智能循迹小车设计论文
《2024年自循迹智能小车控制系统的设计与实现》范文
《自循迹智能小车控制系统的设计与实现》篇一一、引言随着人工智能与自动控制技术的快速发展,智能小车已经广泛应用于各种领域,如物流配送、环境监测、智能家居等。
本文将详细介绍一种自循迹智能小车控制系统的设计与实现过程,该系统能够根据预设路径实现自主循迹、避障及精确控制。
二、系统设计(一)系统概述自循迹智能小车控制系统主要由控制系统硬件、传感器模块、电机驱动模块等组成。
其中,控制系统硬件采用高性能单片机或微处理器作为主控芯片,实现对小车的控制。
传感器模块包括超声波测距传感器、红外线测距传感器等,用于感知周围环境并实时传输数据给主控芯片。
电机驱动模块负责驱动小车行驶。
(二)硬件设计1. 主控芯片:采用高性能单片机或微处理器,具备高精度计算能力、实时响应和良好的可扩展性。
2. 传感器模块:包括超声波测距传感器和红外线测距传感器。
超声波测距传感器用于测量小车与障碍物之间的距离,红外线测距传感器用于检测小车行驶路径上的标志线。
3. 电机驱动模块:采用直流电机和电机驱动器,实现对小车的精确控制。
4. 电源模块:为整个系统提供稳定的电源供应。
(三)软件设计1. 控制系统软件采用模块化设计,包括主控程序、传感器数据处理程序、电机控制程序等。
2. 主控程序负责整个系统的协调与控制,根据传感器数据实时调整小车的行驶状态。
3. 传感器数据处理程序负责对传感器数据进行处理和分析,包括距离测量、方向判断等。
4. 电机控制程序根据主控程序的指令,控制电机的运转,实现小车的精确控制。
(四)系统实现根据设计需求,通过电路设计与焊接、传感器模块的安装与调试、电机驱动模块的安装与调试等步骤,完成自循迹智能小车控制系统的硬件实现。
在软件方面,编写各模块的程序代码,并进行调试与优化,确保系统能够正常运行并实现预期功能。
三、系统功能实现及测试(一)自循迹功能实现自循迹功能通过红外线测距传感器实现。
当小车行驶时,红外线测距传感器不断检测地面上的标志线,并根据检测结果调整小车的行驶方向,使小车始终沿着预设路径行驶。
智能循迹避障小车论文
自动化专业导论智能循迹避障小车学生姓名:学号:指导教师:目录摘要引言第一章绪论1.1智能小车的背景1.2智能小车的现状第二章设计方案2.1设计任务2.2方案及轨道选择2.3智能小车元件介绍第三章硬件设计3.1总体设计3.2驱动电路3.3信号检测模块3.4主控线路第四章软件设计4.1主程序模块4.2电机驱动程序4.3循迹模块4.4避障模块第五章制作安装与调试作品总结致谢摘要利用红外对管检测黑线与障碍物,并以STC89C52单片机为控制芯片控制电动小汽车的速度及转向,从而实现自动循迹避障的功能。
其中小车驱动由L298N驱动电路完成,速度由单片机输出的PWM波控制。
关键词:智能小车;STC89C52单片机;L298N;红外对管引言2004年1月3日和1月24日肩负着人类探测火星使命的“勇气”号和“机遇”号在火星不同区域着陆,并于2004年4月5日和2004年4月26 日相继通过所有“考核标准”。
火星车能够在火星上自主行驶:当火星车发现值得探测的目标,它会驱动六个轮子向目标行驶;在检测到前进方向上的障碍后,火星车会去寻找可能的最佳路径。
据悉,中国的登月计划分三步进行:第一步,发射太空实验室和寻找贵重元素的月球轨道飞行器;第二步,实现太空机器人登月;第三步,载人登月。
随着“神舟”系列飞船和“嫦娥”月球探测卫星的成功发射,第一步接近成熟;第二步中太空机器人登月计划中的太空机器人应该能在月球上自主行驶,进行相关探测。
因此对于我国来说,类似于美国“勇气”号和“机遇”号火星车的智能车技术研究也显得迫在眉睫。
目前,城市交通的安全问题己引起各国政府有关部门的高度重视和全民的关注,专家、学者在分析城市交通事故的原因时,普遍认为事故原因主要包括:人员素质、运输车辆、道路环境和管理法规等四个方面,而车辆性能的提高即研发高性能的智能汽车是其中很重要的一个环节。
美国研究认为,包括智能汽车研究在内的智能运输系统对国家社会经济和交通运输有着巨大的影响,其意义和价值在于:大量减少公路交通堵塞和拥挤,降低汽车的油耗,可使城市交通堵塞和拥挤造成的损失分别减少25%-40%左右,大大提高了公路交通的安全性及运输效率,促进了交通运输业的繁荣发展。
智能循迹小车论文
智能循迹小车玉林师范学院电子与通信工程学院队员:满建良方凯平陈文秋第一页前言摘要随着现代化的不断发展,自动化越来越普及,对传感器的应用越来越多,要求精度越来越搞高,本设计面向机械自动化发展,采用了A T89S52单片机作为控制核心,利用红外对管传感器检测黑线达到循迹目的,以及自动停车,自动寻迹,整体系统的电路结构简单,可靠性能高。
采用技术主要有:(1)A T89S52单片机应用;(2)L298电机驱动及PWN电机调速;(3)传感器的有效应用;(4)程序算法的应用。
关键字A T89S52 红外对管循迹 L298N PWM调速 18B20 霍尔传感元件Intelligent follow obstacle-avoidance carAbstractWith the continuous development of modernization and automation increasingly popular, the application of sensor, demanding more and more get high, the precision mechanical automation development, design oriented adopted as control core and AT89S52 SCM by infrared sensor detects the pipe to follow black with ultrasonic ranging tracing purpo se, the principle of automatic control electric cars and to detect obstacles obstacle avoidance, the color of speed, speed, and automatic parking, automatic tracing, overall system circuit structure is simple, reliable performance is high. This design is according to guangxi university students electronic design competition first stage three senior undergraduate group of topic, the topic request as table 1.Using technology mainly include:(1)AT89S52 Microcomputer application;(2)L298 motor drive and PWN; motor speed(3)Sensor effective application;(4)Program use of the algorithm.Keyword A T89S52 Infrared to tube follow mark PWM Ultrasonic obstacle avoidanc TCS230 Color sensors1、系统方案的选择1.1 智能循迹小车的主控芯片的选择方案一:采用Atmel公司的AT89S52单片机作为智能小车的主控芯片,AT89S52 是一种低功耗、高性能CMOS8位微控制器,工作电压为5V,32个I/O 口,具有 8K 在系统可编程Flash 存储器。
循迹小车毕业论文
循迹小车毕业论文循迹小车毕业论文引言:在如今科技高速发展的时代,机器人技术逐渐走入人们的生活,成为了一种热门的研究领域。
其中,循迹小车作为机器人的一种,具有广泛的应用前景。
本文将围绕循迹小车展开讨论,探索其原理、设计以及未来发展。
一、循迹小车的原理循迹小车是一种能够根据特定轨迹行驶的机器人。
它通过搭载的传感器,如红外线传感器或摄像头,实时感知周围环境,并根据预设的循迹算法进行行驶。
该算法能够分析传感器所接收到的信号,并判断车辆应该如何转向,从而保持在特定轨迹上行驶。
二、循迹小车的设计1. 传感器设计循迹小车的传感器设计是关键之一。
红外线传感器是常用的传感器之一,它能够通过接收反射的红外线信号,判断车辆是否偏离轨迹。
除此之外,摄像头也是一种常见的传感器选择,它能够实时捕捉车辆周围的图像,并通过图像处理算法判断车辆的位置和方向。
2. 控制系统设计循迹小车的控制系统设计是确保车辆按照预设轨迹行驶的核心。
控制系统通常由微控制器、电机驱动器和电源组成。
微控制器负责接收传感器的信号,并根据循迹算法控制电机驱动器实现车辆的转向和速度调整。
电源则提供所需的电能。
3. 车体结构设计循迹小车的车体结构设计需要考虑到载重能力、稳定性和机动性。
车体通常由轮子、底盘和支撑结构组成。
轮子的选择要考虑到摩擦力和抓地力,底盘的设计要考虑到重心的稳定性,支撑结构的设计则要保证车体的整体稳定性。
三、循迹小车的应用循迹小车作为一种机器人技术,有着广泛的应用前景。
1. 工业领域循迹小车在工业领域可以应用于自动化生产线上,实现物料的自动搬运和分拣。
它能够减轻人力负担,提高生产效率。
2. 物流领域循迹小车在物流领域可以应用于仓储管理,实现货物的自动存储和取出。
它能够提高物流效率,减少人为错误。
3. 教育领域循迹小车在教育领域可以应用于机器人教育和编程教育。
学生可以通过操控循迹小车,学习机器人技术和编程知识。
四、循迹小车的未来发展随着科技的不断进步,循迹小车也将不断发展和创新。
循迹小车毕业论文
循迹小车毕业论文本文介绍了一个基于单片机的循迹小车设计。
该系统主要由两个模块组成:传感器模块和控制模块。
传感器模块使用红外线传感器和光敏电阻来检测黑色轨道和白色背景之间的反差,从而确定小车运动的轨迹。
控制模块使用PID 控制算法来调整小车的方向和速度,以保持小车在轨道上运动。
该系统通过语音识别模块和蓝牙通信模块与外部设备交互,具有较好的可扩展性和交互性。
关键词:循迹小车;单片机;传感器;PID 控制算法一、引言随着科技的不断发展,智能控制系统在各个领域得到了广泛应用。
循迹小车作为一种常见的智能控制系统,已经成为了学生课程设计、科技展览、科普教育等方向的研究热点。
本文基于单片机设计了一个循迹小车,以介绍该系统的设计思路和实现细节。
二、系统设计循迹小车的设计主要分为两个模块:传感器模块和控制模块。
传感器模块通过红外线传感器和光敏电阻来检测轨道,控制模块使用PID 控制算法来调整小车的方向和速度,以保持小车在轨道上运动。
该系统还加入了语音识别模块和蓝牙通信模块,增强了其可扩展性和交互性。
1. 传感器模块循迹小车的传感器模块主要用于检测小车运动的轨迹,以实现自动驾驶。
本文采用了两种传感器:红外线传感器和光敏电阻。
红外线传感器(Infrared Sensor)是一种能够感知红外线辐射并将其转化为电信号的传感器。
其原理是利用红外线反射率的不同,通过发射和接收红外线来判断物体的位置、距离或者形状。
在本文中,我们使用红外线传感器来检测黑色轨道和白色背景之间的反差,从而确定小车运动的轨迹。
光敏电阻(Photoresistor)是一种可以感知光强度变化并将其转化为电信号的传感器。
其原理是利用半导体材料的光电效应,当光照射在其表面时,其电阻值会发生变化。
在本文中,我们使用光敏电阻来检测环境中的光线强度,从而判断小车是否处于黑色轨道上。
2. 控制模块循迹小车的控制模块主要用于控制小车的方向和速度,以保持小车在轨道上运动。
智能循迹小车 毕业论文
智能循迹小车毕业论文一、前言随着科技的发展,智能机器人已经成为人们关注的热门话题。
智能机器人的出现和应用,不仅可以提高生产效率,减少劳动强度,并且可以创造出很多新的应用领域。
其中,智能循迹小车作为一种基于仿生学和机器人学的新型机器人,已经逐渐应用到许多领域,如环境监测、病毒检测等。
本文着重介绍智能循迹小车的设计和实现,以期为相关研究提供参考。
二、智能循迹小车的需求分析智能循迹小车主要用于环境监测和物品巡检。
为了保证循迹小车的运转效果,需要进行以下需求分析:1.循迹精度高:循迹小车的自主导航是基于视觉和控制系统完成的,因此需要保证循迹精度高,以便更准确地定位目标位置。
2.交通状况适应性强:循迹小车需适用于不同的路况和环境,如转向直接性、弯道安全性、山地路段行驶性等。
3.控制系统稳定性高:为了确保循迹小车的运转稳定,控制系统需稳定、耐用。
4.多功能性:循迹小车需具备多种传感器和设备,以实现环境监测和物品巡检等多项功能。
三、智能循迹小车的设计方案1.硬件设计智能循迹小车由四个电动轮驱动,需要具备以下硬件配置:1) 微型处理器:采用单片机实现控制、通信等功能。
2) 直流电机:用于驱动小车前进和后退。
3) 舵机:控制小车方向。
4) 金属质量传感器:检测循迹目标的位置,并对小车进行控制。
5) 视觉传感器:采集路面图像,并进行图像处理。
6) 电源模块:提供小车稳定的电力来源。
2.软件设计1) 系统设计:采用嵌入式系统,将设备的物理特性和功能与程序环境相结合,实现对小车的控制和行为规划。
2) 控制算法设计:采用视觉处理和运动控制算法实现对小车的控制,并对其交通状况和循迹精度进行优化。
3) 通信协议设计:采用串口通信协议实现与上位机的数据传输。
四、智能循迹小车的实现演示智能循迹小车的实现演示中,需要注意以下几点:1. 使用电源模块为小车提供稳定的电力来源。
2. 通过视觉传感器采集并处理路面的图像信息。
3. 通过金属质量传感器检测循迹目标的位置。
智能循迹小车毕业论文
智能循迹小车毕业论文本篇论文主要研究了基于Arduino控制器的智能循迹小车设计与实现。
智能循迹小车是一种常见的机器人应用,其主要应用于物流和仓库管理、生产工艺控制等领域。
本文利用Arduino Uno作为核心控制器,通过电机控制模块和红外避障模块等外部组件,实现了小车的轨迹匹配和避障功能。
同时,通过DHT11湿度传感器和MQ-2烟雾传感器,实现了小车的环境检测功能。
论文最后进行了实际测试,验证了智能循迹小车的正确性和实用性。
关键词:智能小车;Arduino;循迹;避障;环境检测1.引言随着科技的不断进步,人工智能、机器人等技术的发展越来越快速。
智能小车作为机器人领域的典型应用,主要应用于物流和仓库管理、生产工艺控制等领域。
因此,设计和制作一种高效、准确的智能小车成为当今热门的研究方向。
2.设计方案2.1硬件设计(1)Arduino UnoArduino Uno是一个基于ATmega328P微控制器的开源电子原型平台,其支持无需编程或者其他硬件电路就可以快速轻松地开发嵌入式系统。
(2)红外避障模块红外避障模块是一种基于红外线探测距离的传感器模块,通过测量物体与小车之间的距离,判断小车前方是否有障碍物。
(3)电机控制模块电机控制模块是小车的驱动部分,其主要作用是控制小车的行进方向和速度。
(4)DHT11湿度传感器DHT11湿度传感器是一种能够测量环境温度和湿度的传感器,通过该传感器可以实现小车的环境检测功能。
(5)MQ-2烟雾传感器MQ-2烟雾传感器是一种能够检测空气中是否含有有害的烟雾气体的传感器,可以实现小车的环境检测功能。
2.2软件设计设计程序采用C++编写,主程序根据小车周围环境的变化情况,不断地调用各部分模块,实现小车的循迹、避障、环境检测等功能。
3.实现方法和结果3.1循迹实现在小车轮下安装两个红外传感器,实现对黑线的检测和识别。
根据黑线的信号变化情况,调整小车行进的方向和速度。
3.2避障实现在小车前端安装红外避障模块,通过判断距离来实现小车遇到障碍物时自动停车,避免发生碰撞。
智能循迹小车设计论文
摘要:循迹小车采用传感器来识别白色路面中央的黑色引导线,通过C8051F310单片机实现对转向舵机和驱动电机的PWM控制,利用检测器检测道路上的标志,使小车实现快速稳定地循线行驶。
分模块阐述了循迹小车的原理、软硬件设计及制作过程.针对路径特点对循迹小车的方向控制和速度控制提出了舵机分级转向、速度分段控制的解决方案。
实验表明,循迹小车能够较快速、平稳地完成对各种曲率引导线的循迹行驶任务。
关键词:单片机、电机、传感器、循迹。
Summary:Tracing car photoelectric sensor to identify the white road to guide the central black line through the C8051F310 microcontroller and drive to achieve the steering servo motor PWM control, the use of detector on the road signs to make the car look fast and stable line-line, down. Sub-module describes the principles of tracing the car, hardware and software design and production process.Path tracing for the characteristics of the car’s direction and speed control servo proposed classification steering, speed control sub-solutions. Experiments show that, tracing the car can be more rapid and smooth completion of the guide line of curvature of the driving task of tracing. Keywords:Microcontroller, motors, sensors, tracing.目录第一章引言一、设计目的 (4)二、设计方案 (4)三、报告内容安排 (4)四、技术方案概要 (5)第二章硬件部分一、单片机最小系统 (6)二、电源电路 (7)三、H桥电机驱动电路 (7)四、传感器输入电路 (8)五、硬件电路原理图 (9)第三章软件部分一、软件设计框架 (10)二、端口初始化 (10)三、PWM初始化 (11)四、功能函数 (12)第四章程序清单 (14)第五章总结 (19)参考文献 (20)附录 (21)第一章引言随着微电子技术的不断发展,微处理器芯片的集成度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器/计数器、并行和串行接口、看门狗、前置放大器、A/D转换器、D/A转换器等多种电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统,这种技术促进机器人技术也有了突飞猛进的发展。
基于stm32的循迹小车设计-毕业论文
基于STM32的循迹小车设计-毕业论文摘要本文介绍了基于STM32的循迹小车设计。
首先,对循迹小车的背景和意义进行了阐述,并分析了目前市场上常见的循迹小车的设计方案和存在的问题。
接着,详细介绍了本文的设计思路和具体实现方法,包括硬件设计和软件编程。
最后,对设计进行了测试和验证,并对测试结果进行了分析和总结。
实验结果表明,本文设计的循迹小车具有良好的循迹性能和稳定性,可以广泛应用于工业生产、物流配送等领域。
引言随着科技的不断进步和社会的发展,智能机器人被广泛应用于各个领域。
循迹小车作为智能机器人的一种,具有自主移动、感知环境等功能,受到了越来越多的关注。
循迹小车是一种可以根据指定的路径进行移动的智能机器人。
它能够利用传感器和控制算法,实现沿着特定轨迹行驶的功能。
循迹小车在工业生产、物流配送、仓储管理等领域具有广阔的应用前景。
目前市场上常见的循迹小车设计方案存在一些问题,如循迹精度不高、稳定性差、成本较高等。
因此,设计一种基于STM32的循迹小车成为了当今研究的热点之一。
本文旨在设计一种基于STM32的循迹小车,以提高循迹精度、增强稳定性、降低成本。
通过对循迹小车相关技术的研究和实验验证,可以为循迹小车的进一步发展和应用提供参考。
设计思路本文设计的基于STM32的循迹小车主要包括硬件设计和软件编程两个部分。
硬件设计硬件设计部分主要包括传感器选型、电路设计和机械结构设计。
首先,为了实现循迹功能,选择了红外线传感器作为循迹小车的感知模块。
红外线传感器具有反射率高、响应快的特点,适合用于循迹小车的设计。
其次,根据传感器的特性和需求,设计了传感器与电路之间的连接方式。
通过合理布置电路板和传感器,可以有效提高循迹小车的循迹精度和稳定性。
最后,设计了循迹小车的机械结构。
机械结构应具有稳固性、灵活性和可拓展性,以适应不同场景的应用需求。
软件编程软件编程部分主要包括传感器数据处理、控制算法设计和系统化编程。
首先,通过学习和理解红外线传感器的工作原理,编写了传感器数据采集和处理的程序。
基于STC89C52单片机的智能循迹小车
沈阳理工大学毕业设计(论文)题目:基于单片机的智能循迹小车院系:信息与控制学院专业:自动化班级学号:学生姓名:指导教师:成绩:年月日摘要本文论述了基于单片机的智能循迹小车的控制过程。
智能循迹是基于自动引导机器人系统,用以实现小车自动识别路线,以及选择正确的路线。
智能循迹小车是一个运用传感器、单片机、电机驱动及自动控制等技术来实现按照预先设定的模式下,不受人为管理时能够自动实现循迹导航的高新科技。
该技术已经应用于无人驾驶机动车,无人工厂,仓库,服务机器人等多种领域。
本设计采用STC89C52单片机作为小车的控制核心;采用TCRT5000红外反射式开关传感器作为小车的循迹模块来识别白色路面中央的黑色引导线,采集信号并将信号转换为能被单片机识别的数字信号;采用驱动芯片L298N构成双H桥控制直流电机,其中软件系统采用C程序,本设计的电路结构简单,容易实现,可靠性高。
关键词:单片机;自动循迹;驱动电路AbstractThis paper discusses the intelligent tracing electric trolley control process. Automatic tracing is used to make the car indentify route automatically , and choosing the right route, based on the automatic guide robot system. Intelligent tracing electric trolley is an advanced technology to realize automatic tracing navigation. It is out of human management but under the designed mode that use of the use of a transducer, single chip, motor drive and automatic control .This technology has been applied in unmanned vehicle, unmanned factory, warehouse, service robot and many other fields.During the design of Intelligent tracing electric trolley, STC89C52 single clip is used as the control core; at the same time with TCRT5000 reflective infrared transducer switch to identify the black guide line at the central of the white road, which used as the car tracing module, it can gather the signal and transfer it into digital signal that can be recognized by single chip. And the driving chip L298N constitute the double H bridge constitute of driving chip L298N can control direct current motor. Among which the software system is using C program. In a nutshell, the design of the circuit has the advantages of simple structure, easy implementation, and high reliability.Key words:single chip microcomputer; automatic tracing; driving circuit目录1 绪论 (1)1.1 智能循迹小车概述 (1)1.1.1 循迹小车的发展历程回顾 (1)1.1.2 智能循迹分类 (2)1.1.3 智能循迹小车的应用 (3)1.2 智能循迹小车研究中的关键技术 (4)2 智能循迹小车总体设计方案 (5)2.1 整体设计方案 (5)2.1.1 系统设计步骤 (5)2.1.2 系统基本组成 (5)2.2 整体控制方案确定 (6)3 系统的硬件设计 (8)3.1 单片机电路的设计 (8)3.1.1 单片机的功能特性描述 (8)3.1.2 晶振电路 (9)3.1.3 复位电路 (9)3.2 光电传感器模块 (10)3.2.1 传感器分布 (11)3.3 电机驱动电路 (12)3.3.1 L298N引脚结构 (13)3.3.2 电机驱动原理 (13)3.3.3小车运动逻辑 (15)4 系统的软件设计 (16)4.1 软件设计的流程 (16)4.2 本系统的编译器 (17)5 系统的总体调试 (22)5.1 硬件的测试 (22)5.2 系统的软件调试 (22)结论 (24)致谢 (25)参考文献 (26)附录A 原理图及PCB图 (27)附录B 程序代码 (32)附录C 硬件实物图 (37)1 绪论进入二十一世纪,随着计算机技术和科学技术的不断进步,机器人技术较以往已经有了突飞猛进的提高,智能循迹小车即带有视觉和触觉的小车就是其中的典型代表。
毕业设计(论文)-基于单片机的智能循迹小车设计
摘要80C51单片机是一款八位单片机,他的易用性和多功能性受到了广大使用者的好评。
这里介绍的是如何用80C51单片机来实现长春工业大学的毕业设计,该设计是结合科研项目而确定的设计类课题。
本系统以设计题目的要求为目的,采用80C51单片机为控制核心,利用超声波传感器检测道路上的障碍,控制电动小汽车的自动避障,快慢速行驶,以及自动停车,并可以自动记录时间、里程和速度,自动寻迹和寻光功能。
整个系统的电路结构简单,可靠性能高。
实验测试结果满足要求,本文着重介绍了该系统的硬件设计方法及测试结果分析。
采用的技术主要有:(1)通过编程来控制小车的速度;(2)传感器的有效应用;(3)新型显示芯片的采用。
关键词:80C51单片机;光电检测器;PWM调速;电动小车。
ABSTRACT80C51 is a 8 bit single chip computer. Its easily using and multi-function suffer large users. This article introduces the CCUT graduation design with the 80C51 single chip computer. This design combines with scientific research object. This system regards the request of the topic, adopting 80C51 for controlling core, super sonic sensor for test the hinder. It can run in a high and a low speed or stop automatically. It also can record the time, distance and the speed or searching light and mark automatically the electric circuit construction of whole system is simple, the function is dependable. Experiment test result satisfy the request, this text emphasizes introduced the hardware system designs and the result analyze.The adoption of technique as:(1) Reduce the speed by program the engine;(2) Efficient application of the sensor;(3) The adoption of the new display chip.Key words:80C51 single chip computer; light electricitydetector;PWM speed adjusting;Electricity motive small car.目录1 绪论 (4)1.1本课题研究的背景和意义 (4)1.2智能循迹小车设计原理 (5)2 方案设计与论证 (5)2.1直流调速系统 (5)2.2检测系统 (6)3 智能寻迹小车模块设计 (10)3.1总体方案 (10)3.2传感检测单元 (11)3.2.1小车循迹原理 (11)3.2.2传感器的选择及检测电路设计 (11)3.2.3传感器的安装 (12)3.3软件控制单元 (13)3.3.1单片机选型及程序流程 (13)3.3.2车速的控制 (13)3.3.3电机驱动单元 (14)3.3.4蜂鸣器电路设计 (15)3.3.5稳压电源设计 (15)4 系统功能测试 (15)4.1测试仪器及设备 (16)4.2功能测试 (16)5 结束语 (17)致谢 (18)参考文献 (19)附录 (20)1相关芯片介绍 (20)1.1单片机概述 (20)1.2LM339芯片介绍 (24)1.3L298N芯片介绍 (27)1.47805芯片介绍 (28)2小车控制程序源代码(C) (30)1 绪论1.1 本课题研究的背景和意义随着汽车工业的迅速发展,关于汽车的研究也就越来越受人关注。
智能循迹避障小车-论文设计【范本模板】
目录摘要 (2)ABSTRACT (2)第一章绪论 (3)1。
1智能小车的意义和作用 (3)1。
2智能小车的现状 (3)第二章方案设计与论证 (4)2.1 主控系统 (4)2.2 电机驱动模块 (4)2.3 循迹模块 (6)2。
4 避障模块 (7)2。
5 机械系统 (7)2。
6电源模块 (8)第三章硬件设计 (8)3.1总体设计 (8)3.2驱动电路 (9)3。
3信号检测模块 (10)3.4主控电路 (11)第四章软件设计 (12)4.1主程序模块 (12)4.2电机驱动程序 (12)4。
3循迹模块 (13)4。
4避障模块 (15)第五章制作安装与调试 (18)结束语 (18)致谢 (19)参考文献 (19)智能循迹避障小车肖维物理与电子信息学院电子信息工程专业 2006级9班指导教师:刘汉奎摘要:利用红外对管检测黑线与障碍物,并以STC89C52单片机为控制芯片控制电动小汽车的速度及转向,从而实现自动循迹避障的功能。
其中小车驱动由L298N驱动电路完成,速度由单片机输出的PWM波控制.关键词:智能小车;STC89C52单片机; L298N;红外对管Intelligent tracking and obstacle-avoid carXiao WeiSchool of Physics and Electronic Information,Grade 2006 Class 9 ,Instructor:Liu HankuiAbstract:Based infrared detection of black lines and the road obstacles,and use a STC89C52 MCU as the controlling core for the speed and direction, A electronic drived, which can automatic track and avoid the obstacle,was designed and fabricated。
循迹小车 毕业论文
摘要本设计是一种基于单片机控制的简易自动寻迹小车系统,其研究意义涵盖了工业、生活、勘探以及人类关注的探月工程。
设计旨在设计出一款可以自主按照人类预设的轨迹行走(或者完全自主行走)并完成指定任务的小车。
从设计的功能要求出发,设计包括小车机械构成设计和控制系统的软硬件设计。
为了适应复杂的地形我采用稳定性比较高的四轮构架式,用后轮驱动前轮换向的控制模式。
控制系统以STC89C52为控制核心, 用单片机产生PWM波,控制小车速度。
利用红外光电传感器对路面黑色轨迹进行检测,并确定小车当前的位置状态,再将路面检测信号反馈给单片机。
单片机对采集到的信号予以分析判断,及时控制驱动电机以调整小车转向,从而使小车能够沿着黑色轨迹自动行驶,实现小车自动寻迹的目的。
关键词:循迹小车,单片机,红外传感器ABSTRACTThe design is a simple microcontroller-based control automatically tracing the car system, and its significance covers the industry, life, exploration, and human concern lunar exploration. The design aims to design a can of independent walking in accordance with the trajectory of human default (or completely autonomous walking) and to complete the tasks assigned to the car. The design includes the functional requirements from the design of car mechanical design and control system hardware and software design. Relatively high stability of the four trusses in order to adapt to the complex terrain, before the rotation of the rear-wheel drive control mode. Control system to control the core to STC89C52 microcontroller PWM wave to control the car speed. Using infrared photoelectric sensor to detect the black track on the road and to determine the current status of the car, and then the road detection signal is fed to the microcontroller. Microcontroller to be collected signal analysis and judgment, and timely control of the drive motor to adjust the steering of the car, so that the car is traveling along the black track to achieve the purpose of the car automatically tracing.Keywords:car tracking;microcontroller;Infrared sensors目录1 绪论 (1)1.1 研究背景和发展现状 (1)1.2 研究目的和意义 (1)1.3 研究内容 (2)2方案设计与论证 (3)2.1 总体方案设计 (3)2.2主控系统 (3)2.2 电机驱动模块 (4)2.3 驱动电机选择 (5)2.4 循迹模块 (5)2.5 机械系统 (6)3 主要器件介绍 (7)3.1 STC89C52的介绍 (7)3.2 L298N的介绍 (10)3.2.1 L298的引脚功能 (10)3.2.2 L298的运行参数 (11)3.2.3 L298的逻辑控制 (11)3.3 TCRT5000的介绍 (11)3.4 LM324的介绍 (12)4 硬件设计 (14)4.1总体设计 (14)4.2 STC89C52单片机控制电路 (16)4.2.1 时钟电路 (16)4.2.2 复位电路 (17)4.2.3 EA/VPP(31 脚)的功能和接法 (17)4.2.4 P0 口外接上拉电阻 (17)4.3TCRT5000黑色轨迹识别电路 (18)4.4LM324电压比较电路 (19)4.5电机驱动电路 (20)4.5.1驱动电路 (20)4.5.2 PWM调速原理 (21)5程序设计 (23)5.1主程序 (23)5.2TCRT5000扫描程序 (25)5.3 PWM编码产生程序 (26)6调试 (28)6.1硬件调试 (28)6.1.1电池可靠性 (28)6.1.2TCRT5000探头 (29)6.1.3 L298N马达驱动模块 (29)6.2软件调试 (29)6.2.1调试平台介绍 (29)6.3 测试结果与分析 (30)结束语 (32)参考文献 (33)致谢 (34)附录 (35)附录1:源程序 (35)附录2:原理图 (39)附录3:PCB设计 (40)1 绪论1.1 研究背景和发展现状随着电子技术、计算机技术、智能控制技术的飞速发展,产品的智能化和小型化越来越成为人们关注的热点。
《2024年自循迹智能小车控制系统的设计与实现》范文
《自循迹智能小车控制系统的设计与实现》篇一一、引言随着科技的飞速发展,智能小车在物流、军事、科研等领域的应用越来越广泛。
自循迹智能小车作为其中的一种重要应用,其控制系统的设计与实现显得尤为重要。
本文将详细介绍自循迹智能小车控制系统的设计思路、实现方法及实验结果。
二、系统设计1. 硬件设计自循迹智能小车控制系统硬件主要包括:电机、车轮、控制器、传感器等部分。
其中,电机和车轮是驱动小车运动的核心部件,控制器负责处理传感器数据并发出控制指令,传感器则用于感知小车周围环境信息。
在硬件设计过程中,我们需要根据实际需求选择合适的电机、控制器及传感器。
例如,电机应具备较高的转矩和转速,以保障小车的运动性能;控制器应具备强大的数据处理能力和快速响应能力,以保证小车的循迹效果;传感器应具备较高的灵敏度和稳定性,以准确感知周围环境信息。
2. 软件设计软件设计是自循迹智能小车控制系统的核心部分。
我们采用模块化设计思想,将软件系统分为传感器数据处理模块、路径规划模块、控制算法模块等。
传感器数据处理模块负责收集并处理传感器数据,为路径规划模块提供准确的环境信息。
路径规划模块根据传感器数据和预设的循迹算法,规划出最优路径。
控制算法模块则根据路径规划结果,发出控制指令给电机,驱动小车按照规划的路径行驶。
三、实现方法1. 传感器选择与数据处理我们选择了红外线传感器作为循迹的主要传感器。
红外线传感器可以感知地面的黑白线,将循迹线转化为电信号,为路径规划提供依据。
同时,我们还选用了超声波传感器和摄像头等设备,用于感知小车周围的环境信息,提高循迹的准确性和安全性。
在数据处理方面,我们采用了数字滤波技术,对传感器数据进行处理,以消除噪声干扰,提高数据的准确性。
此外,我们还采用了卡尔曼滤波算法对位置信息进行融合,以提高循迹的稳定性。
2. 路径规划与控制算法路径规划模块采用了一种基于A算法的循迹算法。
A算法是一种常用的路径规划算法,具有较高的搜索效率和准确性。
《2024年自循迹智能小车控制系统的设计与实现》范文
《自循迹智能小车控制系统的设计与实现》篇一一、引言随着人工智能技术的发展和广泛应用,智能小车系统已经逐渐成为了现代自动化和智能化领域的重要分支。
本文旨在介绍一款自循迹智能小车控制系统的设计与实现过程,从系统需求分析、硬件设计、软件设计、实现与测试等方面详细阐述其设计思路和实现方法。
二、系统需求分析自循迹智能小车控制系统主要应用于自动导航、避障等场景,因此其需求主要包括以下几个方面:1. 能够在各种复杂环境中实现自动导航和避障功能;2. 具备较高的稳定性和可靠性,能够适应不同路面条件;3. 控制系统应具有较高的智能化程度,便于用户操作和维护;4. 系统的硬件和软件设计应具有良好的可扩展性,方便后续升级和维护。
三、硬件设计自循迹智能小车控制系统的硬件设计主要包括电机驱动模块、传感器模块、主控模块等部分。
1. 电机驱动模块:采用直流电机和电机驱动器,通过PWM 信号控制电机的转速和方向,实现小车的运动控制。
2. 传感器模块:包括红外传感器、超声波传感器等,用于检测小车周围的环境信息,实现自动导航和避障功能。
3. 主控模块:采用单片机或微控制器作为主控芯片,负责控制小车的运动和传感器数据的处理。
在硬件设计过程中,需要充分考虑电路的稳定性和抗干扰能力,以及各个模块之间的接口兼容性和通信协议。
四、软件设计自循迹智能小车控制系统的软件设计主要包括操作系统、算法设计、程序设计等部分。
1. 操作系统:采用嵌入式操作系统或实时操作系统,以保证系统的稳定性和实时性。
2. 算法设计:包括导航算法、避障算法等,用于处理传感器数据和控制小车的运动。
其中,导航算法可采用基于路径规划的算法或基于视觉识别的算法;避障算法可采用基于距离阈值的算法或基于机器学习的算法。
3. 程序设计:包括主程序、中断程序、通信程序等,负责控制系统的整体运行和各个模块之间的协调。
在程序设计过程中,需要充分考虑代码的可读性、可维护性和可扩展性。
五、实现与测试在完成硬件和软件设计后,需要进行系统的实现与测试。
《2024年自循迹智能小车控制系统的设计与实现》范文
《自循迹智能小车控制系统的设计与实现》篇一一、引言随着科技的飞速发展,智能小车作为智能交通系统的重要组成部分,已经广泛应用于军事、工业、民用等多个领域。
自循迹智能小车控制系统的设计与实现,成为了智能化进程中一个关键环节。
本文旨在阐述自循迹智能小车控制系统的设计原理和实现过程,分析系统结构与功能,为相关研究与应用提供参考。
二、系统设计1. 硬件设计自循迹智能小车控制系统硬件主要包括:电机驱动模块、传感器模块、主控制器模块等。
其中,电机驱动模块负责驱动小车前进、后退、转向等动作;传感器模块包括红外传感器、超声波传感器等,用于检测小车周围环境及路径信息;主控制器模块采用高性能微控制器,负责协调各模块工作,实现小车的自主循迹。
2. 软件设计软件设计包括控制系统算法设计和程序编写。
控制系统算法主要包括路径识别算法、速度控制算法、避障算法等。
程序编写采用模块化设计思想,将系统功能划分为多个模块,如电机控制模块、传感器数据采集模块、路径识别与决策模块等。
各模块之间通过通信接口进行数据交换,实现小车的自主循迹。
三、实现过程1. 传感器数据采集与处理传感器模块负责采集小车周围环境及路径信息,包括红外传感器、超声波传感器等。
这些传感器将采集到的数据传输至主控制器模块,经过数据处理与分析,提取出有用的信息,如障碍物位置、路径边界等。
2. 路径识别与决策路径识别与决策模块根据传感器数据,判断小车当前位置及目标路径,并制定相应的行驶策略。
当小车偏离目标路径时,系统会自动调整行驶方向,使小车重新回到目标路径上。
此外,避障算法也在此模块中实现,当检测到障碍物时,系统会及时调整小车的行驶方向,避免与障碍物发生碰撞。
3. 电机控制与驱动电机控制与驱动模块根据主控制器的指令,控制电机的运转,实现小车的前进、后退、转向等动作。
通过调整电机的转速和转向,可以实现对小车速度和行驶方向的精确控制。
四、实验结果与分析通过实验测试,自循迹智能小车控制系统能够在不同环境下实现自主循迹和避障功能。
毕业设计智能循迹小车
大学生电子设计大赛(论文)智能循迹小车学生姓名:张旭朱元派王辉学号:1040830623 ,1040710625 ,1040710637 完成日期 2011 年4月27日摘要本次设计的智能循迹小车是以单片机STC89S52 为主控制器,运用反射式红外传感器来进行路径检测和霍尔传感器监测行驶路程,并将实时数据传送到LCD12232显示模块,同时传感器组成的循迹模块路径检测状态传回单片机进行处理,用单片机产生PWM 波等方式来控制小车的行进速度,实时控制小车的行进状态。
另外,在小车上还扩展了LCD12232 作为人机交互界面,以便于实时了解监测传感器的状态和小车行驶中的实时数据,由于本次设计的是智能自动循迹小车,整个任务过程无需人工的任何干预,故而没有进行键盘及遥控等的人工操作设备。
用多路传感器的实时监测和算法的紧密配合来保证小车的顺畅完成任务。
关键字:智能循迹小车,红外传感器,霍尔传感器,12232液晶。
AbstractThis design's intelligence follows the mark car is by the monolithic integrated circuit STC89S52 primarily controller, carries on the way examination and the Hall sensor monitor travel distance using the reflection type infrared sensor, and transmits the real-time data to the LCD12232 display module, simultaneously the sensor composes follows the mark module way examination condition to feed in the monolithic integrated circuit to carry on processing, has ways and so on PWM wave with the monolithic integrated circuit to control car's approaching speed, the real-time control car marches forward the condition.other, also expanded LCD12232 on the car to take the man-machine interaction contact surface, was advantageous for the real-time understanding to monitor in sensor's condition and the car travel real-time data, what because this design was the intelligence follows the mark car automatically, the entire duty process did not need the artificial any intervention, therefore has With the multi-channel sensor's real-time monitors and the algorithm close coordination guaranteed that the car completes the task smoothly.key words: The intelligence follows the mark car, infrared sensor, Hall sensor, 12232 liquid crystals.第一章总体方案论证与设计1.实现功能:基本功能:小车智能循迹LCD12232显示时间;附加功能:时分显示行驶路程显示2.硬件结构:分为下面几部分:(1)处理器模块:采用AT89S52(2)小车主体设计模块方案购买玩具坦克进行改装。
《2024年自循迹智能小车控制系统的设计与实现》范文
《自循迹智能小车控制系统的设计与实现》篇一一、引言随着科技的不断进步,自动化、智能化成为了各个领域发展的趋势。
在机器人领域中,自循迹智能小车以其简单实用、灵活性高等特点受到了广泛的关注。
本文旨在介绍一款自循迹智能小车的控制系统设计与实现过程,通过对该系统的深入研究与探索,展示其在不同环境下的高效控制能力和实际使用价值。
二、系统概述自循迹智能小车控制系统主要由硬件和软件两部分组成。
硬件部分包括电机驱动模块、传感器模块、电源模块等;软件部分则负责控制算法的实现,包括路径规划、避障、速度控制等。
该系统通过传感器获取环境信息,利用控制算法对小车进行精确控制,实现自循迹功能。
三、硬件设计1. 电机驱动模块:采用舵机驱动模块,通过PWM信号控制电机的转速和方向。
2. 传感器模块:包括红外线传感器、超声波传感器等,用于检测障碍物、识别路径等信息。
3. 电源模块:采用可充电锂电池供电,通过DC-DC转换器将电源稳定输出给各个模块。
四、软件设计1. 路径规划:根据环境信息,采用基于路径识别的算法进行路径规划。
当小车检测到路径时,通过控制算法调整小车的行进方向和速度,保证小车能够准确沿着路径行驶。
2. 避障功能:通过超声波传感器检测障碍物距离,当检测到障碍物时,控制算法会调整小车的行进方向和速度,避免与障碍物发生碰撞。
3. 速度控制:根据环境信息和任务需求,通过PWM信号控制电机的转速和方向,实现精确的速度控制。
五、系统实现1. 传感器数据采集:通过传感器模块实时获取环境信息,包括路径信息、障碍物距离等。
2. 数据处理与算法实现:将传感器数据传输至主控制器,主控制器通过算法对数据进行处理和分析,得出小车的行进方向和速度。
3. 控制输出:主控制器将计算结果通过PWM信号输出给电机驱动模块,控制电机的转速和方向,实现小车的精确控制。
六、实验与结果分析1. 实验环境:在室内外不同环境下进行实验,包括平坦路面、崎岖路面、有障碍物等场景。
智能循迹小车 毕业论文
智能循迹小车毕业论文智能循迹小车毕业论文引言:智能循迹小车是一种基于人工智能技术的智能机器人,它能够通过感知环境中的路径信息,自主地沿着预定的轨迹行驶。
本文将探讨智能循迹小车的原理、应用以及未来的发展前景。
一、智能循迹小车的原理智能循迹小车的核心原理是通过传感器感知环境中的路径信息,并通过算法进行实时处理和决策。
传感器通常包括红外线传感器、摄像头等,它们能够感知地面上的路径线或标志物。
通过收集和处理传感器数据,智能循迹小车能够判断自身位置和方向,并做出相应的行驶决策。
二、智能循迹小车的应用智能循迹小车在现实生活中有着广泛的应用。
首先,它可以用于物流行业,实现自动化的仓储和运输。
智能循迹小车能够准确地遵循预定的路径,将货物从仓库中送到指定地点,提高了物流效率。
其次,智能循迹小车可以应用于智能家居领域。
它可以根据用户设定的路径,自动清扫地面或搬运物品,为人们的生活提供便利。
此外,智能循迹小车还可以应用于农业领域,用于自动化的播种、施肥和除草等操作,提高农作物的生产效率。
三、智能循迹小车的挑战虽然智能循迹小车在应用领域有着广泛的前景,但是它也面临着一些挑战。
首先,路径感知的准确性是关键。
由于环境的复杂性和不确定性,智能循迹小车需要具备高精度的传感器和算法,以确保准确地感知路径信息。
其次,智能循迹小车的自主决策能力也是一个挑战。
在复杂的环境中,智能循迹小车需要能够根据实时的路径信息做出灵活的决策,以应对各种情况。
最后,智能循迹小车的安全性也是一个重要问题。
在行驶过程中,它需要能够识别和避免障碍物,确保行驶的安全性。
四、智能循迹小车的未来发展随着人工智能技术的不断发展,智能循迹小车有着广阔的未来发展前景。
首先,智能循迹小车可以与其他智能设备进行联动,实现更加智能化的操作。
例如,智能循迹小车可以通过与智能家居设备的连接,实现更加智能化的家庭服务。
其次,智能循迹小车可以进一步提高自身的感知和决策能力,实现更加高效和安全的行驶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:循迹小车采用传感器来识别白色路面中央的黑色引导线,通过C8051F310单片机实现对转向舵机和驱动电机的PWM控制,利用检测器检测道路上的标志,使小车实现快速稳定地循线行驶。
分模块阐述了循迹小车的原理、软硬件设计及制作过程.针对路径特点对循迹小车的方向控制和速度控制提出了舵机分级转向、速度分段控制的解决方案。
实验表明,循迹小车能够较快速、平稳地完成对各种曲率引导线的循迹行驶任务。
关键词:单片机、电机、传感器、循迹。
Summary:Tracing car photoelectric sensor to identify the white road to guide the central black line through the C8051F310 microcontroller and drive to achieve the steering servo motor PWM control, the use of detector on the road signs to make the car look fast and stable line-line, down. Sub-module describes the principles of tracing the car, hardware and software design and production process.Path tracing for the characteristics of the car’s direction and speed control servo proposed classification steering, speed control sub-solutions. Experiments show that, tracing the car can be more rapid and smooth completion of the guide line of curvature of the driving task of tracing. Keywords:Microcontroller, motors, sensors, tracing.目录第一章引言一、设计目的 (4)二、设计方案 (4)三、报告内容安排 (4)四、技术方案概要 (5)第二章硬件部分一、单片机最小系统 (6)二、电源电路 (7)三、H桥电机驱动电路 (7)四、传感器输入电路 (8)五、硬件电路原理图 (9)第三章软件部分一、软件设计框架 (10)二、端口初始化 (10)三、PWM初始化 (11)四、功能函数 (12)第四章程序清单 (14)第五章总结 (19)参考文献 (20)附录 (21)第一章引言随着微电子技术的不断发展,微处理器芯片的集成度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器/计数器、并行和串行接口、看门狗、前置放大器、A/D转换器、D/A转换器等多种电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统,这种技术促进机器人技术也有了突飞猛进的发展。
单片机技术作为自动控制技术的核心之一,被广泛应用于工业控制、智能仪器、机电产品、家用电器等领域。
作为机械行业的代表产品——汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车(特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具,同时能具有交通、娱乐、办公和通讯等多种功能。
随着控制技术及计算机技术的发展,循迹小车系统将在未来工业生产和日常生活中扮演重要的角色,单片机功能也越来越强大。
本设计基于单片机技术在智能循迹小车控制系统的设计中,以AT89C51为核心,驱动两个电机,当产生信号驱动小车前进时,是通过循迹模块里的传感器是否循到黑线产生的电平信号,通过传感器再返回到单片机,单片机根据程序设计的要求做出相应的判断送给电机驱动模块,让小车实现前进、左转、右转、停车等基本功能。
循白线时,外部环境光线的强弱对小车的运动会产生很大的影响,基于此原因,本实验中的循迹是指在白色地板上循黑线。
一、设计目的通过设计进一步掌握51单片机的应用,特别是在嵌入式系统中的应用。
进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,使之与单片机构成整个系统。
二、设计方案该智能车采用红外传感器对跑道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片发出控制命令,控制电机的工作状态以实现对小车姿态的控制。
三、报告内容安排此报告主要分为三个部分。
第一部分是对整个系统实现方法的一个概要说明,主要内容是对整个技术原理的概述;第二部分是对硬件电路设计的说明,主要介绍系统传感器的设计级其他硬件电路的设计原理等;第三部分是对系统软件设计部分的说明,主要内容是智能模型车设计中主要用到的控制理论、算法说明及代码设计介绍等。
技术方案概要本模型车的电路系统包括传感器输入电路、单片机电路、H桥电机驱动电路、电源电路。
工作原理:利用传感器采集到路面上的轨迹;将轨迹信息送到单片机;单片机求出转向的角度和行走速度,然后去控制行走部分;最终完成智能小车可以按照路面上的轨迹运行。
第二章硬件部分一、单片机最下系统如图所示,单片机最小系统是由复位、电源、振荡电路等几部分组成。
其中,复位电路采用上电复位,上电期间,元件保持复位状态,RST引脚驱动在低电平,直到VDD超过VRST电平。
从复位到退出要经过一个延时。
该延时随VDD上升时间的增大而减小;对于晶振,在单片机内部都有自带的晶振,晶振的作用很大,XTAL1和XTAL2分别为两个晶振的输入,器件包含一个可编程内部振荡器,该振荡器在系统复位后被默认为系统时钟。
内部振荡器的周期可通过OSCICL寄存器编程。
OSCICL对应频率为24MHz。
系统时钟可以从内部振荡器分频得到,分频数由寄存器OSCICN中的IFCN位设定,可为1、2、4、8,。
相对于内部晶振来说,外部晶振电路的启动时间较长。
在晶体振荡器稳定之前就切换到外部晶体振荡器可能产生不可预见的后果。
所以在切换之前应该如下操作:1、通过想端口寄存器的对应位写0使XTAL1和XTAL2引脚为低电平;2、将XTAL1和XTAL2配置为模拟输入;3、使能外部振荡器;4、等待至少1ms;5、查询XTLVLD=>‘1’;6、将系统时钟切换到外部振荡器。
二、电源电路VCC输出得到的为5V电压,5V电压一部分人用来作为直流电机的驱动电路,另一部分用来作为单片机稳压电源的驱动电源。
LM1117输入端为VCC,在肯定输出的情况下VDD端可得到3V电压输出,电路的输入和输出都应该加入滤波电容,输入端电容值应该稍微偏大些,对于稳态输出起重要作用。
输出电容对于保持输出电压的稳定性同样起着重要作用,它必须同时满足最小容值和ESR (等效串联电阻)的要求。
三、H桥电机驱动电路H桥驱动电路是为了直流电机而设计的一种常见电路,它主要实现直流电机的正反向驱动,如图,其形状类似于字母“H”,而作为负载的直流电机像“桥”一样架在上面,所以称之为“H桥驱动”。
从电路看,假设开关A、D接通,电机为正向转动;开关B、C接通时,直流电机将反向转动,从而实现了电机的正反向驱动。
借助这四个开关还可以产生另外两个电机的工作状态:(1)刹车将B、D开关(或A、C)接通,则电机惯性转动产生的电势将被短路,形成阻碍运动的反动势,形成“刹车”作用。
(2)惰性4个开关全部断开,则电机惯性所产生的电势将无法形成电路,从而也就不会产生阻碍运动的反动势电机将惯性转动较长时间。
电流的大小决定了电机的转速,通过PWM的占空比来决定电流的大小,从而间接控制了电机的转速。
四、传感器输入电路硬件电路原理图: 0000000000通信电路放音电路传感器输入电路桥电机驱动电路单片机电路舵机电路电源电路指示电路第三章软件部分软件设计框架:单片机系统根据传感器输入信号的不同判别轨迹的位置,经处理后控制舵机及后轮驱动系统实现小车整体按照指定路线行驶。
软件设计采用C语言实现。
(1)端口初始化为了到达正常使用输入输出端口的目的,必须将交叉开关使能,采用交叉开关使能地方式可以将P0.0和P0.1配置成PWM输出方式,即使:CEX0、CEX1连到端口引脚,根据晶体引脚被跳过的交叉开关优先权译码表可得010,对应的XBR1寄存器的值为02H,XBR0的值不变,为00H。
同时需将P0输入寄存器配置为数字输入,输出配置为推挽方式,P0口作为输出时,只用到了P0.0和P0.1作为输出,类似P2设为数字输入,输出对应L、R、U、P为推挽输出,P3口输入为数字输入,输出为推挽输出,初始化过程中应该将传感器状态初始化,避免小车上电后的误动作,程序如下:void PORT_Init(void){P0MDOUT=0XFF; //根据实际引脚配置该处P0MDIN=0xFF;P0=0x00;P1MDOUT=0X2E;P1MDIN=0XFF;P1=~0X2E;P2MDOUT=0X0F;P2MDIN=0XFF;P2=0xF0;P3MDOUT=0X00;P3MDIN=0XFF;P3=0xFF;XBR1=0x42;}(2) PWM 初始化在端口初始化之后将CEX0配置成P0.0输出,CEX1配置成P0.1输出,故需将PWM 的占空比,波形输出方式做设定,采用8位脉宽调制器方式。
PWM 输出的频率取决于PCA 计数器/定时器的时基。
使用模块的捕捉/比较寄存器PCA0CPLn 改变PWM 输出信号的占空比。
当PCA 计数器/定时器低字节(PCA0L )与PC0CPLn 中的值相等时,CEXn 引脚上的输出被置‘1’;当PCA0L 中的计数值溢出时,CEXn 输出被复位。
占空比公式:占空比=2560-256)(CPHn PCA 初始化程序如下:void PWM_Init(void){PCA0MD=0x02; //禁止CF中断PCA0CPH0=0xff;PCA0CPH1=0xff;PCA0CPM0=0x42;//CCM0为8位PWM方式PCA0CPM1=0x42;//CCM0为8为PWM方式PCA0CN=0x40; //允许PCA计数器}(3)功能函数在检测到传感器传过来的信息后,需要做出判断并实现左转、前进和右转几个功能,将这几项功能编制成函数体之后再调用即可。
左转、右转和前进就是控制前后两个电机的导通顺序,前进是只需控制后轮电机运转即可,左转和右转用到前后两个电机。