电力电缆故障探测方法

合集下载

电力电缆故障的检测方法

电力电缆故障的检测方法

电力电缆故障的检测方法电缆故障的主要种类是并联故障和串联故障。

串联故障指的是电缆当中的多个或者是一个导体存在断开情况,通常的时候,串联当中断开一个导体之前,较难发现串联的故障,只有真正出现短路情况的时候才容易发现串联故障。

并联故障是因为电缆长期超负荷运行而导致外绝缘的老化现象,进而在局部发生放电情况,导致并联故障。

而结合电缆故障被击穿的长度差异和电阻不同,能够划分电缆故障为高阻故障、低阻故障、开路故障。

1.电桥法电桥法是一种传统的电缆故障检测方法,其可以实现非常理想的效果。

这种检测方法十分便捷,有着非常高的检测精度,属于一种经常应用的电缆故障检测方法。

可是,也存在一些缺陷,因为电桥电压差和检流计不够灵敏,所以仅仅适宜对电阻较低的电缆故障开展检测。

而对于电阻较高的设备和断路故障的电缆问题难以借助这样的方法来检测。

2.高压电桥法在电缆检测当中,高压电桥法属于一种经常应用的故障检测方法。

其检测原理是,对于高压电桥当中恒流电源刺穿造成的电缆故障的地方,从一定程度上确保流动比较大的电桥电流,进而在电桥整体线路的两边形成一定的电位差,在协调电桥平衡的根底上统计故障地方的差距。

对于应用高压恒流电源而言,可以有效拓展电桥高阻检测的区域,相对来讲,其可以对结果开展尤为便捷和准确检测。

并且,对于电桥法的研究理论来讲,即电缆中心线路电阻与整体线路根据比率开展分配的特点可以促进电桥检测体系的形成。

3.冲击高压闪络法在对电缆故障开展检测的一些方法当中,施工人员应用十分广泛的一种方法是冲击高压闪络法。

这种方法的检测原理是在故障电缆的开端地方施加冲击高压,从而对发生故障的地方开展十分迅速的击穿,以及记录下故障地方一刹那电压突跳的数据信息。

在仔细研究电缆故障地方与电缆始末数据信息消耗时间的根底上对时间距离开展测试,从而得到故障的地方,以及执行解决对策。

4,低压脉冲反射法在电缆故障检测中应用低压脉冲发射的方法应当在损坏的线路当中注入低压脉冲。

电缆相间故障检测方法

电缆相间故障检测方法

电缆相间故障检测方法1、基本方法(1)电桥法。

电桥法应用历史较长,不过在新技术不断出现的今天,电桥法依然有它的优势。

这样的方法在检测电力电缆单相接地、相间短路等问题上运用起来比较方便,而且误差也小。

传统上是通过计算桥壁平衡调节所得数据和电缆总长度之间的距离测点来寻找故障。

但电桥法的不足就是要准确知道电缆的长度等一些原始资料,电缆的相要有良好的绝缘性。

而现实中的电缆故障基本上是高阻和闪络故障,用该方法测量的时间比较长。

(2)低压脉冲反射法。

在电力电缆故障检测中,所谓低压脉冲反射法就是将高频率的低压脉冲发射到电缆中,脉冲在传播遇到故障点或者不匹配点就会反射电磁波,测量仪器会接收到反射脉冲。

(3)直流闪络法与高压闪络法。

直流闪络法是用来查询闪络故障中的故障点。

将直流电压施加在电力电缆故障点中,并将其立刻击穿,此时故障点会出现闪络,测量点和故障点之间的距离通过测量波来获取。

如果闪络故障在高电压下被立刻击穿,可以使用此方法。

直流闪络法的测量波波形比较简单,而且易于理解,有着高精度的读数。

要是电缆故障点的电阻不高,这种方法就不适用了。

因为这样会让直流泄漏较大的电流量,造成电缆线的电压变小。

此时就应该运用高压闪络法(冲闪法)。

可以利用这种方法判断故障点有没有击放电,但是不能说明产生了间隙放电就是故障点被击穿了。

2、精确确定点测量法上述测量故障点的方法适用于大范围的故障点,而不适用于施工处理。

电缆路径和深埋查找可以运用精确查找的方式找出确切的故障点位置。

而在这种情况下使用的方法就是声测法和声磁同步法。

(1)声测法。

运用灵敏度高的声电转换器放大故障点电放时产生的声音,使其转换成声音信号与电流信号,然后利用耳机和仪表等工具确定电缆线路上的故障点。

不过这种方法的缺点就是急速测量结果有着较大的随意性,误差也大。

如果电缆埋在地下太深就很难测量,优点就是对设备的要求不高。

(2)声磁同步法。

众所周知,电磁场信号的传播速度接近光速,但是声音的传播速度却相对较慢。

电缆故障查找方法

电缆故障查找方法

电缆故障查找方法电缆故障是电力系统中常见的问题,一旦出现故障,不仅会影响正常的用电,还可能造成安全隐患。

因此,及时准确地查找电缆故障并进行修复至关重要。

下面将介绍几种常用的电缆故障查找方法。

首先,最常用的方法是使用绝缘电阻测试仪进行测试。

在使用测试仪之前,需要先将电缆的两端分别接地,然后将测试仪的两个探头分别接触电缆的两端,记录下测试仪显示的绝缘电阻数值。

如果绝缘电阻数值低于正常范围,就说明电缆存在绝缘故障。

通过这种方法可以快速定位故障位置,有针对性地进行修复。

其次,可以利用局放检测仪进行故障查找。

局放检测仪能够检测电缆局部放电现象,通过分析局放信号的特点,可以判断出电缆是否存在故障。

在使用局放检测仪时,需要注意选择合适的检测频率和增益,以确保能够准确地捕捉到局放信号。

通过这种方法,可以有效地排除电缆的局部故障,提高查找故障的效率。

另外,还可以借助红外热像仪进行故障查找。

红外热像仪能够将电缆表面的热量分布显示出来,通过观察热像图可以发现电缆存在的热点,从而判断出故障位置。

在使用红外热像仪时,需要注意选择合适的拍摄距离和角度,以确保能够准确地捕捉到热像图像。

通过这种方法,可以快速定位电缆的热故障,有针对性地进行修复。

最后,还可以利用无损检测技术进行故障查找。

无损检测技术能够在不破坏电缆表面的情况下,通过电磁、超声波等方法检测电缆内部的故障。

这种方法不仅能够准确地查找出电缆的故障位置,还能够保护电缆表面的完整性,减少对电缆的损坏。

通过这种方法,可以全面地了解电缆的故障情况,有针对性地进行修复。

综上所述,电缆故障的查找方法有多种,每种方法都有其适用的场景和特点。

在实际操作中,可以根据具体情况选择合适的方法进行故障查找,以确保能够及时准确地排除电缆故障,保障电力系统的正常运行。

电力电缆故障点测试方法

电力电缆故障点测试方法

1
电力电缆故障点测试方法
电缆是将一根或多根导线绞合而成的线芯,裹以相应绝缘层后,外面包上密闭包皮(铝、铅或塑料等)。

在电力系统中常用的电缆有电力电缆和控制电缆两大类,其中电力电缆是用来输送和分配大功率电能的。

按绝缘材料的不同,可以分为油浸纸绝缘电力电缆、橡皮绝缘电力电缆和聚氯乙烯绝缘电缆,在工程上应用最广泛的是油浸纸绝缘电力电缆,由于电缆在制作中,以及铺设线路、环境温度、施工原则等,国家都有明文规定,在此不再赘述,本文主要对电力电缆易发生故障的可能点及如何进行测试的几种方法,介绍给大家。

电缆发生故障后一般先用1500V以上摇表或高阻计判别故障类型,再用不同仪器和方法初测故障,最后用定点法精确确定故障点,故障点的精测方法有感应法和声测法两种。

感应法,其原理是当音频电流经过电缆线芯时,在电缆的周围有电磁波存在,因些携带电磁感应接收器,沿线路行走时,可收听到电磁波的音响,音频电流流到故障点时,电流突变,电磁波的音频发生突变,这种方法对寻找断线相间低电阻短路故障很方便,但不宜于寻找高电阻短路及单相接地故障。

声测法,其原理是用高压脉冲促使故障点放电,产生放电声,用传感器在地面上接收这种放电声,以测出故障点的精确位置。

1。

10kV配电线路电缆故障查找方法

10kV配电线路电缆故障查找方法

10kV配电线路电缆故障查找方法10kV配电线路电缆故障是电力系统中常见的问题,一旦出现故障可能会造成停电、损坏设备等严重后果。

及时准确地查找和修复电缆故障对于维护电力系统的稳定运行至关重要。

本文将介绍一些关于10kV配电线路电缆故障查找的方法,希望可以帮助相关工作人员提高工作效率,提高故障查找的准确性。

一、外观检查在进行故障查找之前,需要对10kV配电线路的电缆进行外观检查。

外观检查是最基本的一步,可以通过目测发现一些电缆外部的损坏情况,比如绝缘层的破损、接头处的漏油等。

如果发现了这些问题,需要及时进行修复或更换,以免引起更大的故障。

二、断路器查找接下来,可以通过断路器查找的方法来定位电缆故障的位置。

断开配电线路上游的断路器,然后使用线路测试仪器查找到断路器后的电压值。

如果发现后方的电压为零,即可初步判断故障点位于断路器后。

然后逐步移动测试仪器,直至找到断路器前的电压为零的位置,即为故障点所在。

在使用该方法时需要小心谨慎,以免对线路造成进一步损坏。

三、局部放电检测另外一种方法是利用局部放电检测技术来查找电缆故障。

局部放电是电介质中的局部放电现象,主要是由于电压应力或绝缘层缺陷引起的。

局部放电检测可以通过检测电缆的局部放电信号来定位故障点,比如利用放大器和高频探头来捕捉放电信号,再通过分析放电信号的波形和幅值来确定故障点。

这种方法适用于查找绝缘层损坏或接头处的故障。

四、超声波检测超声波检测是一种非接触的故障检测方法,可以用来查找电缆中导体之间或导体与绝缘层之间的故障。

通过使用超声波探头来扫描电缆,当波束遇到故障点时,会发生反射和散射,从而被探测仪器捕获。

通过分析捕获的信号可以准确地确定故障点的位置。

这种方法对于查找电缆内部的故障非常有效,但需要专业的人员和设备来操作。

五、热红外检测热红外检测是利用红外热像仪来检测电缆故障的一种方法。

当电缆出现故障时,会产生热量,而红外热像仪可以将这些热量转化为图像显示出来,从而可以清晰地看到故障点的位置。

电力电缆的故障分析及检测方法

电力电缆的故障分析及检测方法

电力电缆的故障分析及检测方法
电力电缆是输送电能的重要组成部分,若出现故障则会导致供电中断、损失等问题,因此对电力电缆的故障分析及检测十分必要。

下面介绍电力电缆故障的分类及常用的检测方法。

一、故障分类
1.绝缘故障:电缆的绝缘材料损坏或老化,导致电力泄漏、短路等问题。

2.导体故障:电缆中导体损坏、接触不良、电阻过大等问题。

3.接头故障:电缆接头制作不良、防水措施不够、温升过高等问题。

二、常用检测方法
1.局部放电检测:通过检测电缆运行过程中的局部放电信号,判断电缆的绝缘状态,以便及早判断绝缘缺陷的出现。

2.介质损耗测试:通过测试电缆内介质的损耗,判断电缆绝缘状态的好坏。

3.电容测试:通过量取电缆母线、引出线之间的电容值,推算电缆电容率,以判断电缆绝缘状态。

4.高压测试:通过施加高电压测试电缆的绝缘强度,以便检测电缆的耐压性能。

5.电缆局部放电测量:通过检测电缆中存在的局部放电,判断导体两相之间或绝缘层内存在的故障。

6.时域反射法:通过测试电缆上电磁波信号的传输速度,以检测电缆上的绝缘故障的位置。

7.绝缘电阻测量:通过测试电缆的绝缘电阻变化情况,判断电缆的绝缘状况。

总的来说,电力电缆的故障分析及检测需要多种技术手段的综合运用,只有掌握了各种故障的原因和检测方法,才能及时发现问题,保障供电的连续性和稳定性。

10kv电力电缆故障测寻的详细步骤

10kv电力电缆故障测寻的详细步骤

10kv电力电缆故障测寻详细步骤
一、确定故障类型
在进行故障测寻之前,首先要确定故障的类型,如开路、短路、断路等。

可以通过测量电缆的绝缘电阻和导体电阻等参数,初步判断故障的性质和程度。

二、预定位
预定位是初步确定故障的大致位置,常用的方法有:
1. 电桥法:通过测量电缆线路的电阻和电容,计算出故障点到测试点的距离。

该方法简单可靠,但精度较低。

2. 脉冲法:通过向电缆发送高压脉冲信号,根据反射回来的脉冲信号时间差,计算出故障点的距离。

该方法精度较高,但需要较高的测试设备和经验。

三、精确定位
精确定位是在预定位的基础上,进一步精确确定故障点的位置。

常用的方法有:
1. 音频法:通过听取电缆中声音的差异,判断故障点的位置。

该方法简单易行,但需要经验丰富的操作人员。

2. 声磁同步法:通过测量电缆中的声音和磁场信号,利用时间差原理确定故障点的位置。

该方法精度较高,但需要特殊的测试设备。

四、修复故障
根据故障的性质和程度,可以采用不同的修复方法。

常用的方法有:1. 直通接法:对于短路、断路等简单故障,可以直接将电缆两头连
接在一起,恢复正常的电气性能。

2. 绕接法:对于损坏较轻的故障点,可以采用绕接的方式进行修复。

3. 替换法:对于损坏严重的电缆段,需要整段替换电缆。

五、测试验收
修复完成后,需要对电缆进行测试验收,确保故障已经完全排除,电缆电气性能恢复正常。

测试内容包括绝缘电阻、导体电阻、耐压试验等。

验收合格后,方可投入使用。

电力电缆检测及方法

电力电缆检测及方法

电力电缆检测及方法概述电力电缆是电力传输和分配的重要组成部分。

为了确保电力系统的安全和可靠运行,对电力电缆进行定期的检测是非常重要的。

本文档旨在介绍电力电缆检测的常见方法和步骤。

电力电缆检测方法1. 直流电阻测量直流电阻测量是一种常见的电力电缆检测方法。

通过测量电缆导体的电阻值,可以判断电缆的导体是否完好,并且可以检测是否存在接触不良或电缆绝缘破损等问题。

2. 介电强度测试介电强度测试是对电力电缆绝缘能力的评估。

通过施加高电压并观察电缆是否能够承受该电压而不发生击穿,可以判断电缆绝缘是否良好。

这种测试可以帮助检测电缆绝缘老化、破损或绝缘材料不合格等问题。

3. 局部放电检测局部放电检测可以用于发现电缆终端或接头存在的潜在故障。

通过检测终端或接头周围的局部放电信号,可以判断是否存在电缆绝缘故障或接头材料不良等问题。

4. 热红外检测热红外检测利用红外热像仪来检测电缆故障。

通过检测电缆表面的温度变化,可以找出导体接触不良、绝缘老化或电缆过载等问题。

这种非接触式检测方法可以快速定位电缆故障点,并有效地指导维修工作。

5. 测距技术测距技术可以用于检测电缆损坏和故障的位置。

通过发送电脉冲到电缆上,并根据信号的反射时间计算出电缆上的损坏位置。

这种方法可以帮助快速定位电缆老化、断线或其他物理损坏问题。

结论定期的电力电缆检测是确保电力系统安全运行的关键步骤。

通过采用直流电阻测量、介电强度测试、局部放电检测、热红外检测和测距技术等方法,可以及时发现电力电缆的潜在故障,并采取相应的维修措施,以确保电力系统的可靠性和稳定性。

电力电缆故障点测试的几种方法

电力电缆故障点测试的几种方法

电力电缆故障点测试的几种方法,华天电力是电缆故障测试仪的生产厂家,15年致立研发标准、稳定、安全的电力测试设备,专业电测,产品选型丰富,找电缆故障测试仪,就选华天电力。

电缆故障测试仪是通信、电力电缆施工和维护工作中的常用仪器,可以测定地下电缆及金属管线的准确位置和埋设深度,或测定架空电缆芯线障碍的准确部位。

为电缆、管线的改建扩建维修提供了方便,可减少开控地面,节省人力、物力和时间,因此是各邮电局和工矿企业必备的仪器。

电力电缆故障点测试一般包括脉冲法测试、闪络法测试、直闪法、冲闪法测试等几种方法。

电缆故障点测试注意事项:
一、脉冲法测试时,注意要甩掉局内所有设备,在最外线上进行测量。

二、使用闪络法测试时,必须将触发工作方式开关置于“闪络”位置。

三、在使用直闪法或冲闪法测试时,要注意人身安全及设备安全。

必须接好地线。

四、在闪络法测试结束后,切断电源,拆除本仪器与高压测试装置的连接线,再对高压电容器和电缆的所贮电荷进行放电。

放电时,应先加限流电阻R限制放电电流以使电流缓慢放电,待电容器上电压降低后,再直接对地放电电路中电阻为零,瞬间放电电流可高达几百安培,将发生严重的设备或人身事故。

五、在直闪法测试过程中,必须承受时注意监视故障的泄漏电流若电流突然增大,故障闪络现象未曾出现,应立即降低试验电压,改用冲闪法测试。

电力电缆的故障检测与诊断方法

电力电缆的故障检测与诊断方法

电力电缆的故障检测与诊断方法电力电缆的故障检测与诊断是电力行业中非常重要的一项工作。

随着电力设备的不断发展和电网的快速扩展,电缆的安全和可靠运行对于保障电力系统的稳定供电至关重要。

然而,由于电缆埋藏在地下或地下水中,故障的检测和诊断相对困难。

本文将介绍一些常见的电力电缆故障检测与诊断方法,以期提升电力系统的可靠性和安全性。

一、开路故障检测与诊断方法开路故障是指电力电缆中导体断裂或绝缘失效导致的电流无法正常流通的情况。

针对开路故障的检测与诊断,常用的方法包括:电缆反演法、时域反射法和频域反射法。

电缆反演法是一种利用复杂矩阵计算电缆线路参数的方法,在检测开路故障时,可以通过对电缆两端电流和电压进行分析,计算出电阻和电感等参数,从而判断是否存在开路故障。

时域反射法是一种利用电磁波在电缆中从故障点反射回来的原理进行故障检测的方法。

通过在电缆一端施加短脉冲信号,利用反射波的信号特征来判断故障点的位置和类型,然后通过测量仪器进行分析和诊断。

频域反射法是一种利用频率信号在电缆中传输的原理进行故障检测的方法。

通过在电缆一端施加不同频率的信号,利用反射波的频谱特征来判断故障点的位置和类型,然后通过频谱分析仪器进行诊断。

二、短路故障检测与诊断方法短路故障是指电力电缆中导体之间出现串联导通的情况,导致电流异常增大,可能引发火灾等危险。

针对短路故障的检测与诊断,常用的方法包括:电缆阻抗法、时域反射法和热红外成像法。

电缆阻抗法是一种通过测量电缆两端的电压和电流,计算电缆的等效阻抗来判断是否存在短路故障的方法。

阻抗值的计算可以利用复杂矩阵法或者有功功率法等数学方法进行求解。

时域反射法在短路故障检测中同样也有应用。

通过施加短脉冲信号,利用反射波的特征来判断短路故障的位置和类型。

与开路故障时域反射法类似,需要使用相应的测量仪器进行分析和诊断。

热红外成像法是一种利用红外辐射热图像来检测和诊断电力电缆短路故障的方法。

通过红外热成像仪器,可以感知电缆局部温度的异常变化,从而判断是否存在短路故障及其位置。

10kV配电线路电缆故障查找方法

10kV配电线路电缆故障查找方法

10kV配电线路电缆故障查找方法在10kV配电线路中,电缆故障是一种常见的情况。

一旦出现电缆故障,就会导致供电中断,给生产和生活带来诸多不便。

及时准确地查找并修复电缆故障至关重要。

本文将从多个角度介绍10kV配电线路电缆故障的查找方法,以便工程师和技术人员能够更好地应对和解决这一问题。

一、设备准备在进行电缆故障查找前,首先需要做好相关的设备准备工作。

一般来说,需要准备以下设备:1. 绝缘测试仪:用于测试电缆绝缘电阻和绝缘强度,帮助确定故障位置。

2. 故障指示仪:用于指示故障点的位置,对查找故障非常有帮助。

3. 输电测距仪:用于测量电缆的故障距离,有助于确定故障位置。

4. 多功能电流表:用于测试电缆的电流情况,判断电缆是否存在故障。

5. 钢针:用于在地面上查找地下电缆的位置。

以上设备是查找电缆故障时必不可少的,只有准备充分才能更快更准确地找到故障位置。

二、查找方法在进行电缆故障查找时,通常可以从以下几个方面进行:1. 检查终端设备:首先要检查配电线路的终端设备,包括配电室、变压器等地方,看是否存在显而易见的故障。

有时,故障可能就发生在这些终端设备上。

2. 测试绝缘电阻:使用绝缘测试仪测试电缆的绝缘电阻,如果发现绝缘电阻异常低,就说明可能存在绝缘故障。

通过测试各段电缆的绝缘电阻,可以逐步缩小故障范围。

3. 检查接线盒:接线盒是电缆连接的关键位置,也是电缆故障的常见位置。

可以通过检查接线盒的连接情况,排除故障。

4. 使用故障指示仪:故障指示仪可以帮助确定故障点的位置,通过在线路上移动故障指示仪,可以确定故障点的大致位置。

5. 输电测距仪测距:使用输电测距仪对电缆进行测距,找到故障距离,有助于确定故障位置。

6. 测试电流情况:通过多功能电流表测试电缆的电流情况,如果发现某段电缆的电流异常,就说明可能存在故障。

7. 地下查找:使用钢针在地面上查找地下电缆的位置,有助于确定故障位置的大致范围。

以上方法并非逐一进行,而是需要根据实际情况综合运用。

电力电缆高阻故障的探测技术

电力电缆高阻故障的探测技术

电力电缆高阻故障的探测技术
电力电缆的高阻故障是指电缆某一部分出现了电阻大于正常值的情况,导致电流通过
受阻,电压下降,甚至造成线路短路。

如果高阻故障得不到及时发现和处理,可能会导致
电缆发生过热、烧毁甚至引发火灾的严重后果。

电力电缆高阻故障的探测技术显得十分重要。

电缆高阻故障的探测技术主要可以分为五大类:继电保护、无损检测、红外热像仪、
电缆局部放电监测和超声波检测。

继电保护是一种常用的高阻故障探测技术,通过监测电缆的电流和电压变化情况,判
断是否存在高阻故障。

当电流和电压发生异常时,继电保护会及时发出警报,并切断电源,避免进一步的事故发生。

无损检测是一种不需要破坏电缆绝缘层的方法来检测故障的技术。

常用的无损检测方
法有超声波、红外热像仪和电缆局部放电监测。

超声波通过发送超声波并观察返回的信号
来判断电缆是否存在高阻故障;红外热像仪则通过测量电缆表面的温度分布来发现电缆是
否存在过热故障;电缆局部放电监测是通过对电缆进行局部放电检测,当出现高阻故障时,会伴随着局部放电的发生。

红外热像仪是利用红外线热成像技术来检测电缆高阻故障的一种无损检测方法。

红外
热像仪可以通过检测电缆表面的热辐射来发现电缆是否存在异常的温度升高,从而判断是
否存在高阻故障。

红外热像仪的优势是可以在不接触电缆的情况下进行检测,无需切断电源。

超声波检测是通过发送超声波并观察返回的信号来判断电缆是否存在高阻故障。

超声
波检测可以检测电缆内部的物理状态,当电缆出现高阻故障时,会产生反射超声波信号。

通过对超声波信号的分析,可以判断电缆是否存在高阻故障。

电力电缆故障原因和检测方法研讨9篇

电力电缆故障原因和检测方法研讨9篇

电力电缆故障原因和检测方法研讨9篇第1篇示例:电力电缆是输送电力的重要设备,它在电力系统中起着至关重要的作用。

电力电缆在运行过程中难免会出现各种故障,而故障的及时检测和排除对于维护电力系统的正常运行非常关键。

本文将从电力电缆故障的原因和检测方法两个方面展开研讨,希望能够为电力工程师提供一些参考。

一、电力电缆故障的原因1、绝缘老化:绝缘老化是电力电缆故障的常见原因之一,长时间的使用会导致绝缘材料老化、老化严重后会出现绝缘损坏。

2、外部损坏:电力电缆往往被埋设在地下或架空,容易受到外部环境的损坏,比如机械碰撞、挤压等都会导致电缆绝缘损坏。

3、潮湿环境:潮湿环境会导致电缆绝缘受潮,继而导致绝缘老化、击穿等故障。

4、负载过大:电缆的敷设有一定容量,如果超过了负载容量,就会导致电缆过载,进而导致故障。

5、接头松动:电缆的接头在长时间运行过程中可能会出现螺纹松动或其他问题,导致电缆接触不良,从而引发故障。

1、红外热像仪检测:通过红外热像仪可以检测电缆的温度分布情况,从而发现潜在的故障点。

2、局部放电检测:局部放电是电力电缆故障的主要前兆,通过局部放电检测设备可以对电缆进行全面的检测。

3、交流耦合:利用交流耦合技术可以检测电缆的绝缘情况,快速准确地判断电缆的绝缘性能。

4、超声波检测:超声波检测可以检测电缆内部的空气孔隙、异物等问题,及时发现电缆故障隐患。

5、局部放电分析:通过局部放电信号的分析,可以准确地判断电缆故障的位置和严重程度,为维修提供重要参考。

电力电缆故障的原因多种多样,及时的检测和排除故障对于维护电力系统的正常运行至关重要。

希望通过本文的研讨,能够使电力工程师对电力电缆故障有更深入的了解,有效的维护和管理电力系统,确保电力供应的稳定性和安全性。

【本文2000字】第2篇示例:电力电缆故障是电力系统中常见的问题,它可能导致设备损坏、停电甚至火灾等严重后果。

及时检测电力电缆故障并排除故障十分重要。

本文将探讨电力电缆故障的原因和常见的检测方法。

电力电缆的故障分析及检测方法

电力电缆的故障分析及检测方法

电力电缆的故障分析及检测方法电力电缆作为电力传输和分配重要的组成部分,在运行过程中由于各种原因可能会出现各种故障,如导体断线、短路、漏电、绝缘老化,这些故障如果不及时发现和处理将会对电力系统的运行造成很大的影响,甚至会对人身安全构成威胁。

为了提高电力系统的可靠性和安全性,必须采取有效的故障检测和维护方法。

一、电力电缆故障的原因及表现1.导体断线故障导体断线是一种常见的电力电缆故障,其主要原因是导体材料的疲劳破裂和外力的损伤。

导体断线故障的表现主要有两种情况:(1)开路故障:电缆无法传输电力信号,导线电阻变大,电压下降,表现为电缆故障段附近的负荷失去供电。

(2)闪断故障:电缆的电路断开后又自行复位,导致电缆的电阻变化,使得电力系统的电压波动,可能引起灯泡闪烁或设备频繁重启。

2.电缆绝缘老化故障电缆绝缘老化故障是由于长期使用和环境因素等原因导致绝缘材料失效,绝缘性能下降,电场强度大,发生局部放电而造成的故障。

电缆绝缘老化故障的表现主要有:(1)漏电:因绝缘材料的老化和损伤导致电缆表面或内部出现漏电现象,可能引起安全事故。

(2)局部放电:由于绝缘材料老化,导致电场强度集中,局部电阻变大,电容增加,导致局部放电,可能会产生较高的电压和热量,对电缆绝缘材料造成损害。

3.电缆短路故障电缆短路故障是由于电线之间的接触或缠绕引起的,其表现为电路出现短路故障,会引起电源线路短路保护器动作断电。

电缆短路故障可以分为一次短路和二次短路两种情况。

电缆漏水故障通常是由电缆保护层的损伤和绝缘层内部结构被破坏导致的,如果不及时处理,有可能会导致绝缘层失效,产生较大的电气火灾隐患。

1.绝缘电阻测试绝缘电阻是指导线和导体之间的电阻值,可以反映电缆的绝缘状况。

绝缘电阻越大,绝缘性能越好。

绝缘电阻测试可以使用万用表等测试设备进行,当绝缘电阻低于一定值时,意味着电缆出现了绝缘老化或损伤。

此时需要对电缆进行维修或更换。

2.局部放电检测局部放电检测是指通过传感器采集电缆内部的局部放电信号,并通过信号分析来判断电缆绝缘状况的检测方法。

电缆故障的检测方法

电缆故障的检测方法

电缆故障的探测方法本文综述了电缆故障的探测方法与仪器。

首先列举了电缆故障探测的传统方法并分析了传统方法的不足,然后介绍了电缆故障探测的新方法及其特点。

随着电缆用量在整个电力传输线路和因特网中所占的比例日益提高,电缆故障出现的几率越来越大。

电缆故障对生产造成的危害较大,轻者会造成单台电气设备不能运行,重者会导致整个变电所停电,所以电缆故障点的快速测定和精确定位问题变得非常重要。

一、电缆故障探测的传统方法(一)电缆故障测距的传统方法电缆故障测距的传统方法主要有以下四种:电桥法:这是电力电缆的测距的经典方法。

该方法比较简单,但需要事先知道电缆线长度等数据,且只适用于低阻及短路故障。

但是,在实际运行中,故障常常为高阻及闪络性故障,因故障电阻很高造成电桥电流很小,因此一般的灵敏度仪表很难探测。

脉冲回波法:针对低阻与断路类型的故障,利用低压脉冲反射方法来测电缆故障比起上面的电桥法简单直接,只需通过观察故障点反射与发射脉冲的时间差来测距。

测试时将一低压脉冲注入电缆,当脉冲传播到故障点时会发生反射,脉冲被反射送回到测量点。

利用仪器记录发射和反射脉冲的时间差,只需知道脉冲传播速度就可计算出故障发生点的距离。

该方法简单直观,不需知道电缆长度等原始数据,还可根据反射波形识别电缆接头与分支点的位置。

脉冲电压法。

该方法可用于测量高阻与闪络故障。

首先将电缆故障在直流或脉冲高压信号下击穿,然后通过记录放电脉冲在测量点与故障点往返一次所需的时间来测距。

脉冲电压法的一个重要优点是不必将高阻与闪络性故障烧穿,直接利用故障击穿产生的瞬时脉冲信号,测试速度快,测量过程也得到简化。

但缺点是:①仪器通过一个电容电阻分压器分压测量电压脉冲信号,仪器与高压回路有电耦合,很容易发生高压信号串人,造成仪器损坏,故安全性较差;②在利用闪测法测距时,高压电容对脉冲信号呈短路状态,需要串一个电阻或电感以产生电压信号,增加了接线复杂性,使故障点不容易击穿;③在故障放电时,特别在冲闪时,分压器耦合的电压波形变化不尖锐,难以分辨。

电力电缆故障原因及常用检测方法

电力电缆故障原因及常用检测方法

电力电缆故障原因及常用检测方法随着我国经济的发展和社会现代化建设步伐的加快,对电力的需求量越来越大。

而作为连接各种电气设备、传输和分配电能的电力电缆,已经得到越来越广泛的应用。

目前,电力电缆所产生的故障在所有供电故障中占了相当大的比重。

如何快速、准确地确定故障点位置和判断出故障类型已成为电力电缆使用和运行过程中十分关键的技术之一。

故障的类型电力电缆根据故障性质可分为低电阻接地或短路故障、高电阻接地或短路故障、断线故障、断线并接地故障和闪络性故障。

形成电缆故障的原因分析现将常见的几种主要原因归纳如下1、机械损伤机械损伤引起的电缆故障占电缆事故很大的比例。

有些机械损伤很轻微,当时并没有造成故障,但在几个月甚至几年后损伤部位才发展成故障。

造成电缆机械损伤的主要有以下几种原因安装时损伤:在安装时不小心碰伤电缆,机械牵引力过大而拉伤电缆,或电缆过度弯曲而损伤电缆;直接受外力损坏:在安装后电缆路径上或电缆附近进行城建施工,使电缆受到直接的外力损伤;行驶车辆的震动或冲击性负荷会造成地下电缆的铅(铝)包裂损;2、绝缘受潮绝缘受潮后引起故障。

造成电缆受潮的主要原因有:因接头盒或终端盒结构不密封或安装不良而导致进水;电缆制造不良,金属护套有小孔或裂缝;金属护套因被外物刺伤或腐蚀穿孔;3、绝缘老化变质电缆绝缘介质内部气隙在电场作用下产生游离使绝缘下降。

当绝缘介质电离时,气隙中产生臭氧、硝酸等化学生成物,腐蚀绝缘;绝缘中的水分使绝缘纤维产生水解,造成绝缘下降。

过热会引起绝缘老化变质。

电缆内部气隙产生电游离造成局部过热,使绝缘碳化。

电缆故障性质的诊断所谓诊断电缆故障的性质,就是指确定:故障电阻是高阻还是低阻;是闪络还是封闭性故障;是接地、短路、断线,还是它们的混合;是单相、两相,还是三相故障。

1、电桥法将被测电缆终端故障相与非故障相端接,电桥两臂分别接故障相和非故障相,通过调节电阻使得电桥达到平衡,通过公式计算出故障点的距离。

电力电缆的故障分析及检测方法

电力电缆的故障分析及检测方法

电力电缆的故障分析及检测方法电力电缆是输送电能的重要设备,但在运行中难免会出现故障。

电力电缆的故障一般分为三类:绝缘故障、电缆接头故障和电缆外包层故障。

处理故障需要实施合适的检测方法,据此本文将就电力电缆故障的检测方法进行探讨。

一、绝缘故障检测方法1、绝缘电阻测试法绝缘电阻测试法是比较常用的一种绝缘故障检测法。

它主要是利用高压直流放电器将试验电缆的一端接地,另一端接通500V或1000V直流电压(也可以根据实际情况对电压进行调整),并记录电流与电压。

如果读书在在50MΩ以上,说明绝缘没有问题。

此法的优点是简单易行,缺点在于只能检测到大面积的绝缘故障,不能检测到局部绝缘故障。

2、局部放电检测法局部放电检测法是一种常用的局部绝缘故障检测方法。

它的原理是利用放电电流产生信号,通过放大和滤波等处理得到故障信号,然后再通过分析断层发生的时间、位置、大小等综合条件来定位故障。

局部放电检测法主要适用于高压交流电缆及其附件的检测,检测结果更为可靠,但仪器昂贵,操作比较麻烦。

二、电缆接头故障检测方法电缆接头故障比较常见,如果及时发现故障,不仅可以延长电缆的使用寿命,而且可以提高电缆系统的可靠性。

电缆接头故障的检测方法包括如下:1、分接箱可视检查法通过检查分接箱外观,连接方式、接线端子、连接盘上的引线及连接板上的引线等情况来判断电缆接头的质量。

2、分接箱绝缘电阻测试法通过对接头进行高压试验,测量其绝缘阻值,从而判断接头质量。

3、分接箱局部放电检测法通过检测接头所产生的局部放电信号,来定位接头故障位置。

三、电缆外包层故障检测方法电缆外包层故障往往不易发现,如果长期不修复,很容易引起电缆系统故障。

这类故障的检测方法有以下几种:1、有线检测法通过检测电极间导通状态的变化来定位电缆外包层故障点的位置。

该方法精度高,定位准确,但是在大功率电缆上的实用性不足。

2、雷电冲击测试法利用冲击波法产生的电磁场,通过定位电缆故障处反射回来的信号来寻找故障点。

电力电缆的故障分析及检测方法

电力电缆的故障分析及检测方法

电力电缆的故障分析及检测方法电力电缆是输送电力的重要设备,其工作可靠性直接关系到供电系统的安全运行。

由于各种原因,电力电缆会出现各种故障,给供电系统带来安全隐患。

对电力电缆的故障分析及检测方法进行研究具有重要意义。

本文将就电力电缆的故障分析及检测方法进行探讨,旨在提高供电系统的安全性和可靠性。

一、电力电缆的常见故障及其分析1.绝缘老化绝缘老化是电力电缆常见的故障之一,主要由于电缆长时间运行、环境温度变化等因素导致绝缘材料老化、变质。

绝缘老化会造成电缆绝缘强度下降,容易导致绝缘破坏和击穿,进而引起短路事故。

对于绝缘老化故障,可以通过以下方法进行分析:(1)外观检查:观察电缆外观是否有裂纹、变形等情况;(2)绝缘电阻测量:使用绝缘电阻测试仪对电缆绝缘进行测量,了解绝缘老化程度;(3)局部放电测试:利用局部放电检测设备对电缆进行检测,判断是否存在局部放电现象。

2.金属外护套腐蚀金属外护套腐蚀是导致电力电缆故障的常见原因之一,主要由于化学介质、土壤湿度等因素导致外护套金属腐蚀。

金属外护套腐蚀会导致外护套损坏,使电缆失去保护功能,容易导致接地故障和短路。

对于金属外护套腐蚀故障,可以通过以下方法进行分析:(1)外观检查:观察电缆外护套表面是否有腐蚀痕迹、锈蚀情况;(2)金属电位测量:使用金属电位测试仪对外护套进行测量,了解外护套腐蚀情况;(3)化学分析:采集外护套腐蚀部位样品进行化学分析,确定腐蚀原因。

3.接头故障电力电缆的接头是电力传输的重要部分,但接头也是电缆故障的薄弱环节。

接头故障主要包括接头松动、接触不良、绝缘接头老化等情况,会导致接头发热、烧坏,严重影响电缆的安全运行。

对于接头故障,可以通过以下方法进行分析:(1)红外热像仪检测:利用红外热像仪对接头进行热成像,了解接头是否存在异常发热情况;(2)接触阻抗测量:使用接触阻抗测试仪对接头进行测量,判断接头的接触情况;(3)X射线检测:采用X射线检测设备对接头进行透视检测,了解接头内部情况。

电力设备的电缆故障检测与维修技术

电力设备的电缆故障检测与维修技术

电力设备的电缆故障检测与维修技术一、引言电力设备的电缆是供电系统中非常重要的组成部分,它负责输送电能,连接各种电气设备。

然而,由于电缆运行环境复杂,存在各种潜在的故障风险,如绝缘老化、短路等。

因此,电缆故障检测与维修技术对于确保电力设备的稳定运行至关重要。

二、电缆故障检测技术1. 传统检测方法传统的电缆故障检测方法包括直流耐压测试、局部放电检测和无损检测等。

直流耐压试验通过施加高压电流,检测电缆绝缘是否破损。

局部放电检测主要依据局部放电产生的脉冲电流信号来判断电缆绝缘是否发生故障。

无损检测技术则主要通过热红外成像、电磁波检测等方式,检测电缆表面和内部的异常情况。

2. 高频电缆故障预测技术近年来,高频电缆故障预测技术逐渐兴起。

该技术利用高频电磁波在电缆中的传播特性,通过检测信号的相位和幅度变化,来判断电缆的故障类型和位置。

高频电缆故障预测技术具有非侵入性、准确性高等优点,可以及早发现电缆故障,提前进行维修,避免事故的发生。

三、电缆故障维修技术1. 绝缘修复技术电缆的绝缘老化是导致电缆故障的主要原因之一。

对于绝缘老化的电缆,可以采取混凝土护套修复、电缆漏油处理等方法进行维修。

混凝土护套修复是通过将新的混凝土材料包裹在受损部分上,增加电缆的绝缘性能。

电缆漏油处理则主要是清除漏油部位的污物,并进行绝缘油的添加。

2. 故障定位技术故障定位是电缆故障维修中非常重要的环节。

常用的故障定位技术包括回波法、反射法和时间域反射法等。

回波法利用电缆信号在故障位置反射后返回的特性,通过测量反射时间差来确定故障位置。

反射法则是利用发送的电磁波在故障位置反射所产生的信号,通过测量反射信号的幅度和相位差来确定故障位置。

时间域反射法是利用不同频率的电磁波在电缆中传播速度不同的原理,通过测量信号的传播时间来确定故障位置。

3. 故障纠正技术一旦确定了电缆故障的位置,需要进行故障纠正。

常用的故障纠正技术包括电缆割接、绝缘加固、局部放电修复等。

铁路电力电缆故障点的几种实用测定方法

铁路电力电缆故障点的几种实用测定方法

度长 , 长输 电缆所经受的 自 然 环境 复杂,随着环境污染严重 , 酸雨 , 酸雾的 出现 ,都会对 电缆腐蚀作用加剧 :第三 ,设计和工艺 问题 ,
在铁路 电力 电缆铺设 过程对于未来扩建和维修考虑不足 ,在其他铁 路施工 中对 电缆造成 的破坏 ;第 四,其他原 因,例如人为破坏圾其 他复杂 因素 。 2铁路 电力电缆故障点的检 测实用方法 2 . 1测声检测法 测声法用到的检测设备是直流耐压试验机 ,该方法是对 故障点 所释放出来的异常 电流声音进行收集,从而大致确定故障点所在位 置,尤其适用于高压 电缆芯线闪络放电故障。测试方法和原理较为 简单,首先 ,直流耐压试验机与高压整流器、限流 电阻以及高压电 容器 串联 ,高压整流器和 限流 电阻都发挥 了保护直流耐压试验机的 作用 , 将 高压 电容器与 电缆铜芯线并联 ,并且安装 了一个放 电装置 ; 然后 ,当电容器 电压到一定值 的时候,放 电装置对 电缆铜芯线放 电,
成正 比关系 ,并且铁路 电缆在铺设 的时候除 了接头处一般都是线性 铺设 ,弯 曲的部位较少 ,通过测定 电容 电流然后换算成 电容量来精
确定位 电缆故障 。Байду номын сангаас方法要求在检测过程 中电压需要持续稳定 ,在 实际过程 中通过分 多个 点同时测定 ,对 同一 点进行多次测量的方法 来实现 电流 的读数稳 定,该方法也 是笔者在实 际过程 中常用 的有效
经济和文化 交流 的纽 带,当前 高铁 、动车组 、磁 悬浮等新型技术的 投产使 用,对铁路沿线的 电力 、通讯提 出了更 高的要求 。本文就铁 路 电力 电缆故障 为研 究重点 ,首先分析 了铁路 电力电缆 多发 问题及 原 因,从 产生原 因出发介 绍了几种 实用的测 定方 法,最后通过 实际 测 定体会 ,对铁路 电力 电缆的维护提 出了一些实用建议 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电缆故障探测
摘要:该文介绍了电力电缆故障探测工作中,常用的几种探测方法及在应用效果上的分析和比较。

关键词:电力电缆;故障探测
随着电力电缆在城市电网中的应用日益广泛,运行时间越久,故障会越来越频繁,如何及时有效地处理故障,保证城市供电和电网的正常运行,就要看是否能够快速准确地判定故障性质和地点。

为解决这项课题,淮北供电公司于2002年购置了一套YM型电缆故障探测议,开始是给配电工区使用,后给修试所实验班使用,对公司所辖的电缆进行故障探测。

经过积极探索和分析研究判断,在多次的电缆故障探测工作中发挥了极好的作用和效果,也积累了丰富的经验,现对电缆故障发生的原因、性质、探测原理与方法、实际运用进行探讨。

1 电缆故障原因
导致电缆发生故障的原因是多方面的,现将常见的几种主要原因归纳如下:
机械损伤。

电缆的很多故障是由于敷设安装时造成的机械损伤或敷设后在电缆线路上施工造成的外力损伤,而直接引起的。

有时虽然损伤轻微,但在几个月甚至几年后其损伤部位的绝缘将逐渐降低而导致击穿。

设计和制作工艺不良,不按规程要求制作,往往是形成电缆故障的重要原因。

化学、电腐蚀。

电缆外铅皮电腐蚀导致潮气侵入,绝缘破坏。

电缆的制造缺陷。

由于电缆长期过负荷运行,电缆的温度会随之升高,尤其在炎热的夏季,电缆的温升,常常导致电缆薄弱处和对接接头处首先被击穿。

电缆绝缘物的流失。

2 电缆故障预定位的方法
在电缆故障定位中最重要的一步就是鉴别电缆故障类型。

一旦故障发生,判断故障类型,根据故障类型和本单位的设备条件选择合适的探测方法,直接影响着对事故处理的速度。

实际上,电缆可能在任何位置发生任何类型的故障,能否快速排除故障取决于现场工作人员的实际经验。

通常用万用表来测定故障电缆电阻,按电阻大小把电缆故障分为两组:低阻故障——小于100kΩ;高阻故障——大于100kΩ。

每种类型的电缆故障需要特殊的方法进行预定位,常用的比较有效的预定位方法如下。

2.1 低压脉冲反射法
这种测量方法是将高频率的低压脉冲发送到电缆中,该脉冲沿电缆传播,直到阻抗失配的地方,如中间接头、T接头、短路点、断路点和终端头等,在这些点上都会引起波的反射,反射脉冲回到电缆测试端时被试验设备接收。

实践证明现场绝大多数故障电缆,采用低压脉冲反射法是无法测量故障位置的,其所反射的波形只能测试电缆全长。

图1为低压脉冲反射标准波形图。

图1 低压脉冲反射标准波形图
2.2 高阻故障的测量
2.2.1 直流高压闪络法
直流高压闪络法使用于闪络性故障,即故障点没有形成电阻通道(或电阻值极高)但电压升高到一定值时就会产生闪络现象。

工作原理:给故障电缆加直流负高压,当电压升高到一定值时,故障点产生闪络,闪测仪即显示出测量端的波形,如图2所示。

故障距离为波形的起始点T0到下降处拐点T1的实际时间间隔所对应的距离。

(a)探测故障(b)波形
图2 直流高压闪络法探测故障及测量端的波形
在实际中,电缆的闪络性故障是极普遍的,凡是预试击穿的电缆几乎都有闪络过程,运行击穿的电缆故障,约半数也有闪络过程。

在对故障电缆进行直接加压时,电缆闪络过程长短不一,有些故障只闪络几次就形成稳定的通道,不再闪络,故在发现电缆有闪络过程,应抓紧时机,珍惜这样的现象进行测试。

由于直闪法比冲闪法波形好精度高,故尽可能使用直闪法测量。

2.2.2 故障点烧穿法
故障点烧穿法应用于高阻故障,设备通过输出直流负高压,对高阻故障点进行处理,使故障点产生电弧放电并碳化绝缘介质,因碳化连接点是低电阻的,使高阻故障变成低阻故障,再应用低压脉冲反射法就可测出。

故障点烧穿法主要用于油纸绝缘电缆。

采用故障点烧穿法的缺点是烧穿时间长,耗人力,容易形成金属性短路,为探定故障点造成困难。

故障点电阻恢复,还得进行第二次烧穿,所以一般不采用这种方法。

2.3 冲击高压闪络法
冲闪法分为电阻和电感冲闪两种。

对于前者,因电阻在线路中的分压作用,使得实际加到故障电缆上的电压偏低,故对放电不利,特别是对于那些有较高阻值的故障更难以放电,因此存在一定的局限性,通常采用后者。

电感冲闪法的优点在于几乎能适应任何类型的故障。

大量事实证明,电感冲闪法是对付那些被人们用别的方法测不出来,而被称之为最顽固的故障的最强有力手段,所以把电感冲闪法作为最主要的测试方法。

冲击直流高压电感测量法(简称冲L法)的测量线路如图
3(a)所示。

当电源接通后,首先由直流高压给贮能电容C充电,当电容上的电压高到一定幅值时,球隙Q被击穿放电,在t0时刻瞬间负高压加到电缆故障相,并传向故障点,继而故障点闪络放电。

故障点放电时的短路电弧使沿电缆送去的电压波反射回去,从而在测量端和故障点之间产生如图3(b)所示的波形,图中尖脉冲是由于电感L的微分作用所致。

这一波形通过
R1、R2电阻分压后加到仪器上。

(a)冲L法测量故障(b)冲L法测量波形
图3 冲L法测量故障及波形
冲L法主要用于测量泄漏性高阻故障,也可测量闪络性高阻故障。

应当指出,电缆故障YM型电缆故障测试仪,虽是较先进的仪器,但它们均属于粗测仪器,当判断出故障点的粗略范围后,还需设法精确定点,目前采用的方法主要是声测定点法。

3 电缆故障精确定点法
电缆故障的预定位,据目前的测试水平来看是不困难的。

如果用YM电缆故障定位系统,在电缆波形粗测确定以及路径清楚的情况下,一般只用数分钟便能测出故障点至测试端的距离,而且预定位误差一般不会超过10m。

但是,由于电缆运行资料的误差和不完整,故障类型的不同,以及电缆故障点所处的环境因素的复杂多样性,如欠缺电缆的准确长度和线路图,在强大的噪声源和工频电磁场附近,电缆敷设在埋管中、难于进入到建筑物等,都会给故障点的精确定点带来许多意想不到的困难。

大量实践证明,精确定点方面的问题,已成为快速寻测故障的主要矛盾。

现主要用声磁信号同步接收定点法,此方法给故障电缆加上一个幅度足够高的冲击电压,使故障点发生闪络放电,产生相当大的“啪、啪”放电声,同时,会在电缆的外皮与大地形成的回路中感应出环流来,这一环流在电缆周围产生脉冲磁场。

用一个包含接地麦克风接受器和耳机的听音装置在地面探测。

故障点离麦克风的距离越近,闪络声就越大。

在监听声音信号的同时,接收到脉冲磁场信号,即可判断该声音是由故障点放电产生的,故障点就在附近,否则可认为是干扰。

在故障点位置处能探测到闪络声的最大值。

当遇到电缆本体内闪络或故障点附近有共振的情况,放电时,声音会在一大段电缆内部都能听见,且大小相同,就很难做到精确定位。

鉴于目前尚未有更好的技术,能够完善的解决定点的问题,只有根据预定位距离和电缆资料,打开电缆沟盖板或挖开直埋段的路面,直接在电缆本体上进行定点工作。

4 结束语
电力电缆故障探测方法及技术,除上面所述的几种主要方法外,还有高压电桥法、电容法、跨步电压法及音频感应法。

使用电缆故障测试仪探测故障,不但要熟悉仪器的使用方法,还要懂分析故障性质和测试波形。

笔者认为在探测电缆故障时选择合适的测试方法是非常必要的,可以大大减少故障探测时间,同时总结为:
低阻接地故障探测(R<10kΩ),以低压脉冲法、电桥法测试为易;
具有绝缘回复性的高阻故障(R>100kΩ),以直闪法测试为最佳;
高阻接地故障(R>100kΩ),以冲闪法测试为最准。

自2002年购置了YM电缆故障探定位系统以来,主要使用高压冲击法进行电缆故障探测,几年来的成功率为100%。

为及时有效地排除故障,保证城市用电和电网的正常运行发挥了很好的作用。

相关文档
最新文档