的关系.其中具有相关关系的是______.解:②③两个变量之间的关系有两种:函数关系与相关关系.①正方形的边长和面积之间的关系是函数关系.②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③降雪量与交通事故的发生率具有相关关系.下图中的两个变量是相关关系的是( )描述:3.线性相关两个变量的线性关系对具有相关关系的两个变量进行统计分析的方法叫回归分析.将样本中的个数据点(,,,)描在平面直角坐标系中,就得到了散点图.如果两个变量的散点图中的点散步在左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也由小变大,我们将这种相关称为正相关.如果两个变量的散点图中的点散步的位置是从左上角到右下角的区域,即一个变量的值由小变大是,另一个变量的值由大变小,我们将这种相关称为负相关.如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量具有线性相关关系.回归直线方程“最贴近”已知的数据点的直线方程称之为回归直线方程,简称回归方程,方程为,叫做回归系数.刻画了实际观察值与回归直线上相应点纵坐标之间的偏离程度,个离差构成的总离差越小越好,总离差通常是用离差的平方和来表示,即作为总离差,并使之达到最小.回归直线就是所有直线中取最小的那一条.由于平方又叫二乘方,所以这种使“离差平方和最小”的方法,叫做最小二乘法.A.①② B.①③ C.②④ D.②③解:D①属于函数关系,因为每个 值对应一个 值,这是确定性的关系;②中散点图中各点分布的区域大致为从左下角到右上角,没有确定的函数关系,但是具有相关关系;③中散点图分布的区域大致在一条曲线附近,对于每个 ,其对应的 呈现出一定的规律性,因此这两个变量具有相关关系;④ 中各点的分布比较均匀,但对于每个 , 的分布没有规律,因此不属于相关关系.x y x y x y n (,)x i y i i =12⋯n =a +bx y ^b −y i y ^i y i n Q =(−a −b ∑i =1ny i x i )2Q(),得散点图2.由这两个散点图可以判断( )(,)u i v i i =12⋯10高考不提分,赔付1万元,关注快乐学了解详情。
必修3第6章统计(含单元测试)参考答案
实用文档必修3 第6章 统计 参考答案6.1.1 简单随机抽样1.C 2.C 3.A 4.抽签法,随机数表法,向上、向下、向左、向右5.21 6.60,30 7.相等,Nn 8.略 9.(1)不是简单随机抽样,由于被抽取样本的总体的个数是无限的而不是有限的。
(2)不是简单随机抽样,由于它是放回抽样10.选法二不是抽签法,因为抽签法要求所有的签编号互不相同,而选法二中39个白球无法相互区分。
这两种选法相同之处在于每名学生被选中的概率都相等,等于401。
6.1.2 系统抽样1.A 2.B 3.B 4.B 5.A 、B 、D 6. 200450 7.(一)简单随机抽样(1) 将每一个人编一个号由0001至1003;(2) 制作大小相同的号签并写上号码;(3) 放入一个大容器,均匀搅拌;(4)依次抽取10个号签具有这十个编号的人组成一个样本。
(二)系统抽样(1)将每一个人编一个号由0001至1003;(2)选用随机数表法找3个号,将这3个人排除;(3)重新编号0001至1000;(4)在编号为0001至0100中用简单随机抽样法抽得一个号L;(5)按编号将:L,100+L,…,900+L共10个号选出。
这10个号所对应的人组成样本。
8.系统抽样适用于总体中的个体数较多的情况;系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段进行抽样时,采用的是简单随机抽样;与简单随机抽样相同的是,系统抽样也属于等可能抽样。
9.是用系统抽样的方法确定的三等奖号码的,共有100个。
10.略(参考第7小题)6.1.3 分层抽样实用文档Nm1.B 2.B 3.104 4.n5.70,80 6.系统抽样,100个7.总体中的个体个数较多,差异不明显;总体由差异明显的几部分组成中年:200人;青年:120人;老年:80人8.分层抽样,简单随机抽样9.因为总体共有彩电3000台,数量较大,所以不宜采用简单随机抽样,又由于三种彩电的进货数量差异较大,故也不宜用系统方法,而以分层抽样为妥。
新版高中数学北师大版必修3习题第一章统计1.2.2.2含解析
第2课时系统抽样课时过关·能力提升1.从N个编号中抽取n个号码入样,若采用系统抽样方法进行抽取,则分段间隔应为()AC答案:C2.有40件产品,编号为1~40,现在从中抽取4件检验,用系统抽样的方法确定所抽取的编号可能为()A.5,10,15,20B.2,12,22,32C.2,14,26,38D.5,8,31,36解析:由系统抽样的定义知抽样距为可以在第一组1~10号样本中取k号,1≤k≤10,则抽取到的样本编号为k,k+10,k+20,k+30.答案:B3.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为()A.480B.481C.482D.483解析:由样本中编号最小的两个编号分别为007,032,得抽样距为32-7=25,则样本容量为每组中应抽取的号码数x=7+25(n-1)(1≤n≤20,n∈Z),当n=20时,x取得最大值为x=7+25×19=482.答案:C4.总体容量为524,采用系统抽样法抽样,若想不剔除个体,则抽样间隔可以为()A.3B.4C.5D.6解析:因为系统抽样的间隔需要能整除总体个数.故选B.答案:B5.某初级中学有学生270人,其中七年级108人,八年级、九年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按七年级、八年级、九年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.那么关于上述样本的下列结论,正确的是()A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样解析:由定义可知,①③可能为分层抽样也可能为系统抽样;②可能为分层抽样;④可能为简单随机抽样.故选D.答案:D6.将高三(1)班参加体检的36名学生,编号为:1,2,3,…,36,若采用系统抽样的方法抽取一个容量为4的样本,已知样本中含有编号为6号、24号、33号的学生,则样本中剩余一名学生的编号是.答案:157.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,……,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是.若用分层抽样方法,则40岁以下年龄段应抽取人.解析:由题意可知,系统抽样时共分成40组,抽样间隔为5,第5组的号码为22,则第8组的号码为22+5×3=37.在分层抽样时,由于40岁以下年龄段人数占总数的50%,故40岁以下年龄段应抽取40×50%=20(人).答案:37208.一个总体中有100个个体,随机编号为0,1,2,…,99.依编号顺序平均分成10个小组,组号依次为1,2,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是.解析:由题设知,若m=6,则在第7组中抽取的号码个位数字与13的个位数字相同,而第7组中的编号依次为60,61,62,63,…,69.故在第7组中抽取的号码是63.答案:639.某学校有学生3 000人,现在要抽取100人组成夏令营,应该怎样抽取样本?分析:因为总体中个体数较多,且无差异,所以按系统抽样的步骤来进行抽样.解:按系统抽样抽取样本,其步骤如下.第一步:把这些学生分成100个组,因为所以每个组30名学生,这时,抽样距就是30.第二步:将3 000名学生随机编号为1,2, (3000)第三步:在第1组用简单随机抽样确定起始个体的编号l(0<l≤30).第四步:按照一定的规则抽取样本,通常是将起始编号l加上分段间隔30得到第2个个体编号l+30,再加上30得到第3个个体编号l+60,这样继续下去,直到获取整个样本.比如l=15,则抽取的编号为15,45,75,105,…,2985.这些号码对应的学生组成样本.10.为了考察某校的教学水平,将抽取这个学校本学年高三年级部分学生的考试成绩,为了全面地反映实际情况,采取以下三种方式进行抽样(已知该校高三年级共有20个教学班,并且每个班的学生都已经按随机方式编好了学号,假定该校每个班的学生人数都相同).①从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考察他们的考试成绩;②每个班都抽取1人,共计20人,考察这20个学生的考试成绩;③把学生按成绩分成优秀、良好、普通三个级别,从其中抽取100名学生进行考察(已知若按成绩分,该校高三学生中优秀生共有150人,良好生共有600人,普通生共有250人).根据上面的叙述,试回答下列问题:(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式所抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式中各自采用何种方法抽取样本?(3)试分别写出上面三种抽取方式各自抽取样本的步骤.解:(1)在这三种抽取方式中,其总体都是该校本学年高三全体学生的考试成绩,个体都是本学年高三年级每个学生的考试成绩.其中第一种抽取方式中样本为所抽取的本学年20名学生的考试成绩,样本容量为20;第二种抽取方式中样本为所抽取的本学年20名学生的考试成绩,样本容量为20;第三种抽取方式中样本为所抽取的本学年100名学生的考试成绩,样本容量为100.(2)在上面三种抽取方式中,第一种方式采用的是简单随机抽样;第二种方式采用的是系统抽样和简单随机抽样;第三种方式采用的是分层抽样和简单随机抽样.(3)第一种方式抽取样本的步骤如下:首先在这20个班中用抽签法任意抽取一个班,然后从这个班中按学号用随机数法或抽签法抽取20个学生,考察其考试成绩.第二种方式抽取样本的步骤如下:首先在第一个班中,用简单随机抽样法任意抽取一个学生,记其学号为a.然后在其余的19个班中,选取学号为a的学生,共计20人.第三种方式抽取样本的步骤如下:首先分层.因为若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三层.然后确定各层抽取的人数.因为样本容量与总体的个体数之比为100∶1 000=1∶10,所以在每层抽取的个体数依次为即15,60,25.最后按层分别抽取.在优秀生中用简单随机抽样抽取15人,在良好生中用简单随机抽样抽取60人,在普通生中用简单随机抽样抽取25人.。
高中数学人教A版必修三课时习题:第2章 统计 2.1.1含答案
2.1.1 简单随机抽样
课时目标
1.掌握简单随机抽样的定义及其特点.
2.能准确地应用抽签法及随机数表法解决问题.
识记强化
1.从总体中抽出的若干个个体组成的集合叫做总体的一个样本,样本中个体的数量叫做样本容量.
2.简单随机抽样的定义
一般地,设一个总体有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.
3.简单随机抽样的分类
简单随机抽样⎩⎪⎨⎪⎧
抽签法抓阄法随机数表法 4.简单随机抽样的优点及适用类型 简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.
课时作业
一、选择题
1.为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是( )。
高中数学必修三 计数,概率,统计与分布列知识梳理 含答案
计数,概率,统计与分布列知识梳理10.1分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,……,在第n类办法中有m n种方法.那么,完成这件事共有_____________种方法.(也称加法原理)2.分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,……,做第n步有m n种方法.那么,完成这件事共有__________________种方法.(也称乘法原理) 3.分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.[方法与技巧]1.分类加法和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.2.分类标准要明确,做到不重复不遗漏.3.混合问题一般是先分类再分步.4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.[失误与防范]1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.10.2排列与组合1.排列与组合的概念2.(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的_________的个数叫作从n个不同元素中取出m个元素的排列数,用A m n表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的_________的个数,叫作从n个不同元素中取出m个元素的组合数,用C m n表示.3.排列数、组合数的公式及性质1.对于有附加条件的排列、组合应用题,通常从三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列数或组合数,再减去不符合要求的排列数或组合数.2.排列、组合问题的求解方法与技巧:(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.[失误与防范]求解排列与组合问题的三个注意点:(1)解排列与组合综合题一般是先选后排,或充分利用元素的性质进行分类、分步,再利用两个原理做最后处理.(2)解受条件限制的组合题,通常用直接法(合理分类)或间接法(排除法)来解决,分类标准应统一,避免出现重复或遗漏.(3)对于选择题要谨慎处理,注意等价答案的不同形式,处理这类选择题可采用排除法分析选项,错误的答案都有重复或遗漏的问题.10.3二项式定理1.二项式定理(1)0≤r≤n时,C r n与C n-r的关系是______n(2)二项式系数先增后减________最大当n为偶数时,第_____项的二项式系数最大,最大值为__;当n为奇数时,第____项和_______项的二项式系数最大,最大值为______和_____(3)各二项式系数和:C0n+C1n+C2n+…+C n n=____,C0n+C2n+C4n+…=C1n+C3n+C5n+…=____【知识拓展】二项展开式形式上的特点(1)项数为______(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按_____排列,从第一项开始,次数由n逐项减1直到零;字母b按_____排列,从第一项起,次数由零逐项增1直到n.,___(4)二项式的系数从____,C1n,一直到C n-1n[方法与技巧]1.通项T r+1=C r n a n-r b r是(a+b)n的展开式的第r+1项,而不是第r项,这里r=0,1,…,n.2.二项式系数与项的系数是完全不同的两个概念.二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.3.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.4.运用通项求展开式的一些特殊项,通常都是由题意列方程求出r,再求所需的某项;有时需先求n,计算时要注意n和r的取值范围及它们之间的大小关系.[失误与防范]1.项的系数与a、b有关,二项式系数只与n有关,大于0.2.求二项式所有系数的和,可采用“赋值法”.3.关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法.4.展开式中第r+1项的二项式系数与第r+1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.11.1随机抽样1.抽样调查(1)抽样调查通常情况下,从调查对象中按照一定的方法抽取一部分,进行_________,获取数据,并以此对调查对象的某项指标作出_______,这就是抽样调查.(2)总体和样本调查对象的______称为总体,被抽取的_______称为样本.(3)抽样调查与普查相比有很多优点,最突出的有两点:①______________;②节约人力、物力和财力.2.简单随机抽样(1)简单随机抽样时,要保证每个个体被抽到的概率______(2)通常采用的简单随机抽样的方法:__________________3.分层抽样(1)定义:将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.4.系统抽样系统抽样是将总体中的个体进行编号,_______分组,在第一组中按照___________抽取第一个样本,然后按____________ (称为抽样距)抽取其他样本.这种抽样方法有时也叫等距抽样或机械抽样.[方法与技巧]1.简单随机抽样的特点:总体中的个体性质相似,无明显层次;总体容量较小,尤其是样本容量较小;用简单随机抽样法抽取的个体带有随机性;个体间无固定间距.2.系统抽样的特点:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样.3.分层抽样的特点:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.[失误与防范]进行分层抽样时应注意以下几点:(1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同.\11.2统计图表,用样本估计总体1.统计图表统计图表是_____和_____数据的重要工具,常用的统计图表有____________,______________,______________,______________等.2.数据的数字特征(1)众数、中位数、平均数众数:在一组数据中,出现次数_____的数据叫作这组数据的众数.中位数:将一组数据按大小依次排列,把处在_______位置的一个数据(或最中间两个数据的平均数)叫作这组数据的中位数.平均数:样本数据的算术平均数,即x=________________在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.(2)样本方差、标准差标准差s=______________________________其中x n是样本数据的第n项,n是___________,x是________标准差是刻画数据的离散程度的特征数,样本方差是标准差的____.通常用样本方差估计总体方差,当____________________时,样本方差很接近总体方差.3.用样本估计总体(1)通常我们对总体作出的估计一般分成两种,一种是用_____________________________,另一种是用____________________________(2)在频率分布直方图中,纵轴表示______,数据落在各小组内的频率用______________表示,各小长方形的面积总和等于____.(3)在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间.从所加的左边区间的_____开始,用线段依次连接各个矩形的__________,直至右边所加区间的中点,就可以得到一条折线,称之为频率折线图.(4)当样本数据较少时,用茎叶图表示数据的效果较好,它没有信息的缺失,而且___________,方便表示与比较.[方法与技巧]1.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.2.茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的.茎叶图由所有样本数据构成,没有损失任何样本信息,可以随时记录;而频率分布表和频率分布直方图则损失了样本的一些信息,必须在完成抽样后才能制作.3.若取值x1,x2,…,x n的频率分别为p1,p2,…,p n,则其平均值为x1p1+x2p2+…+x n p n;若x1,x2,…,x n的平均数为x,方差为s2,则ax1+b,ax2+b,…,ax n+b的平均数为a x +b,方差为a2s2.[失误与防范]频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.11.3变量间的相关关系,统计案例1.相关性(1)通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的_______(2)从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样近似的过程称为_______(3)在两个变量x和y的散点图中,若所有点看上去都在一条直线附近波动,则称变量间是__________的,若所有点看上去都在某条曲线(不是一条直线)附近波动,称此相关是___________的.如果所有的点在散点图中没有显示任何关系,则称变量间是__________ 2.线性回归方程(1)最小二乘法如果有n 个点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可以用[y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+[y n -(a +bx n )]2来刻画这些点与直线y =a +bx 的接近程度,使得上式达到最小值的直线y =a +bx 就是所要求的直线,这种方法称为最小二乘法.(2)线性回归方程方程y =bx +a 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧ b =∑n i =1 (x i -x )(y i -y )∑n i =1 (x i -x )2=∑n i =1x i y i -n x y ∑n i =1x 2i -n x 2,a =y -b x .3.回归分析(1)定义:对具有________的两个变量进行统计分析的一种常用方法.(2)样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )中,________称为样本点的中心.(3)相关系数①r =∑ni =1 (x i -x )(y i -y )∑n i =1 (x i -x )2∑n i =1(y i -y )2=∑ni =1x i y i -n x y(∑n i =1x 2i -n x 2)(∑n i =1y 2i -n y 2);②当r >0时,表明两个变量_______;当r <0时,表明两个变量_________当r =0时,表明两个变量_________.r 的绝对值越接近于1,表明两个变量之间的线性相关程度_______.r 的绝对值越接近于0,表明两个变量之间的线性相关程度越低.4.独立性检验设A ,B 为两个变量,每一个变量都可以取两个值,变量A :A 1,A 2=A 1;变量B :B 1,B 2=B 1;2×2列联表:构造一个随机变量χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).利用随机变量χ2来判断“两个分类变量有关系”的方法称为独立性检验.当χ2≤2.706时,没有充分的证据判定变量A,B有关联,可以认为变量A,B没有关联的;当χ2>2.706时,有90%的把握判定变量A,B有关联;当χ2>3.841时,有95%的把握判定变量A,B有关联;当χ2>6.635时,有99%的把握判定变量A,B有关联.[方法与技巧]1.回归分析是处理变量相关关系的一种数学方法.主要解决:(1)确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;(2)根据一组观察值,预测变量的取值及判断变量取值的变化趋势;(3)求出线性回归方程.2.根据χ2的值可以判断两个分类变量有关的可信程度.[失误与防范]1.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.2.独立性检验中统计量χ2的值的计算公式很复杂,在解题中易混淆一些数据的意义,代入公式时出错,而导致整个计算结果出错.12.1随机事件的概率1.随机事件和确定事件(1)在条件S下,一定会发生的事件,叫作相对于条件S的_____________(2)在条件S下,一定不会发生的事件,叫作相对于条件S_____________(3)___________________________统称为相对于条件S的确定事件.(4)______________________________的事件,叫作相对于条件S的随机事件.(5)___________和____________统称为事件,一般用大写字母A,B,C…表示.2.频率与概率在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有_______.这时,我们把_______叫作随机事件A的概率,记作P(A).3.事件的关系与运算互斥事件:在一个随机试验中,我们把一次试验下发生的两个事件A与B称作互斥事件.事件A+B:事件A+B发生是指事件A和事件B______________________对立事件:不会______发生,并且___________发生的事件是相互对立事件.4.概率的几个基本性质(1)概率的取值范围:________________(2)必然事件的概率P(E)=____(3)不可能事件的概率P(F)=____(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A+B)=________________②若事件A与事件A互为对立事件,则P(A)=______________.[知识拓展]互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.[方法与技巧]1.对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于_________, 因此可以用频率f n(A)来估计概率P(A).2.从集合角度理解互斥事件和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此的交集为______,事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的_______.[失误与防范]1.正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的__________条件.2.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.12.2古典概型1.基本事件的特点(1)任何两个基本事件是_______的;(2)任何事件(除不可能事件)都可以表示成_____________的和.2.古典概型具有以下两个特点的概率模型称为古典的概率模型,简称古典概型.(1)试验的所有可能结果_____________,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性__________3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是 1n;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )= ________ .4.古典概型的概率公式P (A )=事件A 包含的可能结果数试验的所有可能结果数. [方法与技巧]1.古典概型计算三步曲第一,本试验是不是等可能的;第二,本试验的基本事件有多少个;第三,事件A 是什么,它包含的基本事件有多少个.2.确定基本事件的方法(1)当基本事件总数较少时,可列举计算;(2)列表法、树状图法.3.较复杂事件的概率可灵活运用互斥事件、对立事件、相互独立事件的概率公式简化运算.[失误与防范]1.古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,它们是不是等可能的.2.概率的一般加法公式:P (A +B )=___________________.公式使用中要注意:(1)公式的作用是求A +B 的概率,当AB =∅时,A 、B 互斥,此时P (AB )=0,所以P (A +B )=P (A )+P (B );(2)要计算P (A +B ),需要求P (A )、P (B ),更重要的是把握事件AB,并求其概率;(3)该公式可以看作一个方程,知三可求一.12.3几何概型1.几何概型向平面上有限区域(集合)G内随机地投掷点M,若点M落在子区域G1G的概率与G1的面积成正比,而与G的形状、位置无关,即P(点M落在G1)=___________,则称这种模型为几何概型.2.几何概型中的G也可以是空间中或直线上的有限区域,相应的概率是_______之比或_________之比.3.借助_________可以估计随机事件发生的概率.[方法与技巧]1.区分古典概型和几何概型最重要的是看__________的个数是有限个还是无限个.2.转化思想的应用对一个具体问题,可以将其几何化,如建立坐标系将试验结果和点对应,然后利用几何概型概率公式.(1)一般地,一个连续变量可建立与_____有关的几何概型,只需把这个变量放在坐标轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与______有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系建立与_______有关的几何概型.[失误与防范]1.准确把握几何概型的“测度”是解题关键;2.几何概型中,线段的端点、图形的边框是否包含在事件之内_________所求结果.12.4离散型随机变量及其分布列1.离散型随机变量的分布列(1)将随机现象中试验(或观测)的每一个可能的结果都对应于________,这种_______称为一个随机变量.(2)离散型随机变量:随机变量的取值能够______________,这样的随机变量称为离散型随机变量.(3)设离散型随机变量X的取值为a1,a2,…随机变量X取a i的概率为p i(i=1,2,…),记作:_____________ (i=1,2,…),或把上式列表:称为离散型随机变量X(4)性质:①p i___0,i=1,2,…;②p1+p2+…=___.2.超几何分布一般地,设有N件产品,其中有M(M≤N)件次品.从中任取n(n≤N)件产品,用X表示取出的n件产品中次品的件数,那么P(X=k)=______________ (其中k为非负整数).如果一个随机变量的分布列由上式确定,则称X服从参数为N,M,n的超几何分布.[方法与技巧]1.对于随机变量X的研究,需要了解随机变量能取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X的______以及取这些值的______.2.求离散型随机变量的分布列,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.[失误与防范]掌握离散型随机变量的分布列,须注意:(1)分布列的结构为两行,第一行为随机变量X所有可能取得的值;第二行是对应于随机变量X的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.(2)要会根据分布列的两个性质来检验求得的分布列的正误.12.5二项分布及其应用1.条件概率在已知B发生的条件下,事件A发生的概率叫作B发生时A发生的___________,用符号P(A|B)来表示,其公式为P(A|B)=__________ (P(B)>0).2.相互独立事件(1)一般地,对两个事件A,B,如果有________________,则称A、B相互独立.(2)如果A、B相互独立,则_________________________________也相互独立.(3)如果A1,A2,…,A n相互独立,则有:P(A1A2…A n)=_________________________.3.二项分布进行n次试验,如果满足以下条件:(1)每次试验只有两个相互对立的结果,可以分别称为“成功”和“失败”;(2)每次试验“成功”的概率均为p,“失败”的概率均为1-p;(3)各次试验是___________.用X表示这n次试验中成功的次数,则P(X=k)=_____________ (k=0,1,2,…,n)若一个随机变量X的分布列如上所述,称X服从参数为n,p的二项分布,简记为X~B(n,p).[方法与技巧]1.古典概型中,A发生的条件下B发生的条件概率公式为P(B|A)=____=_____,其中,在实际应用中P(B|A)=n(AB)n(A)是一种重要的求条件概率的方法.2.相互独立事件与互斥事件的区别相互独立事件是指两个事件发生的概率互不影响,计算式为____________.互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为_______________.3.n次独立重复试验中,事件A恰好发生k次可看作是____个互斥事件的和,其中每一个事件都可看作是__个A事件与____个A事件同时发生,只是发生的次序不同,其发生的概率都是_________.因此n次独立重复试验中事件A恰好发生k次的概率为C k n p k(1-p)n-k. [失误与防范]1.运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A、B相互独立时,公式才成立.2.独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意“恰好”与“至多(少)”的关系,灵活运用对立事件.12.6离散型随机变量的均值与方差,正态分布1.离散型随机变量的均值与方差若离散型随机变量X的分布列为P(X=a i)=p i(i=1,2,…r).(1)均值EX=________________________,EX刻画的是_____________________(2)方差DX=_______________为随机变量X的方差,它刻画了随机变量X与其均值EX的____________________2.二项分布的均值、方差若X~B(n,p),则EX=_____________,DX=______________3.正态分布(1)X~N(μ,σ2),表示X服从参数为__________的正态分布.(2)正态分布密度函数的性质:①函数图像关于___________对称;②_________________决定函数图像的“胖”“瘦”;③P(μ-σ<X<μ+σ)=__________;P(μ-2σ<X<μ+2σ)=__________;P(μ-3σ<X<μ+3σ)=__________[方法与技巧]1.均值与方差的性质(1)E(aX+b)=__________,D(aX+b)=_______(a,b为常数).(2)若X服从两点分布,则EX=___,DX=_______.(3)若X服从二项分布,即X~B(n,p),则EX=_____,DX=________.2.求离散型随机变量的均值与方差的基本方法(1)已知随机变量的分布列求它的均值、方差,按定义求解.(2)已知随机变量X的均值、方差,求X的线性函数Y=aX+b的均值、方差,可直接用X 的均值、方差的性质求解.(3)如果所给随机变量是服从常用的分布(如两点分布、二项分布等),利用它们的均值、方差公式求解.3.若X服从正态分布,即X~N(μ,σ2),要充分利用正态曲线的对称性和曲线与x轴之间的面积为____.[失误与防范]1.在没有准确判断分布列模型之前不能随便套用公式.2.对于应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的分布列,然后按定义计算出随机变量的均值、方差.计数,概率,统计与分布列知识梳理答案10.1分类加法计数原理与分步乘法计数原理1. N=m1+m2+…+m n 2 .N=m1×m2×…×m n10.2排列与组合1. 一定的顺序2.(1) 所有排列(2) 所有组合3. (1) n(n-1)(n-2)…(n-m+1) ,n!(n-m)!(2) A m nA m m,n(n-1)(n-2)…(n-m+1)m!,n!m!(n-m)!(3) 1 , n!(4) C n-mn , C m n+C m-1n10.3二项式定理1.C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n, r+12. (1) C r n=C n-rn .(2)中间项,n2+1 ,2Cnn,n+12, n+32,12Cnn-,12Cnn+.(3)2n 2n-1.【知识拓展】(1) n+1. (3) 降幂, 升幂(4) C0n, C n n.11.1随机抽样1.(1) 调查或观测, 推断(2) 全体, 一部分(3)①迅速、及时;2.(1) 相同.(2) 抽签法和随机数法.4. 等距,简单随机抽样, 分组的间隔11.2统计图表,用样本估计总体1.表达, 分析, 条形统计图、扇形统计图、折线统计图、茎叶图2.(1) 最多, 最中间, 1n(x1+x2+…+x n).(2)1n[(x1-x)2+(x2-x)2+…+(x n-x)2],, 样本容量, 平均数, 平方, 样本容量接近总体容量3.(1) 样本的频率分布估计总体的频率分布, 样本的数字特征估计总体的数字特征.(2) 频率组距, 各小长方形的面积, 1 (3)中点, 顶端中点(4) 可以随时记录11.3变量间的相关关系,统计案例1.(1)散点图.(2)曲线拟合.(3)线性相关, 非线性相关, 不相关的.3.(1) 相关关系(2) (x,y) (3)②正相关, 负相关, 线性不相关, 越高12.1随机事件的概率1.(1)必然事件(2)不可能事件(3)必然事件与不可能事件(4)在条件S下可能发生也可能不发生(5)确定事件和随机事件2.稳定性, 这个常数3.不能同时, 至少有一个发生,同时, 一定有一个4.(1)0≤P(A)≤1. (2)1. (3)0. (4)①P(A)+P(B).②1-P(A).[方法与技巧]1. 概率P(A)2. 空集, 补集[失误与防范]1.必要不充分12.2古典概型1.(1)互斥(2)基本事件2.(1)只有有限个,(2)相同3.m n.[失误与防范]2.P(A)+P(B)-P(AB) 12.3几何概型1.G1的面积G的面积2.体积,长度3.模拟方法[方法与技巧]。
高中数学必修3(人教B版)第二章统计2.2知识点总结含同步练习题及答案
4. 某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方 图,其中产品净重的范围是 [96, 106] ,样本数据分组为 [96, 98) , [98, 100) , [100, 102) ,
[102, 104) , [104, 106] ,已知样本中产品净重小于 100 克的个数是 36 ,则样本中净重大于或等于 98 克
并且小于 104 克的产品的个数是 (
).
A.90
答案: A 解析: 产品净重小于
B.75
C.60
D.45
100 克的概率为 (0.050 + 0.100) × 2 = 0.300 , 已知样本中产品净重小于 100 克的个数是 36 ,设样本容量为 n , 36 则 ,所以 n = 120 ,净重大于或等于 98 克并且小于 n 104 克的产品的概率为 (0.100 + 0.150 + 0.125) × 2 = 0.75 ,所以样本 中净重大于或等于 98 克并且小于 104 克的产品的个数是 120 × 0.75 = 90 .
).
A.2, 5
答案: C
B.5, 5
C.5, 8
D.8, 8
3. 样本中共有五个个体,其值分别为 a, 0, 1, 2, 3 ,若该样本的平均值为 1 ,则样本方差为 (
− − 6 A.√ 5
答案: D 解析:
)
B.
6 5
C.√2
D.2
a+0+1+2+3 = 1 ,得 a = −1 . 5 1 所以 s2 = [(−1 − 1)2 + (0 − 1)2 + (1 − 1)2 + (2 − 1)2 + (3 − 1)2 ] = 2 . 5
人教版高中数学必修三专题讲义统计综合问题 课后练习
统计综合问题课后练习题一:某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是( ) A .简单随机抽样 B .系统抽样C .分层抽样D .先从老年人中剔除1人,再用分层抽样题二:某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法( )①简单随机抽样 ②系统抽样 ③分层抽样A .②③B .①③C .③D .①②③题三:将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( )A .1169B .367C .36D .677题四:已知某单位有40名职工,现要从中抽取5名职工,将全体职工随机按1~40编号,并按编号顺序平均分成5组.按系统抽样方法在各组内抽取一个号码. ①若第1组抽出的号码为2,则所有被抽出职工的号码为________;②分别统计这5名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,则该样本的方差为________.题五:某初级中学有学生300人,其中一年级120人,二,三年级各90人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一,二,三年级依次统一编号为1,2,…300;使用系统抽样时,将学生统一编号为1,2,…300,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:①7,37,67,97,127,157,187,217,247,277;②5,9,100,107,121,180,195,221,265,299;③11,41,71,101,131,161,191,221,251,281;④31,61,91,121,151,181,211,241,271,300关于上述样本的下列结论中,正确的是()A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样题六:从已编号为1—50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,6,16,32如果用同一行业应聘人数与招聘人数比值的大小来衡量该行业的就业情况,那么根据表中数据,对上述行业的就业情况判断正确的是()A.计算机行业好于其它行业B.贸易行业好于化工行业C.机械行业好于营销行业D.建筑行业好于物流行业题八:某人才市场2004年上半年应聘和招聘人数排名前5个类别的情况如下图所示,若用同一类别中应聘人数与招聘人数比值的大小来衡量该类别的就业情况,则根据图中信息,下列对就业形势的判断一定正确的是()提示:请注意理解图片是应聘和招聘人数排名前5个类别的情况.A.医学类好于营销类B.金融类好于计算机类C.外语类最紧张D.建筑类好于法律类题九:已知数据x1,x2,…,x n的平均数是4,则一组新数据x1+7,x2+7,…,x n+7的平均数是.题十:已知两组数x1, x2,…, x3和y1, y2,…, y3;它们的平均数分别是a和b.分别求下列各组新数据的平均数:(1)5x1,5x2,…,5x n;(2)x1-y1,x2-y2,…,x n-y n;题十一:一个样本容量为10的样本数据,它们组成一个公差不为0的等差数列{a n},若a3=8,且a1,a3,a7成等比数列,则此样本的平均数和中位数分别是()A.13, 12 B.13, 13 C.12, 13 D.13, 14题十二:抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第1次第2次第3次第4次第5次甲8791908993乙8990918892题十三:一般地,家庭用电量y(千瓦)与气温x(℃)有函数关系y=f(x).图(1)表示某年12月中每月的平均气温,图(2)表示某家庭在12个月中每月的用电量.试在数集A={x|5≤x≤30,x是2.5的整数倍}中确定一个最小值x1和最大值x2,使y=f(x)是[x1,x2]上的增函数,则区间[x1,x2]= .题十四:某校从参加高三年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图的频率分布直方图,请你根据频率分布直方图中的信息,估计出本次考试数学成绩的平均分为________.统计综合问题性 课后练习参考答案题一: D .详解:总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本.题二: D .详解:由于各家庭有明显差异,所以首先应用分层抽样的方法分别从农民、工人、知识分子这三类家庭中抽出若干户,即36户、2户、2户.又由于农民家庭户数较多,那么在农民家庭这一层宜采用系统抽样;而工人、知识分子家庭户数较少,宜采用简单随机抽样法.故整个抽样过程要用到①②③三种抽样法.题三: B .详解:根据茎叶图,去掉1个最低分87,1个最高分99,则17[87+94+90+91+90+(90+x )+91]=91,∴x=4.∴s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2]=367.题四: ①2,10,18,26,34 ②62.详解:由题意知被抽出职工的号码为2,10,18,26,34.由茎叶图知5名职工体重的平均数x =59+62+70+73+815=69,则该样本的方差s 2=15[(59-69)2+(62-69)2+(70-69)2+(73-69)2+(81-69)2]=62. 题五: D .详解:在系统抽样中,将学生统一编号为1,2,…300,并将整个编号依次分为10段.则每一段的号码数为30.①中数据为7,37,67,97,127,157,187,217,247,277,数据相差30,所以①为系统抽样或分层抽样.②中数据5,9,100,107,121,180,195,221,265,299;数据排列没有规律,可能为分层抽样. ③中数据11,41,71,101,131,161,191,221,251,281;数据相差30,所以③为系统抽样或分层抽样.④中数据31,61,91,121,151,181,211,241,271,300,数据相差30,但第一个数据大于30,所以④不可能是系统抽样.故D 正确.题六: B .详解:用系统抽样的方法抽取到的导弹编号应该为k , k +d , k +2d , k +3d , k +4d , 其中d =50/5=10,k 是1到10中用简单随机抽样方法得到的数, 因此只有选项B 满足要求.题七: D .详解:本题综合考查统计部分的有关知识,通过统计表可以得到应聘人数与招聘人数,进而通过计算应聘人数与招聘人数的比值大小来衡量该行业的就业情况,比值越小越容易就业,比值越大越不容易就业,计算机行业比值为1.83;机械行业比值为2.29;营销行业比值为1.50;建筑行业为0;化工行业为0;而物流行业与贸易行业的比值为无穷大,所以此题应选D .题八: D .详解:因为同一类别中应聘人数与招聘人数比值越大的,说明该行业的就业形式越差;反之,比值越小的,说明就业形式越好,由此即可求出答案.医学类的比值为7.11246021580=;外语类的比值为2.2891020030=;金融类的比值为5.11029015460=;法律类的比值大于2.170408450=;计算机类的比值大于65300.97040=;营销类的比值小于65300.97040=;建筑类的比值小于65300.857650=.则一定正确的是建筑类好于法律类,故选D .题九: 11.详解:由题意知,一组数据x 1,x 2,x 3,x 4,…,x n 的平均数为 (x 1+x 2+x 3+x 4+…+x n )÷n =4∴x 1+7,x 2+7,x 3+7,x 4+7,…,x n +7这组数据的平均数为 (x 1+7+x 2+7+x 3+7+x 4+7+…+x n +7)÷n=[(x 1+x 2+x 3+x 4+…+x n )+7n ]÷n =(x 1+x 2+x 3+x 4+…+x n )÷n +7=4+7=11.题十: (1)5a ;(2)a -b .详解:(1)第一组中各数据正好是原来数据的5倍,所以平均数也是原来的5倍,故这组数据的平均数为5a ;(2)第二组中各数据正好是原来两组数据的差,所以平均数也是原来两组数据的差,故这组数据的平均数为a -b .题十一: B .详解:设等差数列{a n }的公差为 d (d ≠0),a 3=8,a 1a 7=a 23=64,(8-2d )(8+4d )=64,(4-d )(2+d )=8,2d -d 2=0,又d ≠0,故d =2,故样本数据为4,6,8,10,12,14,16,18,20,22,样本的平均数为(4+22)×510=13,中位数为12+142=13,故选B .题十二: 2.详解:x 甲=15(87+91+90+89+93)=90,x 乙=15(89+90+91+88+92)=90,s 2甲=15[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,s 2乙=15[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.由样本数据估计总体时,样本方差越小,数据越稳定,波动越小.故答案为2. 题十三: [20,30].详解:先结合图形读懂题意,再找出图中随气温x (℃)增高家庭用电量y (千瓦)也增高的区间即可.观察两图中随气温x (℃)增高家庭用电量y (千瓦)也增高的是5月到8月,则y =f (x )在x ∈[20,30]上的增函数,故答案为[20,30].题十四: 71.详解:由频率分布直方图得每一组的频率依次为0.1,0.15,0.15,0.3,0.25,0.05,又由频率分布直方图,得每一组数据的中点值依次为45,55,65,75,85,95.所以本次考试数学成绩的平均分为x =45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.故填71.。
高中数学人教A版必修三课时习题:第2章 统计 2.2.2.2含答案
2.2.2 用样本的数字特征估计总体的数字特征第2课时方差、标准差课时目标1.理解方差、标准差的意义,会计算一组数据的方差和标准差,掌握用样本方差或标准差去估计总体方差或总体标准差的方法.2.会用平均数和方差对数据进行处理与比较.识记强化标准差及方差考察样本数据的分散程度的大小,最常用的统计量是标准差.标准差是样本数据到平均数的一种平均距离,一般用s表示.标准差的平方s2叫做方差,也为测量样本数据分散程度的工具.若样本数据是x1,x2,…,x n,x表示这组数据的平均数,则s=1n[x1-x2+x2-x2+…+x n-x2];s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].课时作业一、选择题1.下列说法正确的是( )A.在两组数据中,平均值较大的一组方差较大C .2x -+3和s 2D .2x -+3和4s 2+12s +9 答案:B解析:由平均数、方差的求法可得.6.甲、乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是( )A .甲B .乙C .甲、乙相同D .不能确定 答案:B解析:方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B.二、填空题7.已知样本9、10、11、x 、y 的平均数是10,方差是2,则xy =________. 答案:96解析:由平均数得9+10+11+x +y =50,∴x +y =20,又由(9-10)2+(10-10)2+(11-10)2+(x -10)2+(y -10)2=(2)2×5=10,得x 2+y 2-20(x +y )=-192,(x +y )2-2xy -20(x +y )=-192,xy =96.8.如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.答案:6.8解析:x =15(8+9+10+13+15)=11,s 2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=6.8.9.若k 1,k 2,…,k 8的方差为3,则2(k 1-3),2(k 2-3),…,2(k 8-3)的方差为________. 答案:12解析:设k 1,k 2,…,k 8的平均数为k ,则18[(k 1-k )2+(k 2-k )2+…+(k 8-k )2]=3,而2(k 1-3),2(k 2-3),…,2(k 8-3)的平均数为2(k -3),解析:x 9=x 8+19(x 9-x 8)=5+19×(4-5)=449,s 29=89[s 28+19(x 9-x 8)2]=89[22+19(4-5)2]=29681. 13.下图为我国10座名山的“身高”统计图,请根据图中信息回答下列问题。
苏教版高中数学必修3第2章 统计 全章复习讲义设计(含答案解析)
【知识梳理】知识点一:抽样方法从调查的对象中按照一定的方法抽取一部分,进行调查或观测,获取数据,并以此对调查对象的某项指标做出推断,这就是抽样调查.调查对象的全体称为总体,被抽取的一部分称为样本.1.简单的随机抽样简单随机抽样的概念:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.①用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时,任一个体被抽到的概率为1N ;在整个抽样过程中各个个体被抽到的概率为nN;②简单随机抽样的特点是:不放回抽样,逐个地进行抽取,各个个体被抽到的概率相等;③简单随机抽样方法体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.简单抽样常用方法:①抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本.适用范围:总体的个体数不多.优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.②随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码.【解析】由题意可得1011910,5x y ++++=22222(10)(10)(1010)(1110)(910)25x y -+-+-+-+-=,解得12,8.||4x y x y ==-=,故选D .例3. 对某电子元件进行寿命追踪调查,情况如下:寿命(h ) 100~200 200~300300~400400~500500~600个 数2030804030(1)列出频率分布表;(2)画出频率分布直方图和累积频率分布图; (3)估计电子元件寿命在100~400 h 以内的概率; (4)估计电子元件寿命在400 h 以上的概率.【思路点拨】 通过本题可掌握总体分布估计的各种方法和步骤. 【解析】(1)频率分布表如下:寿命(h ) 频 数 频 率 累积频率 100~200 20 0.10 0.10 200~300 30 0.15 0.25 300~400 80 0.40 0.65 400~500 40 0.20 0.85 500~600 30 0.15 1 合 计2001(2)频率分布直方图如下:(3)由累积频率分布图可以看出,寿命在100~400 h内的电子元件出现的频率为0.65,所以我们估计电子元件寿命在100~400 h内的概率为0.65.(4)由频率分布表可知,寿命在400 h以上的电子元件出现的频率为0.20+0.15=0.35,故我们估计电子元件寿命在400 h以上的概率为0.35.【总结升华】画频率分布条形图、直方图时要注意纵、横坐标轴的意义.举一反三:【变式1】为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是()(A)20 (B)30 (C)40 (D)50【答案】C;【解析】根据运算的算式:体重在〔56.5,64.5〕学生的累积频率为2×0.03+2×0.05+2×0.05+2×0.07=0.4,则体重在〔56.5,64.5〕学生的人数为0.4×100=40.【变式2】某班学生在一次数学考试中成绩分布如下表:分数段[0,80)[80,90)[90,100)人数 2 5 6)分数段[100,110)[110,120 [120,130)人数8 12 6分数段[130,140)[140,150)人数 4 2那么分数在[100,110)中的频率和分数不满110分的累积频率分别是_______、_______(精确到0.01). 【答案】0.18 0.47【解析】由频率计算方法知:总人数=45.分数在[100,110)中的频率为458=0.178≈0.18. 分数不满110分的累积频率为458652+++=4521≈0.47【变式3】为检测某种产品的质量,抽取了一个容量为30的样本,检测结果为一级品5件,二级品8件,三级品为13件,次品4件 (1)列出样本频率分布表;(2)画出表示样本频率分布的条形图;(3)根据上述结果,估计商品为二级品或三级品的概率约是多少? 【解析】(1)样本的频率分布表为产品频数频率 一级品 5 0.17 二级品 8 0.27 三级品 13 0.43 次品40.13(2)样本频率分布的条形图为:(3)此种产品为二级品或三级品的概率约为0.27+0.43=0.7.例4.甲、乙两小组各10名学生的英语口语测试成绩如下:(单位:分) 甲组 76 90 84 86 81 87 86 82 85 83 乙组 82 84 85 89 79 80 91 89 79 74 用茎叶图表示两小组的成绩,并判断哪个小组的成绩更整齐一些?【思路点拨】学会用茎叶图表示数据的方法;并会进行统计推断.【解析】用茎叶图表示两小组的成绩如图:由图可知甲组成绩较集中,即甲组成绩更整齐一些.【总结升华】对各数据是二、三位数,且数据量不是很大时,用茎叶图表示较为方便,也便于进行统计推断,否则,应改用其他方法.举一反三:【变式1】甲、乙两个学习小组各有10名同学,他们在一次数学测验中成绩的茎叶图如图所示,则他们在这次测验中成绩较好的是组.【答案】甲小组类型三:变量的相关性和回归分析例5.某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有下表所对应的数据:广告支出x(单位:万元) 1 2 3 4销售收入y(单位:万元)12 28 42 56(1) 画出表中数据的散点图;(2)求出y对x的回归直线方程;(3)若广告费为9万元,则销售收入约为多少万元?【解析】(1)作出的散点图如下图所示(2)观测散点图可知各点大致分布在一条直线附近,由此可知散点图大致表现为线性相关.列出下表:序号 x y X 2xy 1 1 12 1 12 2 2 28 4 56 3 3 42 9 126 44 56 16 224 ∑1013830418易得569,22x y ==所以 414222156944184732255304()42i ii ii x y xyb xx ==--⨯⨯===-⨯-∑∑ 697352252a y bx =-=-⨯=- 故y 对x 的回归直线方程为73ˆ25yx =- (3)当x=9时, 73ˆ92129.45y=⨯-= 012 3 4x(万元)Y(万元)1020 30 40 50 60 .. . .08.0423.15=⨯-=-=bx y a .∴线性回归方程为:08.023.1^+=+=x a bx y .(2)当x=10时,38.1208.01023.1^=+⨯=y (万元) 即估计使用10年时维修费用是12.38万元.【变式2】一个工厂在某年里每月产品的总成本y (万元)与该月产量x (万件)之间有如下一组数据:x 1.08 1.12 1.19 1.28 1.36 1.48 y 2.25 2.37 2.40 2.55 2.64 2.75 x 1.59 1.68 1.80 1.87 1.98 2.07 y 2.92 3.03 3.14 3.26 3.36 3.50(1)画出散点图;(2)求月总成本y 与月产量x 之间的回归直线方程. 【解析】(1)画出散点图:(2)设回归直线方程a bx y+=ˆ, 利用计算a ,b ,得b ≈1.215, 974.0ˆ≈-=+=x b y a bx y,从中抽取一个容量为100的样本,较为恰当的抽样方法是( )A.简单随机抽样B.系统抽样C.分层抽样D.以上三种均可3. 从N 个编号中抽取n 个号码入样,若采用系统抽样方法进行抽取,则分段间隔应为( ) A .n N B .n C .⎥⎦⎤⎢⎣⎡n N D.1+⎥⎦⎤⎢⎣⎡n N 4.下列说法错误的是 ( )A .在统计里,把所需考察对象的全体叫做总体B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动越大5.要从已编号(160:)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是( )A .5,10,15,20,25,30B .3,13,23,33,43,53C .1,2,3,4,5,6D .2,4,8,16,32,486. 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为( ) A.0.6 h B.0.9 h C.1.0 h D.1.5 h7.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……;第六组,成绩大于等于18秒且小于等于19秒.下图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )A .0.9,35B .0.9,45C .0.1,35D .0.1,458.根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图).从图中可以看出,该水文观测点平均至少一百年才遇到一次的洪水的最低水位是( ) A .48米B .49米C .50米D .51米9.用系统抽样法要从160名学生抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为126,则第一组中抽签方法确定的号码是________.10.从一堆苹果中任取了20只,并得到它们的质量(单位:克)数据分布表如下:分组 [)90100, [)100110, [)110120, [)120130, [)130140, [)140150, 频数1231031则这堆苹果中,质量不小于...120克的苹果数约占苹果总数的 %.11.某校有学生2000人,其中高三学生500人,为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本,则样本中高三学生的人数为 . 12.甲,乙两人在相同条件下练习射击,每人打5发子弹,命中环数如下甲 6 8 9 9 8乙 10 7 7 7 9则两人射击成绩的稳定程度是__________________.13.为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:组别频数频率145.5~149.5 1 0.02149.5~153.5 4 0.08153.5~157.5 20 0.40157.5~161.5 15 0.30161.5~165.5 8 0.16165.5~169.5 m n合计M Nm n M N所表示的数分别是多少?(1)求出表中,,,(2)画出频率分布直方图.(3)全体女生中身高在哪组范围内的人数最多?14.从两个班中各随机的抽取10名学生,他们的数学成绩如下:甲班76 74 82 96 66 76 78 72 52 68乙班86 84 62 76 78 92 82 74 88 85画出茎叶图并分析两个班学生的数学学习情况.15.对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?16.以下是某地搜集到的新房屋的销售价格y 和房屋的面积x 的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线; (3)据(2)的结果估计当房屋面积为2150m 时的销售价格.【答案与解析】1.【答案】B 【解析】∵n40=0.125,∴n=320.故选B. 2. 【答案】C 3. 【答案】C 【解析】剔除零头 4. 【答案】B【解析】平均数不大于最大值,不小于最小值 5. 【答案】B 【解析】60106=,间隔应为10 6. 【答案】B 【解析】505.020)5.11(1025⨯++⨯+⨯=0.9.7.【答案】A【解析】由图知,成绩小于17秒的学生人数占全班总人数的频率为0.020.180.360.340.9+++=, 所以0.9x =;成绩大于等于15秒且小于17秒的的频率为0.360.340.7+=,104416461451222222=++++=)(甲s 5627313751222222=++++=)(乙s ∵ 22乙甲乙甲,s s x x >>∴ 甲的平均成绩较好,乙的各门功课发展较平衡16.【解析】(1)数据对应的散点图如图所示:(2)1095151==∑=i i x x ,1570)(251=-=∑=x x l i i xx , 308))((,2.2351=--==∑=y y x x l y i i i xy设所求回归直线方程为a bx y +=), 则1962.01570308≈==xx xyl l b 8166.115703081092.23≈⨯-=-=x b y a 故所求回归直线方程为8166.11962.0+=x y )(3)据(2),当2150x m =时,销售价格的估计值为: 2466.318166.11501962.0=+⨯=y )(万元)。
2019—2020年最新苏教版高中数学必修三《统计》章末考点复习课及解析.docx
(新课标)2019—2020学年苏教版高中数学必修三章末复习课课时目标 1.巩固本章主干知识点.2.提高知识的综合应用能力.1.某质检人员从编号为1~100这100件产品中,依次抽出号码为3,13,23,…,93的产品进行检验,则这样的抽样方法是________.2.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为________.3.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是____________.897931640 24.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为________.5.如果数据x1,x2,…,x n的平均数为x,方差为s2,则2x1+3,2x2+3,…,2x n +3的平均数和方差分别为____________.6.某棉纺厂为了了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据均在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,有______根棉花纤维的长度小于20 mm.一、填空题1.为了调查参加运动会的500名运动员的身高情况,从中抽查了50名运动员的身高,就这个问题来说,下列说法正确的是________.①50名运动员是总体;②每个运动员是个体;③抽取的50名运动员是样本;④样本容量是50.2.某高级中学高一年级有十六个班,812人,高二年级有十二个班,605人,高三年级有十个班,497人,学校为加强民主化管理,现欲成立由76人组成的学生代表会,你认为下列代表产生的办法中,最符合统计抽样原则的是________.(填序号)①指定各班团支部书记、班长为代表;②全校选举出76人;③高三选举出20人,高二选举出24人,高一选举出32人;④高三20人,高二24人,高一32人均在各年级随机抽取.3.一个容量为n的样本,分成若干组,已知某组的频数和频率分别为40和0.125,则n的值是________.4.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿的体重在[2 700,3 000]的频率为____.5.在某项体育比赛中,七位裁判为一选手打出的分数如下:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为________.6.下列图形中具有相关关系的两个变量是________.7.一个总体中有100个个体,随机编号0,1,2,…,99,依从小到大的编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是________.8.一个样本容量是100的频率分布如图(1)样本落在[60,70)内的频率为________;(2)样本落在[70,80)内的频数为________;(3)样本落在[90,100)内的频率是0.16,该小矩形的高是________.9.某商店统计了最近6个月某商品的进价x与售价y(单位:元)的对应数据如下表:x 3528912y 46391214假设得到的关于x和y之间的线性回归方程是=bx+a,那么该直线必过的定点是________.二、解答题10.对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:甲6080709070乙8060708075分别计算两个样本的平均数x和方差s2,并根据计算结果估计甲、乙谁的平均成绩较好?谁的各门功课发展较平衡?11.下表数据是退水温度x(℃)对黄酮延长性y(%)效应的试验结果,y是以延长度计算的,且对于给定的x,y为正态变量,其方差与x无关.x(℃)300400500600700800y(%)405055606770(1)画出散点图;(2)指出x,y是否线性相关;(3)若线性相关,求y关于x的回归方程;(4)估计退水温度是1 000℃时,黄酮延长性的情况.能力提升12.在一次中学生田径运动会上,参加跳高的17名运动员成绩如下:成绩1.50 1.60 1.65 1.70 1.75 1.80 1.85 1.90(单位m)人数2323411 1(1)分别求这些运动员成绩的众数、中位数、平均数(保留3个有效数字);(2)分析这些数据的含义.13.去年西南一地区遭遇严重干旱,某乡计划向上级申请支援,为上报需水量,乡长事先抽样调查了100户村民的月均用水量,得到这100户村民月均用水量的频率分布表如下表:(月均用水量的单位:吨)用水量分组 频数 频率 [0.5,2.5) 12[2.5,4.5)[4.5,6.5) 40 [6.5,8.5)0.18[8.5,10.5] 6 合计1001(1)请完成该频率分布表,并画出相对应的频率分布直方图和频率分布折线图;(2)估计样本的中位数是多少?(3)已知上级将按每户月均用水量向该乡调水,若该乡共有1 200户,请估计上级支援该乡的月调水量是多少吨?1.三种常用的抽样方法:简单随机抽样、系统抽样和分层抽样.在使用它们的过程中,每一个个体被抽到的可能性是一样的.应用抽样方法抽取样本时,应注意以下几点: (1)用随机数表法抽样时,对个体所编的号码位数是相等的,当问题所给位数不相等时,以位数较多的为准,在位数较少的数前面添“0”,凑齐位数.(2)用系统抽样法抽样时,如果总体容量N 能被样本容量n 整除,抽样间隔为k =N n,如果总体容量N 不能被样本容量n 整除,先用简单抽样法剔除多余个数、抽样间隔为k =[N n],([N n]表示取N n的整数部分.)(3)三种抽样方法的适用范围:当总体容量较小,样本容量也较小时,可采用抽签法;当总体容量较大,样本容量较小时,可采用随机数表法;当总体容量较大,样本容量也较大时,可采用系统抽样法;当总体由差异明显的几部分组成时,可采用分层抽样法. 2.为了从整体上更好地把握总体的规律,可以通过样本数据的众数、中位数、平均数和标准差等数字特征对总体的数字特征作出估计.众数就是样本数据中出现次数最多的那个值;中位数就是把样本数据分成相同数目的两部分,其中一部分比这个数小,另一部分比这个数大的那个数;平均数就是所有样本数据的平均值,用x 表示;标准差是反映样本数据分散程度大小的最常用统计量,其计算公式如下:s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].有时也用标准差的平方s 2——方差来代替标准差,实质一样. 3.求线性回归方程的步骤:(1)先把数据制成表,从表中计算出x ,y ,∑ni =1x 2i ,∑ni =1y 2i ,∑ni =1x i y i ; (2)计算回归系数a ,b .公式为⎩⎪⎨⎪⎧b =∑ni =1x i y i -n x y ∑n i =1x 2i -n x 2,a =y -b x(3)写出线性回归方程 =bx +a .章末复习课双基演练 1.系统抽样 2.15解析 设样本容量为n ,则350750=7n ,∴n =15. 3.91.5和91.5 4.4解析 ∵x +y +10+11+95=10,15[(x -10)2+(y -10)2+(10-10)2+(11-10)2+(9-10)2]=2,化简得x +y =20,(x -10)2+(y -10)2=8,解得x =12,y =8或x =8,y =12,∴|x -y|=4. 5.2x +3,4s 2解析 由x 1+x 2+…+x n =n x , 所以2x 1+3+2x 2+3+…+2x n +3n=2(x 1+x 2+…+x n )+3n n =2n x n +3=2x +3.又(x 1-x )2+(x 2-x )2+…+(x n -x )2=ns 2,所以[2x 1+3-(2x +3)]2+[2x 2+3-(2x +3)]2+…+[2x n +3-(2x +3)]2=4[(x 1-x )2+(x 2-x )2+…+(x n -x )2]=4ns 2.所以方差为4s 2. 6.30解析 纤维长度小于20 mm 的频率约为p =5×0.01+5×0.01+5×0.04=0.3, ∴100×0.30=30. 作业设计 1.④解析 在这个问题中所要考察的对象是身高,另一方面,样本容量是指样本中的个体数目. 2.④解析 以年级为层,按各年级所占的比例进行抽样,为了使抽取的学生具有代表性,应在各年级进行随机抽样. 3.320解析 由40n =0.125,得n =320.4.0.3解析 频率=频率组距×组距,由图易知:频率组距=0.001,组距=3 000-2 700=300, ∴频率=0.001×300=0.3. 5.92,2.8解析 去掉95和89后,剩下5个数据的平均值 x =90+90+93+94+935=92,方差s 2=15[(90-92)2+(90-92)2+(93-92)2+(94-92)2+(93-92)2]=2.8. 6.④解析 ①和②符合函数关系,即对x 的每一个值,y 都有唯一确定的值与之对应;从③、④散点图来看,④的散点都在某一条直线附近波动,因此两变量具有相关关系. 7.76解析 由题意知:m =8,k =8,则m +k =16,也就是第8组的个位数字为6,十位数字为8-1=7,故抽取的号码为76. 8.(1)0.2 (2)30 (3)0.016解析 (1)由频率组距×组距=频率,得频率为0.2;(2)频率为0.3,又由频数=频率×样本容量,得频数为30; (3)由频率组距=高,得小矩形的高是0.016.9.(6.5,8) 解析x =16(3+5+2+8+9+12)=6.5,y =16(4+6+3+9+12+14)=8.由 =y -b x 得y =b x +a ,所以 =b x +a 恒过(x ,y ),即过定点(6.5,8). 10.解x 甲=15(60+80+70+90+70)=74,x 乙=15(80+60+70+80+75)=73,s 2甲=15(142+62+42+162+42)=104, s 2乙=15(72+132+32+72+22)=56,∵x甲>x乙,s 2甲>s 2乙; ∴甲的平均成绩较好,乙的各门功课发展较平衡. 11.解 (1)散点图如下.(2)由散点图可以看出样本点分布在一条直线的附近,可见y 与x 线性相关. (3)列出下表并用科学计算器进行有关计算.i 1 2 3 4 5 6 x i 300 400 500 600 700 800 y i 40 50 55 60 67 70 x i y i12 00020 000 27 500 36 000 46 900 56 000 2i x 90 000160 000250 000360 000490 000640 000x =550,y =57∑6i =1x2i =1 990 000,∑6i =1x i y i =198 400 于是可得b =∑6i =1x i y i -6x y ∑6i =1x 2i -6x 2=198 400-6×550×571 990 000-6×5502≈0.058 86,a =y -b x =57-0.058 86×550=24.627. 因此所求的线性回归方程为 =0.058 86x +24.627. (4)将x =1 000代入回归方程得 y =0.058 86×1 000+24.627=83.487, 即退水温度是1 000℃时,黄酮延长性大约是83.487%.12.解 (1)在17个数据中,1.75出现了4次,次数最多,即众数是1.75;把成绩从小到大排列,中间一个数即第9个数据是1.70中的一个,即中位数是1.70; 平均数x =117(1.50×2+1.60×3+…+1.90×1)≈1.69(m )因此,17名运动员成绩的众数、中位数、平均数依次为1.75 m ,1.70 m,1.69 m . (2)众数是1.75说明了跳1.75 m 的人数最多;中位数是1.70 m 说明了1.70 m 以下和1.70 m 以上的成绩个数相等;平均数是1.69 m 说明了所有参赛运动员平均成绩是1.69m .13.解 (1)频率分布表与相应的频率分布直方图和频率分布折线图如下:用水量分组频数 频率 [0.5,2.5) 12 0.12 [2.5,4.5) 24 0.24 [4.5,6.5) 40 0.40 [6.5,8.5) 18 0.18 [8.5,10.5] 6 0.06 合计1001(2)前两个矩形面积和为0.12+0.24,第三个矩形一半的面积为0.5-(0.12+0.24),则所求的中位数为:4.5+0.5-(0.12+0.24)0.2=4.5+0.7=5.2.(3)该乡每户平均月均用水量估计为(1.5×12+3.5×24+5.5×40+7.5×18+9.5×6)/100=5.14. 上级支援该乡的月调水量应为5.14×1 200=6 168. 答 上级支援该乡的月调水量是6 168吨.。
高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案
⑤确定样本:从总体中找出与号签上的号码对应的个体,组成样本.
随机数表法是随机数表由数字 0 ,1 ,2,3,⋯,9 这 10 个数字组成,并且每个数字在表中 各个位置上出现的机会都是一样的,通过随机数表,根据实际需要和方便使用的原则,将几个数
组成一组,然后通过随机数表抽取样本.随机数表的优点是简单易行,它很好的解决了当总体中
样.因为 50 名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单 随机抽样中“等可能抽样”的要求.(3)是简单随机抽样.因为总体中的个体数是有限的,并且
是从总体中逐个进行抽取的,是不放回、等可能的抽取.
2013年第27届世界大学生运动会在俄罗斯举行,为了支持这次运动会,某大学从报名的 20 名大 三学生中选取 6 人组成志愿小组,请用抽签法设计抽样方案. 解:(1)将 20 名志愿者编号,编号为 1,2,3,4,⋯,20; (2)将 20 个号码分别写在 20 张形状相同的卡片上,制成号签; (3)将 20 张卡片放入一个不透明的盒子里,搅拌均匀; (4)从盒子中逐个不放回地抽取 6 个号签,并记录上面的号码;
A.2
B.3
C.6
D.7
解:C
间隔相等,所以 126 − 8 × 15 = 6.
4.分层抽样
描述: 将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在 总体中所占比例进行简单随机抽样或系统抽样,这种抽样的方法叫做分层抽样.当总体由明显差 别的几部分组成时,为了使抽取样本更好地反映总体的情况,常采用分层抽样.
③简单随机抽样是一种不放回抽样.
④简单随机抽样是一种等可能的抽样,每个个体被抽取到的可能性均为
n N
.
常用的简单随机抽样方法有抽签法和随机数表法.
高中数学必修3复习_统计的讲义与习题
【知识点:统计】一.简单随机抽样1.总体和样本总体:在统计学中 , 把研究对象的全体叫做总体.个体:把每个研究对象叫做个体.总体容量:把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量。
2.简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。
5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
二.系统抽样1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
d(抽样距离)=N(总体规模)/n(样本规模)三.分层抽样1.分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
3.分层的比例问题:(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。
数学北师大必修3备课资料 第一章统计§3 含解析
备课资料
五数概括法
五数概括法即用下面的五个数来概括数据:
(1)最小值.
(2)第1四分位数(Q 1).
(3)中位数(Q 2).
(4)第3四分位数(Q 3).
(5)最大值.
运用五数概括法的最简单的方式是首先将数据按递增顺序排列,然后很容易就能确定最小值、3个四分位数和最大值了.对12个月薪数据的样本,按照递增顺序排列如下: 2 210 2 255 2 350|2 380 2 380 2 390|2 420 2 440 2 450|2 550 2 630 2 825 Q 1=2 365 Q 2=2 405 Q 3=2 500
(中位数)
中位数2 405以及四分位数Q 1=2 365和Q 3=2 500前面已经计算出来了.对上述数据的观察可以知道最小值为2 210,最大值为2 825.因此,上述月薪数据以五数概括为:2 210,2 365,2 405,2 500,2 825.在相邻的每两个数之间,大约有4
1或25%的数据项. (设计者:林大华)。
[精品]新人教A版必修三高中数学数学人教A版必修3第二章《统计》教案和答案
2. 1.1简单随机抽样一、三维目标:1、知识与技能:正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
二、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
三、教学设想:假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。
(为什么?)那么,应当怎样获取样本呢?【探究新知】一、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
【说明】简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。
(2)简单随机样本数n小于等于样本总体的个数N。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
(5)简单随机抽样的每个个体入样的可能性均为n/N。
思考?下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本。
(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。
二、抽签法和随机数法1、抽签法的定义。
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
【说明】抽签法的一般步骤:(1)将总体的个体编号。
人教课标版高中数学必修3《统计》复习课件
专题讲解
专题一
专题二
专题三
专题四
专题五
应用1对某种花卉的开放花期追踪调查,调查情况如下:
花期/天
个数
11~13
20
14~16
40
17~19
30
20~22
10
则这种花卉的平均花期约为
天.
解析:由题中表格可知,花期在11~13天的花卉个数为20,估计花
期在11~13天的花卉的总花期天数为12×20=240;花期在14~16天
专题四
专题五
专题五 线性回归分析
两个变量之间的关系可能是确定的函数关系,也可能是不确定的
相关关系.分析两个变量的相关关系时,可根据样本数据散点图确
定两个变量之间是否存在相关关系,还可利用最小二乘法求出回归
8
1
2
甲 = [(78 − 85)2 + (79 − 85)2 + (81 − 85)2 + (82 − 85)
8
2 + (84 − 85)2 + (88 − 85)2 + (93 − 85)2 +
(95 − 85)2] = 35.5,
1
2
乙 = [(75 − 85)2 + (80 − 85)2 + (80 − 85)2 + (83 − 85)
往与实际数据得出的不一致,但它们能粗略估计其众数、中位数和
平均数.
专题讲解
专题一
专题二
专题三
专题四
专题五
(2)利用茎叶图求数字特征.
利用茎叶图求数字特征一般有两种方法:方法一,根据茎叶图读
出所有数据,并根据定义,求出平均数、众数、中位数、方差、标
教育最新K122018-2019学年高中数学苏教版必修3教学案:复习课(二)-统计-含解析
复习课(二) 统计抽样方法高考对抽样方法的考查主要是基础题,难度不大.系统抽样和分层抽样是考查的热点,考查形式以填空题为主.[考点精要]1.简单随机抽样(1)特征:①一个一个不放回的抽取.②每个个体被抽到可能性相等.(2)常用方法:①抽签法.②随机数表法.2.系统抽样(1)适用环境:当总体中个数较多时,可用系统抽样.(2)操作步骤:将总体平均分成几个部分,再按照一定方法从每个部分抽取一个个体作为样本.3.分层抽样(1)适用范围:当总体由差异明显的几个部分组成时可用分层抽样.(2)操作步骤:将总体中的个体按不同特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样.[典例](1)(山东高考改编)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为________.(2)(江苏高考)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.(3)已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为______.[解析] (1)抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939,落入区间[451,750]的有459,489,…,729共10人,即做B 卷的有10人.(2)设应从高二年级抽取x 名学生,则x 50=310,∴x =15.(3)该地区中小学生人数为3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取高中生近视眼人数为2 000×2%×50%=20. [答案] (1)10 (2)15 (3)200,20 [类题通法](1)系统抽样中,易无视抽取的样本数也就是分段的段数,当Nn 不是整数时,注意剔除.(2)分层抽样中,易无视每层抽取的个体的比例是相同的.[题组训练]1.为了解1 000名学生的学习情况,采用系统抽样的方法从中抽取容量为40的样本,则分段的间隔为________.解析:根据系统抽样的特点可知,分段间隔为1 00040=25.答案:252.某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.解析:抽样比为40150+150+400+300=4100.因此丙专业应抽取4100×400=16(人).答案:163.(北京高考)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为______.类别 人数 老年教师 900 中年教师 1 800 青年教师 1 600 合计4 300解析:设该样本中老年教师人数为x ,则有x 900=3201 600,故x =180.答案:180高考对各种统计图表的考查主要是基础题,频率分布条形图和直方图是考查的热点,但也要注意关注茎叶图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【知识点:统计】一.简单随机抽样1.总体和样本总体:在统计学中 , 把研究对象的全体叫做总体.个体:把每个研究对象叫做个体.总体容量:把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本...其中个体的个数称为样本容量....。
2.简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差围;③概率保证程度。
4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。
5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
二.系统抽样1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
d(抽样距离)=N(总体规模)/n(样本规模)三.分层抽样1.分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。
2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
3.分层的比例问题:(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。
四.样本频率分布图1.作图步骤:(1)求极差(一组数据中最大值和最小值得差)(2)决定组距和组数; (3)将数据分组;(4)计算各小组的频率,列频率分布表;(5)画频率分布直方图2.特点:(1)以面积的形式反映数据落在各小组的频率大小;.13)2(总和等于)各小长方形的面积的(频率组距频率组距小长方形的面积=⨯=五.茎叶图适用围:在样本数据较少时,用茎叶图表示数据的效果较好,它不但可以保留所有信息,而且可以随时记录。
当样本数据较多时,茎叶图就不太方便了。
六.用样本的数字特征估计总体的数字特征 1、本均值:nx x x x n+++=212、.样本标准差:nx x x x x x s s n 222212)()()(-++-+-==3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。
在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。
4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变 (2)如果把一组数据中的每一个数据乘以一个共同的常数k ,标准差变为原来的k 倍 五.两个变量的线性相关1、概念: (1)回归直线方程 a x b y+=ˆ (2)回归系数 ∑∑∑∑====--=---=n i i ni ii ni i ni i ixn x yx n yx x x y y x xb 1221121)())((x b y a-=2.最小二乘法 3.直线回归方程的应用(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x )代入回归方程对预报量(即因变量Y )进行估计,即可得到个体Y 值的容许区间。
(3)利用回归方程进行统计控制规定Y 值的变化,通过控制x 的围来实现统计控制的目标。
(4)回归直线一定经过样本的中心点(x ,y ),据此性质可以解决有关的计算问题. 【例题讲解】1. 某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是( ) A 3.5 B 3- C 3 D 5.0-2. 设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( )A y 平均增加1.5个单位B y 平均增加2个单位C y 平均减少1.5个单位D y 平均减少2个单位3. 从N 个编号中抽取n 个入样,若采用系统抽样方法进行抽取, 则分段间隔应为( )An N B n C ⎥⎦⎤⎢⎣⎡n N D 1+⎥⎦⎤⎢⎣⎡n N4.从某厂生产的802辆轿车中抽取80辆测试某项性能.请合理选择抽样方法进行抽样,并写出抽样过程.5. 为了了解参加运动会的2000名运动员的年龄情况,从中抽取100名运动员;就这个问题,下列说法中正确的有 ;① 2000名运动员是总体;②每个运动员是个体;③所抽取的100名运动员是一个样本; ④样本容量为100;⑤这个抽样方法可采用按年龄进行分层抽样;⑥每个运动员被抽到的概率相等6. 数据70,71,72,73的标准差是______________7. 数据123,,,...,n a a a a 的方差为2σ,平均数为μ,则(1)数据123,,,...,,(0)n ka b ka b ka b ka b kb ++++≠的标准差为 ,平均数为(2)数据123(),(),(),...,(),(0)n k a b k a b k a b k a b kb ++++≠的标准差为 ,平均数为8. 用样本频率分布估计总体频率分布的过程中,下列说确的是( )A 总体容量越大,估计越精确B 总体容量越小,估计越精确C 样本容量越大,估计越精确D 样本容量越小,估计越精确9画出茎叶图并分析两个班学生的数学学习情况【课堂练习】1. 相关关系与函数关系的区别是2. 从10个篮球中任取一个,检验其质量,则应采用的抽样方法为_______________3. 下列说法错误的是 ( )A 在统计里,把所需考察对象的全体叫作总体B 一组数据的平均数一定大于这组数据中的每个数据C 平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D 一组数据的方差越大,说明这组数据的波动越大4. 要了解全市高一学生身高在某一围的学生所占比例的大小,需知道相应样本的( )A 平均数B 方差C 众数D 频率分布5. 要从已编号(160)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是( )A 5,10,15,20,25,30B 3,13,23,33,43,53C 1,2,3,4,5,6D 2,4,8,16,32,486. 数据123,,,...,n a a a a 的方差为2σ,则数据1232,2,2,...,2n a a a a 的方差为( )A22σB 2σC 22σD 24σ7. 已知样本9,10,11,,x y 的平均数是10,则xy8. 有50件产品编号从1到50,现在从中抽取5件检验,用系统抽样确定所抽取的编号为( )A 5,10,15,20,25B 5,15,20,35,40C 5,11,17,23,29D 10,20,30,40,509.(2013·武夷模拟)用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的为126,则第1组中用抽签的方法确定的是________. 10.(2012·)样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ).若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =αx +(1-α)y ,其中0<α<12,则n ,m 的大小关系为( ).A .n <mB .n >mC .n =mD .不能确定11.已知施化肥量x 与水稻产量y 的试验数据如下表,则变量x 与变量y 是________相关(填“正”或“负”).12.(2013·调研)已知x,y取值如下表:x 014568y 1.3 1.8 5.6 6.17.49.3从所得的散点图分析可知:y与x线性相关,且y^=0.95x+a,则a=( ).A.1.30 B.1.45 C.1.65 D.1.8013.某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(1)补全频率分布直方图; (2)求n,a,p的值.14以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线;(3)据(2)的结果估计当房屋面积为2150m时的销售价格15.(2012·揭阳调研)某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分如图,据此解答下列问题:组数分组低碳族的人数占本组的频率第一组[25,30)1200.6第二组[30,35)195p第三组[35,40)1000.5第四组[40,45) a 0.4第五组[45,50) 300.3第六组[50,55] 150.3(1)求分数在[50,60]的频率及全班人数;(2)求分数在[80,90]之间的频数,并计算频率分布直方图中[80,90]间的矩形的高.16.已知某单位有50名职工,现要从中抽取10名职工,将全体职工随机按1~50编号,并按编号顺序平均分成10组,按各组抽取的编号依次增加5进行系统抽样.(1)若第5组抽出的为22,写出所有被抽出职工的;(2)分别统计这10名职工的体重(单位:公斤),获得体重数据的茎叶图如图所示,求该样本的方差;(3)在(2)的条件下,从这10名职工中随机抽取两名体重不轻于73公斤(≥73公斤)的职工,求体重为76公斤的职工被抽取到的概率.【课后作业】1.一个容量为20的样本,已知某组的频率为0.25,则该组的频数为__________2.用随机数表法从100名学生(男生25人)中抽取20人进行评教,某男生被抽取的机率是___________________3.(2013·质检)市某高中有高一学生600人,高二学生500人,高三学生550人,现对学生关于消防安全知识了解情况进行分层抽样调查,若抽取了一个容量为n的样本,其中高三学生有11人,则n的值等于________4. 一个容量为20的样本数据,分组后组距与频数如下表:组距 [)20,10 [)30,20 [)40,30 [)50,40 [)60,50 [)70,60频数234542则样本在区间(),50-∞ 上的频率为__________________5. 某单位有老年人28人,中年人54人,青年人81人,为调查身体健康状况,需要从中抽取一个容量为36的样本,用分层抽样方法应分别从老年人、中年人、青年人中各抽取 _________人、 人、 人6. 某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人 为了了解普通话在该校中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为70人的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数为多少人?7. 如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)79.589.5这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格)统计答案【例题答案】 例1. B 少输入9090,3,30=平均数少3,求出的平均数减去实际的平均数等于3- 例2. 0.7140.720= 例3. C 剔除零头 4.[审题视点] 因为802不能整除80,为了保证“等距”分段,应先剔除2个个体. 解 由于总体及样本中的个体数较多,且无明显差异,因此采用系统抽样的方法,步骤如下:第一步:先从802辆轿车中剔除2辆轿车(剔除方法可用随机数法);第二步:将余下的800辆轿车编号为1,2,…,800,并均匀分成80段,每段含k =80080=10个个体;第三步:从第1段即1,2,…,10这10个编号中,用简单随机抽样的方法抽取一个编号(如5)作为起始编号;第四步:从5开始,再将编号为15,25,…,795的个体抽出,得到一个容量为80的样本.解决系统抽样问题的两个关键步骤为:(1)分段的方法应依据抽取的样本容量而定,即根据定义每段抽取一个样本.(2)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定 5.④,⑤,⑥ 2000名运动员的年龄情况是总体;每个运动员的年龄是个体; 57071727371.5,4X +++== 222215[(7071.5)(7171.5)(7271.5)(7371.5)]4s =-+-+-+-= 7 (1)kσ,k b μ+(2)k σ,k kb μ+(1)1212......n nka b ka b ka b a a a X k b k b n nμ+++++++++==⋅+=+22212222121[()()...()]1[()()...()]n n s ka b k b ka b k b ka b k b na a a k nμμμμμμσ=+--++--+++--=-+-++-=(2)1212()()...()...n nk a b k a b k a b a a a X k nb k nb n nμ+++++++++==⋅+=+22212222121[()()...()]1[()()...()]n n s ka kb k kb ka kb k kb ka kb k kb nka a a k nμμμμμμσ=+--++--+++--=-+-++-=8. C 9. 解:甲班 乙班2 56 6 2 8 6 6 4 27 4 6 82 8 2 4 5 6 8 6 9 2乙班级总体成绩优于甲班 【课堂练习】1.函数关系是两个变量之间有完全确定的关系,而相关关系是两个变量之间并没有严格的确定关系,当一个变量变化时,另一变量的取值有一定的随机性2. 简单随机抽样3. B 平均数不大于最大值,不小于最小值4 D5 B60106=,间隔应为10 6. D 22222111111(),(22)4()4,n nn i i i i i i X X X X X X n n n σσ====--=⋅-=∑∑∑7.96 9101150,20x y x y ++++=+=,2211(10)(10)10x y ++-+-=,22220()192,()220()192,96x y x y x y xy x y xy +-+=-+--+=-=-8.D 间隔为10 9. 6 解析 设第1组抽取的为b ,则第n 组抽取的为8(n -1)+b ,∴8×(16-1)+b =126,∴b =6,故第1组抽取的为6.10.解析 依题意得x 1+x 2+…+x n =n x ,y 1+y 2+…+y m =m y ,x 1+x 2+…+x n +y 1+y 2+…+y m =(m +n )z =(m +n )αx +(m +n )(1-α)y ,∴n x +m y =(m +n )αx +(m +n )(1-α)y ,∴⎩⎪⎨⎪⎧n =m +n α,m =m +n1-α,于是有n -m =(m +n )[α-(1-α)]=(m +n )(2α-1),∵0<α<12,∴2α-1<0,∴n -m <0,即m >n . 答案 A11 .正12.解析 依题意得,x =16×(0+1+4+5+6+8)=4,y =16×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25.又直线y ^=0.95x +a 必过样本中心点(x ,y ),即点(4,5.25),于是有5.25=0.95×4+a ,由此解得a =1.45,选B.13.[审题视点] (1)要补全频率分布直方图,关键是计算出第二组的频率;(2)灵活运用关系式:频率组距×组距=频率,频数样本容量=频率求解. 解 (1)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以小长方形的高为0.35=0.06.频率分布直方图如图所示.(2)第一组的人数为1200.6=200,频率为0.04×5=0.2, 所以n =2000.2=1 000. 由(1)知,第二组的频率为0.3,所以第二组的人数为1 000×0.3=300,所以p =195300=0.65.第四组的频率为0.03×5=0.15,所以第四组的人数为1 000×0.15=150,所以a =150×0.4=60.(1)绘制频率分布直方图时需注意:①制作好频率分布表后可以利用各组的频率之和是否为1来检验该表是否正确;②频率分布直方图的纵坐标是频率组距,而不是频率. (2)由频率分布直方图进行相关计算时,需掌握下列关系式:频率组距×组距=频率. 14. 解:(1)数据对应的散点图如图所示:(2)1095151==∑=i i x x ,1570)(251=-=∑=x x l i i xx , 308))((,2.2351=--==∑=y y x x l y i i i xy设所求回归直线方程为a bx y +=,则1962.01570308≈==xx xyl l b 8166.115703081092.23≈⨯-=-=x b y a ,故所求回归直线方程为8166.11962.0+=x y(3)据(2),当2150x m =时,销售价格的估计值为: 2466.318166.11501962.0=+⨯=y (万元)15.解 (1)分数在[50,60]的频率为0.008×10=0.08.由茎叶图知,分数在[50,60]之间的频数为2,所以全班人数为20.08=25. (2)分数在[80,90]之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90]间的矩形的高为425÷10=0.016. 16.解 (1)由题意,第5组抽出的为22.因为k +5×(5-1)=22,所以第1组抽出的应该为2,抽出的10名职工的分别为2,7,12,17,22,27,32,37,42,47.(2)因为10名职工的平均体重为 x =110(81+70+73+76+78+79+62+65+67+59)=71,所以样本方差为:s 2=110(102+12+22+52+72+82+92+62+42+122)=52. (3)从10名职工中随机抽取两名体重不轻于73公斤的职工,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).记“体重为76公斤的职工被抽取”为事件A ,它包括的事件有(73,76),(76,78),(76,79),(76,81)共4个. 故所求概率为P (A )=410=25. 【课后作业】1. 5 =频数频率样本容量 2 15 每个个体被抽取的机率都是2011005= 3.解析 由n 600+500+550=11550,得n =33(人). 4. 0.7 140.720= 5 61218,, 总人数为36363628548116328654128118163163163++=⨯≈⨯≈⨯≈,,,,6. 解:而抽取的比例为701,4907=,在不到40岁的教师中应抽取的人数为 1350507⨯= 7.解:(1)频率为:0.025100.25⨯=,频数:600.2515⨯=(2)0.015100.025100.03100.005100.75⨯+⨯+⨯+⨯=。