2019高中自主招生必做试卷(数学)含答案

合集下载

2019年上海中学自招数学试卷

2019年上海中学自招数学试卷

2019上海中学自主招生试卷及答案1、已知0a ≠,求2323a a a a a a++=___________ 【答案】3或1-【解析】①0a >时,23231113a a a a a a++=++=; ②0a <时,23231111a a a a a a++=-+-=-; 2、因式分解:332x x -+【答案】()()212x x -+【解析】拆项()()3323222121x x x x x x x x -+=--+=--- ()()()()()()()2211211212x x x x x x x x x =+---=-+-=-+ 3、已知两个二次方程20ax ax b ++=与20ax bx b ++=各取一根,这两根乘积为1,求这两根的平方和为________【答案】3【解析】设m ,n 分别为20ax ax b ++=与20ax bx b ++=的两个实数根,1m n ⋅=,1n m ∴=,由题意得20am an b ++=①与20an bn b ++=②,将1n m=代入到20an bn b ++=有2110a b b m m++=,变形得20bm bm a ++=③,由①③联立得()()()20b a m b a m a b -+-+-=,讨论:1)0b a -=,0b a =≠时,m ,n 为210x x ++=的实数根,22131024x x x ⎛⎫++=++> ⎪⎝⎭恒成立,所以此种情况无解;2)0b a -≠时,有210m m +-=,有11m m -=-,且222221123m n m m m m ⎛⎫+=+=-+= ⎪⎝⎭4、求三边为整数,且最大边小于16的三角形个数为________个【答案】372【解析】设较小的两边为x 、y ,且x y ≤,则最大边为15的三角形有如下情况:15x y ≤≤,15x y +>①1x =时,15y =;②2x =时,15y =,14y =;③3x =时,15y =,14y =,13y =;④4x =时,15y =,14y =,13y =,12y =;⑤5x =时,15y =,14y =,13y =,12y =,11y =;⑥6x =时,15y =,14y =,13y =,12y =,11y =,10y =;⑦7x =时,15y =,14y =,13y =,12y =,11y =,10y =,9y =;⑧8x =时,15y =,14y =,13y =,12y =,11y =,10y =,9y =,8y =; ⑨9x =时,15y =,14y =,13y =,12y =,11y =,10y =,9y =; ……共有12345678765432164++++++++++++++=种同理:最大边为14的有1234567+765432156++++++++++++=种 最大边为13的有123456765432149++++++++++++=最大边为12的有12345665432142+++++++++++=最大边为11的有1234565432136++++++++++=最大边为10的有123455432130+++++++++=最大边为9的有12345432125++++++++=最大边为8的有1234432120+++++++=最大边为7的有123432116++++++=最大边为6的有12332112+++++=最大边为5的有123219++++=最大边为4的有12216+++=最大边为3的有1214++=最大边为2的有112+=最大边为1的有1综合共有:1246912162025303642495664=372++++++++++++++种5、已知点()3,5C ,()0,1D ,A 、B 两点在x 轴上且2AB =,已知点A 在x 轴右侧,求ABCD C 的最小值为_________ 【答案】737+6、如图,正方形ABCD 边长为2,点E 、F 分别为AB 、BC 中点,AF 分别交线段DE ,DB 于点M 、N ,求DMN S =__________【答案】815【解析】利用比例,延长AF 、DC 交于点G ,//AB CD ,::1:4AM MG AE DG ∴== ::1:2AN NG AB DG ∴==:3:2AM NM ∴=,:3:2AM NM ∴=且::2:1DN NB AD BF ==,2224825531515DMN DAN ABD S S S ==⨯=⨯= 7、已知1a >a a x x -+=143a -+- 【解析】8、已知:()11,2,3,,i x i n <=⋅⋅⋅,且12121000n n x x x x x x ++⋅⋅⋅+=+++⋅⋅⋅+,则n 的最小值为( )A 、999B 、1000C 、1001D 、1002 【答案】D9、已知:在ABC 中,8AB =,6AC =,点D 、E 分别在AC 、AB 上,且2AD =,当ADEACB 时,AE =_________ 【答案】32或83【解析】进行分类,按照斜A 形分为两类,画图计算可得32或83 10、如图,在ABC ,AB AC =,过点B 在ABC ∠内部作任一射线,作AH ⊥射线于点H ,在图上任取一点P ,使得//HP BC ,且12HP BC =,联结AP 、CP ,求证:AP CP ⊥【答案】见解析【解析】延长BH ,CP 交于点M ,联结AM ,借用垂直平分线求证AB AM AC ==,从而易得AP CP ⊥11、一个正方形每条边上有三个四等分点,由这些四等分点最多可组成多少个三角形?【答案】216个附:无答案试卷题目1、已知0a ≠,求2323a a a a a a++=___________ 2、因式分解:332x x -+3、已知两个二次方程20ax ax b ++=与20ax bx b ++=各取一根,这两根乘积为1,求这两根的平方和为________4、求三边为整数,且最大边小于16的三角形个数为________个5、已知点()3,5C ,()0,1D ,A 、B 两点在x 轴上且2AB =,已知点A 在x 轴右侧,求ABCD C 的最小值为_________6、如图,正方形ABCD 边长为2,点E 、F 分别为AB 、BC 中点,AF 分别交线段DE ,DB 于点M 、N ,求DMN S =__________7、已知1a >,解方程:a a x x -+= 8、已知:()11,2,3,,i x i n <=⋅⋅⋅,且12121000n n x x x x x x ++⋅⋅⋅+=+++⋅⋅⋅+,则n 的最小值为( )A 、999B 、1000C 、1001D 、10029、已知:在ABC 中,8AB =,6AC =,点D 、E 分别在AC 、AB 上,且2AD =,当ADE ACB 时,AE =_________10、如图,在ABC ,AB AC =,过点B 在ABC ∠内部作任一射线,作AH ⊥射线于点H ,在图上任取一点P ,使得//HP BC ,且12HP BC =,联结AP 、CP ,求证:AP CP ⊥11、一个正方形每条边上有三个四等分点,由这些四等分点最多可组成多少个三角形?。

2019年四川省成都七中自主招生数学试卷(含答案解析)

2019年四川省成都七中自主招生数学试卷(含答案解析)

2019年四川省成都七中自主招生数学试卷副标题一、选择题(本大题共12小题,共60.0分)1. 若M =5x 2−12xy +10y 2−6x −4y +13(x 、y 为实数),则M 的值一定是( )A. 非负数B. 负数C. 正数D. 零 2. 将一个棱长为m(m >2且m 为正整数)的正方体木块的表面染上红色,然后切成m 3个棱长为1的小正方体,发现只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,则m 等于( ) A. 16 B. 18 C. 26 D. 32 3. 已知6a 2−100a +7=0以及7b 2−100b +6=0,且ab ≠1,则ab 的值为( )A. 503B. 67C.1007D. 764. 若a =√3√2+√3+√5,b=2+√6−√10,则ab 的值为( )A. 12B. 14√2+√3√6+√105. 满足|ab|+|a −b|−1=0的整数对(a,b)共有( )A. 4个B. 5个C. 6个D. 7个6. 在凸四边形ABCD 中,E 为BC 边的中点,BD 与AE 相交于点O ,且BO =DO ,AO =2EO ,则S △ACD :S △ABD 的值为( ) A. 2:5 B. 1:3 C. 2:3 D. 1:27. 从1到2019连续自然数的平方和12+22+32+⋯+20192的个位数字是( )A. 0B. 1C. 5D. 9 8. 已知x +y +z =0,且1x+1+1y+2+1z+3=0,则代数式(x +1)2+(y +2)2+(z +3)2的值为( ) A. 3 B. 14 C. 16 D. 369. 将一枚六个面编号分别为1、2、3、4、5、6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x 、y 的方程组{ax +by =22x +y =3,只有正数解的概率为( ) A. 112B. 16C. 518D. 133610. 方程3a 2−8a −3b −1=0,当a 取遍0到5的所有实数值时,则满足方程的整数b 的个数是( ) A. 12个 B. 13个 C. 14个 D. 15个11. 若一个三角形的三边和为40,且各边长均为整数,则符合条件的三角形的个数为( ) A. 31个 B. 32个 C. 33个 D. 34个12. 若关于x 的方程x 2+ax +b −3=0有实根,则a 2+(b −4)2的最小值为( )A. 0B. 1C. 4D. 9二、填空题(本大题共7小题,共52.0分)13.已知x=3+√132,则代数式x4−3x3−3x+1的值为______.14.在正十边形的10个顶点中,任取4个顶点,那么以这4个顶点为顶点的梯形有______个.15.在Rt△ABC中,∠C=90°,AC=1,BC=2,D为AB中点,E为边BC上一点,将△ADE沿DE翻折得到△A′DE,使△A′DE与△BDE重叠部分的面积占△ABE面积的14,则BE的长为______.16.已知关于x的方程√x2−2x+1−√x2−4x+4+2√x2−6x+9=m恰好有两个实数解,则m的取值范围为______.17.如图,PA切⊙O于点A,PE交⊙O于点F、E,过点A作AB⊥PO于点D,交⊙O于点B,连接DF,若sin∠BAO=23,PE=5DF,则PFPE=______.18.如图,四边形ABCD中,AB=AD=5,BC=DC=12,∠B=∠D=90°.M和N分别是线段AD和线段BC上的点,且满足BN=DM,则线段MN的最小值为______.19.若−12<x<1,x1+x−2x2=a0+a1x+a2x2+a3x3…+a n x n,则a2+a3=______.三、解答题(本大题共2小题,共38.0分)20.已知二次函数y=x2+(a−7)x+6,反比例函数y=ax(1)当a=2时,求这两个函数图象的交点坐标;(2)若这两个函数的图象的交点不止一个,且交点横、纵坐标都是整数,求符合条件的正整数a的值;(3)若这两个函数的交点都在直线x=12的右侧,求a的取值范围.21.已知:四边形ABCD中,点E、F分别为边AD、AB上的点,连接BE、DF相交于点G,且满足∠ADF=∠ABE(1)如图1,若DE=BG=n,cos∠AEB=23,GE=3,求AE的长(用含n的代数式表示);(2)如图2,若ABCD为矩形,G恰为BE中点,连接CG,AE=1,作点A关于BE,求DE的长.的对称点A′,A′到CG的距离为3√24答案和解析1.【答案】A【解析】解:M =5x 2−12xy +10y 2−6x −4y +13=4x 2−12xy +9y 2+y 2−4y +4+x 2−6x +9=(2x −3y)2+(y −2)2+(x −3)2≥0,故M 一定是非负数. 故选:A .通过配方法配出平方根,从而判断M 值的大小.本题考查了配方法的应用,熟练配方法的应用是解答此题的关键. 2.【答案】C【解析】解:将一个棱长为m(m >2且m 为正整数)的正方体木块的表面染上红色,然后切成m 3个棱长为1的小正方体,则只有一个表面染有红色的小正方体的数量为6(m −2)2, 恰有两个表面染有红色的小正方体的数量12(m −2),∵只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,∴6(m −2)2=12×12(m −2), 解得m 1=26,m 2=2(舍去), 故选:C .只有一个表面染有红色的小正方体的数量为6(m −2)2,恰有两个表面染有红色的小正方体的数量12(m −2),根据只有一个表面染有红色的小正方体的数量是恰有两个表面染有红色的小正方体的数量的12倍,即可得到m 的值. 本题主要考查了正方体,解决问题的关键是抓住表面涂色的正方体切割小正方体的特点:1面涂色的在面上,2面涂色的在棱长上,3面涂色的在顶点处,没有涂色的在内部,由此即可解决此类问题. 3.【答案】D【解析】解:∵7b 2−100b +6=0, ∴6×1b 2−100×1b+7=0,∵6a 2−100a +7=0,∴a 、1b 是方程6x 2−100x +7=0的两根, ∴由根与系数的关系可知:ab =76,故选:D .根据根与系数的关系即可求出答案. 本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型. 4.【答案】B【解析】解:a =√3√2+√3+√5√2+√3−√5√2+√3−√5=√3(√2+√3−√5)2√6=√2(√2+√3−√5)4=b4.∴ab =14. 故选:B . 将a 乘以√2+√3−√5√2+√3−√5可化简为关于b 的式子,从而得到a 和b 的关系,继而能得出ab 的值.本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b的形式.5.【答案】C【解析】解:∵|ab|+|a−b|=1,∴0≤|ab|≤1,0≤|a−b|≤1,∵a,b是整数,∴|ab|=0,|a−b|=1或|a−b|=0,|ab|=1①当|ab|=0,|a−b|=1时,Ⅰ、当a=0时,b=±1,∴整数对(a,b)为(0,1)或(0,−1),Ⅱ、当b=0时,a=±1,∴整数对(a,b)为(1,0)或(−1,0),②当|a−b|=0,|ab|=1时,∴a=b,∴a2=b2=1,∴a=1,b=1或a=−1,b=−1,∴整数对(a,b)为(1,1)或(−1,−1),即:满足|ab|+|a−b|=1的所有整数对(a,b)为(0,1)或(0,−1)或(1,0)或(−1,0)或(1,1)或(−1,−1).∴满足|ab|+|a−b|−1=0的整数对(a,b)共有6个.故选:C.先判断出|ab|=0,|a−b|=1或|a−b|=0,|ab|=1,再借助a,b是整数即可得出结论.此题考查了绝对值,以及数对,分类讨论的思想,确定出|ab|=0,|a−b|=1或|a−b|= 0,|ab|=1是解题的关键.6.【答案】D【解析】解:如图,过点B作BF//AD交AE延长线于F,连接OC,∵BF//AD∴∠F=∠DAO∵BO=DO,∠BOF=∠DOA∴△FOB≌△AOD(AAS)∴FO=AO∵AO=2EO∴FO=2EO∴EO=EF,∵E为BC边的中点∴BE=CE∵∠BEF=∠CEO∴△BEF≌△CEO(SAS)∴∠BFE=∠COE∴BF//OCAD//OC∴S△ACD=S△AOD,∵BD=2OD∴S△ABD=2S△AOD,∴S△ABD=2S△ACD∴S△ACD:S△ABD=1:2;故选:D .过点B 作BF//AD 交AE 延长线于F ,连接OC ,先证明△FOB≌△AOD ,再证明△BEF≌△CEO ,可得AD//OC ,可得S △ACD =S △AOD ,由S △ABD =2S △AOD ,可得S △ACD :S △ABD =1:2;本题考查了全等三角形判定和性质,三角形面积,平行线间的距离等知识点,有一定的难度,解题关键是作平行线构造全等三角形. 7.【答案】A【解析】解:以2为指数的幂的末位数字是1,4,9,6,5,6,9,4,1,0依次循环的,∵2019÷10=201…9,(1+4+9+6+5+6+9+4+1+0)×201+(1+4+9+6+5+6+9+4+1) =45×201+45 =9045+45 =9090,∴12+22+32+42+⋯+20192的个位数字是0. 故选:A .由题中可以看出,故个位的数字是以10为周期变化的,用2019÷10,计算一下看看有多少个周期即可.此题主要考查了找规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的关键是找到以2为指数的末位数字的循环规律. 8.【答案】D【解析】解:∵x +y +z =0,且1x+1+1y+2+1z+3=0,[(x +1)2+(y +2)2+(z +3)2][12+12+12]≥[(1×(x +1)+1×(y +2)+1×(z +3)]2=(x +y +z +6)2(x +1)2+(y +2)2+(z +3)2≥36∴(x +1)2+(y +2)2+(z +3)2的值为36. 故选:D .根据已知条件可得x 、y 、z 的值即可求解.本题考查了分式的加减法,解决本题的关键是合理分析已知条件. 9.【答案】B【解析】解:①当a −2b =0时,方程组无解;②当a −2b ≠0时,方程组的解为由a 、b 的实际意义为1,2,3,4,5,6可得. 易知a ,b 都为大于0的整数,则两式联合求解可得x =3b−22b−a ,y =4−3a2b−a , ∵使x 、y 都大于0则有x =3b−22b−a >0,y =4−3a2b−a >0, ∴解得a <43,b >23或者a >43,b <23,∵a ,b 都为1到6的整数,∴可知当a 为1时b 只能是1,2,3,4,5,6;或者a 为2,3,4,5,6时b 无解, 这两种情况的总出现可能有6种; (1,1)(1,2)(1,3)(1,4)(1,5)(1,6),又掷两次骰子出现的基本事件共6×6=36种情况,故所求概率为=636=16, 故选:B .首先分两种情况:①当a −2b =0时,方程组无解;②当a −2b ≠0时,方程组的解为由a 、b 的实际意义为1,2,3,4,5,6可得.把方程组两式联合求解可得x =3b−22b−a ,y =4−3a2b−a ,再由x 、y 都大于0可得x =3b−22b−a >0,y =4−3a 2b−a>0,求出a 、b 的范围,列举出a ,b 所有的可能结果,然后求出有正数解时,所有的可能,进而求出概率.此题主要考查了列表法求概率,以及二元一次方程的解法,题目综合性较强. 10.【答案】B【解析】解:∵3a 2−8a −3b −1=0, ∴b =a 2−83a −13=(a −43)2−259,∵0≤a ≤5, ∴−43≤a −43≤113, ∴0≤(a −43)2≤1219, ∴−259≤(a −43)2−259≤969,即−259≤b ≤969,∴整数b =−2,−1,0,1,…,10,共13个,故选:B .首先将方程3a 2−8a −3b −1=0进行变形,变成用含a 的代数式表示b ,然后把含a 的代数式配方,再根据a 的取值求出b 的取值范围,由于是求b 的整数的个数,所以再找b 的取值范围内的整数解即可.此题主要考查了利用配方法求一元二次方程的整数根,做此题的关键是用含a 的代数式表示b ,然后根据a 的取值求b 的取值,综合性较强,难度不大. 11.【答案】C【解析】解:根据题意得三角形的三边都小于20, 设最小的两边为x ≤y ≤19,x +y >20 当x =2时,y =19, 当x =3时,y =18, 当x =4时,y =17,18, 当x =5时,y =16,17, 当x =6时,y =15,16,17, 当x =7时,y =14,15,16, 当x =8时,y =13,14,15,16, 当x =9时,y =12,13,14,15,当x =10时,y =11,12,13,14,15, 当x =11时,y =11,12,13,14, 当x =12时,y =12,13,14, 当x =13时,y =13,符合条件的三角形的个数为1+1+2+2+3+3+4+4+5+4+3+1=33, 故选:C .首首先根据三角形的两边之和大于第三边以及三边和为40长,得到三角形的三边都必须小于20;再结合三角形的两边之差小于第三边进行分析出所有符合条件的整数.本题考查了三角形三边关系,关键是列出约束条件.12.【答案】B【解析】解:由x2+ax+b−3=0知b关于a的函数解析式为b+ax+x2−3=0,∵a2+(b−4)2的最小值可看做点(a,b)到(0,4)距离的最小值,则两点的距离d=2√12+x2=2√x2+1=√x2+1≥1,∴点(a,b)到(0,4)距离的最小值为1,即a2+(b−4)2的最小值为1,故选:B.由x2+ax+b−3=0知b关于a的函数解析式为b+ax+x2−3=0,而a2+(b−4)2的最小值可看做点(a,b)到(0,4)距离的最小值,再根据点到直线的距离公式求解可得.本题主要考查两点间的距离公式,熟练掌握公式的定义是解题关键.13.【答案】2【解析】解:当x=3+√132时,原式=x4−3x3−3x+1=(x2)2−3x(x2+1)+1=[(3+√132)2]2−3×3+√132[(3+√132)2+1]+1=(11+3√132)2−3×3+√132×13+3√132+1=119+33√132−117+33√132+1=1+1=2.故答案为:2.将原式适当变形,再代入进行计算便可.本题主要考查了求整式的值,二次根式的计算,适当进行整式的变形,可以减小计算的难度.14.【答案】60【解析】解:设正十边形为A1A2 (10)以A1A2为底边的梯形有A1A2A3A10、A1A2A4A9、A1A2A5A8共3个.同理分别以A2A3、A3A4、A4A5、…、A9A10、A10A1为底边的梯形各有3个,这样,合计有30个梯形.以A1A3为底边的梯形有A1A3A4A10、A1A3A5A9共2个.同理分别以A2A4、A3A5、A4A6、…、A9A1、A10A2为底边的梯形各有2个,这样,合计有20个梯形.以A1A4为底边的梯形只有A1A4A5A101个.同理分别以A2A5、A3A6、A4A7、…、A9A2、A10A3为底边的梯形各有1个,这样,合计有10个梯形,则以4个顶点为顶点的梯形有:30+20+10=60(个),故答案为:60.分以A1A2为底边、A1A3为底边、A1A4为底边,根据梯形的概念、正多边形的性质解答.本题考查的是梯形的概念、正多边形的性质,灵活运用分情况讨论思想是解题的关键.15.【答案】√52【解析】解:如图,连接AA′,延长ED交AA′于点M∵∠C=90°,AC=1,BC=2,∴AB=√AC2+BC2=√5∵D为AB中点,∴AD=DB=√5 2∵将△ADE沿DE翻折得到△A′DE,∴AD=A′D,AE=A′E∴ED垂直平分AA′∴EM⊥AA′,∵AD=DB=AA′=√5 2∴△ABA′是直角三角形∴∠AA′B=90°,即AA′⊥A′B∴ME//A′B∴∠MEF=∠FA′B,∵△A′DE与△BDE重叠部分的面积占△ABE面积的14,∴S△DEF=14S△AEB,∴DF=14AB=12DB∴DF=FB,且∠MEF=∠FA′B,∠A′FB=∠EFD ∴△A′FB≌△EFD(AAS)∴EF=A′F,且DF=FB,∠EFB=∠A′FD∴△BFE≌△DFA′(SAS)∴AD=BE=√5 2故答案为:√52连接AA′,延长ED交AA′于点M,由勾股定理可求AB=√5,可得AD=DB=√52,由折叠的性质可得AD=A′D=DB,AE=A′E,可得AA′⊥A′B,EM⊥AA′,由题意可得DF= BF,由“AAS”可证△A′FB≌△EFD,可得EF=A′F,由“SAS”可得△BFE≌△DFA′,即可求BE的长.本题考查了翻折变换,勾股定理,直角三角形的判定和性质,全等三角形的判定和性质,证明△A′FB≌△EFD是本题的关键.16.【答案】1≤m<3或m>3【解析】解:原方程变形为:|x−1|−|x−2|+2|x−3|=m,①当x≥3时,x−1−(x−2)+2(x−3)=m,x=m+52≥3,∴m=2x−5,此时m≥1;②当2≤x<3时,x−1−(x−2)+2(3−x)=m,x=7−m 2∴m=7−2x,此时1<m≤3;③当1≤x<2时,x−1−(2−x)+2(3−x)=m,∴m=3(不符合题意);④当x<1时,1−x−(2−x)+2(3−x)=m,∴m=5−2x,此时m>3.恰好有两个实数解,所以1≤m<3或m>3,故答案为1≤m<3或m>3.解无理方程关键是要去掉根号,将其转化为整式方程.解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.本题主要考查无理方程,解题的关键是掌握二次根式的性质、绝对值的性质等知识点.17.【答案】310【解析】解:连接OE,如图,∵AB⊥PO,∴∠ADO=90°,在Rt△ADO中,sin∠DAO=ODOA =23,设OD=2x,OA=3x,∵PA切⊙O于点A,∴OA⊥PA,∴∠APO=∠OAD,在Rt△APO中,sin∠APO=OAOP =23,∴OP=32×3x=92x,∵∠APD=∠OPA,∴Rt△PAD∽Rt△POA,∴PD:PA=PA:PO,即PA2=PD⋅PO,∵PA切⊙O于点A,PE交⊙O于点F、∴PA2=PF⋅PE,∴PD⋅PO=PF⋅PE,即PF:PO=PD:PE,而∠DPF=∠EPO,∴△PDF∽△PEO,∴DFOE =PFPO,∴PF=92x3x⋅DF=32DF,而PE=5DF,∴PFPE =32DF5DF=310.故答案为310.连接OE,如图,利用正切的定义得到sin∠DAO=ODOA =23,则可设OD=2x,OA=3x,再根据切线的性质得OA⊥PA,所以∠APO=∠OAD,利用正弦的定义得到OP=92x,证明Rt△PAD∽Rt△POA,利用相似比得到PA2=PD⋅PO,而PA2=PF⋅PE,所以PD⋅PO=PF⋅PE,则可判断△PDF∽△PEO,利用相似比得到PF=32DF,然后利用PE=5DF可得到PFPE的值.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了切线的性质和切割线定理.18.【答案】60√213【解析】解:连接BD交AC于H,作∠ABC的平分线BP,交AC于P,连接PD,作PE⊥BC于E,连接PM、PN,如图所示:则PN≥PE,在△ABC和△ADC中,{AB=AD BC=DC AC=AC,∴△ABC≌△ADC(SSS),∴∠BAP=∠DAP,在△ABP和△ADP中,{AB=AD∠BAP=∠DAP AP=AP,∴△ABP≌△ADP(SAS),∴∠ABP=∠ADP=12∠ABC=45°,BP=DP,∵∠ABP=∠NBP=12∠ABC=45°,∴∠NBP=∠MDP,在△NBP和△MDP中,{BN=DM∠NBP=∠MDP BP=DP,∴△NBP≌△MDP(SAS),∴PM=PN,∠BPN=∠DPM,∴∠BPD=∠MPN,∵BP=DP,PM=PN,∴∠BDP=∠DBP=∠MNP=∠NMP,∴△PMN∽△PBD,∴MNBD =PNBP≥PEPB,∵sin∠NBP=PEPB =sin45°=√22,∴MNBD ≥√22,∴MN≥√22BD,在△ABH和△ADH中,{AB=AD∠BAH=∠DAH AH=AH,∴△ABH≌△ADH(SAS),∴BH=DH,∠BHA=∠DHA=90°,AC=√AB2+BC2=√52+122=13,S△ABC=12AB⋅BC=12BH⋅AC,∴BH=AB⋅BCAC =5×1213=6013,∴BD=2BH=12013,∴MN≥√22×12013=60√213,∴线段MN的最小值为60√213,故答案为:60√213.连接BD交AC于H,作∠ABC的平分线BP,交AC于P,连接PD,作PE⊥BC于E,连接PM、PN,则PN≥PE,证明△ABC≌△ADC(SSS),得出∠BAP=∠DAP,证明△ABP≌△ADP(SAS),得出∠ABP=∠ADP=12∠ABC=45°,BP=DP,易证∠NBP=∠MDP,证明△NBP≌△MDP(SAS),得出PM=PN,∠BPN=∠DPM,推出∠BPD=∠MPN,证出∠BDP=∠DBP=∠MNP=∠NMP,得出△PMN∽△PBD,则MNBD =PNBP≥PEPB,由sin∠NBP=PEPB =sin45°=√22,推出MNBD≥√22,即MN≥√22BD,证明△ABH≌△ADH(SAS),得出BH=DH,∠BHA=∠DHA=90°,AC=√AB2+BC2=13,由S△ABC=1 2AB⋅BC=12BH⋅AC,求出BH=6013,得出BD=2BH=12013,即可得出结果.本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、三角函数等知识;本题综合性强,证明三角形相似和三角形全等是解题的关键. 19.【答案】2【解析】解:x =(1+x −2x 2)(a 0+a 1x +a 2x 2+a 3x 3…+a n x n ), 当x =0时,a 0=0,∴1=(1+x −2x 2)(a 1+a 2x +a 3x 2…+a n x n−1), 当x =0时,a 1=1,a 1+a 2=0,a 2+a 3−2a 1=0, ∴a 2=−1,a 3=3, ∴a 3+a 2=2, 故答案为2.先去分母,第一次赋值x =0求出a 0=0,再化简式子为1=(1+x −2x 2)(a 1+a 2x +a 3x 2…+a n x n−1),第二次赋值x =0,求出a 1=1,再由等式的性质得到a 1+a 2=0,a 2+a 3−2a 1=0即可求解.本题考查数字的变化规律;能够通过所给例子,找到式子的规律,给式子恰当的赋值运算是解题的关键.20.【答案】解:(1)联立y =x 2+(a −7)x +6,y =ax 并整理得:x 3+(a −7)x 2+6x −a =0…①,a =2时,上式为:(x −1)(x 2−4x +2)=0, 解得:x =1或2+√2或2−√2,故函数交点坐标为:(1,2)或(2+√2,2−√2)或(2+√2,2−√2); (2)①式中含有(x −1)的因式,即:(x −1)[x 2+(a −6)x +a]=0, 故其中一个根:x =1,a 为正整数,x 2+(a −6)x +a =0方程有一个到两个的根, △=(a −6)2−4a ≥0,交点横、纵坐标都是整数,则△一定是完全平方数(设为k), 即(a −6)2−4a =k 2(k 为非负整数), 整理得:(a −8)2−k 2=28,即:(a −8+k)(a −8−k)=28=4×7=2×14=1×28, 而a −8+k ≥a −8−k ,当a −8+k =7,a −8−k =4时,解得:a =13.5(舍去); 当a −8+k =14,a −8−k =2时,解得:a =16; 当a −8+k =28,a −8−k =1时,a =23.5(舍去); 故a =16;(3)两个函数的交点都在直线x =12的右侧,只会出现如下图所示的情况,两个函数三个交点在x =12的右侧,其中一个交点横坐标为x =1在x =12的右侧, 故只需要确定x 2+(a −6)x +a =0根的情况,只要左侧的根在x =12右侧即可, 解上述方程得:x =6−a±√a 2−16a+362,即6−a−√a2−16a+362>12,解得:a >116.故:a 的取值范围为:a >116.【解析】(1)联立y =x 2+(a −7)x +6,y =ax 并整理得:x 3+(a −7)x 2+6x −a =0,a =2时,上式为:(x −1)(x 2−4x +2)=0,即可求解;(2)(x −1)[x 2+(a −6)x +a]=0,故其中一个根:x =1,a 为正整数,x 2+(a −6)x +a =0方程有一个到两个的根,△=(a −6)2−4a ≥0,交点横、纵坐标都是整数,则△一定是完全平方数(设为k),即(a −6)2−4a =k 2(k 为非负整数),讨论确定a 的值; (3)两个函数的交点都在直线x =12的右侧,两个函数三个交点在x =12的右侧,其中一个交点横坐标为x =1在x =12的右侧,即6−a−√a2−16a+362>12,即可求解.本题考查的是二次函数与反比例函数的交点问题、根的判别式、整数的性质,涉及面较广,难度较大.21.【答案】解:(1)作GH ⊥AD 于H ,AI ⊥BE 于I , ∵GE =3,cos∠AEB =23,∴EH =2,HG =√5,设AE =3x ,则EI =2x ,AI =√5x ,∴GI =3−2x ,BI =BG +GI =n +3−2x , ∴DH =DE +EH =n +2, ∵∠ADF =∠ABE ,∴∠DHG =∠AIB =90°, ∴△GHD∽△AIB , ∴DH BI=HG AI,∴n+2n+3−2x =√5√5x , 解得:x =n+3n+4, ∴AE =3x =3n+9n+4;(2)如图2,连接AA′交BE 于M ,连接按个,作A′N ⊥CG 于N ,∵四边形ABCD 为矩形,G 恰为BE 中点,∴CG =DG ,∴∠GCD =∠GDC ,∴∠BCG =∠ADG =∠ABE =90°−∠CBG , ∴∠BCG +∠CBG =90°, ∴CG ⊥BE ,∵AA′⊥BE ,A′N ⊥CG , ∴四边形MA′NG 是矩形, ∴GM =A′N =3√24,设ME =x ,则AG =BG =GE =x +34√2, ∴AM 2=AG 2−GM 2=AE 2−EM 2=(x +3√24)2−(34√2)2=1−x 2, 解得:x =√24,∴BG =GE =ME +GM =√2, ∴BE =2√2,∵∠ABE =∠BCG , ∴△GCB∽△ABE , ∴BC BE =BG AE,∴2√2=√21, 解得:BC =4,∴AD =BC =4, ∴DE =AD −AE =4−1=3.【解析】(1)作GH ⊥AD 于H ,AI ⊥BE 于I ,根据已知条件得到EH =2,HG =√2,设AE =3x ,则EI =2x ,AI =√5x ,得到GI =3−2x ,BI =BG +GI =n +3−2x ,根据相似三角形的性质得到AE =3x =3n+9n+4;(2)如图2,连接AA′交BE 于M ,连接按个,作A′N ⊥CG 于N ,根据矩形的性质得到CG =DG ,求得∠GCD =∠GDC ,推出四边形MA′NG 是矩形,得到GM =A′N =3√24,设ME =x ,则AG =BG =GE =x +34√2,根据勾股定理列方程得到BG =GE =ME +GM =√2,求得BE =2√2,根据相似三角形的性质即可得到结论.本题考查了矩形的性质,相似三角形的判定和性质,轴对称的性质,勾股定理,正确的作出辅助线是解题的关键.。

2019年浙江省宁波市普通高中自主招生数学试卷及答案解析

2019年浙江省宁波市普通高中自主招生数学试卷及答案解析
(1)请说明 是1≤x≤30上的闭函数;
(2)已知二次函数y=x2+4x+k是t≤x≤﹣2上的闭函数,求k和t的值;
(3)在(2)的情况下,设A为抛物线顶点,B为直线x=t上一点,C为抛物线与y轴的交点,若△ABC为等腰直角三角形,请直接写出它的腰长为.
11.(15分)如图1,P为第象限内一点,过P、O两点的⊙M交x轴正半轴于点A,交y轴正半轴于点B,∠OPA=45°.
A.23B.24C.25D.26
【解答】解:由图知“亮”记为数字1,“不亮”记为数字0,
则1=1×20,2=1×21+0×20,3=1×21+1×21,4=1×22+0×21+0×20,5=1×22+0×21+1×20,
∵●〇〇●●〇用数字表示为“011001”,
∴●〇〇●●〇表示的数为0×25+1×24+1×23+0×22+0×21+1×20=25,
6.(5分)关于x的不等式组 有且只有四个整数解,则a的取值范围是.
7.(5分)如图,矩形ABCD中分割出①②③三个等腰直角三角形,若已知EF的值,则可确定其中两个三角形的周长之差,这两个三角形的序号是.
8.(5分)如图,△ABC中,MN∥BC交AB、AC于M、N,MN与△ABC内切圆相切,若△ABC周长为12,设BC=x,MN=y,则y与x的函数解析式为(不要求写自变量x的取值范围).
D.不能确定x1、x2、x3的大小
【解答】解:∵a1>a2>a3>0,
∴二次函数y1=a1(x+1)(x﹣2),y2=a2(x+1)(x﹣2),y3=a3(x+1)(x﹣2)开口大小为:y1<y2<y3.

江苏省启东中学2019级高一实验班自主招生数学试题及答案【PDF版高清打印】

江苏省启东中学2019级高一实验班自主招生数学试题及答案【PDF版高清打印】

江苏省启东中学2019年创新人才培养实验班自主招生考试数学试卷一、选择题(本大题共 6 小题,每小题 5 分,共 30 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 把2232x y xy y -+分解因式正确的是 A .()222y x xy y -+B .()2y x y -C .()22y x y -D .()2y x y +2. 已知a ,b 为一元二次方程2290x x +-=的两个根,那么2a a b +-的值为A .﹣7B .0C .7D .113. 如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,O 是△ABC 的内心,以O 为圆心,r 为半径的圆与线段AB 有交点,则r 的取值范围是 A .r ≥1B .1≤r ≤ 5C .1≤r ≤10D .1≤r ≤44. 如图,等边△ABC 中,AC =4,点D ,E ,F 分别在三边AB ,BC ,AC 上,且AF =1,FD ⊥DE ,且∠DFE =60°,则AD 的长为 A .0.5B .1C .1.5D .25. 如图,△ABC 中,AB =BC =4cm ,∠ABC =120°,点P 是射线AB 上的一个动点,∠MPN =∠ACP ,点Q 是射线PM 上的一个动点.则CQ 长的最小值为 AB .2C.D .4(第3题)B C(第4题)(第5题)NMQPCAB6. 二次函数228y x x m =-+满足以下条件:当21x -<<-时,它的图象位于x 轴的下方;当67x << 时,它的图象位于x 轴的上方,则m 的值为 A .8 B .10-C .42-D .24-二、填空题(本大题共6小题,每小题5分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7. 计算-82015×(-0.125)2016= ▲ .8. 市政府为了解决老百姓看病贵的问题,决定下调药品的价格.某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为x ,由题意,可列方程为 ▲ .9. 在平面直角坐标系中,点A ,B 的坐标分别A (3,0),B (8,0),若点P 在y 轴上,且△P AB 是等腰三角形,则点P 的坐标为 ▲ . 10.关于x 的方程2101x ax +-=-的解是正数,则a 的取值范围是 ▲ . 11.如图,在平面直角坐标系中,四边形OABC 是边长为8的正方形,M (8,s ),N (t ,8)分别是边AB ,BC 上的两个动点,且OM ⊥12.如图,△ABC 在第一象限,其面积为5.点P 从点A 出发,沿△ABC 的边从A —B —C —A运动一周,作点P 关于原点O 的对称点Q ,再以PQ 为边作等边三角形PQM ,点M 在第二象限,点M 随点P 的运动而运动,则点M 随点P 运动所形成的图形的面积为 ▲ .三、解答题(本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)图113.(本小题满分15分)阅读下面材料,并解决问题.材料:如图1,在平面直角坐标系xOy 中,直线1y ax b =+与双曲线2ky x=交于 A (1,3)和B (-3,-1①当3x =-或1时,12y y =;②当30x -<<或x 即通过观察函数的图象,可以得到不等式ax b +>问题:求不等式32440x x x +-->的解集.下面是他的探究过程,请将(2),(3),(4(1)将不等式按条件进行转化当x =0时,原不等式不成立;当x >0时,原不等式可以转化为2441x x x +->; 当x <0时,原不等式可以转化为2441x x x+-<. (2)构造函数,画出图象设2341y x x =+-,44y x=,在同一坐标系中分别画出这两个函数的图象. 双曲线44y x=如图2画出抛物线.....2341y x x =+-.(3)确定两个函数图象公共点的横坐标代入函数解析式验证可知满足34y y =所有x 的值为 ▲ ; (4)借助图象,写出解集结合(1可知不等式32440x x x +-->如图,“元旦”期间,学校在综合楼上从点A 到点B 悬挂了一条宣传条幅,小明和小芳所在的教学楼正好在综合楼的对面.小明在四楼D 点测得条幅端点A 的仰角为30 o ,测得条幅端点B 的俯角为45o ;小芳在三楼C 点测得条幅端点A 的仰角为45o ,测得条幅端点B 的俯角为30 o .若楼层高度CD 为3米,请你根据小明和小芳测得的数据求出条幅AB 的长.(结果保留根号)15.(本小题满分14分)如图1,A ,B ,C ,D 四点都在⊙O 上,AC 平分∠BAD ,过点C 的切线与AB 的延长线交于点E .(1)求证:CE ∥BD ;(2)如图2,若AB 为⊙O 的直径,AC =2BC ,BE =5,求⊙O 的半径.(第14题)(第15题)图1图2惠民超市试销一种进价为每件60元的服装,规定试销期间销售单价不低于进价,且获利不得高于40%.经试销发现,销售量y (件)与销售单价x (元)满足一次函数y =kx +b ,且当x =70时,y =50;当x =80时,y =40. (1)求一次函数y =kx +b 的解析式;(2)设该超市获得的利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,超市可获得最大利润,最大利润是多少元? (3)若该超市预期的利润不低于500元,试确定销售单价x 的取值范围.17.(本小题满分16分)如图,已知抛物线223y x x =-++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的顶点为D . (1)求直线B C 的解析式;(2)点M 在抛物线上,且△BMC 的面积与△BCD 的面积相等,求点M 的坐标; (3)若点P 在抛物线上,点Q 在y 轴上,以P ,Q ,B ,D 四个点为顶点的四边形是平行四边形,请直接写出点P 的坐标.(第如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴和y轴上,OA=8,OB=6.点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动,点P,点M同时出发,它们移动的速度均为每秒一个单位长度,设两个点运动的时间为t秒(0≤t≤6).(1)连接矩形的对角线AB,当t为何值时,以P,O,M为顶点的三角形与△AOB 相似;(2)在点P,点M运动过程中,线段PM的中点Q也随着运动,请求出CQ的最小值;(3)将△POM沿PM所在直线翻折后得到△PDM,试判断D点能否在对角线AB上,如果能,求出此时t的值,如果不能,请说明理由.数学答案一、选择题(本大题共6小题,每小题5分,共30分) 1. B2. D3. C4. C5. A6. D二、填空题(本大题共6小题,每小题5分,共30分) 7.-0.1258. ()272156x -= 9.(0,4),(0,-4) 10. a <-1且a ≠-211. 1012. 15三、解答题(本大题共6小题,共90分) 13.(本小题满分15分)(2)抛物线如图所示; ……………………5分(3)x =4-,1-或1;……………………11分 (4)41x -<<-或1x >.…………………15分14.(本小题满分12分)过D 作DM ⊥AE 于M ,过C 作CN ⊥AE 于N ,则DM =CN ,MN =CD =3米, 设AM =x ,则AN =x +3,由题意:∠ADM =30o, ∴∠MAD =60o. 在Rt △ADM 中,DM =AM ·tan60o.在Rt △ANC 中,CN =AN =x +3, ………6分=x +3,解之得,)312x =,…………10分∵MB =MD ,∴AB =AM +MB =x=6+.……12分EF15.(1)连接OC ,∵CE 为⊙O 的切线,∴OC ⊥CE .……………………………………2分 ∵AC 平分∠BAD ,∴点C 平分弧BD .∴OC ⊥BD ……………………………4分 ∵BD ∥CE . ………………………6分 (2)∵BD ∥CE ,∴∠CBD =∠BCE .∵∠CBD =∠CAD ,∠CAD =∠CAE , ∴∠CAE =∠BCE . ∵∠E =∠E ,∴△ACE ∽△CBE . ………………10分 ∴AC AE CE CBCEBE==.∴25AE CE CE==.∴CE =10,AE =20, ………………………12分 ∴AB =15,⊙O 的半径为7.5. ………………………14分16.(1)根据题意得7050,8040.k b k b ì+=ïí+=ïî解得k =-1,b =120.所求一次函数的表达式为y =-x +120. ………………………4分 (2)()()60120W x x =--+21807200x x =-+-()290900x =--+.…………………8分抛物线的开口向下,∴当x <90时,W 随x 的增大而增大, 而60≤x ≤84,∴当x =84时,()28490900864W =--+=.∴当销售单价定为84元时,商场可获得最大利润,最大利润是864元.……10分(3)由W =500,得500=-x 2+180x -7200,整理得,x 2-180x +7700=0,解得,x 1=70,x 2=110. ……………………13分 由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之 间.而60≤x ≤84,所以,销售单价x 的取值范围是70≤x ≤84.…………………15分17.(1)易得A (-1,0),B (3,0),C (0,3) ,D (1,4),所以直线BC 的解析式为 y =-x +3 …………………4分 (2)过点D 作直线BC 的平行线交y 轴于点E ,直线DE 与抛物线的交点即为所求的点M .易得直线DE 的解析式为y =-x +5,所以点E 的坐标为(0,5).解25,23y x y x x ì=-+ïí=-++ïî 得点M 的坐标为(2,3). …………………6分 在y 轴上取F (0,1),则CE =CF ,所以过F 且平行于BC 的直线与抛物线的交点也是所要求的M 点. 解21,23y x y x x ì=-+ïí=-++ïî得点M 的坐标为:. …………………………10分 综合得点M 的坐标为: (2,3),.(3)符合要求的点P 有三个:(4,-5),(-2,-5),(2,3). ……………16分(第17题)18.(1)由题意得OM =6-t ,OP =t .若△POM ∽△AOB ,则624,867t tt -==解得; ……………3分若△POM ∽△BOA ,则618,687t tt -==解得. ……………6分 (2)过点Q 作QH ⊥OP ,垂足为易得1122OH OP t ==,QH ∴点Q (6,22t t-).过点Q 作QG ⊥AC ,垂足为则182QG t =-,662t CG -=-∴CQ ∴当t =5时,CQ 有最小值2. ……… ……12分 (3)不能.理由如下:设OD 与PM 相交于点E ,则OE ⊥PM ,OD =2OE .在Rt △POM 中, PM 则OE =2OP OM PM ?当t =3时,2(3)9t --+有最大值9, 所以,当t =3时,OE 所以OD 有最大值O 到AB 的最短距离为684.810´=. 因为 4.8,所以,点D 不可能在AB 上. ……………18分。

上海交大附中2019自招数学真题及答案

上海交大附中2019自招数学真题及答案

2019年交大附中自招数学试卷1.求值:cos30sin 45tan 60︒⋅︒⋅︒=2.反比例函数1y x=与二次函数243y x x =-+-的图像的交点个数为3.已知210x x --=,则3223x x -+=4.设方程(1)(11)(11)(21)(1)(21)0x x x x x x ++++++++=的两根为1x 、2x ,则12(1)(1)x x ++的值为5.直线y x k =+(0k <)上依次有A 、B 、C 、D 四点,它们分别是直线与x 轴、双曲线k y x=、y 轴的交点,若AB BC CD ==,则k 的值为6.交大附中文化体育设施齐全,学生既能在教室专心学习,也能在操场开心运动,德智体美劳全面发展,某次体锻课,英才班部分学生参加篮球小组,其余学生参加排球小组,篮球小组中男生比女生多五分之一,排球小组男女生人数相等,一段时间后,有一名男生从篮球小组转到排球小组,一名女生从排球小组转到篮球小组,这样篮球小组的男女生人数相等,排球小组女生人数比男生人数少四分之一,问英才班有多少人?7.已知a 、b 、c 、n 是互不相等的正整数,且1111a b c n+++也是整数,则n 的最大值为8.如图,ABCDE 是边长为1的正五边形,则它的内切圆与外接圆所围圆环的面积为9.若关于x 的方程2(4)(6)0x x x m --+=的三个根恰好可以组成某直角三角形的三边长,则m 的值为10.设△ABC 的三边a 、b 、c 均为正整数,且40a b c ++=,则当乘积abc 最大时,△ABC 的面积为11.如图,在直角坐标系中,将△OAB 绕原点旋转到△OCD ,其中(3,1)A -、(4,3)B ,点D 在x 轴正半轴上,则点C 的坐标为12.如图,数轴上从左到右依次有A 、B 、C 、D 四个点,它们对应的实数分别为a 、b 、c 、d ,如果存在实数λ,满足:对线段AB 和CD 上的任意一点M ,其对应的实数为x ,实数xλ对应的点N 仍然在线段AB 或CD 上,则称(,,,,)a b c d λ为“完美数组“,例如:(1,2,3,6,6)就是一组”完美数组“,已知||1AB =,||5BC =,||4CD =,求此时所有的”完美数组“,写出你的结论和推算过程.参考答案1.42.3个3.24.20035.92- 6.36人7.428.4π9.65910.11.913(,)55-12.(4,3,2,6,12)--,(2,1,8,4,8)---,(2,3,8,12,24)2019年交大附中自招数学试卷(二)1.()S n 为n 的各位数字之和,例(2019)201912S =+++=.(1)当1099n ≤≤时,求()n S n 的最小值;(2)当100999n ≤≤时,求()n S n 的最小值;(3)当10009999n ≤≤时,求()n S n 的最小值.2.(1)如图,2AB =,1BC =,3CD =,M 为以BD 为直径的圆上任意一点,求证:AM MC为定值.(2)尺规作图:以上图结论画出点P ,使::1:1:2PA PB PC =,保留作图痕迹并写出步骤.。

上海市交通大学附属中学(交大附中)2019年-自主招生数学试卷 (PDF版 含答案)

上海市交通大学附属中学(交大附中)2019年-自主招生数学试卷  (PDF版 含答案)

2019年交大附中自招数学试卷一、填空题1、求值:cos30sin 45tan 60⋅⋅=.2、反比例函数1y x =与二次函数243y x x =-+-的图像的交点个数为.3、已知210x x --=,则3223x x -+=.4、设方程()()()()()()11111211210x x x x x x ++++++++=的两根为1x ,2x ,则()()1211x x ++=.5、直线y x k =+(0k <)上依次有,,,A B C D 四点,它们分别是直线与x 轴、双曲线k y x=、y 轴的交点,若AB BC CD ==,则k =.6、交大附中文化体行设施齐全,学生既能在教室专心学习,也能在操场开心运动,德智体美劳全面发展,某次体育课,英才班部分学生参加篮球小组、其余学生参加排球小组。

篮球小组中男生比女生多五分之一,排球小组男女生人数相等;一段时间后,有一名男生从篮球小组转到排球小组,一名女生从排球小组转到篮球小组,这样篮球小组的男女生人数相等,排球小组女生人数比男生人数少四分之一,问英才班有人.7、已知,,,a b c n 是互不相等的正整数,且1111a b c n +++也是整数,则n 的最大值是.8、如图,ABCDE 是边长为1的正五边形,则它的内切圆与外接圆所围圆环的面积为.9、若关于x 的方程()()2460x x x m --+=的三个根恰好可以组成某直角三角形的三边长,则m =.10、设ABC 的三边,,a b c 均为正整数,且40a b c ++=,当乘积abc 最大时,ABC 的面积为.11、如图,在直角坐标系中,将AOB 绕原点旋转到OCD ,其中()3,1A -,()4,3B ,点D 在x 轴正半轴上,则点C 的坐标为.二、解答题12、如图,数轴上从左到右依次有,,,A B C D 四个点,它们对应的实数分别为,,,a b c d ,如果存在实数λ,满足:对线段AB 和CD 上的任意M W,其对应的数为x ,实数xλ对应的点N 仍然在线段AB 或CD 上,则称(),,,,a b c d λ为“完美数组”。

2019高中自主招生数学试题

2019高中自主招生数学试题

2019 数学试题考试时间 100 分钟满分 100 分说明:( 1)请各位同学注意,本试卷题目有一定的难度,你要根据自己的情况量力而行,争取用最短的时间获得最多的分数,提高自己的考试效率!考试,比的不仅是知识和能力,更重要的是要有良好的心态和适合自己的期望值,争取把会做的题目都做对,祝你取得好成绩!(2)请在背面的答题纸上作答。

另外,答完题后注意保护好自己的答案,防止他人的不劳而获,要做到公平竞争!一、选择题(共8 个小题,每小题 4 分,共 32 分)。

每小题均给出了代号为 A ,B, C,D的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入试卷背面的表格里,不填、多填或错填都得0 分。

1.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中 A 点表示十月的平均最高气温约为15 C , B 点表示四月的平均最低气温约为 5 C .下面叙述不正确的是A .各月的平均最低气温都在0 C 以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同 D .平均气温高于20 C 的月份有 5 个十二月一月二月20 C十一月15 C三月10C5Cy十月A B四月九月五月八月六月七月平均最低气温平均最高气温O 2 5x 第2 题2.上图是二次函数y ax2 bx c 的部分图象,由图象可知不等式 ax2b x c 0 的解集为A . x 1 或 x 5B . x 5 C. 1 x 5 D.无法确定3.小敏打开计算机时,忘记了开机密码的前两位,只记得密码第一位是 M , I , N中的一个字母,第二位是1,2, 3, 4,5 中的一个数字,则小敏输入一次密码能够成功开 机的概率是A . 1B . 8C . 1D . 115 15 8 304.在 ABC 中,内角A 、B 、C 的对边分别为 a 、 b 、 c .若 b 2c 2 2b 4c 5 且 a 2 b 2 c 2bc ,则 ABC 的面积为 2 B . 3 C . 2 D. 3 A .2 2 5.上图是由圆柱与圆锥组合而成的几何体的三视图,则 该几何体的 表面积 (表面面积,也叫全面积) 为2 3 ...A . 20B . 24 C. 28 D .324 参考公式: 圆锥侧面积 S rl ,圆柱侧面积 S 2 rl ,4 4其中 r 为底面圆的半径,l 为母线长. 正视图 侧视图 6.如下图,在 ABC 中, AB AC , D 为 BC 的中点, 第 5题图BE AC 于 E ,交 AD 于 P ,已知 BP 3 , PE 1, 俯视图 则AE6 B . 2 C .3 D . 6 A .2 . ABC 的内角 A 、 B 、 C 的对边分别为 a 、 b 、 c .已知 a 5 , c 2, cos A 2 ,7 3则 bA . 2B . 3C . 2 D.3 8.如下图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于 G 处的老年公寓参加志愿者活动,G 则小明到老年公寓可以选择的 最短 路径条数为F ..A .9B .12C . 18 E D .24二、填空题:本大题共8 小题,每小题 4 分,共 32 分。

2019年浙江省温州中学中考自主招生数学试卷解析版

2019年浙江省温州中学中考自主招生数学试卷解析版

2019年浙江省温州中学自主招生数学试卷解析版
一、选择题(共8小题,每小题5分,共40分.每道小题均给出了代号为A、B、C、D的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)
1.(5分)设,则代数式x(x+1)(x+2)(x+3)的值为()A.0B.1C.﹣1D.2
【解答】解:∵x =,
∴2x =﹣3,
2x+3=
(2x+3)2=()2,
4x2+12x+9=5,
∴x2+3x=﹣1,
∴原式=(x2+3x)(x2+3x+2)
=﹣1×(﹣1+2)
=﹣1;
故选:C.
2.(5分)对于任意实数a,b,c,d,定义有序实数对(a,b)与(c,d)之间的运算“△”
为:(a,b)△(c,d)=(ac+bd,ad+bc).如果对于任意实数u,v,都有(u,v)△(x,y)=(u,v),那么(x,y)为()
A.(0,1)B.(1,0)C.(﹣1,0)D.(0,﹣1)
【解答】解:∵(u,v)△(x,y)=(ux+vy,uy+vx)=(u,v),
∴ux+vy=u,uy+vx=v,
∵对于任意实数u,v都成立,
∴x=1,y=0,
∴(x,y)为(1,0).
故选:B.
3.(5分)已知A,B 是两个锐角,且满足,,则实数t所有可能值的和为()
第1 页共13 页。

2019年3月河南省普通高中自主招生数学试卷(含答案解析)

2019年3月河南省普通高中自主招生数学试卷(含答案解析)

2019年河南省普通高中自主招生数学试卷(3月份)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣8的相反数是()A.﹣8B.C.8D.﹣2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×1073.如图所示的几何体的主视图是()A.B.C.D.4.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+15.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.806.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y 两,根据题意得()A.B.C.D.7.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.28.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO 的度数为()A.85°B.70°C.75°D.60°9.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.10.如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.计算:=.12.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:13.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为.14.如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.15.如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+,y=2﹣.17.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?18.如图所示,半圆O的直径AB=4,=,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=时,四边形AODC是菱形;(3)当AD=时,四边形AEDF是正方形.19.某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.21.小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?22.问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A 逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC 边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.23.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2019年河南省普通高中自主招生数学试卷(3月份)参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.﹣8的相反数是()A.﹣8B.C.8D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是210000000人一年的口粮.将210000000用科学记数法表示为()A.2.1×109B.0.21×109C.2.1×108D.21×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将210000000用科学记数法表示为:2.1×108.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图所示的几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.在下列的计算中,正确的是()A.m3+m2=m5B.m5÷m2=m3C.(2m)3=6m3D.(m+1)2=m2+1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=m3,符合题意;C、原式=8m3,不符合题意;D、原式=m2+2m+1,不符合题意,故选:B.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.80【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是90.故选:B.【点评】考查了众数的定义,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y 两,根据题意得()A.B.C.D.【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)﹣(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【解答】解:设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.7.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.2【分析】根据根的判别式即可求出a的范围.【解答】解:由题意可知:△>0,∴1﹣4(﹣a+)>0,解得:a>1故满足条件的最小整数a的值是2,故选:D.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.8.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO 的度数为()A.85°B.70°C.75°D.60°【分析】由平行线的性质求出∠AOC=120°,再求出∠BOC=30°,然后根据三角形的外角性质即可得出结论.【解答】解:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°﹣90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°;故选:C.【点评】本题主要考查了平行线的性质、三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解决问题的关键.9.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.【分析】如图,过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D的坐标.【解答】解:如图,过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3﹣x)2=x2+12,∴x=,又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=3,∴AE=CE=3﹣=,∴,即,∴DF=,AF=,∴OF=﹣1=,∴D的坐标为(﹣,).故选:A.【点评】此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.10.如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.【分析】根据题意易知道当P在BD上由B向D运动时,△BPQ的高PQ和底BQ都随着t的增大而增大,那么S△BPQ就是PQ和BQ两个一次函数相乘再乘以二分之一,结果是一个二次函数,然后根据它们的斜率乘积的正负性判别抛物线开口方向;当P在DE上有D向E运动时,高PQ不变,底BQ随着t的增大而增大,则S△BPQ是一个一次函数,然后根据斜率的正负性判别图象上升还是下降;当P在EC上由E向C运动时高PQ逐渐减小,底BQ逐渐增大,S△BPQ的图象会是一二次函数,再根据PQ和BQ两个一次函数的斜率乘积的正负性来判断抛物线开口方向.【解答】解:∵PQ⊥BQ∴在P、Q运动过程中△BPQ始终是直角三角形.=PQ•BQ∴S△BPQ①当点P在BD上,Q在BC上时(即0s≤t≤2s)BP=t,BQ=PQ•cos60°=t,PQ=BP•sin60°=tS=PQ•BQ=•t•t=t2△BPQ的图象是关于t(0s≤t≤2s)的二次函数.此时S△BPQ∵>0∴抛物线开口向上;②当P在DE上,Q在BC上时(即2s<t≤4s)PQ=BD•sin60°=×2=,BQ=BD•cos60°+(t﹣2)=t﹣1S=PQ•BQ=••(t﹣1)=t﹣△BPQ的图象是关于t(2s<t≤4s)的一次函数.此时S△BPQ∵斜率>0∴S随t的增大而增大,直线由左向右依次上升.△BPQ③当P在DE上,P在EC上时(即4s<t≤s)PQ=[CE﹣(t﹣4)]•sin45°=﹣t(4s<t≤s),BQ=BC﹣CQ=BC﹣[CE﹣(t﹣4)]•cos45°=﹣(﹣t)=t+S=PQ•BQ△BPQ由于展开二次项系数a=k1•k2=•(﹣)•()=﹣抛物线开口向下,故选:D.【点评】本道题考查了图形动点分析能力与分段函数分析能力.充分体现了数形结合的思想.二、填空题(本大题共5小题,每小题3分,共15分)11.计算:=﹣1.【分析】原式利用负整数指数幂法则,以及立方根定义计算即可求出值.【解答】解:原式=1﹣2=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:y=﹣5x2﹣50x﹣128【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【解答】解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,即y=﹣5x2﹣50x﹣128,故答案为y=﹣5x2﹣50x﹣128.【点评】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,利用顶点的变化求解更简便.13.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为.【分析】先画树状图展示所有16种等可能的结果数,再找出两人摸到的球颜色不同的结果数,然后根据概率公式求解.【解答】解:列表如下:由表格可知,共有16种等可能的结果,其中两人摸到的球颜色不同的情况有10种,所以两人摸到的球颜色不同的概率为=,故答案为:.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.14.如图,在▱ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙A 相交于点F .若的长为,则图中阴影部分的面积为.【分析】求图中阴影部分的面积,就要从图中分析阴影部分的面积是由哪几部分组成的.很显然图中阴影部分的面积=△ACD 的面积﹣扇形ACE 的面积,然后按各图形的面积公式计算即可. 【解答】解:连接AC , ∵DC 是⊙A 的切线, ∴AC ⊥CD , 又∵AB =AC =CD ,∴△ACD 是等腰直角三角形, ∴∠CAD =45°,又∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠CAD =∠ACB =45°, 又∵AB =AC , ∴∠ACB =∠B =45°, ∴∠FAD =∠B =45°,∵的长为,∴,解得:r =2,∴S 阴影=S △ACD ﹣S 扇形ACE =.故答案为:.【点评】本题主要考查了扇形的面积计算方法,不规则图形的面积通常转化为规则图形的面积的和差.15.如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为或1.【分析】分两种情况进行讨论:当∠CFE=90°时,△ECF是直角三角形;当∠CEF=90°时,△ECF是直角三角形,分别根据直角三角形的勾股定理列方程求解即可.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF =90°时,△ECF 是直角三角形,过F 作FH ⊥AB 于H ,作FQ ⊥AD 于Q ,则∠FQE =∠D =90°, 又∵∠FEQ +∠CED =90°=∠ECD +∠CED , ∴∠FEQ =∠ECD , ∴△FEQ ∽△ECD ,∴==,即==,解得FQ =,QE =,∴AQ =HF =,AH =,设AP =FP =x ,则HP =﹣x ,∵Rt △PFH 中,HP 2+HF 2=PF 2,即(﹣x )2+()2=x 2, 解得x =1,即AP =1.综上所述,AP 的长为1或.【点评】本题考查了折叠问题,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质以及勾股定理.解题时注意:折叠前后两图形全等,即对应线段相等;对应角相等.本题有两种情况,需要分类讨论,避免漏解.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.先化简,再求值:(x +y )(x ﹣y )+y (x +2y )﹣(x ﹣y )2,其中x =2+,y =2﹣.【分析】根据平方差公式、单项式乘多项式和完全平方公式可以化简题目中的式子,再将x 、y 的值代入化简后的式子即可解答本题.【解答】解:(x +y )(x ﹣y )+y (x +2y )﹣(x ﹣y )2 =x 2﹣y 2+xy +2y 2﹣x 2+2xy ﹣y 2 =3xy ,当x=2+,y=2﹣时,原式=3×(2+)(2﹣)=3.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法.17.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了100名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为36°;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?【分析】(1)用“戏曲”的人数除以其所占百分比可得;(2)用总人数乘以“民乐”人数所占百分比求得其人数,据此即可补全图形;(3)用360°乘以“戏曲”人数所占百分比即可得;(4)用总人数乘以样本中“书法”人数所占百分比可得.【解答】解:(1)学校本次调查的学生人数为10÷10%=100名,故答案为:100;(2)“民乐”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为360°×10%=36°,故答案为:36°;(4)估计该校喜欢书法的学生人数为2000×25%=500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.18.如图所示,半圆O的直径AB=4,=,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE;(2)当AD=2时,四边形AODC是菱形;(3)当AD=2时,四边形AEDF是正方形.【分析】(1)根据角平分线的性质,可得DF与DE的关系,根据圆周角定理,可得DC与DB的关系,根据HL,证明即可;(2)根据菱形的性质,可得OD与CD,OD与BD的关系,根据等边三角形的性质,得到∠DBA的度数,根据正弦的定义计算即可;(3)根据圆周角定理,可得OD⊥AB,根据勾股定理,可得答案.【解答】(1)证明:∵=,∴∠CAD=∠BAD,又DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵=,∴BD=CD,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL);(2)四边形AODC是菱形时,OD=CD=DB=OB,∴∠DBA=60°,∴AD=AB cos∠DBA=4sin60°=2,故答案为:2;(3)当OD⊥AB,即OD与OE重合时,四边形AEDF是正方形,由勾股定理,得AD==2,故答案为:2.【点评】本题考查的是角平分线的性质、圆周角定理、全等三角形的判定和性质以及等边三角形的判定和性质、正方形的判定,掌握全等三角形的判定定理和性质定理、圆周角定理是解题的关键.19.某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【分析】延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根据=tan ∠DCB列方程求出x的值即可得.【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.【点评】本题考查了解直角三角形的应用﹣方向角问题,作出辅助线构造直角三角形是解题的关键.20.如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.21.小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:,解这个方程组得:,答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.=1.5×+2.8×∴w总额=0.1x+×2.8=0.1x+1680﹣0.14x=﹣0.04x+1680,又≥60,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=﹣0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元),此时甲有=60(件),乙有:=555(件),答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【点评】本题考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.22.问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A 逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC 边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.23.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)设交点式y=a(x+1)(x﹣3),展开得到﹣2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=﹣x+b,把C点坐标代入求出b得到直线PC的解析式为y=﹣x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣x+b,。

2019年四川省南充高中自主招生数学考试试卷 解析版

2019年四川省南充高中自主招生数学考试试卷  解析版

2019年四川省南充高中自主招生数学试卷一、填空题(每小题8分,共112分)1.(8分)已知x 满足﹣x2﹣2x=1,那么x2+2x=.2.(8分)若|m+2|+(n﹣1)2=0,则m+2n值为.3.(8分)抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C.若△ABC是直角三角形,则ac=.4.(8分)已知a n=(﹣1)n+1,当n=1时,a1=0,当n=2时,a2=2,当n=3时,a3=0,…,则a1+a2+a3+…+a=.5.(8分)已知sinα<cosα,则锐角α的取值范围是.6.(8分)直角三角形ABC中,∠C=90°且tan B=2tan A﹣1,则∠B=.7.(8分)将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则a n=.(用含n的代数式表示)所剪次数 1 2 3 4 …n正三角形个数4 7 10 13 …a n8.(8分)已知关于x,y的二元一次方程组的解满足x+y=3m,则m=.9.(8分)设x1、x2是方程2x2﹣4mx+2m2+3m﹣2=0的两个实数根,当m=时,x12+x22有最小值,最小值是.10.(8分)从3台甲型彩电和2台乙型彩电任选2台,其中两种品牌的彩电都齐全的概率是.11.(8分)对于正数x,规定f(x)=,计算f()+f()+…+f()+f ()+f(1)+f(2)+f(3)+…+f(2007)+f(2008)=.12.(8分)在Rt△ABC中,∠C=90°,AC=3,BC=4.若以C点为圆心,r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是.13.(8分)若ab=1,则的值为.14.(8分)如图AB与圆O相切于A,D是圆O内一点,DB与圆相交于C.已知BC=DC=3,OD=2,AB=6,则圆的半径为.二、选择题(每小题6分,共24分)15.(6分)如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈16.(6分)如果方程(x﹣1)(x2﹣2x+m)=0的三根可作为一个三角形的三边之长,则实数m的取值范围是()A.0≤m≤1 B.≤m C.≤m≤1 D.<m≤1 17.(6分)解关于x的方程不会产生增根,则k的值是()A.2 B.1 C.k≠2且k≠一2 D.无法确定18.(6分)如图,AB、AC与⊙O相切于B、C,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是()A.65°B.115°C.65°和115°D.130°和50°三、解答题(共64分)19.(10分)先化简,再求值:÷,其中a=1+,b=1﹣20.(12分)如图,EFGH是正方形ABCD的内接四边形,两条对角线EG和FH所夹的锐角为θ,且∠BEG与∠CFH都是锐角,已知EG=a,FH=b,四边形EFGH的面积为S.(1)求证:sinθ=;(2)试用a,b,S来表示正方形ABCD的面积.21.(12分)抛物线的解析式y=ax2+bx+c满足如下四个条件:abc=0;a+b+c=3;ab+bc+ca =﹣4;a<b<c.(1)求这条抛物线的解析式;(2)设该抛物线与x轴的两个交点分别为A、B(A在B的左边),与y轴的交点为C.P 是抛物线上第一象限内的点,AP交y轴于点D,当OD=1.5时,试比较S△AOD与S△DPC的大小.22.(14分)如图△ABC中,∠C=90°,AC=6,BC=3,点D在AC边上,以D为圆心的⊙D 与AB切于点E.(1)求证:△ADE∽△ABC;(2)设⊙D与BC交于点F,当CF=2时,求CD的长;(3)设CD=a,试给出一个a值使⊙D与BC没有公共点,并说明你给出的a值符合要求.23.(16分)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.参考答案与试题解析一、填空题(每小题8分,共112分)1.(8分)已知x满足﹣x2﹣2x=1,那么x2+2x= 2 .【分析】设x2+2x=y,则原方程可化为y2﹣4=0,解得y1=2,y2=﹣2,解方程可解答.【解答】解:﹣x2﹣2x=1,设x2+2x=y,则原方程可化为﹣y=1,3﹣y(y﹣1)=y﹣1,y2=4,解得y1=2,y2=﹣2,经检验,y=±2是方程﹣y=1的解,当y1=2时,x2+2x=2,解得x=﹣1,经检验,x=﹣1是原方程的解;当y2=﹣2时,x2+2x=﹣2,此方程无实数解;∴x2+2x=2,故答案为:2.2.(8分)若|m+2|+(n﹣1)2=0,则m+2n值为0 .【分析】根据非负数的性质列式计算求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,m+2=0,n﹣1=0,解得m=﹣2,n=1,所以,m+2n=﹣2+2×1=0.故答案为:0.3.(8分)抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C.若△ABC是直角三角形,则ac=﹣1 .【分析】根据x轴上点的坐标特点可设出A、B两点的坐标为(x1,0),(x2,0),根据△ABC是直角三角形可知x1、x2必异号,再由抛物线与y轴的交点可求出C点的坐标,由射影定理即可求出ac的值.【解答】解:设A(x1,0),B(x2,0),由△ABC是直角三角形可知x1、x2必异号,则x1•x2=<0,由于函数图象与y轴相交于C点,所以C点坐标为(0,c),由射影定理知,|OC|2=|AO|•|BO|,即c2=|x1|•|x2|=||,故|ac|=1,ac=±1,由于<0,所以ac=﹣1.故答案为:﹣1.4.(8分)已知a n=(﹣1)n+1,当n=1时,a1=0,当n=2时,a2=2,当n=3时,a3=0,…,则a 1+a2+a3+…+a=2008 .【分析】由已知可得a 1+a2=2,a3+a4=2,…,a2n﹣1+a2n=2,则有a1+a2+a3+…+a=1004(a1+a2),代入即可求解.【解答】解:由已知可得a1+a2=2,a3+a4=2,…,a2n﹣1+a2n=2,∵a 1+a2+a3+…+a=1004(a1+a2)=2008,故答案为2008.5.(8分)已知sinα<cosα,则锐角α的取值范围是0°<α<45°.【分析】根据正弦函数值随锐角的增大而增大,可得答案.【解答】解:由sinα<cosα,得0°<α<45°,故答案为:0°<α<45°.6.(8分)直角三角形ABC中,∠C=90°且tan B=2tan A﹣1,则∠B=45°.【分析】根据正切的定义得到tan B=,tan A=,根据题意列出方程,解方程得到a ﹣b,根据等腰直角三角形的概念解答.【解答】解:在直角三角形ABC中,∠C=90°,则tan B=,tan A=,∴=2×﹣1,整理得,2a2﹣ab﹣b2=0,(2a+b)(a﹣b)=0,解得,a =b,∴∠B=45°,故答案为:45°.7.(8分)将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,…如此继续下去,结果如下表.则a n=3n+1 .(用含n 的代数式表示)所剪次数 1 2 3 4 …n正三角形个数4 7 10 13 …a n【分析】从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n﹣1)=3n+1.【解答】解:故剪n次时,共有4+3(n﹣1)=3n+1.8.(8分)已知关于x,y的二元一次方程组的解满足x+y=3m,则m=﹣.【分析】先求出二元一次方程组的解为,再由x+y=m得到m﹣=3m,即可求出m的值.【解答】解:二元一次方程组的解为,∵x+y=3m,∴m﹣=3m,∴m=﹣,故答案为﹣9.(8分)设x1、x2是方程2x2﹣4mx+2m2+3m﹣2=0的两个实数根,当m=时,x12+x22有最小值,最小值是.【分析】由根与系数的关系知x12+x22是关于m的二次函数,是否是在抛物线的顶点处取得最小值,就要看自变量m的取值范围,从判别式入手.【解答】解:∵x1、x2是方程2x2﹣4mx+2m2+3m﹣2=0的两个实根,∴△=(﹣4m)2﹣4×2×(2m2+3m﹣2)≥0,可得m≤,又x1+x2=2m,x1x2=,∴x12+x22=2(m﹣)2+=2(﹣m)2+,∵m≤,∴﹣m>0,∴当m=时,x12+x22取得最小值为2(﹣)2+=.故答案为,.10.(8分)从3台甲型彩电和2台乙型彩电任选2台,其中两种品牌的彩电都齐全的概率是.【分析】根据题意画出树状图得出所有等情况数和两种品牌的彩电都齐全的情况数,再根据概率公式即可得出答案.【解答】解:根据题意画图如下:共有20种等情况数,其中两种品牌的彩电都齐全的12种,则两种品牌的彩电都齐全的概率是=;故答案为:.11.(8分)对于正数x,规定f(x)=,计算f()+f()+…+f()+f ()+f(1)+f(2)+f(3)+…+f(2007)+f(2008)=2007.5 .【分析】根据题意得到f(x)+f()=1,原式结合后相加即可求出值.【解答】解:根据题意得:f(x)+f()=+=+==1,f(1)=0.5,则原式=[f()+f(2008)]+[f()+f(2007)]+…+[f()+f(2)]+f (1)=2007.5,故答案为:2007.512.(8分)在Rt△ABC中,∠C=90°,AC=3,BC=4.若以C点为圆心,r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是3<r≤4或r=2.4 .【分析】此题注意两种情况:(1)圆与AB相切时;(2)点A在圆内部,点B在圆上或圆外时.根据勾股定理以及直角三角形的面积计算出其斜边上的高,再根据位置关系与数量之间的联系进行求解.【解答】解:如图,∵BC>AC,∴以C为圆心,r为半径所作的圆与斜边AB只有一个公共点.根据勾股定理求得AB=5.分两种情况:(1)圆与AB相切时,即r=CD=3×4÷5=2.4;(2)点A在圆内部,点B在圆上或圆外时,此时AC<r≤BC,即3<r≤4.∴3<r≤4或r=2.4.13.(8分)若ab=1,则的值为 1 .【分析】对所求的代数式利用分式加减法则化简整理得原式=,然后将ab=1代入即可求出代数式的值.【解答】解:原式==,将ab=1代入得,原式=1.填空答案为:1.14.(8分)如图AB与圆O相切于A,D是圆O内一点,DB与圆相交于C.已知BC=DC=3,OD=2,AB=6,则圆的半径为.【分析】利用切割线定理求出BF,然后求出OE,利用勾股定理求出圆的半径OC即可.【解答】解:连结BC并延长,交圆于F,过O作OE⊥BF,∵BA是圆O的切线,切点为A,由切割线定理可知:AB2=BC•BF,∵BC=DC=3,AB=6,∴BF=12,CF=9,∴DE=,OD=2,∴OE===,CE═,OC===.故答案为:.二、选择题(每小题6分,共24分)15.(6分)如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈【分析】根据圆所走的路程是圆心所走过的路程即等边三角形的周长+三条圆心角是120°的弧长=4C选择.【解答】解:如图,设圆的周长是C,则圆所走的路程是圆心所走过的路程即等边三角形的周长+三条圆心角是120°的弧长=4C,则这个圆共转了4C÷C=4圈.故选:A.16.(6分)如果方程(x﹣1)(x2﹣2x+m)=0的三根可作为一个三角形的三边之长,则实数m的取值范围是()A.0≤m≤1 B.≤m C.≤m≤1 D.<m≤1【分析】方程(x﹣1)(x2﹣2x+m)=0的三根是一个三角形三边的长,则方程有一根是1,即方程的一边是1,另两边是方程x2﹣2x+m=0的两个根,根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.则方程x2﹣2x+m=0的两个根设是x2和x3,一定是两个正数,且一定有|x2﹣x3|<1<x2+x3,结合根与系数的关系,以及根的判别式即可确定m的范围.【解答】解:∵方程(x﹣1)(x2﹣2x+m)=0有三根,∴x1=1,x2﹣2x+m=0有根,方程x2﹣2x+m=0的△=4﹣4m≥0,得m≤1.又∵原方程有三根,且为三角形的三边和长.∴有x2+x3>x1=1,|x2﹣x3|<x1=1,而x2+x3=2>1已成立;当|x2﹣x3|<1时,两边平方得:(x2+x3)2﹣4x2x3<1.即:4﹣4m<1.解得m>.∴<m≤1.故选:D.17.(6分)解关于x的方程不会产生增根,则k的值是()A.2 B.1 C.k≠2且k≠一2 D.无法确定【分析】先将分式方程化为整式方程,解得x=k,根据题意可得x≠±1,从而求出k 的值.【解答】解:去分母得,x(x+1)﹣k=x(x﹣1),解得x=k,∵方程不会产生增根,∴x≠±1,∴k≠±1,即k≠±2.故选:C.18.(6分)如图,AB、AC与⊙O相切于B、C,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是()A.65°B.115°C.65°和115°D.130°和50°【分析】连接OC,OB,当点P在优弧BC上时,由圆周角定理可求得∠P=65°,当点P在劣弧BC上时,由圆内接四边形的对角互补可求得∠BPC=115°.故本题有两种情况两个答案.【解答】解:连接OC,OB,则∠ACO=∠ABO=90°,∠BOC=360°﹣90°﹣90°﹣50°=130°,应分为两种情况:①当点P在优弧BC上时,∠P=∠BOC=65°;②当点P在劣弧BC上时,∠BPC=180°﹣65°=115°;故选:C.三、解答题(共64分)19.(10分)先化简,再求值:÷,其中a=1+,b=1﹣【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===当,时,原式=.20.(12分)如图,EFGH是正方形ABCD的内接四边形,两条对角线EG和FH所夹的锐角为θ,且∠BEG与∠CFH都是锐角,已知EG=a,FH=b,四边形EFGH的面积为S.(1)求证:sinθ=;(2)试用a,b,S来表示正方形ABCD的面积.【分析】(1)设EG于FH相交于点O,过E作EM⊥FH于M,过G点作GN⊥FH于N,则S =S△EFH+S△FHG,得出S=EM•FH+GN•FH=ab•sinθ,即可得出结论;(2)过E、F、G、H分别对正方形ABCD作对边的垂线,则四边形PQRT、四边形AETH、四边形EBFP、四边形CFQG、四边形DGRH都是矩形,设正方形ABCD的边长为x,PQ=y,QR=z,由勾股定理得y=,z=,由矩形的性质得出S△AEH=S△THE,S△=S△FPE,S△CFG=S△QGF,S△DGH=S△RHG,则S正方形ABCD+S矩形PQRT=2S四边形EFGH,即x2+yz=2S,EBF代入即可得出结果.【解答】(1)证明:设EG于FH相交于点O,过E作EM⊥FH于M,过G点作GN⊥FH于N,如图1所示:则S=S△EFH+S△FHG,∴S=EM•FH+GN•FH=EO•sinθ•FH+OG•sinθ•FH=(EO+OG)•sinθ•FH=EG•FH •sinθ=ab•sinθ,∴sinθ=;(2)解:过E、F、G、H分别对正方形ABCD作对边的垂线,如图2所示:则四边形PQRT、四边形AETH、四边形EBFP、四边形CFQG、四边形DGRH都是矩形,设正方形ABCD的边长为x,PQ=y,QR=z,由勾股定理得:y=,z=,由矩形的性质得:S△AEH=S△THE,S△EBF=S△FPE,S△CFG=S△QGF,S△DGH=S△RHG,∴S正方形ABCD+S矩形PQRT=2S四边形EFGH,∴x2+yz=2S,即x2+•=2S,解得:x2=,∴正方形ABCD的面积用a、b、S表示为:.21.(12分)抛物线的解析式y=ax2+bx+c满足如下四个条件:abc=0;a+b+c=3;ab+bc+ca =﹣4;a<b<c.(1)求这条抛物线的解析式;(2)设该抛物线与x轴的两个交点分别为A、B(A在B的左边),与y轴的交点为C.P 是抛物线上第一象限内的点,AP交y轴于点D,当OD=1.5时,试比较S△AOD与S△DPC的大小.【分析】(1)因为a不等于0故分别令c=0以及b=0时求出a,c的值.(2)令y=0求出A,B两点的坐标.做PG⊥x轴于G,利用线段比求出m值,然后可求出各有关线段的值.最后求解.【解答】解:(1)∵a≠0,abc=0,∴bc=0<1>当b=0时由,得,解得或,∵a<b<c,∴,(不合意,舍去)∴a=﹣1,b=0,c=4.(2分)<2>当c=0时由,得,解之得或.∵a<b<c,∴和都不合题意,舍去.(3分)∴所求的抛物线解析式为y=﹣x2+4.(4分)(2)在y=﹣x2+4中,当y=0时,x=±2∴A、B两点的坐标分别为(﹣2,0),(2,0),过P作PG⊥x轴于G,设P(m,n)∵点P在抛物线上且在第一象限内,∴m>0,n>0,n=﹣m2+4∴PG=﹣m2+4,OA=2,AG=m+2(5分)∵OD∥PG,OD=1.5∴,即解得(不合题意,舍去),∴OG=(7分)∵当x=0时,y=4,∴点C的坐标为(0,4)∴DC=OC﹣OD=4﹣1.5=2.5 S△PDC=CD•OG=×S△AOD=AO•OD=×1.5×2=∴S△PDC>S△AOD.(8分)22.(14分)如图△ABC中,∠C=90°,AC=6,BC=3,点D在AC边上,以D为圆心的⊙D 与AB切于点E.(1)求证:△ADE∽△ABC;(2)设⊙D与BC交于点F,当CF=2时,求CD的长;(3)设CD=a,试给出一个a值使⊙D与BC没有公共点,并说明你给出的a值符合要求.【分析】(1)因为点E为切点,则得到∠AED=90°,已知有一组公共角,则根据有两组角相等的两个三角形相似可推出△ADE∽△ABC;(2)连接DF,则DE=DF,设CD=x,则AD=6﹣x,根据相似三角形的对应边成比例可得到DE的长,再利用勾股定理求得DF的长,则解方程即可得到CD的长;(3)取a=3,(可取<a<6的任意一个数),则AD=3,根据DE<AD即可得到DE<DC从而得到⊙D与BC没有公共点.【解答】(1)证明:∵点E是切点∴∠AED=90°∵∠A=∠A,∠ACB=90°∴△ADE∽△ABC;(2)解:连接DF,则DE=DF设CD=x,则AD=6﹣x∵△ADE∽△ABC∴∴DE=在RT△DCF中DF2=x2+CF2=x2+4∴=x2+4x2+3x﹣4=0∴x=1,x=﹣4(舍去)∴CD=1(当CD=1时,0<x<6,所以点D在AC上);(3)解:取a=3,(可取<a<6的任意一个数)则AD=AC﹣CD=3,∵DE<AD,∴DE<DC,即d>r,则⊙D与BC相离,∴当a=3时,⊙D与BC没有公共点.23.(16分)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在y轴上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.【分析】(1)因为直线y=x+m过点A,将A点坐标直接代入解析式即可求得m的值;设出二次函数的顶点式,将(3,4)代入即可;(2)由于P和E的横坐标相同,将P点横坐标代入直线和抛物线解析式,可得其纵坐标表达式,h即为二者之差;根据P、E在二者之间,所以可知x的取值范围是0<x<3;(3)先假设存在点P,根据四边形DCEP是平行四形的条件进行推理,若能求出P点坐标,则证明存在点P,否则P点不存在.【解答】解:(1)∵点A(3,4)在直线y=x+m上,∴4=3+m.∴m=1.设所求二次函数的关系式为y=a(x﹣1)2.∵点A(3,4)在二次函数y=a(x﹣1)2的图象上,∴4=a(3﹣1)2,∴a=1.∴所求二次函数的关系式为y=(x﹣1)2.即y=x2﹣2x+1.(2)设P、E两点的纵坐标分别为y P和y E.∴PE=h=y P﹣y E=(x+1)﹣(x2﹣2x+1)=﹣x2+3x.即h=﹣x2+3x(0<x<3).(3)存在.解法1:要使四边形DCEP是平行四边形,必需有PE=DC.∵点D在直线y=x+1上,∴点D的坐标为(1,2),∴﹣x2+3x=2.即x2﹣3x+2=0.解之,得x1=2,x2=1(不合题意,舍去)∴当P点的坐标为(2,3)时,四边形DCEP是平行四边形.解法2:要使四边形DCEP是平行四边形,必需有BP∥CE.设直线CE的函数关系式为y=x+b.∵直线CE经过点C(1,0),∴0=1+b,∴b=﹣1.∴直线CE的函数关系式为y=x﹣1.∴得x2﹣3x+2=0.2019年四川省南充高中自主招生数学考试试卷解析版解之,得x1=2,x2=1(不合题意,舍去)∴当P点的坐标为(2,3)时,四边形DCEP是平行四边形.21 / 21。

武汉市私立名校2019年初升高自主招生入学测试数学卷(含答案)

武汉市私立名校2019年初升高自主招生入学测试数学卷(含答案)

武汉市私立名校2019年初升高自主招生入学测试数学卷(考试时间:120分钟满分:150分)班级:姓名:得分:、选择题(本大题共15个小题,每小题3分,共45分)1 .四个实数0, -, —3.14, 2中,最小的数是(C )3A. 0 B~ C. - 3.14 D. 232.地球与太阳的距离随时间变化而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是(D )A. 1.496 X10 7C. 0.149 6 X1083.下列计算正确的是(DA. — a4b -^a2b = — a2b C.a2a3= a6B. 14.96 X108D. 1.496 X10 8)B. (a-b)2=a2-b2D . — 3a2 + 2a2 = —a24.如图,AB//EF, CD± EF, ZBAC = 50° ,则zACD = ( C )A.120B.130C.140D.1505.下列图形是中心对称图形的是(D )B ix+2>0,7.不等式组的解集在数轴上表示正确的是2x - 6 <0170 ,则由这组数据得到的结论错误的是(D )11 .甲、乙两人用如图所示的两个转盘 (每个转盘被分成面积相等的 3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,A 盘和B 盘上的两指针所在区域的数字之和为偶数时甲获胜;指针落在分界线上,则需要重新转动转盘.甲获胜的概率是1)6.下列几何体中,同一个几何体的主视图与俯视图不同的是圆柱A正方体B-3-2-1 0 12 3A -3-2-1 0 12 3B8 .点 P(1 ,—2)关于y 轴对称的点的坐标是(C ) A. (1 , 2) B. (-1 , 2)C. (-1 , - 2)D. (-2, 1)9.在 2020 年贵阳市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为158 , 160 ,154 , 158 ,A.平均数为 160B.中位数为158C.众数为158D.方差为20.310 .若x= - 2是关于x 的二次方程 x 2+ _ax — a 2= 0的一个根,则a 的值为(2A. — 1 或 4B. 一 1 或 一 4 C . 1 或 一 4D. 1 或 4数字之和为奇数时乙获胜.若1 A.- 34 B - 95 C - 92 D -3BCD 的面积为(C )14 .如图,在4ABC 中,AB = AC = 4, ZBAC= 120 °尸为AB 上一动点,Q 是BC 上一动点,则 AQ + PQ 的D. 315 .二次函数y = ax 2+ bx +c (a , b , c 是常数,且a w0)的图象如图所示,下列结论错误的是 (D )二、填空题(本大题共5小题,每小题5分,共25分)16 .将 m 3(x —2) + m(2 -x)分解因式白结果是 m(m — 1)(m + 1)(x — 2)17 .我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果 1托为5尺,那么索长为20 尺,竿子长为 15 尺.12.如图,在4ABC 中,点D 是AB 边上的一点,若/ACD=/B, AD = 1, AC = 2,祥DC 的面积为 1,则4A. 1B. 2C. 3D. 413 .如图,在矩形AOBC 中,O 为坐标原点,OA, OB 分别在x 轴、y 轴上,点B 的坐标为(0, =30 ,将ZABC 沿AB 所在直线对折后,点 C 落在点D 处,则点D 的坐标为(A )A. 第13题图A. 2A. 4ac<b 2B. abc<0C. b+c>3a第12题图,ZABO32'B. 2 ,C.D. 一, 3 -第14题图1518 .如图,在 RtA ABC 中,Z C=90 ° ,BC= 15 , tan A = — 8(x + 1 ) ( x — 1 )x-1 x+1 X x + 1 x (1 —x)••・满足一,5<x< <5的整数有一2, —1, 0, 1, 2,,则 AB=1719 .如图,D 是等边4ABC 边AB 上的点,AD = 2, BD = 4.现将4ABC 折叠,使得点 C 与点D 重合,折痕为CFEF,且点E, F 分别在边 AC 和BC 上,则一= CE1.251220 .如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,tan/AOC=] 反比例函数y=——的图象经过点C,与AB 交于点D,则ACOD 的面积的值等于10三、解答题(本大题共7个小题,共80分)21 . (8 分)(1)计算:(-2)3 + 36 —2sin 30 ° 十2 016 一n)0. 十2 016 —兀)0=-8+4-1+1=—4.x 2— 2x + 122 (8分)先化简七丁—x +1,然后从一部* V 5的范围内选取一个合适的整数作为x 的值代入求值.解:原式= " x 2—1 x 2— 2x + 1 x -1+ — ( x — 1 )x + 1(x — 1) 2x — 1— (x —1) (x + 1) I第18题图第19题图i第20题图解:(一2)3+—2sin 30又.x= ±1或x= 0时,分母的值为 0 ,. x 只能取—2或2.当x = — 2时,原式=£(或当x =2时,原式=--).23. (10分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:请根据图表完成下面题目:(1)总人数为 ___ 人,a =? b =; (2)请你补全条形统计图;(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?解:(1 )100 , 0.25 , 15 ; (2)如图;(3)二.喜欢艺术类的频率为 0.15 ,,全校喜欢艺术类的学生的人数为 600 X0.15 =90 (人). .•・全校喜欢艺术类学生的人数为 90人.24 . (12分)某景区商店销售一种纪念品, 每件的进货价为40元.经市场调研,当该纪念品每件的销售价为元时,每天可销售 200件;当每件的销售价每增加1元,每天的销售数量将减少 10件.(1)当每件的销售价为 52元时,该纪念品每天的销售数量为 _______ 件; (2)当每件的销售价x 为多少时,销售该纪念品每天获得的利润y 最大?并求出最大利润.解:(1)由题意得 200 — 10 X(52 —50) = 200 —20 = 180 (件);(2)由题意得y=(x —40)[200 - 10 (x-50 )]频数频率 体育 40 0.4科技 25 a艺术6 0. 15 其他200. 25010x2+1 100x -28 000=—10(x —55 )2 + 2 250.,每件销售价为55元时,获得最大利润,最大利润为 2 250元.25 .(12 分)阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为ai,排在第二位的数称为第二项,记为a2,依此类推,排在第n位的数称为第n项,记为an,所以,数列的一般形式可以写成:ai, a2, a3,…,an,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示,如:数列1, 3, 5, 7,…为等差数列,其中ai=1, a4=7,公差为d =2.根据以上材料,解答下列问题:(1)等差数列5, 10, 15 ,…的公差d为?第5项是 _______________(2)如果一个数列a1,a2, a3,…,an,…是等差数列,且公差为d,那么根据定义可得到:a2 —a1=d, a3—a2=d, a4—a3 = d, …,an — an 1 = d , …所以a2= a1 + d ,a3 = a2 + d = (a〔 + d) + d = a〔+ 2d ,a4 = a3 + d = (a1 + 2d) + d = a1 + 3d ,由此,请你填空完成等差数列的通项公式:an = a〔+ ()d;⑶—4 041是不是等差数列—5, —7, —9,…的项?如果是,是第几项?解:(1 )5 ,25 ;(2)n-1;(3),「等差数列为—5, —7, —9,…,「总1 = —5, d = - 2.•/an = a1 + (n -1)d , an=- 4 041 , • . —5 — 2(n — 1)= — 4 041.. n = 2 019.26.(14分2019聊城中考)如图,AABC内接于。

华师一附中2019年自主招生数学试题(word版附答案)

华师一附中2019年自主招生数学试题(word版附答案)

华中师大一附中2019年高中招生考试数学试题2019.3.31考试时间:70分钟卷面满分:120分说明:所有答案一律书写在答题卡上,在试卷上作答无效.一、选择题(本大题共6小题,每小题6分,共36分.在每小题给出的四个选项中,有且只有一项是正确的.)1.若关于x 的一元二次方程(m -2)x 2+4x -1=0有实数根,则实数m 的取值范围是() A .m ≥-2 B .m>-2或m ≠2 C .m ≥-2且m ≠2 D .m ≠22.已知过点(2,3)的直线y=ax +b(a ≠0)不经过第四象限,设s=a +2b ,则s 的取值范围是() A .32≤s <6B .-6<s ≤−32C .-6≤s ≤32D .32≤s ≤63.已知√(x +1)2+|3-x|=4,则y=2x -1的最大值与最小值的和是() A .1B .2C .3D .44.古希腊数学家欧几里德的《几何原本》记载,形如x 2+2bx=a 2的方程的图解法是:如图,画Rt △ACB ,∠ACB=90°,BC=a ,AC=b ,在斜边AB 上截取AD=b ,则该方程的一个正根是() A .AC 的长B .BC 的长C .CD 的长D .BD 的长5.如图,正方形ABCD 中,E ,F 分别是AB ,BC 上的点,DE 交AC 于点M ,AF 交BD 于点N ;若AF 平分∠BAC ,DE ⊥AF ;记x=BNON,y=CFBF,z=BE OM,则有()A .x >y >zB .x=y=zC .x=y <zD .x=y >z6.设a ,b 为整数,关于x 的一元二次方程x 2+(2a +b +3)x +(a 2+ab +6)=0有两相等实根α,关于x 的一元二次方程2a x 2+(4a -2b -2)x +(2a -2b -1)=0有两相等实根β;那么以α,β为实根的整系数一元二次方程是() A .2x 2+7x +6=0 B .x 2+x -6=0 C .x 2+4x +4=0D .x 2+(a +b)x +ab=0二、填空题(本大题共6小题,每小题6分,共36分) 7.ΔABC 是⊙O 的内接三角形,∠BAC=60°,劣弧BC 的长是4π3,则⊙O 的半径是 .8.若m ,n 是方程x 2-x -2019=0的两实根,则m 2-2m -n 的值为 .9.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是 .10.当a ,b 是正实数,且满足a +b=ab 时,就称点M(a ,ab )为“完美点”;已知点A 是“完美点”且在直线y=-x +5上,则点A 的坐标为 .11.从-3,-2,-1,-12,0,12,1,2,3这9个数中随机抽取一个数,记为m .若数m 使关于x 的不等式组{13(2x +7)≥3x −m <0无解,且使关于x 的分式方程x x +3+m−2x +3=-1有整数解,那么从这9个数中抽到满足条件的m 的概率是 . 12.如图,ΔABC 中,∠ACB=90°,sinA=513,AC=12,将ΔABC 绕点C 顺时针旋转90°得到ΔA'B'C ,P 为线段A'B'上的动点,以点P 为圆心,PA'长为半径作⊙P ,当⊙P 与ΔABC 的边相切时,⊙P 的半径为 .三、解答題(本大题共3小題,共48分,解答应写出文字说明、证明过程和演算步骤.) 13.(本小题满分16分)已知:如图,Rt ΔABC 的三边满足(AB -4)2+|AB -BC|=0,∠ABC=90°. (1)若M 是边AB 上一点,N 是边BC 延长线上一点,且线段AM=CN=m ,mAB−m=ABBC +2,求m 的值;(2)若M 是边AB 上一动点,N 是边BC 延长线上一动点,且线段AM=CN ,判断线段DM 与DN 的大小关系,并说明你的理由;(3)若M 、N 分别是边AB 、BC 延长线上的动点,D 为线段MN 与边AC 延长线的交点,线段AM=CN ,判断线段DM 与DN 的大小关系,并说明你的理由.AMB C DNAM B CD N14.(本小题满分16分)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“特别距离”,给出如下定义:若|x1-x2|≥|y1-y2|,则点P1与点P2的“特别距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1与点P2的“特别距离”为|y1-y2|.例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“特别距离”为|2−5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x 轴的直线P2Q交点).,0),B为y轴上的一个动点.(1)已知点A(-12①若点A与点B的“特别距离”为3,写出一个满足条件的点B的坐标;②直接写出点A与点B的“特别距离”的最小值.x+4上的一个动点,如图2,点D的坐标是(0,1),求点C与点D (2)已知C是直线y=43的“特别距离”的最小值及相应的点C的坐标.15.(本小题满分16分)如图,已知抛物线y=x2+2bx+2c(b,c是常数,且c<0)与x轴分别交于点A、B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).(1)点B的坐标为____(结果用含c的代数式表示);(2)连接BC,过点A作直线AE∥BC,与抛物线y=x2+2bx+2c交于点E,点D是x轴上的一点,其坐标为(2,0).当C,D,E三点在同一直线上时,求抛物线的解析式;(3)在(2)条件下,点P是x轴下方的抛物线上的一个动点,连接PB,PC,设所得ΔPBC 的面积为S.①S的取值范围;②若ΔPBC的面积S为整数,则这样的ΔPBC共有____个.华中师大一附中2019年高中招生考试数学试题参考答案与试题解析一、选择题1.C .由△≥0,且m -2≠0,得m ≥-2且m ≠2. 2.A .由题意得a >0,b ≥0,且3=2a +b ,当b=0时,s=a=32;当b >0时,s=a +2(3-2a)=6-3a <6.3.B .由题意得x +1≥0,3-x ≥0,∴-1≤x ≤3,当x=-1时,y=2x -1有最小值为-3,当x=3时,y=2x -1有最大值为5,∴和是2.法2:由题意得|x +1|+|3−x |=4,即数轴上一点x 到点(-1,0)、(3,0)的距离之和为4,当x=-1时,y=2x -1有最小值为-3,当x=3时,y=2x -1有最大值为5,∴和是2. 4.D .由勾股定理得AB=√b 2+a 2,∴BD=√b 2+a 2-b ,由求根公式得x=−2b±√(2b)2−4×1×(−a 2)2=±√b 2+a 2-b ,∴该方程的一个正根是BD 的长. 5.C .如图,由角平分线,2BN AB AC CFON AO AB BF====,即x=y=√2,又AME ∆的角分线与高重合,则AME ∆为等腰三角形,AM AE =,作OP ∥AB ,交ED 于P ,则OP 为DBE ∆的中位线,OMP AME ∆∆∽,z=BE OM =BE OP=2,∴x=y <z .6.A .由题意得,(2a +b +3)2-4(a 2+ab +6)=0,即(b +3)2=12(2-a)①, 又(4a -2b -2)2-4×2a(2a -2b -1)=0,即(b +1)2=2a ②, 由①②得,7b 2+18b −9=0,其整根为b=-3,∴a=2;两个方程分别是:x 2+4x +4=0和4x 2+12x +9=0,∴α=−2,β=−32, ∴以α,β为实根的整系数一元二次方程是2x 2+7x +6=0. 二、填空题7.解:连接OB 、OC .,劣弧BC 的长是, ,.故答案为2. 8.解:由题意得:m 2-m -2019=0,m +n=1,∴m 2-m=2019, ∴m 2-2m -n=m 2-m -(m +n)=2019-1=2018.2120BOC BAC ∠=∠=︒43π∴12041803r ππ⋅⋅=2r ∴=9.解:当3x -2=127时,x=43,当3x -2=43时,x=15,当3x -2=15时,x=173,不是整数;所以输入的最小正整数为15.故答案为15.10.解:∵a ,b 是正实数,且满足a +b=ab ,∴a b+1=a ,即ab=a -1,∴M(a ,a -1),即“完美点”A 在直线y=x -1上,又∵点A 是“完美点”且在直线y=-x +5上, ∴{y =x −1y =-x +5,∴{x =3y =2,∴点A 的坐标为(3,2).11.解:整理不等式组得:{x ≥1x <m ,由不等式组无解,得m ≤1,即m 为-3,-2,-1,-12,0,12,1;分式方程去分母得:x +m -2=-x -3,∴x=−m +12,由分式方程有整数解,∴m 为-3,-1,1,3,∴满足条件的m 为-3,-1,1,∴m 的概率是13. 12.解:如图1中,当⊙P 与直线AC 相切于点Q 时,连接PQ . 设PQ=PA'=r ,∵PQ ∥CA',∴,,.如图2中,当⊙P 与AB 相切于点T 时,易证A'、B'、T 三点共线, △,,,,.综上所述,⊙P 的半径为或.13.解:(1)∵(AB -4)2+|AB -BC|=0,∴AB -4=0,且AB -BC=0,∴AB=BC=4,∵mAB−m= AB BC+2,∴m 4−m=3,∴m=3,经检验得,m=3.(注:未检验扣1分)(2)∵DM=DN .理由如下:过M 作ME ⊥AB 交AC 于E , ∴∠AME=∠B=90°,∴ME ∥BC ,∴∠EMD=∠N , ∵AB=BC ,∠B =90°,∴∠A =∠ACB=45°, ∴∠AEM=∠ACB=45°,∴AM=ME ,∵AM=CN , ∴ME=CN ,又∵∠MDE=∠NDC , ∴△MED ≌△NCD(AAS),∴DM=DN .(3)∵DM=DN .理由如下:过M 作MH ⊥AB 交AC 的延长线于H ,同(2)可证△MHD ≌△NCD(AAS),∴DM=DN .(注:其它解法酌情给分,(2)、(3)问只有结论而无证明过程各得1分).PQ PB CA A B '='''∴131213r r -=15625r ∴=A BT ABC '∆∽∴A T AB AC AB''=∴171213A T '=20413A T ∴'=1102213r A T ∴='=1562510213 AM B CD NEAMB C D NH14.解:(1)①∵点B 为y 轴上的一个动点,∴设点B 的坐标为(0,y).∵|−12−0|=12≠3,∴|0−y |=3,∴y=3或y=-3,∴点B 点的坐标为(0,3)或(0,-3).②点A 与B 点的“特别距离”的最小值为12.故答案是:12.(2)设点C(x ,43x +4),D(0,1),则|x 1-x 2|=x ,|y 1-y 2|=|43x +3|,①当|x |≥|43x +3|时,(i)若x ≤-94,则-x ≥−43x −3,x ≥-9,∴-9≤x ≤-94,(ii)若-94<x ≤0,则-x ≥43x +3,73≤x ≤-3,x ≤-94,∴-94<x ≤-97,(iii)若x >0,则x ≥43x +3,x ≤-9(舍),综上,-9≤x ≤-97,∴当x=-97时,|x|min =|-97|=97,②当|x |<|43x +3|时,同理可得,x <-9或x >-97, (i)若x <-9,则|43x +3|=−43x −3,|43x +3|>9, (ii)若x >-97,则|43x +3|=43x +3,|43x +3|>97,综合①②得,点C 与点D 的“特别距离”的最小值为97.相应的点C(-97,167).(注:其它解法酌情给分)15.(1)∵抛物线y=x 2+2bx +2c 过点A(-1,0),∴1-2b +2c=0,∴2b=1+2c , ∵抛物线y=x 2+2bx +2c 与x 轴分别交于点A(-1,0)、B(x B ,0),∴−1、x B 是一元二次方程x 2+2bx +2c 的两个根,∴−1+x B =-2b=-1-2c , ∴x B =-2c ,∴点B 的坐标为(-2c ,0);(2)∵抛物线y=x 2+2bx +2c 与y 轴的负半轴交于点C , ∴当x=0时,y=2c ,即点C 的坐标为(0,2c).设直线BC 的解析式为y=kx +2c ,∵点B 的坐标为(-2c ,0),∴-2ck +2c=0, ∵c ≠0,∴k=1,∴直线BC 的解析式为y=x +2c , ∵AE ∥BC ,∴可设直线AE 的解析式为y=x +m ,∵点A 的坐标为(-1,0),∴-1+m=0,解得m=1,∴直线AE 的解析式为y=x +1. ∵抛物线y=x 2+2bx +2c 过点A(-1,0),∴1-2b +2c=0,∴2b=1+2c ,∴y=x 2+(1+2c)x +2c ,与y=x +1联立,解得x=-1,y=0或x=1-2c ,y=2-2c , ∴E(-1,0)(与点A 重合,舍去),E(1-2c ,2-2c).∵点C 的坐标为(0,2c),点D 的坐标为(2,0),∴直线CD 的解析式为y=-cx +2c . ∵点C ,D ,E 三点在同一直线上,∴2-2c=-c(1-2c)+2c ,∴2c 2+3c -2=0, ∴c 1=12(与c <0矛盾,舍去),c 2=-2,∴b=−32,∴抛物线的解析式为y=x 2-3x -4;(3)①∵A(-1,0),B(4,0),C(0,-4), ∴AB=5,OC=4,直线BC 的解析式为y=x -4, 分两种情况: (i)当-1<x <0时,0<S <S △ACB ,∵S △ACB =12AB ·OC=10,∴0<S <10;(ii)当0<x <4时,过点P 作PG ⊥x 轴于点G ,交CB 于点F , 设PF=y F −y P =(x -4)-(x 2-3x -4)=−x 2+4x ,∴S △PCB =S △PFC +S △PFB =12PF ·OB=12(−x 2+4x)×4=−2x 2+8x=−2(x −2)2+8, ∴当x=2时,S 最大值=8,∴0<S ≤8; 综合(i)(ii)可知:S 的取值范围为0<S <10.②∵S 的取值范围为0<S <10,且S 为整数.∴S=1,2,3,4,5,6,7,8,9. 分两种情况:(i)当-1<x <0时,设△PBC 中BC 边上的高为h .∵B(4,0),C(0,-4),∴BC =4√2,∴S=12BC ·h=2√2h ,∴h =√24S ,又∵0<S <10,即0<2√2h <10,∴0<h <5√22, ∴当S=1,2,3,4,5,6,7,8,9时,√24≤h ≤9√24,此时,满足条件的ΔPBC 有9个;(ii)当0<x <4时,∵S △PCB =−2x 2+8x ,且0<S ≤8;∴当S=1,2,3,4,5,6,7时,均有∆>0,此时P 点共有7×2=14个, 当S=8,有∆=0,此时P 点只有1个;综上可知,满足条件的ΔPBC 共有9+14+1=24个.D A B Oyx ECPFG。

2019年四川省成都七中自主招生数学试卷(含答案解析)

2019年四川省成都七中自主招生数学试卷(含答案解析)

2019年四川省成都七中⾃主招⽣数学试卷(含答案解析)2019年四川省成都七中⾃主招⽣数学试卷副标题⼀、选择题(本⼤题共12⼩题,共60.0分)1. 若M =5x 2?12xy +10y 2?6x ?4y +13(x 、y 为实数),则M 的值⼀定是( )A. ⾮负数B. 负数C. 正数D. 零 2. 将⼀个棱长为m(m >2且m 为正整数)的正⽅体⽊块的表⾯染上红⾊,然后切成m 3个棱长为1的⼩正⽅体,发现只有⼀个表⾯染有红⾊的⼩正⽅体的数量是恰有两个表⾯染有红⾊的⼩正⽅体的数量的12倍,则m 等于( ) A. 16 B. 18 C. 26 D. 32 3. 已知6a 2?100a +7=0以及7b 2?100b +6=0,且ab ≠1,则ab 的值为( )A. 503B. 67C.1007D. 764. 若a =√3√2+√3+√5,b=2+√6?√10,则ab 的值为( )A. 12B. 142+36+105. 满⾜|ab|+|a ?b|?1=0的整数对(a,b)共有( )A. 4个B. 5个C. 6个D. 7个6. 在凸四边形ABCD 中,E 为BC 边的中点,BD 与AE 相交于点O ,且BO =DO ,AO =2EO ,则S △ACD :S △ABD 的值为( ) A. 2:5 B. 1:3 C. 2:3 D. 1:27. 从1到2019连续⾃然数的平⽅和12+22+32+?+20192的个位数字是( )A. 0B. 1C. 5D. 9 8. 已知x +y +z =0,且1x+1+1y+2+1z+3=0,则代数式(x +1)2+(y +2)2+(z +3)2的值为( ) A. 3 B. 14 C. 16 D. 369. 将⼀枚六个⾯编号分别为1、2、3、4、5、6的质地均匀的正⽅体骰⼦先后投掷两次,记第⼀次掷出的点数为a ,第⼆次掷出的点数为b ,则使关于x 、y 的⽅程组{ax +by =22x +y =3,只有正数解的概率为( ) A. 112B. 16C. 518D. 133610. ⽅程3a 2?8a ?3b ?1=0,当a 取遍0到5的所有实数值时,则满⾜⽅程的整数b 的个数是( ) A. 12个 B. 13个 C. 14个 D. 15个11. 若⼀个三⾓形的三边和为40,且各边长均为整数,则符合条件的三⾓形的个数为( ) A. 31个 B. 32个 C. 33个 D. 34个12. 若关于x 的⽅程x 2+ax +b ?3=0有实根,则a 2+(b ?4)2的最⼩值为( )A. 0B. 1C. 4D. 9⼆、填空题(本⼤题共7⼩题,共52.0分)13.已知x=3+√132,则代数式x4?3x3?3x+1的值为______.14.在正⼗边形的10个顶点中,任取4个顶点,那么以这4个顶点为顶点的梯形有______个.15.在Rt△ABC中,∠C=90°,AC=1,BC=2,D为AB中点,E为边BC上⼀点,将△ADE沿DE翻折得到△A′DE,使△A′DE与△BDE重叠部分的⾯积占△ABE⾯积的14,则BE的长为______.16.已知关于x的⽅程√x2?2x+1?√x2?4x+4+2√x2?6x+9=m恰好有两个实数解,则m的取值范围为______.17.如图,PA切⊙O于点A,PE交⊙O于点F、E,过点A作AB⊥PO于点D,交⊙O于点B,连接DF,若sin∠BAO=23,PE=5DF,则PFPE=______.18.如图,四边形ABCD中,AB=AD=5,BC=DC=12,∠B=∠D=90°.M和N分别是线段AD和线段BC上的点,且满⾜BN=DM,则线段MN的最⼩值为______.19.若?121+x?2x2=a0+a1x+a2x2+a3x3…+a n x n,则a2+a3=______.三、解答题(本⼤题共2⼩题,共38.0分)20.已知⼆次函数y=x2+(a?7)x+6,反⽐例函数y=ax(1)当a=2时,求这两个函数图象的交点坐标;(2)若这两个函数的图象的交点不⽌⼀个,且交点横、纵坐标都是整数,求符合条件的正整数a的值;(3)若这两个函数的交点都在直线x=12的右侧,求a的取值范围.21.已知:四边形ABCD中,点E、F分别为边AD、AB上的点,连接BE、DF相交于点G,且满⾜∠ADF=∠ABE(1)如图1,若DE=BG=n,cos∠AEB=23,GE=3,求AE的长(⽤含n的代数式表⽰);(2)如图2,若ABCD为矩形,G恰为BE中点,连接CG,AE=1,作点A关于BE,求DE的长.的对称点A′,A′到CG的距离为3√24答案和解析1.【答案】A【解析】解:M =5x 2?12xy +10y 2?6x ?4y +13=4x 2?12xy +9y 2+y 2?4y +4+x 2?6x +9=(2x ?3y)2+(y ?2)2+(x ?3)2≥0,故M ⼀定是⾮负数.故选:A .通过配⽅法配出平⽅根,从⽽判断M 值的⼤⼩.本题考查了配⽅法的应⽤,熟练配⽅法的应⽤是解答此题的关键. 2.【答案】C【解析】解:将⼀个棱长为m(m >2且m 为正整数)的正⽅体⽊块的表⾯染上红⾊,然后切成m 3个棱长为1的⼩正⽅体,则只有⼀个表⾯染有红⾊的⼩正⽅体的数量为6(m ?2)2,恰有两个表⾯染有红⾊的⼩正⽅体的数量12(m ?2),∵只有⼀个表⾯染有红⾊的⼩正⽅体的数量是恰有两个表⾯染有红⾊的⼩正⽅体的数量的12倍,∴6(m ?2)2=12×12(m ?2),解得m 1=26,m 2=2(舍去),故选:C .只有⼀个表⾯染有红⾊的⼩正⽅体的数量为6(m ?2)2,恰有两个表⾯染有红⾊的⼩正⽅体的数量12(m ?2),根据只有⼀个表⾯染有红⾊的⼩正⽅体的数量是恰有两个表⾯染有红⾊的⼩正⽅体的数量的12倍,即可得到m 的值.本题主要考查了正⽅体,解决问题的关键是抓住表⾯涂⾊的正⽅体切割⼩正⽅体的特点:1⾯涂⾊的在⾯上,2⾯涂⾊的在棱长上,3⾯涂⾊的在顶点处,没有涂⾊的在内部,由此即可解决此类问题. 3.【答案】D【解析】解:∵7b 2?100b +6=0,∴6×1b 2100×1b+7=0,∵6a 2?100a +7=0,∴a 、1b 是⽅程6x 2?100x +7=0的两根,∴由根与系数的关系可知:ab =76,故选:D .根据根与系数的关系即可求出答案.本题考查根与系数的关系,解题的关键是熟练运⽤根与系数的关系,本题属于基础题型.4.【答案】B【解析】解:a =√32+3+5√2+√3?√52+3?5=√3(√2+√3?√5)26=√2(√2+√3?√5)4=b4.∴ab =14.故选:B .将a 乘以√2+√3?√5√2+√3?√5可化简为关于b 的式⼦,从⽽得到a 和b 的关系,继⽽能得出ab 的值.本题考查⼆次根式的乘除法,有⼀定难度,关键是在分母有理化时要观察b的形式.5.【答案】C【解析】解:∵|ab|+|a?b|=1,∴0≤|ab|≤1,0≤|a?b|≤1,∵a,b是整数,∴|ab|=0,|a?b|=1或|a?b|=0,|ab|=1①当|ab|=0,|a?b|=1时,Ⅰ、当a=0时,b=±1,∴整数对(a,b)为(0,1)或(0,?1),Ⅱ、当b=0时,a=±1,∴整数对(a,b)为(1,0)或(?1,0),②当|a?b|=0,|ab|=1时,∴a=b,∴a2=b2=1,∴a=1,b=1或a=?1,b=?1,∴整数对(a,b)为(1,1)或(?1,?1),即:满⾜|ab|+|a?b|=1的所有整数对(a,b)为(0,1)或(0,?1)或(1,0)或(?1,0)或(1,1)或(?1,?1).∴满⾜|ab|+|a?b|?1=0的整数对(a,b)共有6个.故选:C.先判断出|ab|=0,|a?b|=1或|a?b|=0,|ab|=1,再借助a,b是整数即可得出结论.此题考查了绝对值,以及数对,分类讨论的思想,确定出|ab|=0,|a?b|=1或|a?b|= 0,|ab|=1是解题的关键.6.【答案】D【解析】解:如图,过点B作BF//AD交AE延长线于F,连接OC,∵BF//AD∴∠F=∠DAO∵BO=DO,∠BOF=∠DOA∴△FOB≌△AOD(AAS)∴FO=AO∵AO=2EO∴FO=2EO∴EO=EF,∵E为BC边的中点∴BE=CE∵∠BEF=∠CEO∴△BEF≌△CEO(SAS)∴∠BFE=∠COE∴BF//OCAD//OC∴S△ACD=S△AOD,∵BD=2OD∴S△ABD=2S△AOD,∴S△ABD=2S△ACD∴S△ACD:S△ABD=1:2;。

2019届华二附中初升高自招数学(附简析)

2019届华二附中初升高自招数学(附简析)

2019年华二附中自招数学试卷1. ()f x =a ,最小值为b ,求a b +.2. 有理数a 、b 、c ,22212()a b c ab b a ++=++-,求a b c --.3. a 是最大负整数,b 是绝对值最小的有理数,c 的倒数是c ,求201720192018a b c ++.4. 有一块正方形田地,中间有一圆池,池与田间间隙有13.75亩,方田四边到圆的最近距离都是20步,求边长和直径. (2402=步1亩,3π=)5. 一个人输密码,输了4次,3406、1630、7364、6173,每个数中都对了两个数字,但位置不正确,求正确密码.6. ,0()(),C x A f x C B x A x A<≤⎧=⎨+->⎩(煤气收费标准),当使用34m 时,缴费4元,当使用325m 时,缴费14元,当使用335m 时,缴费19元. 问:当使用320m ,缴费多少元?7. 半径为r 的圆在边长为a 的等边三角形中随意移动()a ≥,求圆扫不到的面积.8. 有一个数n ,若n 为偶数,则取2n ,若n 为奇数,则取31n +,多次后得1,求8次后能得到1的数有几个?(1可重复出现)9. ABC 中,a 、b 、c 均为自然数且a b c ≥≥,22213a b c ab ac bc ++---=,求周长小于30的ABC 有多少个?10. ,()1,,,,,,x x f x q q x p q p q q p p p ⎧⎪=+⎨=∈<⎪⎩*N 若为无理数若且互质,求()f x 在78(,)89区间内最大值.11. a 、b 、c 均为正整数,关于x 的方程20ax bx c ++=的两实根的绝对值都小于13,求a b c ++的最小值.12. x y xy +=,x y z xyz ++=,求z 的范围.13. 5422x y z x y z ++=⎧⎨+-=⎩,求441x z -+.14. 锐角ABC 中,D 、E 是BC 上的点,ABC 、ABD 、ADC 外心为O 、P 、Q , 求证:(1)APQ ∽ABC ;(2)若EO ⊥PQ ,则QO ⊥PE .15. 函数4520x y +=与x 、y 轴相交于A 、B ,l 与AB 、OA 交于C 、D 且平分AOB S ,求 2CD 的最小值.参考答案1. a =b =a b +=2. 22(1)2a b c -+=,|1||a b c -+=,1a b -=-,0c =,1a b c --=- 3. 1a =-,0b =,1c =±,答案为0或2-4. 设直径为d ,223(40)13.75240204d d d +-=⨯⇒=,边长为60 5. 因为位置不正确,∴没有3和6,所以密码由0、1、4、7构成,结合“位置不正确”分析讨论可得,密码为0741或40176. 4,05()0.5 1.5,5x f x x x <≤⎧=⎨+>⎩,(20)11.5f =7. 22r π-8. 逆推,有4、5、6、32、40、42、256共7个数9. 222()()()26a b b c a c -+-+-=,a b c ≥≥,∴4a c -=,讨论可得有11个10. 若为无理数,8()9f x <,若为有理数,||p q -要最小,而77888899+<<+,∴17p =, 15q =,此时max 16()17f x = 11. 由判别式、韦达定理得到限定条件,然后分析讨论,若两根可以相等,则最小值为 168125++=,若两根不等,则最小值为199129++= 12. 1x y x =-,代入x y z xyz ++=,∴221x z x x =-+,判别式法求值域,403z ≤≤ 13. 1x z -=-,4413x z -+=-14.(1)正弦定理可得::AB AP AC AQ =,得到相似,或者结合圆的相关知识(圆心角、圆周角、垂径定理、等弧对等角)得到APQ B ∠=∠,AQP C ∠=∠,从而相似(2)略.15. 面积公式可得2AC AD ⋅=222525CD AC AD ≥⋅-=。

2019年高中自主招生 数学试卷 (枣庄三中、枣庄实验高中)

2019年高中自主招生  数学试卷  (枣庄三中、枣庄实验高中)

高中(枣庄三中、新城实验高中)自主招生数学试卷一.选择题:本大题共10小题,每小题3分,共30分)1. 4的平方根是()A.±2B.-2C.2D. ±2.分式方程=的解为()A.x=2B.x=-2C.x=-D.x=3.(2016•重庆)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64 B.77 C.80 D.854.(2016•重庆)从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣3 B.﹣2 C.﹣D.5.(2016•丽水)在直角坐标系中,点M,N在同一个正比例函数图象上的是()A.M(2,﹣3),N(﹣4,6) B.M(﹣2,3),N(4,6)C.M(﹣2,﹣3),N(4,﹣6) D.M(2,3),N(﹣4,6)6.(2016•山西)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH7.(2016•永州)在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小8.(2016•潍坊)如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB 于点D,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣9.(2016•资阳)如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.10.(2016•茂名)如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y=x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是().A. B. C. D.二.填空题:本大题共5小题,每小题5分,共25分11.一元一次方程3x-3=0的解是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019高中自主招生必做试卷(数学)(满分150分 时间120分钟)一、选择题(每题4分,共40分)1、在-|-3|3,-(-3)3,(-3)3,-33中,最大的是 ( ) A 、-|-3|3 B 、-(-3)3 C 、(-3)3 D 、-332、已知114a b -=,则2227a ab ba b ab ---+的值等于 ( ) A 、215 B 、27- C 、6- D 、63、如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是 ( ) A 、b a c =+ B 、b ac = C 、222b ac =+ D 、22b a c ==4、a 、b 是有理数,如果,b a b a +=-那么对于结论:(1)a 一定不是负数;(2)b 可能是负数,其中 ( ) A 、只有(1)正确 B 、只有(2)正确C 、(1),(2)都正确D 、(1),(2)都不正确5、已知关于x 的不等式组⎪⎩⎪⎨⎧<≥-203bx a x 的整数解有且仅有4个:-1,0,1,2,那么适合这个不等式组的所 有可能的整数对(a,b)的个数有 ( )A 、1B 、2C 、4D 、66、如图,表示阴影区域的不等式组为 ( ) 2x +.y ≥5, 2x + y ≤5, 2x +.y ≥5, 2x + y ≤5, A 、 3x + 4y ≥9, B 、 3x + 4y ≥9, C 、 3x + 4y ≥9, D 、 3x + 4y ≤9, y ≥0 x ≥0 x ≥0 y ≥07、如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCD S S 矩形四边形等于 ( )A 、43 B 、54 C 、32 D 、658、若b x ax x x +++-732234能被22-+x x 整除则a :b 的值是 ( ) A 、-2 B 、-12 C 、6 D 、49、在矩形ABCD 中,AB =8,BC =9,点E 、F 分别在BC 、AD 上,且BE =6,DF =4,AE 、FC 相交于点G ,GH ⊥AD ,交AD 的延长线于点H ,则GH 的长为 ( ) AB C DEF G第3题图第9题图 第7题图第6题图学校 姓名 考号装 订 线 外 请 不 要 答 题10、若a 与b 为相异实数,且满足:21010=+++a b b a b a ,则ba= ( )A 、0.6B 、0.7C 、0.8D 、0.9二、填空题(每题5分,共20分)11、已知,αβ是方程2210x x +-=的两根,则3510αβ++的值为12、在平面直角坐标系xOy 中,满足不等式2222x y x y +≤+的整数点坐标(,x y )的个数为 13、今年参加考试的人数比去年增加了30%,其中男生增加了20%,女生增加了50%。

设今年参加考试的总人数为a ,其中女生人数为b ,则ba= 14、在等腰直角△ABC 中,AB =BC =5,P 是△ABC 内一点,且PAPC =5,则PB = .三、解答题(共90分)15、(12分)因式分解:224443x x y y --+-16、(14分)如图,抛物线y =ax 2-5ax +4(a <0)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC =BC . (1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点M ,使|MA -MB |最大?若存在,求出点M 的坐标;若不存在,请说明理由.17、(15分)如图所示,有一张长为3、宽为1的长方形纸片,现要在这张纸片上画两个小长方形,使小长方形的每条边都与大长方形的一边平行,并且每个小长方形的长与宽之比也都为3:1,然后把它们剪下,这时,所剪得的两张小长方形纸片的周长之和有最大值.求这个最大值.18、(15分)如图,在以O为圆心的圆中,弦CD垂直于直径AB,垂足为H,弦BE与半径OC相交于点F,且OF=FC,弦DE与弦AC相交于点G.(1)求证:AG=GC;(2)若AG=3,AH:AB=1:3,求△CDG的面积与△BOF的面积.19、(16分)已知直角三角形ABC 和ADC 有公共斜边AC ,M 、N 分别是AC ,BD 中点,且M 、N 不重合.(1)线段MN 与BD 是否垂直?请说明理由. (2)若∠BAC = 30°,∠CAD = 45°,AC = 4,求MN 的长 . 20、(18分)已知实数,,a b c 满足:2,4a b c abc ++==。

(1)求,,a b c 中最大者的最小值;(2)求a b c ++的最小值。

装 订 线 外 请 不 要 答 题参考答案二、填空题(每题5分,共20分)11、2- 12、9 13、51314三、解答题(本题6小题,共90分)15、224443x x y y --+-22(441)(44)x x y y =-+--+ …………6分122= (2x-)-(y-2)= (2x+y-3)(2x-y+1) …………12分17、要考虑的不同画线方案,可归纳为如下4类:(1)如图(1),其周长和=112(212)5.33⨯⨯+⨯= …………3分(2)如图(2),其周长和=[]2(3)2(1)3(1)8.x x x x ++-+-= …………6分 (3)如图(3),其周长和=8. …………9分 (4)如图(4),其周长和=3162(3)2(3)8.33x x x x x -⎡⎤++-+=+⎢⎥⎣⎦∵031x <≤,10.3x <≤∴当13x =时,周长和有最大值79.9…………14分综上所述,剪得的两个小长方形周长之和的最大值为79.9…………15分18、(1)证明:连接AD ,BC ,BD ∵AB 是直径,AB ⊥CD,∴BC=BD ,∠CAB=∠DAB, ∴∠DAG=2∠CAB, ∵∠BOF=2∠CAB, ∴∠BOF=∠DAG ,又∵∠OBF=∠ADG, ∴△BOF ∽△DAG , ∴OB DAOF AG=, ∵OB=OC=2OF,∴2DAAG=, 又∵AC=DA ,∴AC=2AG , ∴AG=GC; …………7分 (2)解:连接BC ,则∠BCA=90°, 又∵CH ⊥AB,∴2AC AH AB =,∵222,:1:3AC AG AH AB === ∴21(23),3AB AB =∴AB=6,∴AH=2,∴CH=22,∴S △ACD =1124242,22CD AH =⨯⨯=又∵AG=CG ,∴S △CDG = S △DAG =12S △ACD =22, …………11分 ∵△BOF ∽△DAG , ∴23(),4BOF DAG S OB S AD == ∴S =32. …………15分19、(1)证明:如图(1)当B,D 在AC 异侧时,连接BM,DM901224M AC ADC BM DM ACBDM N MN BD∠∠=∴==∴∴⊥为中点,ABC=分为等腰三角形又为BD 中点分如图(2)当B,D 在AC 同侧时同理可证MN BD ⊥ …………6分 (2)如图三:连接BM 、MD ,延长DM ,过B 作DM 延长线的垂线段BE , 则可知在Rt △BEM 中,∠EMB=30°, ∵AC=4,∴BM=2,∴BE=1,EM=3,MD=2,从而可知 BD=1223+=+2(2+3),∴BN=23+ 由Rt △BMN 可得:MN=2622232--=-=2(2+3)(不化简不扣分) …………11分 如图四:连接BM 、MD ,延长AD ,过B 作垂线BE , ∵M 、N 分别是AC 、BD 中点,∴MD=12AC ,MB=12AC , ∴MD=MB ∵∠BAC=30°,∠CAD=45°, ∴∠BMC=60°,∠DMC=90°,∴∠BMD=30°,∴∠BDM=18030752-= ∵∠MDA=45°,∴∠EDB=180°-∠BDM -∠MDA=60°令ED=x ,则BE=3x ,AD=22,AB=23 ∴由Rt △ABE 可得:222(23)(3)(22)x x =++, 解得23x =-,则BD=223- ∵M 、N 分别是AC 、BD 中点 ∴MD=2,DN=23- 由Rt △MND 可得:MN=22622(23)232+--=+=(不化简不扣分) …………16分 15注:本题也可以用75或三角函数解答,答案对就给分20、解:(1)由题意不妨设a 最大,即,,0.a b a c a ≥≥>且42,.b c a bc a+=-=∴ b 、c 是方程24(2)0x a x a--+=的两实根 △24(2)40a a=--⨯≥∴2(4)(4)0a a +-≥∴4a ≥(当4a =时,1b c ==-满足题意) ……………9分 (2)∵0abc > ∴,,a b c 全大于0,或一正二负若,,a b c 均大于0,由(1)知,,,a b c 最大者不小于4,这与2a b c ++=矛盾,故此情况不存在 故,,a b c 为一正二负,不妨设0,0,0a b c ><<(2)226a b c a b c a a a ++=--=--=-≥(当4a =时成立)所以a b c ++最小值为6 …………18分。

相关文档
最新文档