最新人教版九年级数学下册教案全册

合集下载

人教版九年级下册数学教案大全(5篇)

人教版九年级下册数学教案大全(5篇)

人教版九年级下册数学教案大全(5篇)人教版九年级下册数学教案大全篇1一、教材研读。

1、教材编排。

(1)逻辑分析:方程是等式里的一类特殊对象,传统教材都用属概念加种差的方式,按“等式+含有未知数→方程”的线索教学方程的意义,考虑到方程是在刻画生活中的等量关系时产生的,而且在北师大教材体系中一年级到四年级上册,学生对等式和不等式有所了解,只是没有把“等式”这样一个概念交给学生。

并且已经采取逐步渗透的方法来培养代数思维。

例如:()+8=14,90-()〉65,因此,在北师大教科书里没有从方程和等式的内涵上作太多比较,直接以等式为立足点,立足点较高。

(2)语言信息及价值分析:本课教材中的三幅情境图,由浅入深,由具体到抽象,循序渐进。

第一个场景让学生借助天平理解方程;第二个场景完成从数量关系到平等关系的转变;第三个场景引起学生的思考,让他们从不同的角度找到多种等价关系,列出方程。

2、教学目标。

(1)结合具体情境,建立方程的概念。

(2)寻找简单情况下的等价关系,会用方程表示。

(3)体验从生活场景到方程模型的过程,进一步感受数学与生活的密切关系。

3、教学重难点:(1)重点:在简单具体情境中寻找等量关系,并会用方程表示。

抓住“含有未知数”和“等式”两个核心关键词建立方程的概念。

(2)难点:数量关系向等量关系的转化。

二、学情分析:学生原有的认知经验是用算术方法来解决问题,算术思维是更接近日常生活的思维。

由于从算术思维到代数思维的认识发展是非连续的,所以列算式求答案的习惯性思维转向借助等量关系列方程的新思维方式比较困难。

列算式时以分析数量关系为主,知与未知,泾渭分明;在代数法中,辩证地处理知与未知、求与不求,使这一矛盾双方和谐地处于同一方程中。

三、流程设计:为了更好地引发学生的思考,提高学生解决问题的能力,我做了如下的设计:(一)引“典”激趣,诱发思考。

引用“曹冲称象”的故事,提出解决问题的策略,寻找相等关系,同时激发学生学习的兴趣。

初三下册数学人教版教案4篇

初三下册数学人教版教案4篇

初三下册数学人教版教案4篇初三下册数学人教版教案11、教材分析(1)知识结构(2)重点、难点分析重点:三角形内切圆的概念及内心的性质.因为它是三角形的重要概念之一.难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好.2、教学建议本节内容需要一个课时.(1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;(2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学.教学目标:1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;3、激发学生动手、动脑主动参与课堂教学活动.教学重点:三角形内切圆的作法和三角形的内心与性质.教学难点:三角形内切圆的作法和三角形的内心与性质.教学活动设计(一)提出问题1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个的圆?想一想,怎样画?2、分析、研究问题:让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义.3、解决问题:例1 作圆,使它和已知三角形的各边都相切.引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法.提出以下几个问题进行讨论:①作圆的关键是什么?②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?③这样的点I应在什么位置?④圆心I确定后半径如何找.A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成.完成这个题目后,启发学生得出如下结论:和三角形的各边都相切的圆可以作一个且只可以作出一个.(二)类比联想,学习新知识.1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2、类比:名称确定方法图形性质外心(三角形外接圆的圆心)三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形的内部.内心(三角形内切圆的圆心)三角形三条角平分线的交点(1)到三边的距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.4、概念理解:引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解.使学生弄清“内”与“外”、“接”与“切”的含义.“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”.(三)应用与反思例2 如图,在△ABC中,∠ABC=50°,∠ACB=75°,点O是三角形的内心.求∠BOC的度数分析:要求∠BOC的度数,只要求出∠OBC和∠0CB的度数之和就可,即求∠l十∠3的度数.因为O是△ABC的内心,所以OB和OC分别为∠ABC和∠BCA 的平分线,于是有∠1十∠3= (∠ABC十∠ACB),再由三角形的内角和定理易求出∠BOC的度数.解:(引导学生分析,写出解题过程)例3 如图,△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D 求证:DE=DB分析:从条件想,E是内心,则E在∠A的平分线上,同时也在∠ABC的平分线上,考虑连结BE,得出∠3=∠4.从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得到下述法.证明:连结BE.E是△ABC的内心又∵∠1=∠2∠1=∠2∴∠1+∠3=∠4+∠5∴∠BED=∠EBD∴DE=DB练习分析作出已知的锐角三角形、直角三角形、钝角,并说明三角形的内心是否都在三角形内.(四)小结1.教师先向学生提出问题:这节课学习了哪些概念?怎样作已知?学习时互该注意哪些问题?2.学生回答的基础上,归纳总结:(1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念.(2)利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径.(3)在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用.(五)作业教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题.探究活动问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,∠B=90°.(1)要把该四边形裁剪成一个面积的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm);(2)计算出的圆形纸片的半径(要求精确值).提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方法找出圆心:如图2,①以AC为轴对折;②对折∠ABC,折线交AC于O;③使折线过O,且EB与EA边重合.则点O为所求圆的圆心,OE为半径.(2)如图3,设内切圆的半径为r,则通过面积可得:6r+8r=48,∴r=.初三下册数学人教版教案2函数一、教学目的1.使学生理解自变量的取值范围和函数值的意义。

人教版数学九年级下册教案【最新4篇】

人教版数学九年级下册教案【最新4篇】

人教版数学九年级下册教案【最新4篇】人教版数学九年级下册教案篇一1、圆是定点的距离等于定长的点的集合;2、圆的内部可以看作是圆心的距离小于半径的点的集合;3、圆的外部可以看作是圆心的距离大于半径的点的集合;4、同圆或等圆的半径相等;5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线;7、到已知角的两边距离相等的点的轨迹,是这个角的平分线;8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线;9、定理不在同一直线上的三点确定一个圆。

10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧;11、推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

12、推论2:圆的两条平行弦所夹的弧相等;13、圆是以圆心为对称中心的中心对称图形;14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等;15、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等;16、定理:一条弧所对的圆周角等于它所对的圆心角的一半;17、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等;18、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;19、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;20、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角;人教版数学九年级下册教案篇二一元二次方程1、定义:形如:ax2+bx+c=0(a≠0)的方程叫一元二次方程。

①是整式方程;②未知数的次数是二次;③只含有一个未知数;④二次项系数不为零。

2024年新人教版数学九年级下教案

2024年新人教版数学九年级下教案

2024年新人教版数学九年级下教案一、教学目标知识与技能:使学生掌握本章节的基本概念、性质、定理及其证明方法;能够运用所学知识解决实际问题,提高学生的计算能力和逻辑推理能力。

过程与方法:引导学生通过观察、猜测、验证、归纳等数学活动,培养其探究精神和合作意识;指导学生掌握有效的学习方法,如自主预习、小组讨论、反思总结等。

情感态度与价值观:激发学生对数学学习的兴趣和热情,增强其自信心和学习动力;培养学生严谨的科学态度和实事求是的精神,以及团队协作和沟通能力。

二、教学重点和难点重点:重点概念:本章节的核心概念及其性质。

重点定理:定理的表述、证明及其应用。

重点题型:典型例题的解题思路和方法。

难点:概念理解:抽象概念的理解和记忆。

定理证明:复杂定理的推理和证明过程。

综合应用:多知识点综合应用的题目解析。

三、教学过程1. 导入新课通过复习前一章节的知识,引出本节课的主题。

展示与本节课相关的实际应用案例,激发学生兴趣。

提出问题,引导学生思考,为新课的学习做好铺垫。

2. 探究学习组织学生进行小组讨论,探究新知识点的概念和性质。

通过实验、演示等方式,帮助学生直观理解抽象概念。

鼓励学生提出问题和假设,培养他们的探究精神和创新能力。

3. 知识讲解详细讲解本节课的核心概念和性质,注重知识的系统性和连贯性。

通过例题演示,解析定理的证明过程和应用方法。

引导学生总结知识点之间的内在联系和规律,形成知识网络。

4. 课堂练习设计层次分明的练习题,帮助学生巩固新知识点。

巡视指导,及时发现并纠正学生在练习中的错误。

鼓励学生相互讨论,共同解决问题,提高他们的协作能力。

5. 回顾与总结回顾本节课的主要内容和学习目标。

总结学生在课堂学习中的表现和收获。

布置课后作业,要求学生进行知识拓展和应用实践。

四、教学方法和手段采用启发式教学,引导学生主动思考和探索。

运用多媒体教学工具,如PPT、视频等,辅助教学讲解。

结合实际案例和生活应用,增强教学的直观性和实用性。

新人教版九年级数学下册全册教案

新人教版九年级数学下册全册教案
2.某电厂有5 000吨电煤.
(1)这些电煤能够使用的天数x(天)与该厂平均每天用煤吨数y(吨) 之间的函数关系是 y= ;
(2)若平均每天用煤200吨,这批电煤能用是25天;
(3)若该电厂前10天每天用200吨,后因各地用电紧张,每天用煤300吨,这批电煤共可用是20天.
(五)小结:谈谈你的收获
(六)布置作业
(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?
(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向下掘进多深?
(3)当施工队施工的计划掘进到地下15m时,碰到了岩石,为了节约资金,公司临时改设计,把储存室的深改为15m,相应的,储存室的底面积改为多少才能满足需要。(保留两位小数)?
2.能灵活运用函数图象和性质解决一些较综合的问题
3.深刻领会解析式与图象之间联系,体会数形结合及转化思想方法
二、重点与难点
重点:理解并掌握反比例函数图象和性质,并能利用它们解决一些综合问题
难点:学会从图象上分析、解决问题,理解反比例函数的性质。
三、教学过程
(一)复习引入:
1.什么是反比例函数?
2.反比例函数的图象是什么?有什么性质?
②求当其中一条对角线x=6cm,另一条对角线y的长.
②问题提出:
1.观察上述反比例函数(y=- ,y= )的图象,回答下面问题:
(1)反比例函数图象是怎样的曲线?(双曲线)
(2)画反比例函数的图象应注意什么?
(1)请你根据图象提供的信息求出此蓄水池的蓄水量;
(2)写出此函数的解析式;
(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?
(4)如果每小时排水量是5000m3,那么水池中的水将要多少小时排完?

最新人教版九年级数学下册全册教案

最新人教版九年级数学下册全册教案
分析:因为 y 是 x 的反比例函数,所以先设 y k ,再把 x=2 和 y=6 代入上式求出 x
常数 k,即利用了待定系数法确定函数解析式。 例 1.(补充)下列等式中,哪些是反比例函数
(1) y x (2) y 2 (3)xy=21 (4) y 5 (5) y 3
3
3. 已知反比例函数 y (a 2) x a2 6 ,当 x 0 时,y 随 x 的增大而增大,
求函数关系式
答案:3. a 5, y 5 2 x
17.1.2 反比例函数的图象和性质(2)
一、教学目标 1.使学生进一步理解和掌握反比例函数及其图象与性质 2.能灵活运用函数图象和性质解决一些较综合的问题 3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法
值范围
分析:因为 A 点在反比例函数的图象上,可先求出反比例函数
的解析式 y 2 ,又 B 点在反比例函数的图象上,代入即可求出 n x
的值,最后再由 A、B 两点坐标求出一次函数解析式 y=-x-1,第(2)
问根据图象可得 x 的取值范围 x<-2 或 0<x<1,这是因为比较两个不同函数的值的大小
时,就是看这两个函数图象哪个在上方,哪个在下方。
六、随堂练习
1.若直线 y=kx+b 经过第一、二、四象限,则函数 y kb 的图象在(

x
(A)第一、三象限
(B)第二、四象限
(C)第三、四象限
(D)第一、二象限
2.已知点(-1,y1)、(2,y2)、(π,y3)在双曲线
y


k
2 1
上,则下列关
x
系式正确的是(

(A)y1>y2>y3 (C)y2>y1>y3

人教版九年级下册数学教案5篇

人教版九年级下册数学教案5篇

人教版九年级下册数学教案5篇人教版九年级下册数学教案1教学目标1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

教学重难点教学重点:探索并掌握比例的基本性质。

教学难点:根据乘法等式写出正确的比例。

教学工具课件教学过程一、复习导入1、我们已经认识了比例,谁能说一下什么叫比例?2、应用比例的意义判断下面的比能否组成比例。

2.4:1.6和60:403、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例) 板书:比例的基本性质二、探究新知1、教学比例各部分的名称.同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第43页看看什么叫比例的项、外项和内项。

(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。

学生回答的同时,板书:组成比例的四个数,叫做比例的项。

两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2. 4 : 1.6 = 60 : 40 外项内项学生认一认,说一说比例中的外项和内项。

2、教学比例的基本性质。

出示例1、 (1)教师:比例有什么性质呢?现在我们就来研究。

(板书:比例的基本性质) 学生分别计算出这个比例中两个内项的积和两个外项的积。

教师板书:两个外项的积是2.4_40=96 两个内项的积是1.6_60=96 (2)教师:你发现了什么,两个外项的积等于两个内项的积是不是所有的比例都存在这样的特点呢? 学生分组计算前面判断过的比例。

(3)通过计算,我们发现所有的比例都有这个样的特点,谁能用一句话把这个特点说出来?(可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整.)(4)最后师生共同归纳并板书:在比例里,两个外项的积等于两个内项的积。

人教版九年级数学下册教学设计(全册教案)

人教版九年级数学下册教学设计(全册教案)

人教版九年级数学下册(全册)教案九年级数学下册教学计划一、基本情况分析1.学生情况通过一个学期的努力多数同学学习数学的兴趣渐浓,学习的自觉性明显提高,学习成绩在不断进步,但是由于一些学生数学基础太差,学生数学成绩两极分化的现象没有显著改观,给教学带来很大难度。

设法关注每一个学生,重视学生的全面协调发展是教学的首要地位。

2.学习内容分析本期教学进程主要分为新课教学和总复习教学两大阶段。

新课教学共分四章。

第一章《反比例函数》、《相似》、《锐角三角函数》、《投影与视图》。

总复习是本期教学的一个重点。

通过系统的总复习使学生全面熟悉初中数学教学内容,在牢固掌握基础知识的前提下,能娴熟的运用所学知识分析和解决问题。

本学期就将开始进入专题总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。

在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。

在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。

这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。

如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。

因此在总复习阶段,必须牢牢抓住基础不放,对一些常见题解题中的通性通法须掌握。

学生解题过程中存在的主要问题:(1)审题不清,不能正确理解题意;(2)解题时自己画几何图形不会画或有偏差,从而给解题带来障碍;(3)对所学知识综合应用能力不够;(4)几何依然对部分同学是一个难点,主要是几何分析能力和推理能力较差。

(5)阅读理解能力偏差,见到字数比较多的解答题先产生畏惧心理。

(6)不能对知识灵活应用。

二、学习目标师生共同努力,使绝大多数学生达到或基本达到《课标》的要求,注重基础训练,顾及多数人的水平和接受能力,促进全体学生的全面协调发展。

九年级数学下册电子版教案(人教版)

九年级数学下册电子版教案(人教版)

九年级数学下册电子版教案(人教版)教案章节:一、二次根式的乘除法【教学目标】1. 理解二次根式的乘除法运算法则。

2. 能够熟练地进行二次根式的乘除法运算。

【教学内容】1. 二次根式的乘法法则:同底数相乘,指数相加;异底数相乘,先转化为同底数,再按照同底数相乘法则计算。

2. 二次根式的除法法则:同底数相除,指数相减;异底数相除,先转化为同底数,再按照同底数相除法则计算。

【教学步骤】1. 导入:回顾一次根式的乘除法,引导学生思考如何将一次根式的方法应用到二次根式中。

2. 讲解:讲解二次根式的乘法法则和除法法则,通过例题进行解释和演示。

3. 练习:学生独立完成一些二次根式的乘除法练习题,教师进行指导和讲解。

4. 总结:对本节课的内容进行总结,强调二次根式的乘除法法则。

【作业布置】请学生完成课后练习,包括一些二次根式的乘除法题目。

教案章节:二、勾股定理【教学目标】1. 理解勾股定理的定义和意义。

2. 能够熟练运用勾股定理计算直角三角形的边长。

【教学内容】1. 勾股定理的定义:直角三角形的两条直角边的平方和等于斜边的平方。

2. 勾股定理的应用:根据勾股定理计算直角三角形的边长。

【教学步骤】1. 导入:通过一个直角三角形的例子,引导学生思考如何计算其边长。

2. 讲解:讲解勾股定理的定义和意义,通过例题进行解释和演示。

3. 练习:学生独立完成一些勾股定理的应用题,教师进行指导和讲解。

4. 总结:对本节课的内容进行总结,强调勾股定理的应用方法。

【作业布置】请学生完成课后练习,包括一些勾股定理的应用题目。

教案章节:三、相似三角形的性质【教学目标】1. 理解相似三角形的定义和性质。

2. 能够熟练运用相似三角形的性质解决实际问题。

【教学内容】1. 相似三角形的定义:具有相同形状但不同大小的三角形。

2. 相似三角形的性质:对应角相等,对应边成比例。

【教学步骤】1. 导入:通过两个形状相同但大小不同的三角形,引导学生思考它们的性质。

新人教版九年级数学下册全册教案

新人教版九年级数学下册全册教案

新人教版九年级数学下册全册教案第二十六章反比例函数26.1.1反比例函数的意义(1课时)一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求解析式 3.能根据实际问题中的条件确定反比例函数解析式,体会函数的模型思想 二、重点难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式 难点:理解反比例函数的概念 三、教学过程(一)、创设情境、导入新课问题:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗? (2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢? (3)变量I 是R 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xk y 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。

(二)、联系生活、丰富联想1.一个矩形的面积为202cm ,相邻的两条边长分别为xcm 和ycm 。

那么变量y 是变量x 的函数吗?为什么?2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?为什么? (三)、举例应用、创新提高:例1.(补充)下列等式中,哪些是反比例函数? (1)3x y =(2)xy 2-=(3)xy =21(4)25+=x y (5)31+=x y例2.(补充)当m 取什么值时,函数23)2(m x m y --=是反比例函数? (四)、随堂练习1.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关 系式为2.若函数28)3(m x m y -+=是反比例函数,则m 的取值是 (五)、小结:谈谈你的收获 (六)、布置作业 (七)、板书设计26.1.2反比例函数的图象和性质(1)教学目标1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象分析,探索并掌握反比例函数的图象的性质。

九年级数学下册人教教案5篇

九年级数学下册人教教案5篇

九年级数学下册人教教案5篇九年级数学下册人教教案篇1配方法教学内容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.教学目标理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重难点关键1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.2.难点与关键:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.教学过程一、复习引入学生活动:请同学们完成下列各题问题1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+___ __=(x+____)2.问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)()2 .问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x 换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3即2t+1=3,2t+1=-3方程的两根为t1=1,t2=--2例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1分析:很清楚,x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:(2)由已知,得:(x+3)2=2直接开平方,得:x+3=±即x+3=,x+3=-所以,方程的两根x1=-3+,x2=-3-例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2 解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材练习.四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.那么1+(1+x)+(1+x)2=3.31把(1+x)当成一个数,配方得:(1+x+)2=2.56,即(x+)2=2.56x+=±1.6,即x+=1.6,x+=-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.若p0则方程无解六、布置作业1.教材复习巩固1、2.九年级数学下册人教教案篇2二次根式的乘除法教学目标1、使学生掌握二次根式的除法运算法则,会用它进行简单的二次根式的除法运算。

新人教版九年级数学下册全册教案+全册教学反思

新人教版九年级数学下册全册教案+全册教学反思

新人教版九年级数学下册全册教案+全册教学反思新人教版九年级数学下册全册教案第二十六章 反比例函数26.1.1反比例函数的意义(1课时)一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求解析式 3.能根据实际问题中的条件确定反比例函数解析式,体会函数的模型思想 二、重点难点重点:理解反比例函数的概念,能根据已知条件写出函数解析式 难点:理解反比例函数的概念 三、教学过程(一)、创设情境、导入新课问题:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗? (2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢? (3)变量I 是R 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xky 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。

(二)、联系生活、丰富联想1.一个矩形的面积为202cm ,相邻的两条边长分别为x cm 和y cm 。

那么变量y 是变量x 的函数吗?为什么?2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?为什么? (三)、举例应用、创新提高:例1.(补充)下列等式中,哪些是反比例函数? (1)3xy = (2)xy 2-= (3)xy =21 (4)25+=x y (5)31+=x y例2.(补充)当m 取什么值时,函数23)2(m x m y --=是反比例函数? (四)、随堂练习1.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关 系式为2.若函数28)3(m x m y -+=是反比例函数,则m 的取值是 (五)、小结:谈谈你的收获 (六)、布置作业 (七)、板书设计四、教学反思:26.1.2反比例函数的图象和性质(1)教学目标1、体会并了解反比例函数的图象的意义2、能描点画出反比例函数的图象3、通过反比例函数的图象分析,探索并掌握反比例函数的图象的性质。

部编人教版九年级下册数学全册教案教学设计(2023新教材)

部编人教版九年级下册数学全册教案教学设计(2023新教材)

部编人教版九年级下册数学全册教案教学设计(2023新教材)简介本教学设计针对部编人教版九年级下册的数学全册,使用的是2023年的材。

本设计旨在帮助教师有效地组织课堂教学,提升学生对数学知识的理解和掌握。

教学目标- 引导学生理解和掌握九年级下册数学的基本概念和原理。

- 培养学生的数学思维能力和解决问题的能力。

- 培养学生的数学逻辑推理和证明的能力。

- 培养学生的合作研究和表达能力。

教学内容本教学设计涵盖九年级下册数学全册的所有内容,包括但不限于以下部分:- 代数与函数- 几何与变换- 数据与概率教学方法为了实现教学目标,本设计将采用以下教学方法:- 探究式研究:通过问题引导学生主动思考和探索,培养他们的问题解决能力。

- 合作研究:组织学生小组合作解决问题,促进交流和合作。

- 演绎法:通过推理和证明引导学生深入理解数学概念和原理。

- 应用实践:提供生活中实际问题,让学生将所学的数学知识应用于解决问题。

教学步骤本教学设计将按照以下步骤进行:1. 导入新知识:通过引入生活中的问题或场景,激发学生的兴趣,提出研究目标。

2. 知识讲解:介绍新知识点的定义、性质和相关定理。

3. 示例分析:通过具体的示例,讲解如何运用所学知识解决问题。

4. 练巩固:提供一定数量的练题,让学生巩固所学的知识。

5. 拓展应用:提供一些更具挑战性的问题或应用情境,让学生运用所学的知识解决。

6. 总结归纳:对本节课的内容进行总结和归纳,梳理学生的研究成果。

7. 课后作业:布置一定数量的作业,巩固学生所学的知识。

教学评价为了评价学生的研究情况和教学效果,本教学设计将采用以下评价方式:- 日常表现:观察学生的参与情况、合作研究的表现等。

- 课堂练:评价学生在课堂练中的答题情况和解题思路。

- 作业完成情况:评价学生对作业的完成情况和正确率。

- 考试评测:通过小测或期末考试评价学生对知识的掌握程度和运用能力。

总结本教学设计旨在帮助教师在教授部编人教版九年级下册数学全册时达到更好的教学效果。

新人教版的九年级数学下册教案(全文完整版)

新人教版的九年级数学下册教案(全文完整版)

新人教版的九年级数学下册教案(全文完整版)1.简单不容易出错。

第四步,根据题目中已知数的精度进行近似计算,根据题目要求的精度确定答案并注明单位思维方法。

转化的思想贯穿了整章。

比如三角函数的定义可以实现棱和角的变换,三角函数与两个余角的关系可以实现正、余函数的相互变换。

另外,同角三角函数的关系可以实现不同名称的相互转换。

利用解直角三角形的知识解决实际问题时,首先要把实际问题转化为数学问题。

这一章,从概念的推导到公式的推导以及直角三角形的求解和应用,都体现了数形结合的思维方法。

比如在解直角三角形的题时,我们往往先画图,让已知元素和未知元素更直观,有助于顺利解题。

函数锐角的正弦、余弦、正切、余切都是三角函数,都包含函数的思想,比如任何锐角及其正弦。

2、在中,米米米答缆车垂直上升了米说明解直角三角形在实际生活中的应用,是中考考查的重点,也是考查的热点要解决好这类问题是要合理地构造合适的直角三角形二是要熟记特殊角的三角函数值三是要有很好的运算能力和分析问题的能力课时作业设计本章单元测试单元测试选择题在中则等于在中若,则等于如图,为测河两岸相对两电线杆间的距离,在距点米的处⊥测得,则之间的距离应为米米米米第题第题第题如果,那么锐角的度数是在中若,则的值为如图,为了测量河两岸两点的距离,在与垂直的方向上取点,测得那么等于如图中⊥,为垂足若则的值为已知直角三角形中角所对的直角边长是,则斜边的长是在中,那么是等腰三角形等边三角形直角三角形等腰直角三角形在中,则下列各式中正确的是如图,为测楼房。

3、为米解在中,米,米答拉线下端点与杆底的距离约为米锐角三角函数全章教案锐角三角函数第课时教学三维目标知识目标初步了解正弦余弦正切概念能较正确地用表示直角三角形中两边的比熟记功角的三角函数,并能根据这些值说出对应的锐角度数。

二能力目标逐步培养学生观察比较分析,概括的思维能力。

三情感目标提高学生对几何图形美的认识。

教材分析教学重点正弦,余弦,正切概念教学难点用含有几个字母的符号组表示正弦,余弦,正切教学程序探究活动课本引入问题,再结合特殊角的直角三角形探究直角三角形的边角关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新人教版九年级数学下册教案全册正弦和余弦(一)一、素质教育目标(一)知识教学点使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.(二)能力训练点逐步培养学生会观察、比较、分析、概括等逻辑思维能力.(三)德育渗透点引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.二、教学重点、难点1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.三、教学步骤(一)明确目标1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.通过四个例子引出课题.(二)整体感知1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.(三)重点、难点的学习与目标完成过程1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:若一组直角三角形有一个锐角相等,可以把其顶点A 1,A 2,A 3重合在一起,记作A ,并使直角边AC 1,AC 2,AC 3……落在同一条直线上,则斜边AB 1,AB 2,AB 3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B 1C 1∥B 2C 2∥B 3C 3……,∴△AB 1C 1∽△AB 2C 2∽△AB 3C 3∽……,∴形中,∠A 的对边、邻边与斜边的比值,是一个固定值.通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用. 练习题为2360sin =︒作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.(四)总结与扩展1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.四、布置作业本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.五、板书设计正弦和余弦(二)一、素质教育目标(一)知识教学点使学生初步了解正弦、余弦概念;能够较正确地用sinA 、cosA 表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数.(二)能力训练点 逐步培养学生观察、比较、分析、概括的思维能力.(三)德育渗透点渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.二、教学重点、难点1.教学重点:使学生了解正弦、余弦概念.2.教学难点:用含有几个字母的符号组sinA 、cosA 表示正弦、余弦;正弦、余弦概念.三、教学步骤(一)明确目标1.引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的.”2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正弦和余弦.(二)整体感知第十四章 解直角三角形一、锐角三角函数 证明:------------------ 结论:--------------------练习:---------------------只要知道三角形任一边长,其他两边就可知.而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定.这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.(三)重点、难点的学习与目标完成过程正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图6-3:请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA.若把∠A的对边BC记作a,邻边AC记作b,斜边AB记作c,则引导学生思考:当∠A为锐角时,sinA、cosA的值会在什么范围内?得结论0<sinA<1,0<cosA<1(∠A为锐角).这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“cosA、cosB”,经过反复强化,使全体学生都达到目标,更加突出重点.例1 求出图6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值.学生练习1中1、2、3.让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.例2 求下列各式的值:为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:(1)sin45°+cos45;(2)sin30°·cos60°;在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神.还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小.”为查正余弦表作准备.(四)总结、扩展首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值.知道任意锐角A的正、余弦值都在0~1之间,即0<sinA<1,0<cosA<1(∠A为锐角).还发现Rt△ABC的两锐角∠A、∠B,sinA=cosB,cosA=sinB.正弦值随角度增大而增大,余弦值随角度增大而减小.”四、布置作业教材习题14.1中A组3.预习下一课内容.五、板书设计正弦和余弦(三)一、素质教育目标(一)知识教学点使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.(二)能力训练点逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.(三)德育渗透点培养学生独立思考、勇于创新的精神.二、教学重点、难点1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用.三、教学步骤(一)明确目标1.复习提问(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.2.导入新课根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢?引出课题.(二)、整体感知关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.(三)重点、难点的学习和目标完成过程1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃.2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗?这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神.3.教师板书:任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.sinA=cos(90°-A),cosA=sin(90°-A).4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固.已知∠A和∠B都是锐角,(1)把cos(90°-A)写成∠A的正弦.(2)把sin(90°-A)写成∠A的余弦.这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.(2)已知sin35°=0.5736,求cos55°;(3)已知cos47°6′=0.6807,求sin42°54′.(1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,最好将题目变形:(2)已知sin35°=0.5736,则cos______=0.5736.(3)cos47°6′=0.6807,则sin______=0.6807,以培养学生思维能力.为了配合例3的教学,教材中配备了练习题2.(2)已知sin67°18′=0.9225,求cos22°42′;(3)已知cos4°24′=0.9971,求sin85°36′.学生独立完成练习2,就说明定理的教学较成功,学生基本会运用.教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.(四)小结与扩展1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.四、布置作业教材习题14.1A组4、5.五、板书设计正弦和余弦(四)一、素质教育目标(一)知识教学点使学生会查“正弦和余弦表”,即由已知锐角求正弦、余弦值.(二)能力渗透点逐步培养学生观察、比较、分析、概括等逻辑思维能力.(三)德育训练点培养学生良好的学习习惯.二、教学重点、难点1.重点:“正弦和余弦表”的查法.2.难点:当角度在0°~90°间变化时,正弦值与余弦值随角度变化而变化的规律.三、教学步骤(一)明确目标1.复习提问1)30°、45°、60°的正弦值和余弦值各是多少?请学生口答.2)任意锐角的正弦(余弦)与它的余角的余弦(正弦)值之间的关系怎样?通过复习,使学生便于理解正弦和余弦表的设计方式.(二)整体感知我们已经求出了30°、45°、60°这三个特殊角的正弦值和余弦值,但在生产和科研中还常用到其他锐角的正弦值和余弦值,为了使用上的方便,我们把0°—90°间每隔1′的各个角所对应的正弦值和余弦值(一般是含有四位有效数字的近似值),列成表格——正弦和余弦表.本节课我们来研究如何使用正弦和余弦表.(三)重点、难点的学习与目标完成过程1.“正弦和余弦表”简介学生已经会查平方表、立方表、平方根表、立方根表,对数学用表的结构与查法有所了解.但正弦和余弦表与其又有所区别,因此首先向学生介绍“正弦和余弦表”.(1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角.2)表中角精确到1′,正弦、余弦值有四位有效数字.3)凡表中所查得的值,都用等号,而非“≈”,根据查表所求得的值进行近似计算,结果四舍五入后,一般用约等号“≈”表示.2.举例说明例4 查表求37°24′的正弦值.学生因为有查表经验,因此查sin37°24′的值不会是到困难,完全可以自己解决.例5 查表求37°26′的正弦值.学生在独自查表时,在正弦表顶端的横行里找不到26′,但26′在24′~30′间而靠近24′,比24′多2′,可引导学生注意修正值栏,这样学生可能直接得答案.教师这时可设问“为什么将查得的5加在0.6074的最后一个数位上,而不是0.6074减去0.0005”.通过引导学生观察思考,得结论:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小).解:sin37°24′=0.6074.角度增2′值增0.0005sin37°26′=0.6079.例6 查表求sin37°23′的值.如果例5学生已经理解,那么例6学生完全可以自己解决,通过对比,加强学生的理解.解:sin37°24′=0.6074角度减1′值减0.0002sin37°23′=0.6072.在查表中,还应引导学生查得:sin0°=0,sin90°=1.根据正弦值随角度变化规律:当角度从0°增加到90°时,正弦值从0增加到1;当角度从90°减少到0°时,正弦值从1减到0.可引导学生查得:cos0°=1,cos90°=0.根据余弦值随角度变化规律知:当角度从0°增加到90°时,余弦值从1减小到0,当角度从90°减小到0°时,余弦值从0增加到1.(四)总结与扩展1.请学生总结本节课主要讨论了“正弦和余弦表”的查法.了解正弦值,余弦值随角度的变化而变化的规律:当角度在0°~90°间变化时,正弦值随着角度的增大而增大,随着角度的减小而减小;当角度在0°~90°间变化时,余弦值随着角度的增大而减小,随着角度的减小而增大.2.“正弦和余弦表”的用处除了已知锐角查其正、余弦值外,还可以已知正、余弦值,求锐角,同学们可以试试看.四、布置作业预习教材中例8、例9、例10,养成良好的学习习惯.五、板书设计正弦和余弦(五)一、素质教育目标(一)知识教学点使学生会根据一个锐角的正弦值和余弦值,查出这个锐角的大小.(二)能力训练点逐步培养学生观察、比较、分析、概括等逻辑思维能力.(三)德育渗透点培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:由锐角的正弦值或余弦值,查出这个锐角的大小.2.难点:由锐角的正弦值或余弦值,查出这个锐角的大小.3.疑点:由于余弦是减函数,查表时“值增角减,值减角增”学生常常出错.三、教学步骤(一)明确目标1.锐角的正弦值与余弦值随角度变化的规律是什么?这一规律也是本课查表的依据,因此课前还得引导学生回忆.答:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);当角度在0°~90°间变化时,余弦值随角度的增大(或减小)而减小(或增大).2.若cos21°30′=0.9304,且表中同一行的修正值是则cos21°31′=______,cos21°28′=______.3.不查表,比较大小:(1)sin20°______sin20°15′;(2)cos51°______cos50°10′;(3)sin21°______cos68°.学生在回答2题时极易出错,教师一定要引导学生叙述思考过程,然后得出答案.3题的设计主要是考察学生对函数值随角度的变化规律的理解,同时培养学生估算.(二)整体感知已知一个锐角,我们可用“正弦和余弦表”查出这个角的正弦值或余弦值.反过来,已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个角的大小.因为学生有查“平方表”、“立方表”等经验,对这一点必深信无疑.而且通过逆向思维,可能很快会掌握已知函数值求角的方法.(三)重点、难点的学习与目标完成过程.例8 已知sinA=0.2974,求锐角A.学生通过上节课已知锐角查其正弦值和余弦值的经验,完全能独立查得锐角A,但教师应请同学讲解查的过程:从正弦表中找出0.2974,由这个数所在行向左查得17°,由同一数所在列向上查得18′,即0.2974=sin17°18′,以培养学生语言表达能力.解:查表得sin17°18′=0.2974,所以锐角A=17°18′.例9 已知cosA=0.7857,求锐角A.分析:学生在表中找不到0.7857,这时部分学生可能束手无策,但有上节课查表的经验,少数思维较活跃的学生可能会想出办法.这时教师最好让学生讨论,在探讨中寻求办法.这对解决本题会有好处,使学生印象更深,理解更透彻.若条件许可,应在讨论后请一名学生讲解查表过程:在余弦表中查不到0.7857.但能找到同它最接近的数0.7859,由这个数所在行向右查得38°,由同一个数向下查得12′,即0.7859=cos38°12′.但cosA=0.7857,比0.7859小0.0002,这说明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002对应的角度是1′,所以∠A=38°12′+1′=38°13′.解:查表得cos38°12′=0.7859,所以:0.7859=cos38°12′.值减0.0002角度增1′0.7857=cos38°13′,即锐角A=38°13′.例10 已知cosB=0.4511,求锐角B.例10与例9相比较,只是出现余差(本例中的0.0002)与修正值不一致.教师只要讲清如何使用修正值(用最接近的值),以使误差最小即可,其余部分学生在例9的基础上,可以独立完成.解:0.4509=cos63°12′值增0.0003角度减1′0.4512=cos63°11′∴锐角B=63°11′为了对例题加以巩固,教师在此应设计练习题,教材P.15中2、3.2.已知下列正弦值或余弦值,求锐角A或B:(1)sinA=0.7083,sinB=0.9371,sinA=0.3526,sinB=0.5688;(2)cosA=0.8290,cosB=0.7611,cosA=0.2996,cosB=0.9931.此题是配合例题而设置的,要求学生能快速准确得到答案.(1)45°6′,69°34′,20°39′,34°40′;(2)34°0′,40°26′,72°34′,6°44′.3.查表求sin57°与cos33°,所得的值有什么关系?此题是让学生通过查表进一步印证关系式sinA=cos(90°-A),cosA=0.8387,∴sin57°=cos33°,或sin57°=cos(90°-57°),cos33°=sin(90°-33°).(四)、总结、扩展本节课我们重点学习了已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个锐角的大小,这也是本课难点,同学们要会依据正弦值和余弦值随角度变化规律(角度变化范围0°~90°)查“正弦和余弦表”.四、布置作业教材复习题十四A组3、4,要求学生只查正、余弦。

相关文档
最新文档