平面直角坐标系,二元一次方程(含答案)
平面直角坐标系与二元一次方程组
平面直角坐标系与二元一次方程组一、平面直角坐标系的基本概念平面直角坐标系是数学中常用的一种表示平面上点位置的方式。
它由两条相互垂直的数轴组成,分别称为x轴和y轴。
原点O是两个轴的交点,用来确定坐标的起点。
在平面直角坐标系中,x轴上的点都有一个对应的实数值,这个值叫做该点的x坐标;同理,y轴上的点有一个对应的实数值,叫做该点的y坐标。
一个平面点在直角坐标系中的位置可以用一个有序数对(x,y)来表示,其中x表示x轴上的坐标,y表示y轴上的坐标。
二、二元一次方程组的基本概念二元一次方程组是一个包含了两个变量的一次方程的集合。
一般地,一个二元一次方程的一般形式可以写作:ax + by = cdx + ey = f其中a、b、c、d、e、f为已知实数,且a和b不同时为0,d和e不同时为0。
解二元一次方程组即为找到使得两个方程同时成立的变量值。
解的方法可以是代入法、消元法、图解法等。
三、平面直角坐标系与二元一次方程组的联系平面直角坐标系提供了一种方便的方式来解决二元一次方程组的问题。
通过将方程中的变量值代入直角坐标系中,可以将问题转化为在坐标系中求解的几何问题。
具体地,将二元一次方程组化简后,可以得到两个关于x和y的直线方程。
这两条直线在坐标系中的交点就是方程组的解。
解的个数可以有三种情况:无解、唯一解和无穷多解。
当两条直线相交于一个点时,该方程组有唯一解;当两条直线平行时,该方程组无解;当两条直线重合时,该方程组有无穷多解。
四、通过实例理解平面直角坐标系与二元一次方程组的应用假设有一个二元一次方程组:2x + 3y = 6-3x + 2y = 1首先,我们可以将其转化为直角坐标系中的两条直线方程。
在直角坐标系中,第一条方程可以表示为:y = (6 - 2x) / 3第二条方程可以表示为:y = (1 + 3x) / 2绘制这两条直线,可以发现它们在坐标系中相交于一个点,即(-1,2)。
所以,这个方程组的解就是x = -1,y = 2。
人教版数学七年级下册前四章相交线 实数 平面直角坐标系 二元一次方程 测试题(答案详细)
人教版数学七年级下册前四章相交线实数平面直角坐标系二元一次方程测试题(答案详细)七年级下册前四章测试题一、选择题(本题共10小题,每题3分,共30分)1.(2014湖北荆门3,3分)如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()FABGCDE第3题图A。
155°B。
145°C。
110°D。
35°解析:∠XXX∠CAG,∠BAC=∠XXX,所以∠XXX∠BAC-∠BAG=∠EFC-∠BAG=70°-35°=35°,选D。
2.(2013广东茂名,10,3分)如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是()第2题图A。
15°B。
25°C。
35°D。
45°解析:∠1+∠2+90°=180°,所以∠2=180°-90°-∠1=65°,选D。
3.(2014台湾省,11,3分)如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与11﹣239最接近?第3题图A。
AB。
BC。
CD。
D解析:数轴上A、B、C、D四点的坐标分别是-240、-238、-236、-234,与-239最接近的是-238,所以选B。
4.(2014年江西省抚州市6,3分)已知a、b满足方程组2a-b=2a+2b=6,则3a+b的值为A。
8B。
4C。
-4D。
-8解析:将第一个方程式乘以2,得到4a-2b=4,将第二个方程式加上这个式子,得到5a=10,所以a=2,代入第一个方程式,得到b=2,所以3a+b=3×2+2=8,选A。
5.(2014辽宁锦州,8,3分)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁,”如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A。
北师大版八年级数学上册(第五章二元一次方程组)单元测试卷-带参考答案
一、单选题
1.如图,在平面直角坐标系中,一次函数y=kx+b和y=mx+n相交于点(2,-1)则关于x、y的方程组 的解是()
A. B. C. D.
2.某校运动员分组训练,若每组6人,余3人;若每组7人,则缺5人;设运动员人数为 人,组数为 组,则列方程组为()
参考答案:
1.B
2.D
3.C
4.A
5.C
6.B
7.C
8.B
9.D
10.A
11. (答案不唯一)
12.2
13.2或
14.
15.
16.4
17.9
18.5 2或3
19.(1)h是x的一次函数
(2)9只
20.(1)
(2)
21.(1)30;(2)①小丽步行的速度为 ,小明步行的速度为 ;②点 ,点C表示:两人出发 时,小明到达甲地,此时两人相距 .
(1)丽丽所买皮衣与毛衣的单价各是多少元?
(2)丽丽可以到线上客服处领取多少元补贴?
24.如图,在平面直角坐标系中,点A(0,b),点B(a,0),点D(2,0),其中a、b满足 ,DE⊥x轴,且∠BED=∠ABO,直线AE交x轴于点C.
(1)求A、B、E三点的坐标;
(2)若以AB为一边在第二象限内构造等腰直角三角形△ABF,请直接写出点F的坐标.
22.1
23.(1)丽丽所买皮衣的单价是 元,毛衣的单价是 元
(2) 元
24.(1)A(0,3),B(-1,0),E(2,1),(2) (-4,1)(-3,4)(-2,2)
A. B. C. D.
9.若 是二元一次方程组 的解,则 的值为()
北师大版八年级数学上册第五章《二元一次方程组》综合练习题(含答案)
北师大版八年级数学上册第五章《二元一次方程组》综合练习题(含答案)一、单选题1.如果方程3x y -=与下面方程中的一个组成的方程组的解为41x y =⎧⎨=⎩,那么这个方程可以是( ) A .3416x y -= B .1254x y +=C .1382x y +=D .2()6x y y -=2.在同一平面直角坐标系中,直线4y x =-+与2y x m =+相交于点(3,)P n ,则关于x ,y 的方程组4020x y x y m +-=⎧⎨-+=⎩的解为( )A .15x y =-⎧⎨=⎩B .13x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .95x y =⎧⎨=-⎩3.已知方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则()()()()2213313230.951x y x y ⎧-=++⎪⎨-=-+⎪⎩的解是( )A .8.31.2x y =⎧⎨=⎩B .10.32.2x y =⎧⎨=⎩C . 6.32.2x y =⎧⎨=⎩D .10.30.2x y =⎧⎨=⎩4.已知关于x ,y 的二元一次方程组24,2x y kx y -=⎧⎨+=⎩,的解为2,x y =⎧⎨=♥⎩,其中“♥”是不小心被墨水涂的,则k 的值为( ) A .1B .1-C .2D .2-5.如图,直线y =x +5和直线y =ax +b 相交于点P ,观察其图象可知方程x +5=ax +b 的解( )A .x =15B .x =25C .x =10D .x =206.五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( ) A .30B .26C .24D .227.如图,直线2y x =与y kx b =+相交于点(),2P m ,则关于x 的方程2kx b +=的解是( )A .12x =B .1x =C .2x =D .4x =8.某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( ) A .1032019xy= B .1032019yx= C .1019320x y -= D .1910320x y -=9.《九章算术》是我国古代著名的数学专著,其“方程”章中给出了“遍乘直除”的算法解方程组.比如对于方程组323923342326x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩,将其中数字排成长方形形式,然后执行如下步骤(如图);第一步,将第二行的数乘以3,然后不断地减第一行,直到第二行第一个数变为0;第二步,对第三行做同样的操作,其余步骤都类似.其本质就是在消元.那么其中的a ,b 的值分别是( )A .24,4B .17,4C .24,0D .17,010.如图,在方格纸中,点P ,Q ,M 的坐标分别记为(0,2),(3,0),(1,4).若MN ∥PQ ,则点N 的坐标可能是( )A .(2,3)B .(3,3)C .(4,2)D .(5,1)11.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .1212.如图,直线11y k x b =+和直线22y k x b =+相交于点2,23M ⎛⎫- ⎪⎝⎭,则关于x ,y 的方程组1122y k x b y k x b =+⎧⎨=+⎩,的解为( )A .2,32x y ⎧=⎪⎨⎪=-⎩B .2,23x y =-⎧⎪⎨=⎪⎩C .2,32x y ⎧=⎪⎨⎪=⎩D .2,23x y =-⎧⎪⎨=-⎪⎩二、填空题13.关于x 、y 的二元一次方程组2354343x y mx y m -=-⎧⎨+=+⎩的解满足55x y +=,则m 的值是______.14.若()225240x y x y +-++=,则x y -的值是________.15.某班为奖励在数学竞赛中成绩优异的同学,花费48元钱购买了甲、乙两种奖品,每种奖品至少购买1件,其中甲种奖品每件4元,乙种奖品每件3元,则有______种购买方案.16.若方程组()23312y kx y k x =-⎧⎨=-+⎩无解,则2y kx =-图象不经过第________象限.17.如图点D 、E 分别在ABC 的边AC 、AB 上,2,,3AD AE EB BD DC ==与CE 交于点F ,40ABC S =△,则AEFD S =_______.18.如图,直线3y kx =-与x 轴、y 轴分别交于点B 与点A ,13OB OA =,点C 是直线AB上的一点,且位于第二象限,当△OBC 的面积为3时,点C 的坐标为______.三、解答题19.已知点(4,0)A 及在第一象限的动点(,)P x y ,且6x y +=,O 为坐标原点,设OPA 面积为S .(1)求S 关于x 的函数解析式; (2)求x 的取值范围; (3)当6S =时,求P 点坐标.20.某商场同时购进甲、乙两种商品共100件,其进价和售价如表:商品名称甲乙进价(元/件)40 90售价(元/件)60 120设其中甲种商品购进x件,商场售完这批商品的总利润为y元.(1)写出y关于x的函数关系式;(2)若获得的利润恰好为2800元,求该商场购进甲、乙两种商品各多少件?21.如图,一次函数y=x+3的图象1l与x轴交于点B,与过点A(3,0)的一次函数的图象2l交于点C(1,m).(1)求m的值;(2)求一次函数图象2l相应的函数表达式;(3)求ABC的面积.22.已知0k ≠,将关于x 的方程0kx b +=记作方程☆. (1)当3k =,2b =-时,方程☆的解为______.(2)若方程☆的解为5x =-,写出一组满足条件的k ,b 值:k =______,b =______; (3)若方程☆的解为3x =,求关于y 的方程()250k y b --=的解.23.A ,B 两地相距300km ,甲、乙两人分别开车从A 地出发前往B 地,其中甲先出发1h ,如图是甲,乙行驶路程(km),(km)y y 甲乙随行驶时间(h)x 变化的图象,请结合图象信息.解答下列问题:(1)填空:甲的速度为___________km /h ; (2)分别求出,y y 甲乙与x 之间的函数解析式; (3)求出点C 的坐标,并写点C 的实际意义.24.数学乐园:解二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩①②,21b ⨯-⨯①②b 得:()12211221a b a b x c b c b -=-,当12210a b a b -≠时,12211221c b c b x a b a b -=-,同理:12211221a c a c y ab a b -=-;符号a b c d称之为二阶行列式,规定:a b ad bc c d=-,设1122a b D a b =,1122x c b D c b =,1122y a c D a c =,那么方程组的解就是x y D x DD y D⎧=⎪⎪⎨⎪=⎪⎩ (1)求二阶行列式3456的值;(2)解不等式:2224x x -≥--;(3)用二阶行列式解方程组3262317x y x y -=⎧⎨+=⎩;(4)若关于x 、y 的二元一次方程组362317x my x y -=⎧⎨+=⎩无解,求m 的值.25.在新年联欢会上,同学们组织了精彩的猜谜活动,为了奖励猜对的同学,老师决定购买笔袋或彩色铅笔作为奖品,已知1个笔袋和2筒彩色铅笔原价共需44元;2个笔袋和3筒彩色铅笔原价共需73元.(1)求每个笔袋、每筒彩色铅笔的原价各多少元?(2)时逢新年期间,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠.如果买m 个笔袋需要1y 元,买n 筒彩色铅笔需要2y 元.请用含m ,n 的代数式分别表示1y 和2y ;(3)如果在(2)的条件下一共购买同一种奖品95件,请分析买哪种奖品省钱.26.如图1,在平面直角坐标xOy 中,直线1l :1y x =+与x 抽交于点A ,直线2l :33y x =-与x 轴交于点B ,与1l 相交于C 点.(1)请直接写出点A ,点B ,点C 的坐标:A _________,B ________,C _______. (2)如图2,动直线x t =分别与直线1l 、2l 交于P 、Q 两点. ①若2PQ =,求t 的值;②若存在2AQC ABC S S =△△,求出此时点Q 的坐标;若不存在,请说明理由.27.小华从家里出发到学校去上学,前15路段小华步行,其余路段小华骑自行车. 已知小华步行的平均速度为60m/min ,骑自行车的平均速度为200m/min ,小华从家里到学校一共用了22min .(1)小红同学提出问题:小华家里离学校有多少m ? 前15路段小华步行所用时间是多少min ? 请你就小红同学提出的问题直接设出未知数列方程组进行解答.(2)请你再根据题目的信息,就小华走的“路程”或“时间”,提出一个能用二元一次方程组解答但与第(1)问不完全相同的问题,并设出未知数、列出方程组。
2022年北师大版八年级上册数学第五章二元一次方程组第7节用二元一次方程组确定一次函数表达式
7 用二元一次方程组确定一次函数表达式用待定系数法求函数表达式的一般步骤(1)写出函数表达式的一般式,其中包括未知的系数;(2)把自变量与函数的对应值代入函数表达式中,得到关于待定系数的方程或方程组; (3)解方程(组)求出待定系数的值,从而写出函数表达式. 判一判:1.一次函数的图象是直线,由无数点组成.( √ ) 2.确定一次函数表达式需要两个坐标.( √ ) 3.过原点和(1,2)的直线是y =3x .( × )1.在平面直角坐标系中,二元一次方程ax +by =c 的图象如图所示,则当x =4时,y 的值为__-1__.【解析】设直线的表达式为y =mx +n , 把(0,1),(2,0)代入得⎩⎨⎧n =1,2m +n =0,解得⎩⎨⎧m =-12,n =1,所以直线的表达式为y =-12 x +1,当x =4时,y =-12×4+1=-1.2.小亮用作图象的方法解二元一次方程组时,在同一平面直角坐标系中作出了相应的两个一次函数图象如图所示,则他解的这个方程组是__⎩⎨⎧y =-2x +2,y =-12x -1__.【解析】设经过点(0,2)与点(2,-2)的直线表达式为y =kx +b , 则⎩⎨⎧b =2,2k +b =-2, 解得⎩⎨⎧k =-2,b =2.∴直线的表达式为y =-2x +2;设经过点(-2,0)与点(2,-2)的直线表达式为y =mx +n , 则⎩⎨⎧-2m +n =0,2m +n =-2,解得⎩⎨⎧m =-12,n =-1.∴直线的表达式为y =-12x -1.故他解的这个方程组是⎩⎨⎧y =-2x +2,y =-12x -1.3.甲超市进行苹果优惠促销活动,苹果的标价为10元/kg ,如果一次购买4 kg 以上的苹果,超过4 kg 的部分按标价的6折售卖.x (单位:kg)表示购买苹果的重量,y (单位:元)表示付款金额. (1)文文购买3 kg 苹果需付款__30__元; 购买5 kg 苹果需付款__46__元;(2)写出付款金额y 关于购买苹果的重量x 的函数表达式: 当0<x ≤4时,__y =10x __; 当x >4时,__y =6x +16__.重点1 二元一次方程组与待定系数法【典例1】已知一次函数y =ax +2与y =kx +b 的图象如图所示,且方程组⎩⎨⎧ax -y =-2,kx -y =-b 的解为⎩⎨⎧x =2,y =1,点B 的坐标为(0,-1).你能确定两个一次函数的表达式吗?【自主解答】∵方程组⎩⎨⎧ax -y =-2,kx -y =-b 的解是⎩⎨⎧x =2,y =1,∴交点A 的坐标为(2,1), ∵点A 在函数y =ax +2的图象上, ∴2a +2=1, ∴a =-12,∵点A (2,1),点B (0,-1)在函数y =kx +b 图象上, ∴⎩⎨⎧2k +b =1,b =-1, 解得⎩⎨⎧k =1,b =-1.∴能.两个一次函数的表达式分别为y =-12x +2,y =x -1.1.如图,已知B 中的实数与A 中的实数之间的对应关系是某个一次函数.若用y 表示B 中的实数,用x 表示A 中的实数,则a =__1__.【解析】设一次函数表达式为y =kx +b (k ≠0),把⎩⎨⎧x =-3,y =-9, ⎩⎨⎧x =-1,y =-5代入可得,⎩⎨⎧-9=-3k +b ,-5=-k +b , ,解得⎩⎨⎧k =2b =-3 ,∴y =2x -3.∴当x =(-2 )2=2时,y =2×2-3=1, ∴a =1.2.直线y =kx +b 经过点A (1,-1)与点B (-1,5),则函数表达式为:__y =-3x +2__. 【加固训练】直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,-2). (1)求直线AB 所对应的函数表达式;(2)若直线AB 上一点C 在第一象限且点C 的坐标为(a ,2),求△BOC 的面积.【解析】(1)设直线AB 的表达式为y =kx +b (k ≠0), ∵直线AB 过点A (1,0)、点B (0,-2), ∴⎩⎨⎧k +b =0,b =-2, 解得⎩⎨⎧k =2,b =-2,∴直线AB 的表达式为y =2x -2. (2)∵C (a ,2)在直线AB 上, ∴2=2a -2, ∴a =2, ∴C (2,2),∴S △BOC =12×2×2=2.【技法点拨】 待定系数法确定表达式1.设:设出一次函数的表达式y =kx +b .2.代:将已知条件代入上述表达式,得到关于k ,b 的二元一次方程组. 3.解:解方程组,求出k ,b 的值. 4.写:写出一次函数表达式.重点2 二元一次方程组与一次函数的应用【典例2】在一条笔直的公路旁依次有A ,B ,C 三个村庄,甲、乙两人同时分别从A ,B 两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C 村,最终到达C 村.设甲、乙两人到C 村的距离y 1,y 2(km)与行驶时间x (h)之间的函数关系如图所示,若乙在行驶过程中与甲相距5 km ,则x 的值为__56 或76 或176__.【解析】设y 1=kx +b ,将(0,120)和(0.5,90)代入得:⎩⎨⎧b =120,0.5k +b =90,解得⎩⎨⎧k =-60,b =120,∴y 1=-60x +120.设y 2=mx +n ,将(0,90)和(3,0)代入得:⎩⎨⎧n =90,3m +n =0,解得⎩⎨⎧m =-30,n =90,∴y 2=-30x +90.乙在行驶过程中距甲5 km 分三种情况: ①甲在乙后5 km ,则y 1-y 2=5,∴(-60x +120)-(-30x +90)=5, 解得x =56,②乙在甲后5 km ,则y 2-y 1=5, ∴(-30x +90)-(-60x +120)=5, 解得x =76,③甲已经到C 村,乙距C 村5 km ,则y 2=5, ∴-30x +90=5, 解得x =176.1.(2022·长沙期中)甲、乙两只气球分别从不同高度同时匀速上升60 min ,气球所在位置距离地面的高度y (单位:m)与气球上升的时间x (单位:min)之间的函数关系如图所示.下列说法正确的是(C )A .甲气球上升过程中y 与x 的函数关系为:y =2x +5B .10 min 时,甲气球在乙气球上方C .两气球高度差为15 m 时,上升时间为50 minD .上升60 min 时,乙气球距离地面高度为40 m【解析】设甲气球上升过程中y 与x 的函数关系为y =kx +b , 则⎩⎨⎧b =5,20k +b =25, 解得⎩⎨⎧k =1,b =5, ∴y =x +5,选项A 不符合题意;由题图可知,10 min 时,甲气球在乙气球下方,选项B 不符合题意;由甲气球上升过程中y 与x 的函数关系为y =x +5,可知甲气球上升速度为1 m/min ,乙气球上升速度为:(25-15)÷20=0.5(m/min),设两气球高度差为15 m 时,上升时间为x min ,根据题意,得:5+x -(15+0.5x )=15, 解得x =50,所以两气球高度差为15 m 时,上升时间为50 min ,选项C 符合题意;上升60 min 时,乙气球距离地面高度为:15+0.5×60=45(m),选项D 不符合题意. 2.如图是某地出租车的乘车里程和所付车费之间的关系图象,分别有线段AB ,BC 和射线CD 组成.张老师乘坐出租车里程是8千米.他应该付车费__20__元.【解析】设线段BC 的函数表达式为:y =kx +b , 把B (3,10),C (10,24)代入得: ⎩⎨⎧3k +b =10,10k +b =24, 解得⎩⎨⎧k =2,b =4,即BC 的函数表达式为:y =2x +4(3≤x ≤10), 由题图可知:x =8,位于函数图象BC 上, 把x =8代入y =2x +4得:y =2×8+4=20, ∴他应该付车费20元. 【加固训练】某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示.其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)当x ≥30时,求y 与x 之间的函数表达式;(2)若小李4月份上网35小时,他应付多少元的上网费用?【解析】(1)设当x ≥30时,y 与x 之间的函数表达式是y =kx +b , ⎩⎨⎧30k +b =60,40k +b =90, 解得⎩⎨⎧k =3,b =-30,即当x ≥30时,y 与x 之间的函数表达式为y =3x -30; (2)当x =35时,y =3×35-30=105-30=75, 即小李4月份上网35小时,他应付75元的上网费用.【技法点拨】用方程与函数解决实际问题1.数学方法:数形结合的方法. 2.基本步骤:(1)分析题意中的等量关系或图象信息. (2)建立函数模型.(3)构造二元一次方程组求解.特别提醒:无论方程还是函数都需要注意“解”的实际意义.将平面直角坐标系中过某一定点且不与x 轴垂直的直线,叫该定点的“友好线”.若点P (1,0),则点P 的“友好线”可记为y =k (x -1).(1)已知点A 的“友好线”可记为y =kx -3k +3 ,则点A 的坐标为________; (2)若点B (3,2)的“友好线”恰好经过点(1,1),求该“友好线”的表达式;(3)已知点M 在点Q 的“友好线”y =k (x +2)-1上,点N 在直线y =-13x +2上,若M (a ,m ),N (a ,n ),且当-3≤a ≤3时,m ≤n ,请直接确定k 的取值范围. 【解析】(1)∵y =kx -3k +3 =k (x -3)+3 , ∴点A 的坐标为(3,3 ).答案:(3,3 )(2)由题意可设点B 所在直线表达式为y =k (x -3)+2, 将(1,1)代入y =k (x -3)+2得1=-2k +2,解得k =12 ,∴该“友好线”的表达式为y =12(x -3)+2.(3)由题意得当-3≤x ≤3时,直线y =k (x +2)-1在直线y =-13 x +2的下方,把x =-3代入y =-13 x +2得y =3,把x =3代入y =-13 x +2得y =1,∴直线y =-13 x +2经过点(-3,3),(3,1),把(-3,3)代入y =k (x +2)-1得-4=k , 把(3,1)代入y =k (x +2)-1得5k -1=1, 解得k =25,∵y =k (x +2)-1经过定点(-2,-1),当k =-4时,如图,当k =25时,如图,∴当-4≤k ≤25且k ≠0时满足题意.。
人教版七年级数学下册二元一次方程组试题(带答案)(二)解析
一、选择题1.甲、乙两人共同解关于x ,y 的方程组532ax by x cy +=⎧⎨+=⎩①②,甲正确地解得21x y =⎧⎨=-⎩乙看错了方程②中的系数c ,解得31x y =⎧⎨=⎩,则2()a b c ++的值为( )A .16B .25C .36D .492.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为( ) A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩3.如图,长方形的宽为a ,长为b ,2a b a <<,第一次分割出一个最大的正方形1M ,第二次在剩下的长方形中再分割出一个最大的正方形2M ,依次下去恰好能把这个长方形分成四个正方形1M ,2M ,3M ,4M ,并且无剩余,则a 与b 应满足的关系是( )A .53b a = B .53b a =或43b a = C .43b a =或54b a = D .53b a =或54b a =4.《九章算术》是中国古代重要的数学著作,其中有这样一道题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗,问醇、行酒各得几何?”译文:今有醇酒(优质酒)1斗,价格50钱;行酒(勾兑酒)1斗,价格10钱.现有30钱,买2斗酒,问能买醇酒、行酒各多少斗?设能买醇酒x 斗,斗酒y 斗,可列二元一次方程组为( )A .2105030x y x y +=⎧⎨+=⎩B .2501030x y x y +=⎧⎨+=⎩ C .2301050x y x y +=⎧⎨+=⎩D .2103050x y x y +=⎧⎨+=⎩5.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改成横排,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是23213219x y x y +=⎧⎨+=⎩.类似地,图2所示的算筹图所对应的二元一次方程组的解为( )A .32x y =⎧⎨=⎩B .61x y =⎧⎨=⎩C .813x y =⎧⎨=⎩D .21x y =⎧⎨=⎩6.小王沿街匀速行走,发现每隔12分钟从背后驶过一辆8路公交车,每隔4分钟从迎面驶来一辆8路公交车.假设每辆8路公交车行驶速度相同,而且8路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是( ) A .3分钟B .4分钟C .5分钟D .6分钟7.已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,则下列结论中正确的有( )个①当5a =时,方程组的解是1020x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =③不存在一个实数a 使得x y =; ④若23722a y -=,则2a =. A .1B .2C .3D .48.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.测量的数据如图,则桌子的高度等于( )A .60cmB .65cmC .70cmD .75cm9.若关于x 、y 的方程组2{44x y ax y a+=-=的解是方程3x 2y 10+=的一个解,则a 的值为( )A .2B .-2C .1D .-110.关于x ,y 的,二元一次方程()()12520a x a y a -+++-=,当a 取一个确定的值时就得到一个方程,所有这些方程有一个公共解,则这个公共解是( )A.35xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.12xy=⎧⎨=⎩D.31xy=⎧⎨=-⎩二、填空题11.两位同学在解方程组时,甲同学正确地解出,乙同学因把c写错而解得,则a=_____,b=_____,c=_____.12.已知关于x、y的方程组254x yax by+=⎧⎨+=⎩与524bx ayx y+=⎧⎨+=⎩有相同的解,则a b+的值为________.13.若x=2,y=﹣1是关于x,y的二元一次方程2mx+4ny﹣9=3的一个解,则m﹣n的值为__.14.某纸厂要制作如图的甲、乙两种无盖的小长方体盒子.该厂利用边角材料裁出了长方形和正方形两种纸片,其中长方形纸片的宽和正方形纸片的边长相等.现用150张正方形纸片和300张长方形纸片制作这两种小盒,恰好用完.设可做成甲、乙两种盒子各x、y 个,根据题意,可列正确的方程组为 __.15.若关于x,y的方程组4510(1)8x ykx k y+=⎧⎨--=⎩中x的值比y的相反数大2,则k=_____.16.在平面直角坐标系中,将点P向左平移2个单位长度,再向上平移3个单位长度,得到P'(﹣1,3),则点P坐标为___.17.关于x的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,当m______时,是一元一次方程;关于,x y的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,当m______时,它是二元一次方程.18.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A植树点植树,乙、丁两组到B植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A、B两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.19.若2a m+2n b7+a5b n﹣2m+2的运算结果是3a5b7,则2m2+3mn+n2的值是 ___.20.某出租车起步价所包含的路程为02km,超过2km的部分按每千米另收费.小江乘坐这种出租车走了7km,付了16元;小北乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元.根据题意,可列方程组为_________.三、解答题21.对a ,b 定义一种新运算T ,规定:T (a ,b )=(a +2b )(ax +by )(其中x ,y 均为非零实数).例如:T (1,1)=3x +3y .(1)已知T (1,﹣1)=0,T (0,2)=8,求x ,y 的值;(2)已知关于x ,y 的方程组()()113028T a T a ⎧-=-⎪⎨=⎪⎩,,,若a ≥﹣2,求x +y 的取值范围;(3)在(2)的条件下,已知平面直角坐标系上的点A (x ,y )落在坐标轴上,将线段OA 沿x 轴向右平移2个单位,得线段O ′A ′,坐标轴上有一点B 满足三角形BOA ′的面积为9,请直接写出点B 的坐标. 22.阅读感悟:有些关于方程组的问题,要求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x 、y 满足35x y -=①,237x y +=②,求4x y -和75x y +的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①-②可得42x y -=-,由①+②×2可得7519x y +=.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组2728x y x y +=⎧⎨+=⎩,则x y -=_______,x y +=_______;(2)某班级组织活动购买小奖品,买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元,则购买6支水笔、6块橡皮、6本记事本共需多少元?(3)对于实数x 、y ,定义新运算:*x y ax by c =++,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3*515=,4*728=,那么1*1=_______.23.小明为班级购买信息学编程竞赛的奖品后,回学校向班主任李老师汇报说:“我买了两种书,共30本,单价分别为20元和24元,买书前我领了700元,现在还余38元.”李老师算了一下,说:“你肯定搞错了.”(1)李老师为什么说他搞错了?试用方程的知识给予解释;(2)小明连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,如果单价为20元的书多于24元的书,请问:笔记本的单价为多少元?24.七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数. ①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?25.对于不为0的一位数m 和一个两位数n ,将数m 放置于两位数之前,或者将数m 放置于两位数的十位数字与个位数字之间就可以得到两个新的三位数,将较大三位数减去较小三位数的差与15的商记为(),F m n .例如:当1m =,68n =时,可以得到168,618.较大三位数减去较小三位数的差为618168450-=,而4501530÷=,所以()1,6830F =. (1)计算:()2,17F .(2)若a 是一位数,b 是两位数,b 的十位数字为x (18x ≤≤,x 为自然数),个位数字为8,当()()11,509,862F a F b +=时,求出所有可能的a ,b 的值.26.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元. (1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13.请设计出最省钱的购买方案,并说明理由. 27.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元. (1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案.28.已知:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l 辆A 型车和l 辆B 型车都载满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.29.某企业用规格是170cm ×40cm 的标准板材作为原材料,按照图①所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm).(1)求图中a 、b 的值;(2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图②所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计).①一共可裁剪出甲型板材 张,乙型板材 张; ②恰好一共可以做出竖式和横式两种无盖装饰盒子多少个?30.如图,α∠和β∠的度数满足方程组2230320αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,且//CD EF ,AC AE ⊥.(1)用解方程的方法求α∠和β∠的度数; (2)求C ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将x =2,y =﹣1代入方程组中,得到关于a 与b 的二元一次方程与c 的值,将x =3,y =1代入方程组中的第一个方程中得到关于a 与b 的二元一次方程,联立组成关于a 与b 的方程组,求出方程组的解得到a 与b 的值,即可确定出a ,b 及c 的值. 【详解】把21x y =⎧⎨=-⎩代入得:2562a b c -=⎧⎨-=⎩,解得:c =4,把31x y =⎧⎨=⎩代入得:3a +b =5,联立得:2535a b a b -=⎧⎨+=⎩,解得:21a b =⎧⎨=-⎩,则(a +b +c )2=(2﹣1+4)2=25. 故选B . 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.C解析:C 【详解】分析:由原方程组的解及两方程组的特点知,x +y 、x ﹣y 分别相当于原方程组中的x 、y ,据此列出方程组,解之可得. 详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩.故选C .点睛:本题主要考查二元一次方程组,解题的关键是得出两方程组的特点并据此得出关于x 、y 的方程组.3.B解析:B 【分析】根据长方形的宽为a ,长为b 进行分割,第一次分割出边长a 的正方形,第二次分割出边长(b -a )的正方形,并进行分类讨论,画出几何图形,利用边长的关系即可得出a 、b 的关系. 【详解】 解:①如图:∵AB =AE =a ,AD =BC =b , ED =EI =IG =GF =b -a , ∴a =3(b -a ), ∴4a =3b , ∴43b a =②如图:∵AB =AF =BE =a ,AD =BC =b , ∴EI =IC =2a -b , ∴b =a +2a -b +2a -b , ∴53b a = 综上所述:43b a =或53b a =故选:B . 【点睛】本题考查了矩形和正方形边长的关系,准确的画出图形,进行分类讨论是解题的关键.4.B解析:B 【分析】设能买醇酒x 斗,行酒y 斗,利用总价=单价⨯数量,结合用30钱共买2斗酒,即可得出关于x ,y 的二元一次方程组,此题得解. 【详解】解:设能买醇酒x 斗,行酒y 斗. 买2斗酒,2x y ∴+=;醇酒1斗,价格50钱;行酒1斗,价格10钱,且共花费30钱,501030x y ∴+=.联立两方程组成方程组2501030x y x y +=⎧⎨+=⎩.故选:B . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解题的关键是找准等量关系,正确列出二元一次方程组.5.D解析:D 【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10或5,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式,然后化简计算即可. 【详解】解:根据题意可得:第一个方程x 的系数为3,y 的系数为2,相加的结果为8;第二个方程x 的系数为6,y 的系数为1,相加的结果为13,所以可列方程组为328613x y x y +=⎧⎨+=⎩,解之得:21x y =⎧⎨=⎩,故选:D . 【点睛】考查列二元一次方程组;关键是读懂图意,得到所给未知数的系数及相加结果.6.D解析:D 【分析】首先设同向行驶的相邻两车的距离及车、小王的速度为未知数,根据等量关系把相关数值代入可得到同向行驶的相邻两车的距离及车的速度关系式,相除即可得所求时间. 【详解】解:设8路公交车的速度为x 米/分,小王行走的速度为y 米/分,同向行驶的相邻两车的间距为s 米.每隔12分钟从背后驶过一辆8路公交车,则 1212x y s -=①每隔4分钟从迎面驶来一辆8路公交车,则 44x y s +=②由①+②可得6s x =, 所以6sx=, 即8路公交车总站发车间隔时间是6分钟. 故选:D . 【点睛】本题考查了二元一次方程组的应用,根据追及问题和相遇问题得到两个等量关系是解题的关键.7.B解析:B 【分析】①把a =5代入方程组求出解,即可作出判断;②由题意得x +y =0,变形后代入方程组求出a 的值,即可作出判断; ③若x =y ,代入方程组,变形得关于a 的方程,即可作出判断; ④根据题中等式得2a ﹣3y =7,代入方程组求出a 的值,即可作出判断. 【详解】解:①把a =5代入方程组得:3510(1)20(2)x y x y -=⎧⎨-=⎩, 由(2)得x =2y ,将x =2y 代入(1)得:y =10, 将y =10代入x =2y 得:x =20,解得:2010x y =⎧⎨=⎩,故①错误;②当x ,y 的值互为相反数时,x +y =0, 即:y =﹣x代入方程组得:35225x x ax x a +=⎧⎨+=-⎩,整理,得82(3)35(4)x a x a =⎧⎨=-⎩,由(3)得:14x a =,将14x a =代入(4),得:354a a =-,解得:a =20,故②正确;③若x =y ,则有225x ax a -=⎧⎨-=-⎩,可得:a =a ﹣5,矛盾,∴不存在一个实数a 使得x =y ,故③正确;④352(5)25(6)x y a x y a -=⎧⎨-=-⎩, (5)-(6)×3,得:15y a =-, 将15y a =-代入(6),得:25x a =-,∴原方程组的解为2515x ay a =-⎧⎨=-⎩,∵23722a y -=, ∴2a ﹣3y =7, 把y =15﹣a 代入得: 2a ﹣45+3a =7,解得:a =525,故④错误; ∴正确的选项有②③两个.故选:B .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.本题属于基础题型,难度不大.8.D解析:D【分析】设长方体木块长xcm ,宽ycm ,桌子的高为acm ,由题意列出方程组求出解即可得出结果.【详解】解:设长方体木块长xcm ,宽ycm ,桌子的高为acm ,由题意,得9060a x y a y x +-=⎧⎨+-=⎩, 两式相加,得 2a =150,解得 a =75,故选:D .【点睛】本题考查了二元一次方程组的应用.解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程中求解.9.A解析:A【详解】(1)−(2)得:6y=−3a ,∴y=−2a , 代入(1)得:x=2a ,把y=−2a ,x=2a 代入方程3x+2y=10, 得:6a−a=10,即a=2.故选A.10.D解析:D【分析】根据题意可得关于x 、y 的方程组,根据解方程组,可得答案.【详解】解:原方程整理为:(x +y -2)a +(-x +2y +5)=0,由方程的解与a 无关,得:20250x y x y +-⎧⎨-++⎩==, 解得31x y ⎧⎨-⎩==, 故选:D .【点睛】本题考查了二元一次方程组的解,正确理解题意、得出方程组是解题关键.二、填空题11.﹣2 ﹣2 ﹣2【解析】分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8 ,由方程组中第二个式子可得:c=-2,然后把解x=-2y=解析:﹣2 ﹣2 ﹣2【解析】 分析:先把代入得 ,由方程组中第二个式子可得:c=-2,然后把解代入ax+by=-2即可得出答案. 解答:解:把代入, 得,解得,c=-2. 再把代入ax+by=-2, 得, 解得: , 所以a=-2,b=-2,c=-2.故答案为-2,-2,-2.点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.12.3【分析】由题意可知方程组与有相同的解,由可得x +y =3,再由可得a (x +y )+b (x +y )=9,即可求a +b 的值.【详解】解:∵方程组与有相同的解,∴方程组与的解相同,中①+②得,中解析:3【分析】由题意可知方程组254x y ax by +=⎧⎨+=⎩与524bx ay x y +=⎧⎨+=⎩有相同的解,由2524x y x y +=⎧⎨+=⎩可得x +y =3,再由45ax by bx ay +=⎧⎨+=⎩可得a (x +y )+b (x +y )=9,即可求a +b 的值. 【详解】解:∵方程组254x y ax by +=⎧⎨+=⎩与524bx ay x y +=⎧⎨+=⎩有相同的解, ∴方程组2524x y x y +=⎧⎨+=⎩与45ax by bx ay +=⎧⎨+=⎩的解相同, 2524x y x y +=⎧⎨+=⎩①②中①+②得3x y +=, 45ax by bx ay +=⎧⎨+=⎩③④中,③+④ 得a (x +y )+b (x +y )=9, 将3x y +=代入,得339a b +=,∴3a b +=,故答案为:3.【点睛】本题考查二元一次方程组的解,此题采用整体求解的方法较为简便,求出x +y =3是解题的关键.13.3【分析】将x =2,y =﹣1代入方程2mx+4ny ﹣9=3即可得到m ﹣n =3.【详解】∵x =2,y =﹣1是方程2mx+4ny ﹣9=3的一个解,∴4m ﹣4n ﹣9=3,∴m ﹣n =3,故答案解析:3【分析】将x =2,y =﹣1代入方程2mx +4ny ﹣9=3即可得到m ﹣n =3.【详解】∵x =2,y =﹣1是方程2mx +4ny ﹣9=3的一个解,∴4m﹣4n﹣9=3,∴m﹣n=3,故答案为:3【点睛】本题考查二元一次方程的解.方程的解即为能使方程左右两边相等的未知数的值.熟练掌握定义是解题关键.14..【分析】根据题意和图示可知,甲种小盒需要一个正方形和4个长方形,乙种小盒需要2个正方形和3个长方形,甲、乙两种小盒需要的正方形总量=150=做成甲种小盒的个数+做成乙种小盒的个数×2,甲、乙两解析:2150 43300x yx y+=⎧⎨+=⎩.【分析】根据题意和图示可知,甲种小盒需要一个正方形和4个长方形,乙种小盒需要2个正方形和3个长方形,甲、乙两种小盒需要的正方形总量=150=做成甲种小盒的个数+做成乙种小盒的个数×2,甲、乙两种小盒需要的长方形总量=300=做成甲种小盒的个数×4+做成乙种小盒的个数×3.根据以上条件可列出方程组.【详解】设可做成甲种小盒x个,乙种小盒y个.根据题意,得2150 43300x yx y+=⎧⎨+=⎩,故答案为:2150 43300x yx y+=⎧⎨+=⎩.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是弄清题意,观察图形,找出合适的等量关系,列出方程组.15.-3【分析】由题意得:x=﹣y+2,代入方程组中的第一个方程可求得y的值,再求出x的值,最后代入到方程组中的第二个方程可求出k的值.【详解】解:∵方程组中x的值比y的相反数大2,∴x=﹣y解析:-3【分析】由题意得:x=﹣y+2,代入方程组中的第一个方程可求得y的值,再求出x的值,最后代入到方程组中的第二个方程可求出k 的值.【详解】解:∵方程组4510(1)8x y kx k y +=⎧⎨--=⎩中x 的值比y 的相反数大2, ∴x =﹣y +2,∴4(﹣y +2)+5y =10,解得:y =2,把y =2代入4x +5y =10中,得:4x +10=10,解得:x =0,则方程组的解是x=0y=2⎧⎨⎩, ∴﹣(k ﹣1)×2=8,解得:k =﹣3.故答案为:﹣3.【点睛】本题主要考查二元一次方程组的解,解答的关键是理解题意,求出方程组的解. 16.(1,0)【分析】根据向左平移,横坐标减,向上平移,纵坐标加的性质进行分析,通过列二元一次方程组并求解,即可得到答案.【详解】设点P 坐标为(x ,y ).将点P 向左平移2个单位长度,再解析:(1,0)【分析】根据向左平移,横坐标减,向上平移,纵坐标加的性质进行分析,通过列二元一次方程组并求解,即可得到答案.【详解】设点P 坐标为(x ,y ).将点P 向左平移2个单位长度,再向上平移3个单位长度,得:()2,3x y -+∴2133x y -=-⎧⎨+=⎩∴10x y =⎧⎨=⎩ ∴点P 坐标为(1,0).故答案为:(1,0).【点睛】本题考查了坐标、平移、二元一次方程组的知识;解题的关键是熟练掌握坐标、平移的性质,从而完成求解.17.=﹣2 =2【分析】根据一元一次方程的定义可得m2﹣4=0且m+2=0,且m+1≠0,即可得m的值;根据二元一次方程的定义可得m2﹣4=0且m+2≠0,m+1≠0,解可得m的值.解析:=﹣2 =2【分析】根据一元一次方程的定义可得m2﹣4=0且m+2=0,且m+1≠0,即可得m的值;根据二元一次方程的定义可得m2﹣4=0且m+2≠0,m+1≠0,解可得m的值.【详解】解:∵关于x的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,是一元一次方程,∴m2﹣4=0且m+2=0,且m+1≠0,解得:m=﹣2;∵关于x的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5,是二元一次方程,∴m2﹣4=0且m+2≠0,m+1≠0,解得:m=2.故答案为:=﹣2;=2.【点睛】此题主要考查了二元一次方程和一元一次方程的定义,关键是掌握一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.18.320【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两解析:320【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵,根据题意列出方程,整理后可得a=140-13x,再根据a 和x的取值范围确定a和x的值,从而得到植树的数量.【详解】解:设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵.根据题意得:0.8xa+(0.8x-2)(50-a )+36(2x-5)=(50+36)x整理得:13x+a=140a=140-13x因为x,0.8x 都是正整数,可得x 是5的倍数,又因为0<a <50,a 是正整数,经试算可得x=10,a=10,所以我校学生一共植树: 0.8xa+(0.8x-2)(50-a )=0.8×10×10+(0.8×10-2)(50-10)=320棵故答案为320.【点睛】本题考查了代数式,多元一次方程,和求二元一次方程的特殊解.题中数量关系比较复杂,难度较大.19.2【分析】根据同类项的定义可得关于m 、n 的二元一次方程组,解方程组求得m 、n 的值,继而代入代数式即可求解.【详解】∵的运算结果是,∴解得:∴故答案为:2.【点睛】本题考查合并同解析:2【分析】根据同类项的定义可得关于m 、n 的二元一次方程组,解方程组求得m 、n 的值,继而代入代数式即可求解.【详解】∵275222m n n m a b a b +-++的运算结果是573a b ,∴25227m n n m +=⎧⎨-+=⎩解得:13m n =-⎧⎨=⎩ ∴2223m mn n ++()()22213133=⨯-+⨯-⨯+299=-+2=故答案为:2.【点睛】本题考查合并同类项,涉及到解二元一次方程组,解题的关键是根据同类项的定义求得m 、n 的值.20.【分析】根据小江乘坐这种出租车走了,付了16元;小北乘坐这种出租车走了,付了28元,由车费是起步价与超过2km 部分收费之和,可列方程组.【详解】解:设这种出租车的起步价为元,超过后每千米收费解析:(72)16(132)28x y x y +-=⎧⎨+-=⎩【分析】根据小江乘坐这种出租车走了7km ,付了16元;小北乘坐这种出租车走了13km ,付了28元,由车费是起步价与超过2km 部分收费之和,可列方程组.【详解】解:设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,由题意得:(72)16(132)28x y x y +-=⎧⎨+-=⎩, 故填:(72)16(132)28x y x y +-=⎧⎨+-=⎩. 【点睛】本题考查由实际问题抽象出二元一次方程组,解题关键是理解题意,找到题目中的等量关系.三、解答题21.(1)x =1,y =1;(2)9x y +≥-;(3)(12,0)或(12,0)-或(0,9)或(0,9)-或(0,18)或(0,18)-【分析】(1)根据新运算T 定义建立方程组,解方程组即可得出答案;(2)应用新运算T 定义建立方程组,解关于x 、y 的方程组可得23x a y a =-⎧⎨=⎩,进而得出(23)33x y a a a +=-+=-,再运用不等式性质即可得出答案;(3)根据题意得(23,)A a a -,由平移可得(21,)A a a '-,根据点(23,)A a a -落在坐标轴上,且2a -,分类讨论即可.【详解】解:(1)根据新运算T 的定义可得:(112)()0(022)(02)8x y x y -⨯⋅-=⎧⎨+⨯⋅⋅+=⎩,解得:11x y =⎧⎨=⎩; (2)由题意得:()3448x y a y a --=-⎧⎨⨯=⎩, 解得:23x a y a=-⎧⎨=⎩, (23)33x y a a a ∴+=-+=-,2a -,36a ∴-,339a ∴--,9x y ∴+-;(3)由(2)知,23x a y a =-⎧⎨=⎩, (23,)A a a ∴-,将线段OA 沿x 轴向右平移2个单位,得线段O A '',(21,)A a a ∴'-,点(23,)A a a -落在坐标轴上,且2a -,230a ∴-=或0a =,32a ∴=或0a =; ①当32a =时,3(2,)2A ', 若点B 在x 轴上,13922BOA S OB ∆'=⨯⨯=,12OB ∴=,(12,0)B ∴或(12,0)-;若点B 在y 轴上,1292BOA S OB ∆'=⨯⨯=, 9OB ∴=,(0,9)B ∴或(0,9)-;②当0a =时,(1,0)A '-;∴点B 只能在y 轴上,1192BOA S OB ∆'=⨯⨯=,18OB ∴=, (0,18)B ∴或(0,18)-;综上所述,点B 的坐标为(12,0)或(12,0)-或(0,9)或(0,9)-或(0,18)或(0,18)-.【点睛】本题考查了新运算T 定义,解二元一次方程组,不等式性质,平移变换的性质,理解并应用新运算T 定义是解题关键.22.(1)1-;5;(2)购买6支水笔、6块橡皮、6本记事本共需48元;(3)11-.【分析】(1)利用①−②可得x -y 的值,利用()13+①②可得出x +y 的值; (2)设铅笔的单价为m 元,橡皮的单价为n 元,记事本的单价为p 元,根据“买20支水笔、3块橡皮、2本记事本共需35元,买39支水笔、5块橡皮、3本记事本工序62元”,即可得出关于m ,n ,p 的三元一次方程组,由2×①-②可得m n p ++的值,再乘5即可求得结果;(3)根据新运算的定义可得出关于a ,b ,c 的三元一次方程组,由3×①−2×②可得出a b c ++的值,从而可求得结果.【详解】(1)2728x y x y +=⎧⎨+=⎩①② 由①−②可得:x -y =-1,由()13⨯+①②可得x +y =5 故答案为:1-;5.(2)设水笔的单价为m 元,橡皮的单价为n 元,记事本的单价为p 元,依题意,得:203235395362m n p m n p ++=⎧⎨++=⎩①②, 由2⨯-①②可得8m n p ++=,6666848m n p ∴++=⨯=.故购买6支水笔、6块橡皮、6本记事本共需48元.(3)依题意得:35154728a b c a b c ++=⎧⎨++=⎩①② 由3×①−2×②可得:11a b c ++=-即1*111=-故答案为:11-.【点睛】本题考查了二元一次方程组的应用及三元一次方程组的应用,解题的关键是:(1)运用“整体思想”求出x -y ,x +y 的值;(2)(3)找出等量关系,正确列出三元一次方程组. 23.(1)见解析;(2)6元【分析】(1)设单价为20元的书买了x 本,单价为24元的书买了y 本,根据总价=单价×数量,结合购买两种书30本共花费(700−38)元,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,结合x ,y 的值为整数,即可得出小明搞错了;(2)设单价为20元的书买了a 本,则单价为24元的书买了(30−a )本,笔记本的单价为b 元,根据总价=单价×数量,即可得出关于a ,b 的二元一次方程,化简后可得出a =14+24b +,结合0<b <10,且a ,b 均为整数,可得出b =2或6,将b 值代入a =14+24b +中可求出a 值,再结合单价为20元的书多于24元的书,即可确定b 值. 【详解】解:(1)设20元的书买了x 本,24元的书买了y 本,由题意,得30202470038x y x y +=⎧⎨+=-⎩,解得14.515.5x y =⎧⎨=⎩, ∵x ,y 的值为整数,故x ,y 的值不符合题意(只需求出一个即可)∴小明搞错了;(2)设20元的书买了a 本,则24元的书买了()30a -本,笔记本的单价为b 元, 由题意,得:()20243780003a a b +=-+-, 化简得:5821444b b a ++==+ ∵110b ≤<,∴2b =或6.当2b =,15a =,即20元的书买了15本,24元的书买了15本,不合题意舍去 当6b =,16a =,即20元的书买了16本,则24元的书买了14本∴6b =.答:笔记本的价格为6元.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程. 24.(1)15;(2)①七年级(1)班有24人得满分;②七年级(2)班的总分高.【分析】(1)分别对连正确的数量进行分析,即可得到答案;(2)①设七年(1)班满分人数有x 人,则未满分的有2x 人,然后列出方程,解方程即可得到答案;②根据题意,先求出两个班各分数段的人数,然后求出各班的总分,即可进行比较.【详解】解:(1)根据题意,连对0个得分为0分;连对一个得分为5分;连对两个得分为10分;连对四个得分为20分;不存在连对三个的情况,则得15分是不可能的;故答案为:15.(2)①根据题意,设七年(1)班满分人数有x 人,则未满分的有2x 人,则 4402x x ++=, 解得:24x =,∴(1)班有24人得满分;②根据题意,(1)班中除0分外,最低得分人数与其他未满分人数相等,。
人教五四学制版七年级上册数学第14章 平面直角坐标系含答案
人教五四学制版七年级上册数学第14章平面直角坐标系含答案一、单选题(共15题,共计45分)1、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次运动到点,第3次运动到点,···,按照这样的运动规律,点P第17次运动到点()A. B. C. D.2、平面直角坐标系中,P(﹣2a﹣6,a﹣4)在第三象限,则a的取值范围是()A.a>4B.a≥﹣12C.﹣3≤a<4D.﹣3<a<43、如图,已知:ABC为直角三角形,B=90°,AB垂直x轴,M为AC中点。
若A点坐标为(3,4),M点坐标为(-1,1),则B点坐标为()A.(3,-4)B.(3,-3)C.(3,-2)D.(3,-1)4、若点P是第三象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,﹣3)B.(4,﹣3)C.(﹣3,﹣4)D.(3,﹣4)5、如果座位表上“5列2行”记作(5,2),那么(4,3)表示()A.3列5行B.5列3行C.4列3行D.3列4行6、以二元一次方程组的解为坐标的点(x,y)在平面直角坐标系的()A.第一象限B.第二象限C.第三象限D.第四象限7、在平面直角坐标系中,点先向左平移个单位,再向下平移个单位,得到的()A. B. C. D.8、如图所示,△OAB与△OCD是以点O为位似中心的位似图形,位似比为1:2,∠OCD=90°,CO=CD.若OB=1,则点C的坐标为()A.(﹣1,2)B.(,)C.(﹣1,1)D.(1.﹣1)9、点P(a,b)在第四象限,则点P到x轴的距离是( )A.aB.bC.︱a ︳D.︱b ︳10、点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)11、如图,在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( )A.(3,7)B.(5,3)C.(7,3)D.(8,2)12、在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x).如f(2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f (﹣6,7))等于()A.(7,6)B.(7,﹣6)C.(﹣7,6)D.(﹣7,﹣6)13、如图所示,在平面直角坐标系中,点A,B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A'的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(1,2)14、下列描述不能确定具体位置的是()A.贵阳横店影城1号厅6排7座B.坐标(3,2)可以确定一个点的位置 C.贵阳市筑城广场北偏东° D.位于北纬28°,东经112°的城市15、如图,在直角坐标系中,卡片盖住的数可能是()A.(2,3)B.(﹣2,1)C.(﹣2,﹣2.5)D.(3,﹣2)二、填空题(共10题,共计30分)16、点P(a,b)关于二四象限的角平分线的对称点表示为________.17、一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是________.18、点 M(- 5,-3)到 x轴的距离是________,到 y轴的距离是________ .19、如图,在平面直角坐标系中,△OAB是等腰直角三角形,∠OAB=90°,已知点A(4,3),点B在第四象限,则点B的坐标是________.20、如图,已知点C(1,0),直线y=-x+7与两坐标轴分别交于A,B两点,D,E分别是AB, OA上的动点,则△CDE周长的最小值是________.21、如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形AnOCnBn的对角线交点的坐标为________.22、如图,在平面直角坐标系中,将沿轴向右滚动到的位置,再到的位置…依次进行下去,若已知点,,则点的坐标为________.23、在平面直角坐标系中,将点向左平移个单位长度,则平移后对应的点的坐标是 ________.24、如图,在平面直角坐标系中,点,,,…都在轴的正半轴上,,,,….分别以,,,…作等边三角形得△,△,△,….点,,,…都在第四象限内.现有一动点从点出发,以每秒个单位的速度沿折线…运动,经过秒后点的坐标是________.25、如图,点A(a,4)在一次函数y=-3x-5的图象上,图象与y轴的交点为B,那么△AOB的面积为________.三、解答题(共5题,共计25分)26、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。
北师大版八年级数学上册第五章《二元一次方程组 》章末复习题含答案解析 (33)
一、选择题1. 如图,直角坐标系 xOy 中,A (0,5),直线 x =−5 与 x 轴交于点 D ,直线 y =38x −398与 x轴及直线 x =−5 分别交于点 C ,E ,点 B ,E 关于 x 轴对称,连接 AB ,下列结论正确的个数是 ( )① C (−13,0),E (−5,−3); ②直线 AB 的解析式为:y =513x +5;③面积的和 S =S △CDE +S 四边形ABDO ,则 S =32;④设直线 CE 与 y 轴相交于点 F ,则 S △COF =S △CDE +S 四边形ABDO .A . 1 个B . 2 个C . 3 个D . 4 个2. 在等腰 △ABC 中,AB =BC ,点 A (0,m ),B (n,12−2n ),C (2m −1,0),0<m <n <6,O 为坐标原点,若 OB 平分 ∠AOC ,则 m +n 的值 ( ) A . 5 B . 7 C . 5 或 7 D . 4 或 53. 天虹商场现销售某种品牌运动套装,上衣和裤子一套售价 500 元.若将上衣价格下调 5%,将裤子价格上调 8%,则这样一套运动套装的售价提高 0.2%.设上衣和裤子在调价前单价分别为 x 元和 y 元,则可列方程组为 ( ) A . {x +y =500,(1+5%)x +(1−8%)y =500×(1+0.2%)B . {x +y =500,(1−5%)x +(1+8%)y =500×0.2%C . {x +y =500,(1−5%)x +(1+8%)y =500×(1+0.2%)D . {x +y =500,5%x +8%y =500×(1+0.2%)4. 已知二元一次方程组 {x −y =−5,x +2y =−2的解为 {x =−4,y =1, 则在同一平面直角坐标系中,两函数 y =x +5 与 y =−12x −1 的图象的交点坐标为 ( ) A . (−4,1)B . (1,−4)C . (4,−1)D . (−1,4)5. 用加减法解方程组 {2x +3y =3,3x −2y =11 时,有下列四种变形,其中正确的是 ( )A . {4x +6y =3,9x −6y =6B . {6x +3y =9,6x −2y =22C . {4x +6y =6,9x −6y =33D . {6x +9y =3,6x −4y =116. 已知直线 l:y =kx +b (k >0) 过点 (−√3,0) 且与 x 轴相交夹角为 30∘,P 为直线 l 上的动点,A(√3,0),B(3√3,0) 为 x 轴上两点,当 PA +PB 时取到最小值时 P 点坐标为 ( ) A . (√3,2)B . (1,√3)C . (√3,3)D . (2,√3)7. 已知实数 x ,y 满足方程组 {3x −2y =1,x +y =2, 则 x 2−2y 2 的值为 ( )A . −1B . 1C . 3D . −38. 已知 a ,b 满足方程组 {a +2b =82a +b =7,则 a −b 的值为 ( )A . −1B . 0C . 1D . 29. 已知 A (x 1,y 1),B (x 2,y 2) 为一次函数 y =2x +1 的图象上的两个不同的点,且 x 1x 2≠0 .若 M =y 1−1x 1,N =y 2−1x 2,则 M 与 N 的大小关系是A .M >NB .M <NC .M =ND .不确定10. 某公司有生手工和熟手工两个工种的工人,已知一个生手工每天制造的零件比一个熟手工少 30个,一个生手工与两个熟手工每天共可制造 180 个零件,求一个生手工与一个熟手工每天各能制造多少个零件?设一个生手工每天能制作 x 个零件,一个熟手工每天能制造 y 个零件,根据题意可列方程组为 ( ) A . {y −x =30,x +2y =180B . {x −y =30,x +2y =180C . {y −x =30,2x +y =180D . {x −y =30,2x +y =180二、填空题11. 在平面直角坐标系 xOy 中,函数 y 1=x (x <m ) 的图象与函数 y 2=x 2(x ≥m ) 的图象组成图形 G .对于任意实数 n ,过点 P (0,n ) 且与 x 轴平行的直线总与图形 G 有公共点.写出一个满足条件的实数 m 的值为 (写出一个即可).12. 一次函数 y =kx +b 的图象经过点 (1,2),(−2,6),则 k = .13. “驴友”小明分三次从 M 地出发沿着不同的线路(A 线,B 线,C 线)去 N 地.在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种.他涉水行走 4 小时的路程与攀登 6 小时的路程相等.B 线、 C 线路程相等,都比 A 线路程多 32%,A 线总时间等于 C 线总时间的 12,他用了 3 小时穿越丛林、 2 小时涉水行走和 2 小时攀登走完 A 线,在 B 线中穿越丛林、涉水行走和攀登所用时间分别比 A 线上升了 20%,50%,50%,若他用了 x 小时穿越丛林、 y 小时涉水行走和 z 小时攀登走完 C 线,且 x ,y ,z 都为正整数,则 yx+z = .14. 已知方程组 {5x +y =3,ax +5y =4 和 {x −2y =5,5x +by =1 有相同的解,则 12a 2−2ab +2b 2 的值为 .15. 研究二元一次方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2的解与两直线 l 1:a 1x +b 1y =c 1 与 l 2:a 2x +b 2y =c 2(其中 6 个常数均不为零)位置关系的联系.(每小题前一个空选填“有一组”“无”或“有无数组”;后一个空选填“相交”“平行”或“重合”)(1)当 a 1a 2≠b1b 2时,从“数”看,方程组 解;从“形”看,l 1 与 l 2 .(2)当 a 1a 2=b 1b 2≠c1c 2 时,从“数”看,方程组 解;从“形”看,l 1 与 l 2 .(3)当 a 1a 2=b 1b 2=c1c 2时,从“数”看,方程组 解;从“形”看,l 1 与 l 2 .16. 若 {x =2−t,y =4−t 2, 则 y 与 x 满足的关系式为 .17. 已知 {2x +y =7,x +2y =8, 则 x−yx+y = .三、解答题18. 解下列方程(组):(1) {2a +b =4,3a −2b =13;(2) 21−x +1=x1+x .19. 解二元一次方程组:{2x −3y =1,x +2y =4.20. 如图 1,在平面直角坐标系中,直线 l 1 与 x 轴、 y 轴交点分别为点 A 和点 B (0,6),与直线l 2:y =x 交于点 C(3√3−3,y 0),点 D 是线段 OB 的中点,点 P ,Q ,M 分别是直线 l 1,x 轴、 y 轴上的动点.(1) 求直线 l 1 的解析式以及线段 OC 的长度.(2) 求当 △DPQ 周长最小时,使得 ∣PM −QM∣∣ 的值最大的点 M 的坐标. (3) 如图 2,将 △BCO 沿直线 BC 翻折,得到点 O 的对应点 Oʹ,再将 △BCOʹ 绕点 Oʹ 旋转,旋转过程中直线 BOʹ 分别与直线 l 1,和直线 l 2,交于点 E 和点 F ,直线 COʹ 分别与直线 l 1 和直线 l 2,交于点 G 和点 H ,是否存在点 Oʹ 与 E ,F ,G ,H 四点中不同时在直线 l 1 或直线 l 2 上的两点组成的三角形是等腰直角三角形,若存在,请直接写出点 E 的坐标,若不存在,请说明理由.21. 在平面直角坐标系 xOy 中,如果点 P (x,y ) 坐标中 x ,y 的值是关于二元一次方程组{a 1x +b 1y =c 1,a 2x +b 2y =c 2的解,那么称点 P (x,y ) 为该方程组的解坐标.如 (−1,−2) 是二元一次方程组 {x −y =1,x +y =−3的解坐标,求: (1) 二元一次方程组 {2x +3y =5,x +3y =1的解坐标为 .(2) 已知方程组 {x +y =1,x −y =3 与方程组 {ax +by =1,ax −by =2的解坐标相同,求 a ,b 的值.(3) 当 m ,n 满足什么条件时,关于 x ,y 的二元一次方程组 {2x +y =n −3,mx −2y =2.①不存在解坐标. ②存在无数多个解坐标.22. 学校准备添置一批计算机.方案 1:到商家直接购买,每台需要 7000 元;方案 2:学校买零部件组装,每台需要 6000 元,另外需要支付安装工工资等其它费用合计 3000 元.设学校需要计算机 x 台,方案 1 与方案 2 的费用分别为 y 1,y 2 元. (1) 分别写出 y 1,y 2 的函数关系式.(2) 当学校添置多少台计算机时,两种方案的费用相同? (3) 采用哪一种方案较省钱?说说你的理由.23. 为响应绿色出行号召,越来越多的市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额 y (元)与骑行时间 x (小时)之间的函数关系,根据图象回答下列问题:(1) 求:当 x ≥0.5 时,手机支付金额 y (元)与骑行时间 x (小时)的函数表达式; (2) 李老师经常骑共享单车出行,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.24. 为了积极推进轨道交通建设,某城市计划修建总长度 36 千米的有轨电车.该任务由甲、乙两工程队先后接力完成甲工程队每天修建 0.06 千米,乙工程队每天修建 0.08 千米,两工程队共需修建 500 天.根据题意,小明和小华两名同学分别列出尚不完整的方程组如下:小明:{x +y =⋯,0.06x +0.08y =⋯小华:{x +y =⋯,x 0.06+y 0.08=⋯(1) 根据两名同学所列的方程组,请你分别指出未知数 x 表示的意义.小明:x 表示 ; 小华:x 表示 .(2) 求甲、乙两工程队分别修建有轨电车多少千米?25. 某水果店 11 月份购进甲、乙两种水果共花费 1800 元,其中甲种水果 10 元/千克,乙种水果16 元/千克.12 月份,这两种水果的进价上调为:甲种水果 13 元/千克,乙种水果 18 元/千克.(1) 若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款400元,求该店11月份购进甲、乙两种水果分别是多少千克?(2) 若12月份将这两种水果进货总量减少到130千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3) 在(2)的条件下,若甲种水果不超过80千克,则12月份该店需要支付这两种水果的货款最少应是多少元?答案一、选择题1. 【答案】B【解析】∵在直线y=−38x−398中,令y=0,则有0=−38x−398,∴x=−13,∴C(−13,0),令x=−5,则有y=−38×(−5)−398=−3,∴E(−5,−3),故①正确;∵点B,E关于x轴对称,∴B(−5,3),∵A(0,5),∴设直线AB的解析式为y=kx+5,∴−5k+5=3,∴k=25,∴直线AB的解析式为y=25x+5,故②错误;由①知,E(−5,−3),∴DE=3,∵C(−13,0),∴CD=−5−(−13)=8,∴S△CDE=12CD×DE=12,由题意知,OA=5,OD=5,BD=3,∴S四边形ABDO =12(BD+OA)×OD=20,∴S=S△CDE+S四边形ABDO=12+20=32,故③正确;④由③知:S△CDE+S四边形ABDO=32,在y=38x−398中,令x=0,y=−398,∴F(0,−398),∴S △COF =12⋅OF ⋅OC =12×398×12=50716=31.6875.∴ ④错误.综上所述,正确的结论有 2 个.【知识点】坐标平面内图形的面积、一次函数的解析式2. 【答案】C【解析】如图,连接 BA ,BC , ∵OB 平分 ∠AOC , ∴ 点 B 在直线 y =x 上, ∴n =12−2n , ∴n =4, ∴B (4,4),∵AB =BC ,OB =OB ,当 △AOB ≌△COB 时,OA =OC ,则有 m =2m −1,解得 m =1, ∴m +n =5,当 △AOB 与 △COB 不全等时,作 BH ⊥y 轴 于 H , 则有 4−(m −4)=2m −1, 解得 m =3, ∴m +n =7.【知识点】几何问题、一次函数的解析式3. 【答案】C【解析】依题意可列方程为 {x +y =500,(1−5%)x +(1+8%)y =500×(1+0.2%).【知识点】经济问题4. 【答案】A【解析】方程组的解就是两个相应的一次函数图象的交点坐标,故交点坐标为 (−4,1),故选A . 【知识点】一次函数与二元一次方程(组)的关系5. 【答案】C【解析】 {2x +3y =3, ⋯⋯①3x −2y =11. ⋯⋯②① ×2,得 4x +6y =6,故A 错误;① ×3,得 6x +9y =9,故B ,D 错误; ② ×3,得 9x −6y =33,故C 正确. 【知识点】加减消元6. 【答案】A【解析】如图.∵ 直线 l:y =kx +b (k >0) 过点 (−√3,0) 且与 x 轴相交夹角为 30∘, ∴OM =√3, ∴ON =√33OM =1,MN =√32=2,∴ 直线 l 为 y =√33x +1,∵OM =OA =√3, ∴AN =MN =2,过 A 点作直线 l 的垂线,交 y 轴于 Aʹ,则 ∠OAAʹ=60∘, ∴OAʹ=√3OA =3, ∴AʹN =2, ∴AʹN =AN , ∵AʹA ⊥ 直线 l , ∴ 直线 l 平分 AAʹ,∴Aʹ 是点 A 关于直线 l 的对称点,连接 AʹB ,交直线 l 于 P ,此时 PA +PB =AʹB ,PA +PB 时取到最小值, ∵OAʹ=3, ∴Aʹ(0,3),设直线 AʹB 的解析式为 y =mx +n ,把 Aʹ(0,3),B(3√3,0) 代入得 {n =3,3√3m +n =0, 解得 {m =−√33,n =3,∴ 直线 AʹB 的解析式为 y =−√33x +3由 {y =√33x +1,y =−√33x +3解得 {x =√3,y =2,∴P 点的坐标为 (√3,2).【知识点】轴对称之最短路径、一次函数与二元一次方程(组)的关系、一次函数的解析式7. 【答案】A【知识点】加减消元8. 【答案】A【知识点】加减消元9. 【答案】C【解析】因为 y 1=2x 1+1,y 2=2x 2+1,分别代入 M =y 1−1x 1,N =y 2−1x 2,得M =2x 1+1−1x 1=2,N =2x 2+1−1x 2=2.所以 M =N .【知识点】一次函数的解析式10. 【答案】A【解析】设一个生手工每天能制作 x 个零件,一个熟手工每天能制造 y 个零件, 根据题意得:{y −x =30,x +2y =180,故选:A .【知识点】工程问题二、填空题11. 【答案】答案不唯一,如:1(0≤m ≤1)【知识点】二次函数与方程12. 【答案】 −43【知识点】一次函数的解析式13. 【答案】 16【解析】 ∵ 他涉水行走 4 小时的路程与攀登 6 小时的路程相等,∴ 可以假设涉水行走的速度为 3n km/h 与攀登的速度为 2n km/h ,穿越丛林的速度为 m km/h . 由题意:{(3m +6n +4n )×1.32=3.6m +9n +6n,3.6m +9n +6n =mx +3ny +2nz,可得 m =5n ,5x +3y +2z =33, ⋯⋯① ∵x +y +z =14, ⋯⋯②由①②消去 z 得到:3x +y =5, ∵x ,y 是正整数, ∴x =1,y =2,z =11,∴y x+z =212=16.【知识点】二元一次方程(组)的应用14. 【答案】 50【解析】由题意得方程组 {5x +y =3, ⋯⋯①x −2y =5, ⋯⋯② ① ×2+ ②得 11x =11,∴x =1,把 x =1 代入①得 y =−2,∴{5x +y =3,x −2y =5的解为 {x =1,y =−2, 把 {x =1,y =−2 代入 {ax +5y =4,5x +by =1 得 {a −10=4,5−2b =1,解得 {a =14,b =2. ∴12a 2−2ab +2b 2=12(a −2b )2=12×(14−4)2=50.【知识点】加减消元15. 【答案】有一组;相交;无;平行;有无数组;重合【解析】(1)当 a 1a 2≠b 1b 2 时,两直线 l 1:a 1x +b 1y =c 1 与 l 2:a 2x +b 2y =c 2 相交,∴ 方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2有唯一解.故答案为有一组,相交. (2)当 a 1a 2=b 1b 2≠c1c 2 时,两直线 l 1:a 1x +b 1y =c 1 与 l 2:a 2x +b 2y =c 2 平行, ∴ 方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2无解.故答案为无,平行. (3)当 a 1a 2=b 1b 2=c1c 2 时,两直线 l 1:a 1x +b 1y =c 1 与 l 2:a 2x +b 2y =c 2 重合, ∴ 方程组 {a 1x +b 1y =c 1,a 2x +b 2y =c 2有无数组解.故答案为无数组,重合. 【知识点】一次函数与二元一次方程(组)的关系16. 【答案】 y =−x 2+4x【解析】由 x =2−t ,可得:t =2−x ,把 t =2−x 代入 y =4−t 2,可得:y =−x 2+4x ,故答案为:y =−x 2+4x .【知识点】含参二元一次方程组17. 【答案】 −15 【知识点】加减消元三、解答题18. 【答案】(1) {2a +b =4, ⋯⋯①3a −2b =13. ⋯⋯②① ×2+ ②得:7a =21.解得:a =3.把 a =3 代入①得:b =−2.则方程组的解为{a =3,b =−2.(2) 去分母得:2+2x +1−x 2=x −x 2.解得:x =−3.经检验 x =−3 是分式方程的解.【知识点】去分母解分式方程、加减消元19. 【答案】由方程②得x =4−2y,代入到方程①中得:2(4−2y )−3y =1,解得y =1,x =2,所以方程组的解为{x =2,y =1.【知识点】代入消元20. 【答案】(1) 将 C(3√3−3,y 0) 代入 y =x ,得 C 点坐标为 (3√3−3,3√3−3).依题意可设 l 1:y =kx +6.将 C(3√3−3,3√3−3) 代入 y =kx +6,得 3√3−3=(3√3−3)k +6,解得 k =−√3,∴l 1:y =−√3x +6.OC =√(3√3−3)2+(3√3−3)2=3√6−3√2,∴ 直线 l 1 的解析式为 y =−√3x +6,线段 OC 的长度为 3√6−3√2.(2) 如图 1:作点 D 关于 l 1 的对称点 Dʹ,关于 x 轴的对称点 Dʺ,连接 DʹDʺ,DʹDʺ 交 l 1 于点 P ,交 x 轴于点 Q ,此时 △DPQ 的周长最小,直线 PQ 与 y 轴交于 M 点此时 ∣PM −QM∣∣ 的值最大,此时 M 与 Dʺ 重合, ∴M (0,−3).(3) 当点 E (3√32,32) 或 E (3√3−32,3+3√32) 符合条件.【解析】(3) ① △OʹGF 是等腰直角三角形时,GO =GOʹ,∠FGOʹ=90∘,此时 F 与 O 重合(如备用图②),可求 Oʹ(3√3,3),∵OB =OʹB =OOʹ=6,∴E 是 OOʹ 的中点,∴E (3√32,32). ② △OʹEH 是等腰直角三角形时,EH =EOʹ,∠HEOʹ=90∘,此时 H 与 O 重合(如备用图③),∵OOʹ=6,∴OE =3√2,设 E(m,−√3m +6),∴m =3√3−32, ∴E (3√3−32,3+3√32), ∴ 当点 E (3√32,32) 或 E (3√3−32,3+3√32) 符合条件.【知识点】一次函数的解析式、两点间距离公式、找动点,使距离之和最小、一次函数与三角形的综合21. 【答案】(1) (4,−1)(2) {x +y =1, ⋯⋯④x −y =3. ⋯⋯⑤将④ + ⑤得,2x =4,x =2,将④ − ⑤得,2y =−2,y =−1,将 x =2,y =−1 代入 {ax +by =1,ax −by =2得, {2a −b =1, ⋯⋯⑥2a +b =2. ⋯⋯⑦将⑥ + ⑦得,4a =3,a =34,将⑦ − ⑥得,2b =1,b =12,∴{a =34,b =12.(3) ① {2x +y =n −3,mx −2y =2,若要不存在解坐标,即无解,需要 {m =k ⋅2,−2=k ⋅1,2≠k (n −3),即 {m =−4,n ≠2. ②若要有无数解坐标,即有无数解,需要 {m =k ⋅2,−2=k ⋅1,2=k (n −3),即 {m =−4,n =2. 【解析】(1) {2x +3y =5, ⋯⋯①x +3y =1. ⋯⋯② 将① − ②得 x =4, ⋯⋯③将③代入②得,4+3y =1,y =−1,∴ 方程组解为 {x =4,y =−1,∴ 解坐标为 (4,−1).【知识点】含参二元一次方程组、加减消元22. 【答案】(1) y 1=7000x ,y 2=6000x +3000.(2) 当 y 1=y 2 时 7000x =6000x +3000,解得:x =3,则当学校添置 3 台计算机时,两种方案的费用相同.(3) 7000x >6000x +3000,解得:x <3,则当 x <3 时,选择到商家直接购买省钱; 7000x <6000x +3000,解得:x >3,则当 x >3 时,选择买零部件组装省钱.【知识点】一次函数的应用23. 【答案】(1) 当 x ≥0.5 时,设手机支付金额 y (元)与骑行时间 x (时)的函数关系式是 y =kx +b ,则 {0.5k +b =0,1×k +b =0.5, 解得 {k =1,b =−0.5,即当 x ≥0.5 时,手机支付金额 y (元)与骑行时间 x (时)的函数关系式是 y =x −0.5.(2) 设会员卡支付对应的函数解析式为 y =ax ,则 0.75=a ×1,得 a =0.75,即会员卡支付对应的函数解析式为 y =0.75x (x ≥0),令 0.75x =x −0.5,得 x =2,由图象可知,当 x >2 时,会员卡支付便宜.答:当 0<x <2 时,李老师选择手机支付比较合算;当 x =2 时,李老师选择两种支付一样;当 x >2 时,李老师选择会员卡支付比较合算.【知识点】一次函数的应用24. 【答案】(1) 甲工程队修建的天数;甲工程队修建的长度(2) 设甲工程队修建 x 千米,乙工程队修建 y 千米,由题意得:{x +y =36,x 0.06+y 0.08=500.解得{x =12,y =24.答:甲工程队修建 12 千米,乙工程队修建 24 千米. 【解析】(1) 小明:x 表示甲工程队修建的天数;小华:x 表示甲工程队修建的长度.故答案为:甲工程队修建的天数;甲工程队修建的长度.【知识点】工程问题25. 【答案】(1) 设该店 11 月份购进甲种水果 x 千克,购进乙种水果 y 千克,根据题意得:{10x +16y =1800,13x +18y =1800+400,解得 {x =100,y =50.答:该店 11 月份购进甲种水果 100 千克,购进乙种水果 50 千克.(2) 设购进甲种水果 a 千克,需要支付的货款为 w 元,则购进乙种水果 (130−a ) 千克, 根据题意得:w =10a +20(130−a )=−10a +2600.(3) 根据题意得,a ≤80,由(2)得,w =−10a +2600,因为 −10<0,w 随 a 的增大而减小,所以 a =80 时,w 有最小值 w 最小=−10×80+2600=1600(元).答:12 月份该店需要支付这两种水果的货款最少应是 1600 元.【知识点】其他实际问题、经济问题。
初中数学北师大版(2024)八年级上册 第五章 二元一次方程组(含简单答案)
第五章 二元一次方程组一、单选题1.下列方程组是二元一次方程组的是( )A .{x +y =1z +x =6B .{x +y =3xy =12C .{x +y =61x+y =4D .{x =y +13−2x =y +132.二元一次方程2x−3y =1有无数个解,下列选项中是该方程的一个解的是( )A .{x =12y =0B .{x =1y =1 C .{x =1y =0D .{x =32y =433.已知方程组{x +2y =m +22x +y =3m,未知数x 、y 的和等于2,则m 的值是( )A .1B .2C .3D .44.已知直线y=﹣x+4与y=x+2的图象如图,则方程组{x +y =4−2=x−y的解为( )A .B .C .D .5.买苹果和梨共100千克,其中苹果的质量比梨的质量的2倍少8千克,求苹果和梨各买了多少.若设买苹果x 千克,则列出的方程组应是( )A .{x +y =100y =2x +8B .{x +y =100y =2x−8C .{x +y =100x =2y +8D .{x +y =100x =2y−8 6.已知m 为正整数,且二元一次方程组{mx +2y =103x−2y =0 有整数解,则m 的值为( )A .1B .2C .3D .77.把5m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A .1种B .2种C .3 种D .4种8.已知一次函数y =3x 与y =−32x +92图象的交点坐标是(1,3),则方程组{y =3xy =−32x +92的解是()A .{x =2y =6B .{x =−1y =3C .{x =0y =0D .{x =1y =39.如图,在长为18m ,宽为15m 的长方形空地上,沿平行于长方形各边的方向分别割出三个大小完全一样的小长方形花圃,则其中一个小长方形花圃的面积为( )A .15m 2B .18m 2C .28m 2D .35m 210.我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶和1个小桶可以盛酒3斛,1个大桶和5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为( )A .{5x +y =3x +5y =2B .{5x−y =3x +5y =2C .{5x +y =2x +5y =3D .{x−5y =25x +y =3二、填空题11.由方程组{x +m =2y−3=−m,可得x —y 的值是 .12.已知2y−x =4,用含y 的代数式表示x =.13.若方程组{x +y =2,2x +2y =3没有解,则直线y =2−x 与直线y =32−x 的位置关系是 .14.五一小长假,小亮和家人到公园游玩.湖边有大小两种游船,小亮发现2艘大船与3艘小船一次共可以满载游客58人,3艘大船与2艘小船一次共可以满载游客72人.则1艘大船与1艘小船一次共可以满载游客的人数为.15.如图,在长方形ABCD 中,放入6个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为 cm 2.16.已知关于x ,y 的二元一次方程a 1x +b 1y =c 1的部分解如表:x…−125811…y …−19−12−529…关于x ,y 的二元一次方程a 2x +b 2y =c 2的部分解如表:x …−125811…y…−70−46−22226…则关于x ,y 的二元一次方程组{a 1x +b 1y =c1a 2x +b 2y =c 2的解是.17.有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需315元;若购甲4件,乙10件,丙1件,共需420元,问购甲、乙、丙各5件共需元.18.“鸡兔同笼”是我国古代数学名著《孙子算经》上的一道题:今有鸡兔同笼,上有四十三头,下有一百零二足,问鸡兔各几何?若设笼中有鸡x 只,兔y 只,则可列出的二元一次方程组为 .三、解答题19.解方程组:(1){3x +y =155x−2y =14;(2){3x−2y =7x−2y 3+2y−12=1.20.在平面直角坐标系中有A (−1,4),B (−3,2),C (0,5)三点.(1)求过A ,B 两点的直线的函数解析式;(2)判断A ,B ,C 三点是否在同一条直线上?并说明理由.21.已知关于x ,y 的二元一次方程组{2x +3y =kx +2y =−1的解互为相反数,求k 的值.22.阅读:某同学在解方程组{3x +2y =72x−1y=14时,运用了换元法,方法如下:设1x =m ,1y =n ,则原方程组可变形为关于m ,n 的方程组{3m +2n =72m−n =14,解这个方程组得到它的解为{m =5n =−4 .由1x=5,1y =−4,求得原方程组的解为{x =15y =−14.请利用换元法解方程组:{5x−1+12y =113x−1−12y=13.23.在平面直角坐标系内,已知点A (a,0),B (b,2),C (0,2).a ,b 是方程组{2a +b =13a +2b =11的解.(1)求a ,b 的值;(2)过点E (6,0)作PE ∥y 轴,Q (6,m )是直线PE 上一动点,连接QA ,QB .试用含有m 的式子表示三角形ABQ 的面积.24.某商场销售甲、乙两种商品,其中甲种商品进价为20元/件,售价为30元/件;乙种商品进价为50元/件,售价为80元/件.现商场用13000元购进这两种商品并全部售出,两种商品的总利润为7500元,问该商场购进甲、乙两种商品各多少件?25.某市绿道免费公共自行车租赁系统正式启用.市政府投资了200万元,建成40个公共自行车站点、配置800辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2019年将投资432万元,新建80个公共自行车站点、配置1760辆公共自行车.请问每个站点的造价和每辆公共自行车的配置费分别是多少万元?26.某商店分两次购进A,B型两种台灯进行销售,两次购进的数量及费用如下表所示,由于物价上涨,第二次购进A,B型两种台灯时,两种台灯每台进价分别上涨30%,20%.购进的台数购进所需要的费用(元)A型B型第一次10203000第二次15104500(1)求第一次购进A,B型两种台灯每台进价分别是多少元?(2)A,B型两种台灯销售单价不变,第一次购进的台灯全部售出后,获得的利润为2800元,第二次购进的台灯全部售出后,获得的利润为1800元.求A,B型两种台灯每台售价分别是多少元?27.如图,已知一次函数y=3x+3与y轴交于点A,与x轴交于点B,直线AC与x正半轴交于点C,且AC=BC.(1)求直线AC的解析式;(2)点D为线段AC上一点,点E为线段CD的中点,过点E作x轴的平行线交直线AB 于点F,连接DF交x轴于点G,求证:AD=BG;(3)在(2)的条件下,线段EF、DG分别与y轴交于点M、N,若∠AFD=2∠BAO,求线段MN的长.参考答案1.D2.A3.A4.B5.D6.B7.C8.D9.C10.A11.-112.2y−413.平行14.2615.2716.{x=8y=217.52518.{x+y=432x+4y=10219.(1){x=4y=3(2){x=165y=131020.(1)y=x+5(2)A,B,C三点在同一条直线上21.−122.{x=43y=−18.23.(1)a=5,b=3(2)m+1或−m−124.该商场购进甲种商品150件,乙种商品200件25.每个站点的造价为1万元,每辆公共自行车的配置费为0.2万元.26.(1)第一次购进A 型台灯每台进价为200元,B 型台灯每台进价为50元;(2)A 型台灯每台售价为340元,B 型台灯每台售价为120元27.(1)y =﹣34x +3;(3)45104.。
苏科七年级下学期数学《 二元一次方程组考试试题》含答案.word版
A. B. C. D.
12.解方程组 得x等于( )
A.18B.11C.10D.9
二、填空题
13.已知关于 , Байду номын сангаас二元一次方程 ,无论实数 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.
(1)若 ,则 _________, _________;
(2)已知 , .
①求字母 的取值;
②若 (其中 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.
29.在平面直角坐标系中,O为坐标原点,点A的坐标为(a,a),点B的坐标(b,c),且a、b、c满足 .
(1)若a没有平方根,判断点A在第几象限并说明理由.
16.商场购进A、B、C三种商品各100件、112件、60件,分别按照25%、40%、60%的利润进行标价,其中商品C的标价为80元,为了促销,商场举行优惠活动:如果同时购买A、B商品各两件,就免费获赠三件C商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..
【详解】
解:设甲、乙两人的速度分别为 ,根据题意得: .
故选:B.
【点睛】
本题考查了二元一次方程组的应用之行程问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.
4.C
解析:C
【分析】
由图中各行、各列及对角线上的三个数之和都相等,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(x-y)中即可求出结论.
(北师大版)哈尔滨市八年级数学上册第五单元《二元一次方程组》检测题(含答案解析)
一、选择题1.如图所示,在平面直角坐标系中,直线124y x =+分别与x 轴,y 轴交于A ,B 两点,以线段OB 为一条边向右侧作矩形OCDB ,且点D 在直线2y x b =-+上,若矩形OCDB 的面积为20,直线124y x =+与直线2y x b =-+交于点P .则P 的坐标为( )A .522,33⎛⎫⎪⎝⎭B .1731,33⎛⎫⎪⎝⎭C .()2,8D .()4,122.如图,一次函数y kx b =+与2y x =+的图象相交于点(,4)P m ,则方程组2y x y kx b=+⎧⎪=+⎨⎪⎩的解是( )A .(2,4)B .(2,4)-C .(4,2)D .(4,2)-3.已知方程组2500x y x y m +-=⎧⎨++=⎩和方程组280x y x y m ++=⎧⎨++=⎩有相同的解,则m 的值是( )A .1B .1-C .2D .2-4.若2()(2)3x a x x x b +-=-+,则实数b 等于( ) A .2-B .2C .12-D .125.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( ) A .2-B .2C .1-D .16.为了研究吸烟对肺癌是否有影响,某研究机构随机调查了8000人,结果显示:在吸烟者中患肺癌的比例是3%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多33人.在这8000人中,设吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y.所列方程组正确的是()A.333%0.5%8000x yx y-=⎧⎨⨯+⨯=⎩B.80003%0.5%22x yx y+=⎧⎨⨯-⨯=⎩C.338000 3%0.5%x yx y-=⎧⎪⎨+=⎪⎩D.8000333%0.5%x yx y+=⎧⎪⎨-=⎪⎩7.已知21xy=-⎧⎨=⎩是方程25mx y+=的解,则m的值是()A.32-B.32C.2-D.28.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有若干张正方形和若干张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则库存中正方形纸板与长方形纸板之和的值可能是()A.2018 B.2019 C.2020 D.20219.已知()11na a n d+-=(n为自然数),且25a=,514a=,则15a的值为(). A.23 B.29 C.44 D.5310.《九章算术》中,一次方程组是由算筹布置而成的.如图1所示的算筹图,表示的方程组就是3219423x yx y+=⎧⎨+=⎩,类似地,图2所示的算筹图表示的方程组为()A.2114322x yx y+=⎧⎨+=⎩B.2114327x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.264327x yx y+=⎧⎨+=⎩11.若关于x,y的二元一次方程组432x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2310x y+=的解,则x y -的值为( ) A .2B .10C .2-D .412.已知:关于x 、y 的方程组2423x y a x y a +=-+⎧⎨+=-⎩,则x-y 的值为( )A .-1B .a-1C .0D .1二、填空题13.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为_______.14.已知012x y =⎧⎪⎨=-⎪⎩是方程组522x b y x a y -=⎧⎨+=⎩的解,则a b +的值为_______ . 15.若x a y b =⎧⎨=⎩是方程组2155x y x y -=⎧⎨-+=⎩的解,则a+4b =_____. 16.明代的程大位创作了《算法统宗》,它是一本通俗实用的数学书,将枯燥的数学问题化成了美妙的诗歌,读来朗朗上口,是将数字入诗的代表作.例如,其中有一首饮酒数学诗:“肆中饮客乱纷纷,薄酒名釂厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生.试问高明能算士,几多酶酒几多醇?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮下19瓶酒.试问其中好酒、薄酒分别是多少瓶?”请你根据题意,求出好酒是有_____瓶. 17.已知()2254270x y x y +++--=42x y -=________.18.一个两位数的十位数字与个位数字的和是13,把这个两位数减去27,结果恰好成为数字对调后组成的两位数,则这个两位数为__________.19.请你编制一个解为05x y =⎧⎨=⎩的二元一次方程组:_____.20.已知434m n m x y -与5n x y 是同类项,则m n +的值是_______.三、解答题21.已知一次函数1y ax b , 2y bx a (0ab ≠,且ab )(1)若1y 过点(1,2)与点(23)b a --,, 求1y 的函数解析式. (2)1y 与2y 的图像交于点(),A m n , 用含a ,b 的式子表示n . (3)设3y = 12y y -, 421y y y =-, 当34y y >时,求x 的取值范围.22.平面直角坐标系中,已知直线1l 经过原点与点(),2P m m ,直线2l :23y mx m =+-(0)m ≠; (1)求证:点(23)--,在直线2l 上; (2)当2m =时,请判断直线1l 与2l 是否相交?23.某地今年杨梅丰收,准备将已经采摘下来的11400公斤杨梅运往杭州,现有甲,乙,丙三种车型供选择,每辆车运载能力和运费如下所示(假设每辆车匀满载)车型甲乙丙汽车运载量(公斤/辆) 600 800 900 汽车运费(元/辆)500 600 7008700元,则需甲,乙两种车型各几辆;(2)为了节省运费,现打算甲、乙、丙三种车型都参与运送,已知他们的总数量为15辆,请你求出所有可行方案,并求出哪种方案运费最节省,最节省费用是多少. 24.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x 人,女生y 人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?25.若关于x 、y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩①②的解也是二元一次方程4536x y +=的解,求k 的值.26.已知:如图,正比例函数2y x =和一次函数4y ax =+的图象相交于点(),3A m ,且一次函数4y ax =+的图象与x 轴交于点B .(1)求m ,a 的值; (2)求点B 的坐标; (3)求AOB 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由直线y 1=2x +4求得OB =4,根据解析式面积求得D (5,4),代入y 2=-x +b 求得解析式,然后联立解析式,解方程组即可求得. 【详解】∵直线y 1=2x +4分别与x 轴,y 轴交于A ,B 两点, ∴B (0,4), ∴OB =4,∵矩形OCDB 的面积为20, ∴OB •OC =20, ∴OC =5, ∴D (5,4),∵D 在直线y 2=﹣x +b 上, ∴4=﹣5+b , ∴b =9, ∴直线y 2=﹣x +9,解924y x y x =-+⎧⎨=+⎩,得53223x y ⎧=⎪⎪⎨⎪=⎪⎩,∴P (53,223), 故选:A . 【点睛】本题考查了两条直线平行或相交问题,主要考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征.2.A解析:A 【分析】将点P (m 、4)代入2y x =+,求出m 的值,结合图像交点P 的坐标即为二元一次方程组的解. 【详解】一次函数y kx b =+与2y x =+的交点为P (m 、4)24m ∴+= 解得2m =∴点P 的坐标为(2、4)2y x y kx b =+⎧∴⎨=+⎩的解为:24x y =⎧⎨=⎩故选:A . 【点睛】本题考查了一次函数与二元一次方程组的关系,解题关键是求出点P 坐标,结合图形求解.3.A解析:A 【分析】既然两方程组有相同的解,那么将有一组x 、y 值同时适合题中四个方程,把题中已知的两个方程组成一个方程组,解出x 、y 后,代入x+y+m=0中直接求解即可. 【详解】解:解方程组250280x y x y +-=⎧⎨++=⎩,得76x y =-⎧⎨=⎩,代入x+y+m=0得,m=1, 故选A . 【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.B解析:B 【分析】等式左边去括号后两边经过比对可以得解 . 【详解】解:原等式可变为:()22223x a x a x x b +--=-+, ∴可得:232a b a -=-⎧⎨=-⎩,解之得:a=-1,b=2, 故选B . 【点睛】本题考查二元一次方程组的应用和多项式的乘法,熟练掌握代数式相等的意义、多项式的乘法法则及二元一次方程组的解法是解题关键.5.D解析:D 【分析】根据相反数和非负数的性质即可求出x 、y 的值,再代入xy 中即可. 【详解】根据绝对值和偶次方的性质可知,4350x y +-≥,224)0(x y --≥又∵435x y +-和2(24)x y --是相反数,即2435(24)0x y x y +-+--=.∴435=024=0x y x y +-⎧⎨--⎩ ,解得:=2=1x y ⎧⎨-⎩,∴2(1)1x y =-=. 故选:D . 【点睛】本题考查相反数和非负数的性质、代数式求值以及求解二元一次方程组.根据题意列出二元一次方程组求出x 、y 的值是解答本题的关键.6.C解析:C 【分析】根据吸烟者患肺癌的人数比不吸烟者患肺癌的人数多33人且该研究机构共调查了8000人,即可得出关于x ,y 的二元一次方程,此题得解. 【详解】 解:依题意得:3380003%0.5%x y xy -=⎧⎪⎨+=⎪⎩. 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.A解析:A 【分析】先根据二元一次方程的解的定义可得一个关于m 的一元一次方程,再解方程即可得. 【详解】由题意得:2215m -+⨯=,解得32m=-,故选:A.【点睛】本题考查了二元一次方程的解,掌握理解方程的解的概念是解题关键.8.C解析:C【分析】设竖式纸盒x个,横式纸盒y个,正方形纸板a张,长方形纸板b张,由题意列出方程组可求解.【详解】解:设竖式纸盒x个,横式纸盒y个,正方形纸板a张,长方形纸板b张,根据题意得:432x y b x y a+⎧⎨+⎩==,∴5x+5y=5(x+y)=a+b∴a+b是5的倍数故选:C.【点睛】本题考查了二元一次方程组,根据题意列出正确的方程组是本题的关键.9.C解析:C【分析】分别令n=2与n=5表示出a2,a5,代入已知等式求出a1与d的值,即可确定出a15的值.【详解】令n=2,得到a2=a1+d=5①;令n=5,得到a5=a1+4d=14②,②-①得:3d=9,即d=3,把d=3代入①得:a1=2,则a15=a1+14d=2+42=44.故选:C.【点睛】本题考查了代数式的求值以及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.B解析:B【分析】类比图1所示的算筹的表示方法解答即可.【详解】解:根据图1所示的算筹的表示方法,可推出图2所示的算筹的表示的方程组为2114327x y x y +=⎧⎨+=⎩; 故选:B . 【点睛】本题考查了二元一次方程组的应用,读懂题意、正确列出方程组是关键.第II 卷(非选择题)请点击修改第II 卷的文字说明11.D解析:D 【分析】把k 看做已知数求出x 与y ,代入已知方程计算即可求出k 的值,从而求得x y -的值. 【详解】432x y k x y k +=⎧⎨-=⎩①②, ①-②得:5ky =, 把5k y =代入②得:115k x =, 把115k x =,5ky =代入2310x y +=,得:11231055k k ⨯+⨯= 解得:2k =, ∴225x =,25y =, ∴222455x y -=-=. 【点睛】本题考查了二元一次方程组的解,以及二元一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.12.D解析:D 【解析】分析:由x 、y 系数的特点和所求式子的关系,可确定让①-②即可求解.详解:2423x y a x y a +=-+⎧⎨+=-⎩①②,①−②,得x−y=−a+4−3+a=1. 故选:D.点睛:此题考查了解二元一次方程组,一般解法是用含有a 的代数式表示x 、y ,再计算,但也要注意能简便的则简便.此题中注意整体思想的渗透.二、填空题13.63【分析】设左下角的小正方形边长为左上角最大的正方形的边长为根据长方形的长和宽列出方程组求解即可【详解】解:设左下角的小正方形边长为左上角最大的正方形的边长为解得长方形的长是:长方形的宽是:面积是解析:63 【分析】设左下角的小正方形边长为x ,左上角最大的正方形的边长为y ,根据长方形的长和宽列出方程组求解即可. 【详解】解:设左下角的小正方形边长为x ,左上角最大的正方形的边长为y ,()()31311x y x x y y -=⎧⎨++=+-⎩,解得25x y =⎧⎨=⎩, 长方形的长是:22239+++=, 长方形的宽是:257+=, 面积是:7963⨯=. 故答案是:63. 【点睛】本题考查二元一次方程组的应用,解题的关键是找到等量关系列出方程组求解.14.【分析】将代入方程组求出a 和b 的值即可求解【详解】将代入方程组得:解得:∴故答案为:【点睛】本题考查了二元一次方程组的解方程组的解即为能使方程组中两方程都成立的未知数的值 解析:0【分析】将012x y =⎧⎪⎨=-⎪⎩代入方程组522x b y x a y -=⎧⎨+=⎩,求出a 和b 的值,即可求解. 【详解】将012x y =⎧⎪⎨=-⎪⎩代入方程组522x b y x a y -=⎧⎨+=⎩,得: 121222b a ⎧-=-⎪⎪⎨⎛⎫⎪=⨯- ⎪⎪⎝⎭⎩,解得:1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴11022a b +=-+=. 故答案为:0.【点睛】 本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15.6【分析】方程组两方程相加求出x+4y 的值将x 与y 的值代入即可求出值【详解】解:①+②得:x+4y =6把代入方程得:a+4b =6故答案为6【点睛】此题考查了二元一次方程组的解熟练掌握运算法则是解本题解析:6【分析】方程组两方程相加求出x+4y 的值,将x 与y 的值代入即可求出值.【详解】解:2155x y x y -=⎧⎨-+=⎩①②, ①+②得:x+4y =6,把x a y b=⎧⎨=⎩代入方程得:a+4b =6, 故答案为6【点睛】此题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.16.10【分析】根据好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33可列方程组解之即可【详解】解:设有好酒x 瓶薄酒y 瓶根据题意可列方程组为解得:∴好酒是有10瓶故答案为:10【点睛】本题主解析:10【分析】根据“好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33”可列方程组,解之即可.【详解】解:设有好酒x 瓶,薄酒y 瓶.根据题意,可列方程组为193333x y y x +=⎧⎪⎨+=⎪⎩,解得:109x y =⎧⎨=⎩, ∴好酒是有10瓶,故答案为:10.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是掌握理解题意,找到题目蕴含的相等关系.17.4【分析】由非负数平方和为0每数必为0的规律可以算出x 和y 的值然后代入4x-2y 即可得到答案【详解】解:由题意得:解之得:所以故答案为4【点睛】本题考查非负数平方与二元一次方程组的综合应用熟练掌握非解析:4【分析】由非负数平方和为0,每数必为0的规律可以算出x 和y 的值,然后代入4x-2y 即可得到答案.【详解】解:由题意得:2540270x y x y ++=⎧⎨--=⎩,解之得: 32x y =⎧⎨=-⎩4=== .故答案为4.【点睛】本题考查非负数平方与二元一次方程组的综合应用,熟练掌握非负数平方和为0,每数必为0的规律是解题关键. 18.85【分析】设这个两位数的个位数字为x 十位数字为y 则两位数可表示为10y+x 对调后的两位数为10x+y 根据题中的两个数字之和为13及对调后的等量关系可列出方程组求解即可【详解】设这个两位数的个位数字解析:85【分析】设这个两位数的个位数字为x ,十位数字为y ,则两位数可表示为10y+x ,对调后的两位数为10x+y ,根据题中的两个数字之和为13及对调后的等量关系可列出方程组,求解即可.【详解】设这个两位数的个位数字为x ,十位数字为y ,根据题意得:13102710x y x y y x +=⎧⎨+-=+⎩, 解得:85x y =⎧⎨=⎩, 则这个两位数为8×10+5=85.故答案为:85.【点睛】本题考查了二元一次方程组的应用,解题关键是掌握两位数的表示方法,读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.19.【分析】此题答案不唯一只要写出的二元一次方程组的解符合条件即可【详解】;(答案不唯一)故答案为:【点睛】本题考查二元一次方程组的解;熟练掌握二元一次方程组与解之间的关系是解题的关键解析:55x y x y +=⎧⎨-=-⎩【分析】此题答案不唯一,只要写出的二元一次方程组的解符合条件即可.【详解】55x y x y +⎧⎨--⎩==;(答案不唯一) 故答案为:55x y x y +⎧⎨--⎩== 【点睛】本题考查二元一次方程组的解;熟练掌握二元一次方程组与解之间的关系是解题的关键. 20.5【分析】由同类项的定义可得关于mn 的方程组解方程组即可求出mn 的值然后把mn 的值代入所求式子计算即可【详解】解:由题意得:解得:∴故答案为:5【点睛】本题考查了同类项的定义和二元一次方程组的解法属 解析:5【分析】由同类项的定义可得关于m 、n 的方程组,解方程组即可求出m 、n 的值,然后把m 、n 的值代入所求式子计算即可.【详解】解:由题意得:431m n n m =⎧⎨-=⎩,解得:14m n =⎧⎨=⎩, ∴145m n +=+=.故答案为:5.【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于常考题型,熟练掌握基本知识是解题的关键.三、解答题21.(1) 13y x =-+;(2) n a b =+;(3)0a b ->,1x >或0a b -<,1x <【分析】(1)将1,2();)2,3b a --(代入1y ,得到二元一次方程组,求解方程组即可得a 、b 的值;(2)联立1y 与2y ,即ax b bx a +=+,求得m 的值,然后把点代入1y 或2y ,即可得出结论;(3)根据题意,分别表示出34,y y ,当340y y ->时,分情况讨论得出结论.【详解】解:(1) 将1,2();)2,3b a --(代入1y : 232a b b a a b =+⎧⎨--=+⎩解得:13a b =-⎧⎨=⎩∴ 13y x =-+(2)12y y =,即ax b bx a +=+∴ 1a b x a b-==- ∴ 1m =将()1,A n 代入1y :得到n a b =+(3)3y =12y y -=()()ax b bx a +-+=ax bx b a -+-4y =21y y -=()()bx a ax b +-+=bx ax a b -+-∴34y y - = ()()ax bx b a bx ax a b -+---+-=()()220a b x b a -+->当0a b ->时:解得1x >;当0a b -<时:解得1x <.【点睛】此题考查了待定系数法求一次函数解析式,以及一次函数图像上点的坐标特征,一次函数交点坐标特征,熟练掌握待定系数法是解本题的关键.22.(1)见详解;(2)1l 与2l 不相交;【分析】(1)将点的横坐标代入直线2l ,求得y 的值;如果y 的值恰好等于点的纵坐标,则点在直线2l 上;否则点不在直线2l 上;(2)通过1l 过原点和P 点,可求解直线1l 的解析式;把2m =代入2l 中,求解2l 的解析式;两直线是否相交,通过判断对应的方程组是否有解.【详解】(1)将点(2,3)--的横坐标2x =-代入直线2l :23y mx m =+-(0)m ≠;可得:3y =-;3y =-恰等于点(2,3)--的纵坐标;∴点(2,3)--在直线2l 上;(2)由题知:设直线1l 的解析式为:y kx b =+(0)k ≠;又1l 过原点(0,0)和(),2P m m 点,将点代入:y kx b =+(0)k ≠,可得:2k =,0b =;∴ 直线1l 的解析式为:2y x =;把2m =代入2l 中,∴ 直线2l 的解析式为:21y x =+;∴把两直线组成方程组:221y x y x =⎧⎨=+⎩⇒221x x =+⇒01=,显然不成立;所以方程组无解,∴ 直线1l 与2l 不相交;∴ 直线1l 与2l 不相交.【点睛】本题主要考查点与直线及直线与直线之间的关系;重点在于熟练应用直线是否相交,通过对应方程组是否有解进行判断,有解则相交,无解则不相交.23.(1)甲3辆,乙12辆;(2)见解析【分析】(1)设需要甲x 辆,乙y 辆,根据运送11400公斤和需运费8700元,可列出方程组求解.(2)因为甲的费用最少,所以尽量多用甲,然后是乙,最后是丙,列出方程,且解是整数,可列方程求解.【详解】解:(1)设需要甲x 辆,乙y 辆,600800114005006008700x y x y +=⎧⎨+=⎩, 解得:312x y =⎧⎨=⎩, 答:甲3辆,乙12辆;(2)设需要甲x 辆,乙y 辆,则丙(15-x -y )辆,根据题意得.600x +800y +900(15-x -y )=11400,y =21-3x ,x 可以为7,6,5,4,3,2,1,y 依次为0(舍去),3,6,9,12,15(舍去),18(舍去),21(舍去),因此方案有:甲,乙,丙的辆数分别为①6,3,6;②5,6,4;③4,9,2;④3,12,0(不合题意,舍去).则运费分别为①6×500+3×600+6×700=9000(元),②5×500+6×600+4×700=8900(元),③4×500+9×600+2×700=8800(元),故第三种方案运费最省,为8800元.【点睛】此题考查二元一次方程组与二元一次方程的实际运用,找出题目蕴含的数量关系,建立方程或方程组解决问题.24.(1)这个班有男生有24人,女生有26人;(2)原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【分析】(1)由题意列出方程组,解方程组解可;(2)分别计算出24名男生和26名女生剪出的筒底和筒身的数量,可得不配套;设男生应向女生支援y 人,根据制作筒底的数量=筒身的数量×2,根据等量关系列出方程,再解即可.【详解】解:(1)由题意得:502x y x y +=⎧⎨=-⎩, 解得:2426x y =⎧⎨=⎩, 答:这个班有男生有24人,女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,2880:1040≠2:1,所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套, 设男生应向女生支援a 人,由题意得:120(24-a)=(26+a)×40×2,解得:a=4,答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用,解题的关键是正确理解题意,找出题目中的等量关系,列出方程或方程组.25.2【分析】先用含k 的式子表示x 、y ,根据方程组的解也是二元一次方程4536x y +=的解,即可求得k 的值.【详解】解:①+②得:214x k =,解得: x =7k ,将x =7k 代入①得:75k y k +=,解得: y =-2k ,∴方程组的解为72x k y k=⎧⎨=-⎩, 将72x k y k=⎧⎨=-⎩代入4x +5y =36得: ()475236k k ⨯+⨯-=,解得k=2 ,答:k 的值是2.【点睛】本题考查了二元一次方程组的解、二元一次方程的解以及解二元一次方程组,解决本题的关键是用含k 的式子表示x 、y .26.(1)32m =,23a =-;(2)()6,0B ;(3)9 【分析】(1)先把A 点坐标代入正比例函数解析式求出m ,从而确定A 点坐标,然后利用待定系数法确定a 的值; (2)由一次函数243y x =-+,令0y =求得B 的坐标; (3)根据三角形面积公式求得即可.【详解】 解:(1)依题意把(),3A m 代入2y x =,得:32m =, 解之得:32m =, ∴点A 坐标为3,32⎛⎫ ⎪⎝⎭, 把3,32A ⎛⎫ ⎪⎝⎭代入4y ax =+,得: 3342a =+, 解之得:23a =-; (2)由(1)知该一次函数解析式为243y x =-+, 令0y =得:2043x =-+, 解之得:6x =,∴点B 的坐标为()6,0;(3)∵3,32A ⎛⎫ ⎪⎝⎭,()6,0B , ∴6OB =,OB 边上的高为3, ∴163=92AOB S=⨯⨯. 【点睛】 此题综合考查了待定系数法求函数解析式、直线与坐标轴的交点的求法、三角形面积的计算;根据题意求出有关点的坐标是解决问题的关键.。
平面直角坐标系与二元一次方程
平面直角坐标系与二元一次方程在数学中,平面直角坐标系是一种经常用来解决几何问题的工具。
它由两条垂直于彼此的直线组成,其中一条称为x轴,另一条称为y轴。
这两条轴的交点被称为原点,通常用O表示。
平面直角坐标系被广泛应用于解决各种数学问题和实际应用中的计算。
而二元一次方程则是平面直角坐标系中常见的数学模型之一。
它由两个未知数和两个一次项构成,通常具有以下的一般形式:ax + by = c,其中a、b和c为已知数。
在平面直角坐标系中,我们可以通过求解二元一次方程来找到它的解,即方程中x和y的值。
解的意义在于通过给定的方程得出具体的数值,从而满足方程的等式。
那么,我们该如何求解平面直角坐标系与二元一次方程的关系呢?接下来,将会介绍三种常见的求解方法。
方法一:图解法图解法是最直观也最易于理解的方法之一。
我们可以将二元一次方程转化为直线的形式,然后在平面直角坐标系中画出该直线。
通过观察直线与坐标轴的交点,我们可以得出方程的解。
举例说明,令二元一次方程为2x + 3y = 6。
首先,我们可以将方程转化为y的形式:y = (6 - 2x) / 3。
然后,在直角坐标系中画出对应的直线。
我们可以选择两个x值,比如x = 0和x = 3,将其代入方程中求得对应的y值。
这样,我们就得到了两个点(0, 2)和(3, 0)。
连接这两个点,就可以得到直线。
最后,通过观察直线与x轴或y轴的交点,可以得出方程的两个解。
方法二:代入法代入法是一种常用的解二元一次方程的方法。
通过将一个方程中的一个未知数表示为另一个未知数的函数,然后代入另一个方程中,就可以得到只含有一个未知数的一元一次方程,从而解得该未知数的值。
例如,考虑以下的二元一次方程组:2x + y = 7x - y = 1我们可以将第二个方程转化为x的形式:x = y + 1。
然后代入第一个方程中,得到2(y + 1) + y = 7。
经过简化后,得到3y + 2 = 7,继续化简可得y = 1。
上海民乐学校七年级数学下册第八单元《二元一次方程组》习题(含答案)
一、选择题1.以方程组21x y y x +=⎧⎨=-⎩的解为坐标的点(x ,y)在平面直角坐标系中的位置是( ) A .第一象限B .第二象限C .第三象限D .第四象限A解析:A【分析】先根据代入消元法解方程组,然后判断即可;【详解】 21x y y x +=⎧⎨=-⎩, 把1y x =-代入2x y +=中,得:12x x -+=, 解得:32x =, ∴31122y =-=, ∴点31,22⎛⎫ ⎪⎝⎭在第一象限. 故选A .【点睛】本题主要考查了解二元一次方程组及象限与点的坐标,准确计算判断是解题的关键. 2.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12aD .﹣12a A 解析:A【分析】 设图③小长方形的长为m ,宽为n ,则由已知可以求得m 、n 关于a 的表达式,从而可以用a 表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差.【详解】解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a ,∴2a m a n ==,,∴图①阴影部分周长=22245a n a a a ⨯+=+=,图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a ,故选A .【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.3.两位同学在解方程组时,甲同学由278ax by x cx y +=⎧⎨-=⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把C 写错了解得22x y =-⎧⎨=⎩,那么a 、b 、c 的正确的值应为 A .452a b c ===-,, B .451a b c ===-,,C .450a b c =-=-=,,D .452a b c =-=-=,, A解析:A【分析】 把32x y =⎧⎨=-⎩代入278ax by x cx y +=⎧⎨-=⎩得,3223148a b c -=⎧⎨+=⎩由方程组中第二个式子可得:c=-2.用排除法,可以直接解答.【详解】解:把32x y =⎧⎨=-⎩代入278ax by x cx y +=⎧⎨-=⎩得: 3223148a b c -=⎧⎨+=⎩①②, 由②得:c 2=-,四个选项中行只有A 符合条件.故选择:A.【点睛】此题主要考查了二元一次方程组的解,做这类题目时要用代入法或排除法,这样可以提高做题效率.4.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 斛,1 个大桶加上 5 个小桶可以盛酒 2 斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是( )A .5253x y x y +=⎧⎨+=⎩B .5352x y x y +=⎧⎨+=⎩C .5352x y x y +=⎧⎨=+⎩D .5=+352x y x y ⎧⎨+=⎩ B 解析:B【分析】设一个大桶盛酒x 斛,一个小桶盛酒y 斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”即可得出关于x 、y 的二元一次方程组.【详解】设一个大桶盛酒 x 斛,一个小桶盛酒 y 斛,根据题意得:5352x y x y +=⎧⎨+=⎩,故选B. 【点睛】根据文字转化出方程条件是解答本题的关键.5.下列方程组的解为31x y =⎧⎨=⎩的是( ) A .224x y x y -=⎧⎨+=⎩B .253x y x y -=⎧⎨+=⎩C .32x y x y +=⎧⎨-=⎩D .2536x y x y -=⎧⎨+=⎩ D 解析:D【解析】把31x y =⎧⎨=⎩代入选项A 第2个方程24x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项B 第2个方程3x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项C 第1个方程3x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项D 两个方程均成立,故正确; 故选D.6.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( )A .①②③B .①③C .②③D .①②A 解析:A【分析】根据二元一次方程组的解法逐个判断即可.【详解】当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解 ∴结论①正确由题意,解方程组35661516x yx y+=⎧⎨+=⎩得:2345xy⎧=⎪⎪⎨⎪=⎪⎩把23x=,45y=代入310x ky+=得2431035k⨯+=解得10k=,则结论②正确解方程组356310x yx ky+=⎧⎨+=⎩得:20231545xkyk⎧=-⎪⎪-⎨⎪=⎪-⎩又k为整数x、y不能均为整数∴结论③正确综上,正确的结论是①②③故选:A.【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键.7.由方程组223224x y mx y m-=+⎧⎨+=+⎩可得x与y的关系式是()A.3x=7+3m B.5x﹣2y=10 C.﹣3x+6y=2 D.3x﹣6y=2D 解析:D【分析】方程组消去m即可得到x与y的关系式.【详解】解:223224x y mx y m-=+⎧⎨+=+⎩①②,①×2﹣②得:3x﹣6y=2,故选:D.【点睛】此题考查了解二元一次方程组,利用了消元的思想,本题用的是加减消元法.8.若方程组21322x y kx y+=-⎧⎨+=⎩的解满足0x y+=,则k的值为()A.1-B.1 C.0 D.不能确定B 解析:B【分析】方程组中两方程相加得到以k为未知数的方程,解方程即可得答案.【详解】解:①+②,得3(x+y )=3-3k ,由x+y=0,得3-3k=0,解得k=1,故选:B .【点睛】本题考查了二元一次方程组的解,利用等式的性质是解题关键.9.已知21x y =-⎧⎨=⎩是方程25mx y +=的解,则m 的值是( ) A .32- B .32C .2-D .2A 解析:A【分析】先根据二元一次方程的解的定义可得一个关于m 的一元一次方程,再解方程即可得. 【详解】由题意得:2215m -+⨯=, 解得32m =-, 故选:A .【点睛】 本题考查了二元一次方程的解,掌握理解方程的解的概念是解题关键.10.下列方程是二元一次方程的是( ).A .32x y -=B .1xy =C .2+3=x xD .153x y-= A 解析:A【分析】根据二元一次方程的定义,对各个选项逐个分析,即可得到答案.【详解】 32x y -=是二元一次方程,故选项A 正确;1xy =,含未知数的项的次数是2,故选项B 错误;2+3=x x 是一元一次方程,故选项C 错误;153x y-=,不是整式方程,故选项D 错误; 故选:A .【点睛】本题考查了二元一次方程的知识;解题的关键是熟练掌握二元一次方程的定义,从而完成求解.二、填空题11.若2(321)4330x y x y -++--=,则x y -=_____.4【分析】根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出xy 的值再代入原式中即可【详解】解:∵∴①×3-②×2得把代入①得解得∴故答案为:4【点睛】本题考查了非负数的性质及二元一次方解析:4【分析】根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x 、y 的值,再代入原式中即可.【详解】解:∵2(321)4330x y x y -++--=,∴32104330x y x y -+=⎧⎨--=⎩①②, ①×3-②×2得,9x =-,把9x =-代入①得,27210y --+=,解得13y =-,∴9134x y -=-+=.故答案为:4.【点睛】本题考查了非负数的性质及二元一次方程组的解法.注意:几个非负数的和为零,则每一个数都为零.12.某商店准备用每千克19元的A 糖果和每千克10元的B 糖果混合成什锦糖果出售,混合后糖果的价格是每千克16元.现在要配制这种什锦糖果150千克,需要两种糖果各多少千克?设A 糖果x 千克,B 糖果y 千克,根据题意可列二元一次方程组:_____.【分析】设需要每千克19元的糖果x 千克每千克10元糖果y 千克根据题意可得糖果150千克;混合后糖果的价格是每千克16元;据此列方程组解答即可【详解】设需要每千克19元的糖果x 千克每千克10元糖果y 千解析:150191016150x y x y +=⎧⎨+=⨯⎩. 【分析】设需要每千克19元的糖果x 千克,每千克10元糖果y 千克,根据题意可得糖果150千克;混合后糖果的价格是每千克16元;据此列方程组解答即可.【详解】设需要每千克19元的糖果x 千克,每千克10元糖果y 千克,根据题意可得:150191016150x y x y +=⎧⎨+=⨯⎩,故答案为:150191016150x y x y +=⎧⎨+=⨯⎩. 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.13.设 a 、b 是有理数,且满足等式2321a b ++=-则a+b=___________.1或﹣11【分析】根据实数相等的条件可求出ab 的值然后代入所求式子计算即可【详解】解:∵ab 是有理数且满足等式∴解得:当a=6b=﹣5时a+b=6-5=1;当a=﹣6b=﹣5时a+b=﹣6-5=﹣1解析:1或﹣11【分析】根据实数相等的条件可求出a 、b 的值,然后代入所求式子计算即可.【详解】解:∵a 、b 是有理数,且满足等式2321a b ++=-∴2321,5a b b +==-,解得:5,6b a =-=±,当a =6,b =﹣5时,a +b =6-5=1;当a =﹣6,b =﹣5时,a +b =﹣6-5=﹣11;故答案为:1或﹣11.【点睛】本题考查了实数的相关知识,正确理解题意、得到关于a 、b 的方程组是解题的关键. 14.已知关于x 、y 二元一次方程组31630mx y x ny -=⎧⎨-=⎩的解为53x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组(1)3(1)163(1)(1)0m x y x n y +--=⎧⎨+--=⎩的解是___.【分析】观察发现和形式完全相同故整体考虑可得然后解方程即可【详解】解:∵和形式完全相同∴解的故答案为:【点睛】本题主要考查了整体思想在解二元一次方程组中的应用善于观察所给两个方程组的特点整体考虑是解解析:44x y =⎧⎨=⎩【分析】观察发现31630mx y x ny -=⎧⎨-=⎩和(1)3(1)163(1)(1)0m x y x n y +--=⎧⎨+--=⎩形式完全相同,故整体考虑,可得1513x y +=⎧⎨-=⎩,然后解方程即可. 【详解】解:∵31630mx y x ny -=⎧⎨-=⎩和(1)3(1)163(1)(1)0m x y x n y +--=⎧⎨+--=⎩形式完全相同 ∴1513x y +=⎧⎨-=⎩,解的44x y =⎧⎨=⎩故答案为:44x y =⎧⎨=⎩【点睛】本题主要考查了整体思想在解二元一次方程组中的应用,善于观察所给两个方程组的特点,整体考虑,是解题的关键.15.如果()2x 2y 1x y 50-+++-=,那么 x =______,y =____2【分析】根据绝对值的非负性和平方数的非负性列出关于xy 的二元一次方程组然后利用加减消元法求解即可【详解】解:根据题意得:②-①得:3y ﹣6=0解得:y=2将y=2代入②中得:x+2﹣5=0解得:x解析:2【分析】根据绝对值的非负性和平方数的非负性,列出关于x 、y 的二元一次方程组,然后利用加减消元法求解即可.【详解】解:根据题意得:21050x y x y -+=⎧⎨+-=⎩①②, ②-①得:3y ﹣6=0,解得:y=2,将y=2代入②中,得:x+2﹣5=0,解得:x=3,所以,方程组的解是32x y =⎧⎨=⎩, 故答案为:3;2.【点睛】本题考查绝对值和偶次方的非负性、解二元一次方程组,掌握二元一次方程组的解法,能根据两个非负性的和为零,则这两个数为零列出方程组是解答的关键.16.若点(2,2)A m n m n ++在y 轴的负半轴上,且点A 到x 轴的距离为6,则m n +=___________.-2【分析】根据题意列出方程组求得mn 的值即可求解【详解】根据题意得:①+②得:∴故答案为:【点睛】本题考查了坐标与图形坐标轴上点的坐标特征二元一次方程组的应用解此题的关键是列出关于的方程组 解析:-2【分析】根据题意列出方程组,求得m 、n 的值,即可求解.【详解】根据题意,得:2026m n m n +=⎧⎨+=-⎩①②, ①+②得:336m n +=-,∴2m n +=-,故答案为:2-.【点睛】本题考查了坐标与图形,坐标轴上点的坐标特征,二元一次方程组的应用,解此题的关键是列出关于m 、n 的方程组.17.2017年复兴号的成功研制生产,标志着我国高速动车组走在了世界先进前列.2019年全世界最长的高速动车组复兴号CR 400A ﹣B 正式运营,全长约440米,如图,将笔直轨道看成1个单位长度为1米的数轴,CR 400A ﹣B 停站时首尾对应的数分别为a ,b ,向右行驶一段距离后,首尾对应的数分别为c ,d ,若c ﹣d =2(|a |﹣|b |),则b 的值为__.-110【分析】由题意得出a ﹣b =2(|a|﹣|b|)=440①当ab 都为负数时②当a≥0b <0时③当a >0b≥0时分别计算即可得出结果【详解】解:由题意得:c ﹣d =a ﹣b =440∵c ﹣d =2(|a解析:-110【分析】由题意得出a ﹣b =2(|a |﹣|b |)=440,①当a 、b 都为负数时,②当a ≥0、b <0时,③当a >0,b ≥0时,分别计算即可得出结果.【详解】解:由题意得:c ﹣d =a ﹣b =440,∵c ﹣d =2(|a |﹣|b |),∴a ﹣b =2(|a |﹣|b |)=440,①当a 、b 都为负数时,4402()440a b a b -=⎧⎨-+=⎩, 方程组无解;②当a ≥0、b <0时,4402()440a b a b -=⎧⎨+=⎩, 解得:330110a b =⎧⎨=-⎩ ; ③当a >0,b ≥0时,4402()440a b a b -=⎧⎨-=⎩, 方程组无解;综上所述,b 的值为﹣110,故答案为:﹣110.【点睛】本题考查了数轴、绝对值、二元一次方程组的解等知识;熟练掌握绝对值的性质,进行分类讨论是解题的关键.18.130+-++=x y y ,则x y -=________.7【分析】由绝对值的性质可以得到关于xy 的二元一次方程解方程求得xy 的值后即可算出x-y 的值【详解】解:由题意得:解之得:故答案为7【点睛】本题考查绝对值的应用理解绝对值为非负数的性质是解题关键解析:7【分析】由绝对值的性质可以得到关于x 、y 的二元一次方程,解方程求得x 、y 的值后即可算出x-y 的值.【详解】解:由题意得:1030x y y +-=⎧⎨+=⎩,解之得: 43x y =⎧⎨=-⎩,()437x y ∴-=--=, 故答案为7.【点睛】本题考查绝对值的应用,理解绝对值为非负数的性质是解题关键.19.如果28a b --与()21a b ++互为相反数,那么a b =________.9【分析】由题意可知得到二元一次方程组并求解即可【详解】解:∵与互为相反数∴∴解得∴故答案为:9【点睛】本题考查相反数之和为0绝对值的非负性二元一次方程组等根据题意列出二元一次方程组是解题的关键解析:9【分析】 由题意可知()20281a b a b --+++=,得到二元一次方程组并求解即可.【详解】解:∵28a b --与()21a b ++互为相反数, ∴()20281a b a b --+++=, ∴28010a b a b --=⎧⎨++=⎩,解得23a b =⎧⎨=-⎩, ∴()239a b =-=, 故答案为:9.【点睛】本题考查相反数之和为0,绝对值的非负性,二元一次方程组等,根据题意列出二元一次方程组是解题的关键.20.明代的程大位创作了《算法统宗》,它是一本通俗实用的数学书,将枯燥的数学问题化成了美妙的诗歌,读来朗朗上口,是将数字入诗的代表作.例如,其中有一首饮酒数学诗:“肆中饮客乱纷纷,薄酒名釂厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生.试问高明能算士,几多酶酒几多醇?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮下19瓶酒.试问其中好酒、薄酒分别是多少瓶?”请你根据题意,求出好酒是有_____瓶.10【分析】根据好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33可列方程组解之即可【详解】解:设有好酒x 瓶薄酒y 瓶根据题意可列方程组为解得:∴好酒是有10瓶故答案为:10【点睛】本题主解析:10【分析】根据“好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33”可列方程组,解之即可.【详解】解:设有好酒x 瓶,薄酒y 瓶.根据题意,可列方程组为193333x y y x +=⎧⎪⎨+=⎪⎩,解得:109x y =⎧⎨=⎩, ∴好酒是有10瓶,故答案为:10.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是掌握理解题意,找到题目蕴含的相等关系.三、解答题21.解方程(组)(1)21332x x x -+-= (2)3450529x y x y -+=⎧⎨+=⎩解析:(1)x =-7;(2)12x y =⎧⎨=⎩【分析】(1)根据去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可; (2)方程整理后,利用加减消元法解方程即可.【详解】解:(1)去分母得 ()()622133x x x --=+去括号得 64239x x x -+=+移项得 64392x x x --=-合并同类项得 7x -=系数化为1得 7x =-(2)方程组整理得345529x y x y -=-⎧⎨+=⎩①②②×2+①得1313x =解得1x =把1x =代入②得529y +=解得2y =∴方程组的解为12x y =⎧⎨=⎩【点睛】本题考查了解一元一次方程及解二元一次方程组.解二元一次方程组的思想是消元思想,常用方法是代入法和加减法.22.解方程组: (1)35,24;x y x y +=⎧⎨-=⎩(2)3(1)1,5(1)2 1.x y y x --=⎧⎨-=+⎩解析:(1)21x y =⎧⎨=-⎩;(2)22x y =⎧⎨=⎩. 【分析】(1)利用加减消元法求解即可;(2)原方程整理后利用加减消元法求解即可.【详解】解:(1)3524x y x y +=⎧⎨-=⎩①② ①×2得:6210x y +=③,②+③得:714x =,解得2x =,代入①得:65y +=,解得1y =-,所以,该方程组的解为21x y =⎧⎨=-⎩; (2)原方程组整理得:34256x y x y -=⎧⎨-+=⎩①②, ①×5得:15520x y -=③,②+③得:1326x =,解得2x =,代入①得:64y -=,解得2y =,所以,该方程组的解为22x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组.解二元一次方程组主要有两种方法,加减消元法和代入消元法,掌握“消元”思想是解题关键.23.解方程组:(1)25342x y x y -=⎧⎨+=⎩ (2)21223x y x y -=⎧⎪⎨+=⎪⎩. 解析:(1)21x y =⎧⎨=-⎩;(2)23x y =⎧⎨=⎩ 【分析】(1)利用加减法解方程组;(2)利用加减法解方程组.【详解】(1)25342x y x y -=⎧⎨+=⎩①②, ①×4+②得:11x =22,即x =2,把x =2代入①得:y =﹣1,则方程组的解为21x y =⎧⎨=-⎩; (2)方程组整理得:213212x y x y -=⎧⎨+=⎩①②, ①×2+②得:7x =14,即x =2,把x =2代入①得:y =3,则方程组的解为23x y =⎧⎨=⎩. 【点睛】此题考查解二元一次方程组,掌握方程组的解法:代入法和加减法的解法是解题的关键. 24.已知方程组4,6ax by ax by -=⎧⎨+=⎩与方程组35,471x y x y -=⎧⎨-=⎩的解相同,求a ,b 的值.解析: 2.51a b =⎧⎨=⎩【分析】先求出已知方程组(2)的解,再代入方程组(1)即可求出a 、b 的值.【详解】解:解方程组35,47 1.x y x y -=⎧⎨-=⎩得2,1.x y =⎧⎨=⎩把2,1.x y =⎧⎨=⎩代入方程组4,6.ax by ax by -=⎧⎨+=⎩得24,2 6.a b a b -=⎧⎨+=⎩ 解这个方程组,得 2.5,1.a b =⎧⎨=⎩【点睛】本题考查了同解方程组、解二元一次方程组.解答此题的关键是要弄清题意,方程组有相同的解及说明方程组(1)的解也适合(2),不要盲目求解,造成解题过程复杂化. 25.如果(a ﹣2)x +(b +1)y =13是关于x ,y 的二元一次方程,则a ,b 满足什么条件? 解析:a ≠2,b ≠﹣1【分析】根据二元一次方程含有两个未知数可知a ﹣2≠0,b+1≠0,即可求出a ,b 所满足的条件.【详解】解:∵(a ﹣2)x +(b +1)y =13是关于x ,y 的二元一次方程,∴a ﹣2≠0,b +1≠0,∴a ≠2,b ≠﹣1.【点睛】此题考查了二元一次方程的定义:即含有两个未知数的方程,根据定义求参数满足的条件,难度一般.26.若方程12225m n m n x y --+-+=是二元一次方程,求m ,n 的值.解析:m=53,n=﹣13. 【分析】根据二元一次方程的定义,含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程,列出等式,即可求解.【详解】解:根据题意,得 11221m n m n --=⎧⎨+-=⎩, 解得53m =,13n =-. 【点睛】本题考查了二元一次方程组的概念以及解方程组,明确二元一次方程的定义是解题的关键.27.新冠疫情过后,海伦市第三中学七年级学生将外出进行社会实践活动,从学校出发骑自行车去实践基地,中途因道路施工步行一段路,1.5小时后到达实践基地,他骑车的平均速度是15千米/时,步行的平均速度是5千米/时,路程全长20千米,他骑车和步行各用了多少时间?解析:骑车用1.25小时,步行用0.25小时.【分析】首先设他骑车用了x 小时,根据骑车时间+步行时间=1.5小时表示出步行时间,再由骑车路程+步行路程=20千米,根据等量关系列出方程组,解方程组即可.【详解】设骑自行车的时间为x 小时,步行的时间为y 小时,根据题意得: 1.515520x y x y +=⎧⎨+=⎩, 解得 1.250.25x y =⎧⎨=⎩, 答:骑车用1.25小时,步行用0.25小时.【点睛】本题考查二元一次方程组的应用,关键是弄懂题意,根据题目中的等量关系列出方程组. 28.解方程:(1)代入法:23328y x x y =-⎧⎨+=⎩(2)加减法:25324x y x y -=⎧⎨+=⎩解析:(1)21x y =⎧⎨=⎩;(2)21x y =⎧⎨=-⎩【分析】(1)运用代入消元法求解即可;(2)运用加减消元法求解即可.【详解】解:(1)23328y x x y =-⎧⎨+=⎩①② ① 代入②得,32(23)8x x +-=,解得,x=2,把x=2代入①得,y=1,所以,方程组的解为:21x y =⎧⎨=⎩;(2)25 324 x yx y-=⎧⎨+=⎩①②①×2+②得,7x=14解得,x=2把x=2代入①得,4-y=5,解得,y=-1∴方程组的解为:21 xy=⎧⎨=-⎩【点睛】此题主要考查了解二元一次方程组,解二元一次方程组的方法有:代入消元法和加减消元法.。
(必考题)初中数学八年级数学上册第五单元《二元一次方程组》测试题(包含答案解析)(5)
一、选择题1.已知方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩,则关于x ,y 的方程组1111222222a x b y b c a x b y b c -=+⎧⎨-=+⎩的解是( ) A .16x y =⎧⎨=-⎩B .14x y =⎧⎨=⎩C .46x y =⎧⎨=-⎩D .44x y =⎧⎨=-⎩2.若2()(2)3x a x x x b +-=-+,则实数b 等于( ) A .2-B .2C .12-D .123.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( ) A .2-B .2C .1-D .14.《九章算术》中,一次方程组是由算筹布置而成的.如图1所示的算筹图,表示的方程组就是3219423x y x y +=⎧⎨+=⎩,类似地,图2所示的算筹图表示的方程组为( )A .2114322x y x y +=⎧⎨+=⎩B .2114327x y x y +=⎧⎨+=⎩C .3219423x y x y +=⎧⎨+=⎩D .264327x y x y +=⎧⎨+=⎩5.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .6种B .7种C .8种D .9种6.已知关于,x y 的方程组2106x y nx my +=⎧⎨+=⎩和10312mx y nx y -=⎧⎨-=⎩有公共解,则m n -的值为( )A .1B .1-C .2D .2-7.方程组2824x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( )A .1B .2C .3D .48.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为( )A .19分B .20分C .21分D .22分9.已知 xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则 x :y :z 等于( )A .3:2:1B .1:2:3C .4:5:3D .3:4:510.已知方程组43235x y kx y -=⎧⎨+=⎩的解满足x y =,则k 的值为( )A .1B .2C .3D .4 11.如果3m 2n n m 3x 4y 120---+=是关于,x y 的二元一次方程,那么,m n 的值分别为( ) A .m=2, n=3B .m=2, n=1C .m=-1, n=2D .m=3, n=412.已知a b c 、、是ABC 的三边长,其中a b 、是二元一次方程组10216a b a b +=⎧⎨+=⎩的解,那么c 的值可能是下面四个数中的( ) A .2B .6C .10D .18二、填空题13.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.14.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为_______.15.已知关于x ,y 的方程组111222a b c a b c x y x y +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩的解是____________. 16.在平面直角坐标系xOy 中,二元一次方程ax+by=c 的图象如图所示.则当x=3时,y 的值为_______.17.写出一个解为21x y =⎧⎨=⎩的二元一次方程组______. 18.从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3,km 平路每小时走4,km 下坡每小时走5,km 那么从甲地到乙地需48,min 从乙地到甲地需要36,min 则甲地到乙地的全程是__________________.km19.如图,汪曾祺纪念馆中的仿古墙独具特色,其中一处是由10块相同的小矩形砖块拼成了一个大矩形,若大矩形的一边长为75cm ,则小矩形砖块的面积为______2cm .20.如图,已知点A 坐标为(6,0),直线()0y x b b =+>与y 轴交于点B ,与x 轴交于点C ,连接AB ,43AB =,则OC 的长为______.三、解答题21.解方程组31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩22.2019年是中华人民共和国成立70周年,全国多地用灯光秀为祖国庆祝生日.据悉,四川省内某城市灯光秀共使用照明灯和投射灯共50万个,共花费1005万元.已知照明灯的售价为每个9元,投射灯的售价为每个120元,请用方程或方程组的相关知识解决下列问题:(1)该城市灯光秀使用照明灯和投射灯各多少个?(2)某栋楼宇原计划安装照明灯1000个,投射灯50个.后因楼宇本身的设计,实际安装时投射灯比计划多安装了20%,照明灯的数量不变.卖灯的商家为祖国70华诞而让利,把照明灯和投射灯售价分别降低了m %,3%5m ,实际上这栋楼宇照明灯和投射灯的总价为13536元,请求出m 的值.23.某公司决定从甲、乙、丙三个工厂共购买100件同种产品A ,计划从丙厂购买的产品数量是从甲厂购买的产品数量的2倍;从丙厂购买的产品数量的12与从甲厂购买的产品数量之和,刚好等于从乙厂购买的产品数量.(1)设从甲厂购买x 件产品A ,从乙厂购买y 件产品A ,请用列方程组的方法求出该公司从三个工厂各应购买多少件产品A ;(2)已知这三个工厂生产的产品A 的优品率分别为甲:80%;乙:85%;丙:90%,求快乐公司所购买的100件产品A 的优品率;(3)在第(2)题的基础上,你认为该公司在购买总数100件不变的情况下,能否通过改变计划,调整从三个工厂购买产品A 的数量,使购买产品A 的优品率上升2%?若能,请求出所有可能的购买方案;若不能,请说明理由(各厂购买的优品件数是整数). 24.某包装生产企业承接了一批礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是200cm ×40cm 的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示,(单位:cm ).(1)列出方程(组),求出图甲中a 与b 的值.(2)在试生产阶段,若将25张标准板材用裁法一裁剪,将5张标准板材用裁法二裁剪,再将得到的A 型与B 型板材分别做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?25.解方程(组)(1)()()4213311x x ---= (2)148x y x y +=⎧⎨+=-⎩①②26.为了保护学生的视力,课桌的高度cm y 与椅子的高度cm x (不含靠背)都是按y 是x 的一次函数关系配套设计的,下表列出了两套符合条件课桌椅的高度:(2)现有一把高42.0cm 的椅子和一张高78.2cm 的课桌,它们是否配套?请通过计算说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】将方程组1111222222a x b y b c a x b y b c -=+⎧⎨-=+⎩变形为111222a x b y c a x b y c +=⎧⎨+=⎩类似的形式,解方程组即可.【详解】解:方程组1111222222a x b y b c a x b y b c -=+⎧⎨-=+⎩可化为:1112222(1)2(1)a x b y c a x b y c -+=⎧⎨-+=⎩,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩,∴方程组1111222222a x b y b c a x b y b c -=+⎧⎨-=+⎩的解满足()2215x y =⎧⎨-+=⎩,即解为:16x y =⎧⎨=-⎩,故选:A . 【点睛】本题考查了二元一次方程组的解,解二元一次方程组,正确的解出方程组的解是解题的关键.2.B解析:B 【分析】等式左边去括号后两边经过比对可以得解 . 【详解】解:原等式可变为:()22223x a x a x x b +--=-+, ∴可得:232a b a -=-⎧⎨=-⎩,解之得:a=-1,b=2, 故选B . 【点睛】本题考查二元一次方程组的应用和多项式的乘法,熟练掌握代数式相等的意义、多项式的乘法法则及二元一次方程组的解法是解题关键.3.D解析:D 【分析】根据相反数和非负数的性质即可求出x 、y 的值,再代入xy 中即可. 【详解】根据绝对值和偶次方的性质可知,4350x y +-≥,224)0(x y --≥又∵435x y +-和2(24)x y --是相反数,即2435(24)0x y x y +-+--=.∴435=024=0x y x y +-⎧⎨--⎩ ,解得:=2=1x y ⎧⎨-⎩,∴2(1)1x y =-=. 故选:D . 【点睛】本题考查相反数和非负数的性质、代数式求值以及求解二元一次方程组.根据题意列出二元一次方程组求出x 、y 的值是解答本题的关键.4.B解析:B 【分析】类比图1所示的算筹的表示方法解答即可. 【详解】解:根据图1所示的算筹的表示方法,可推出图2所示的算筹的表示的方程组为2114327x y x y +=⎧⎨+=⎩; 故选:B . 【点睛】本题考查了二元一次方程组的应用,读懂题意、正确列出方程组是关键.第II 卷(非选择题)请点击修改第II 卷的文字说明5.A解析:A 【解析】 试题设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10, 方程的整数解为:24x y =⎧⎨=⎩,43x y =⎧⎨=⎩,62x y =⎧⎨=⎩,81x y =⎧⎨=⎩,10{0x y ==,05x y =⎧⎨=⎩.因此兑换方案有6种, 故选A .考点:二元一次方程的应用.6.A解析:A 【分析】联立不含m 与n 的两个方程组成方程组,求出x 与y 的值,进而求出m 与n 的值,代入m-n ,计算即可. 【详解】 解:联立得:210312x y x y +=⎧⎨-=⎩①②,①×3+②得:7x=42, 解得:x=6,把x=6代入②得:y=-2,把62x y =⎧⎨=-⎩ 代入得:6266210n m m n -=⎧⎨+=⎩, 解得:m=3,n=2, 则m-n=3-2=1. 故选A . 【点睛】本题考查了二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.利用两个方程组有公共解得出x ,y 的值是解题关键.7.A解析:A 【分析】分类讨论x 与y 的正负,利用绝对值的代数意义化简,求出方程组的解,即可做出判断. 【详解】解:根据x 、y 的正负分4种情况讨论: ①当x >0,y >0时,方程组变形得:2824x y x y +=⎧⎨+=⎩,无解;②当x >0,y <0时,方程组变形得:2824x y x y +=⎧⎨-=⎩,解得x =3,y =2>0, 则方程组无解;③当x <0,y >0时,方程组变形得:2824x y x y -+=⎧⎨+=⎩,此时方程组的解为16x y =-⎧⎨=⎩;④当x <0,y <0时,方程组变形得:2824x y x y -+=⎧⎨-=⎩,无解,综上所述,方程组的解个数是1. 故选:A . 【点睛】本题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.8.A解析:A 【分析】设投中外环得x 分,投中内环得y 分,根据所给图信息列一个二元一次方程组,解出即可得出答案. 【详解】解:设投中外环得x 分,投中内环得y 分,根据题意得2321417x y x y +=⎧⎨+=⎩, 解得:35x y =⎧⎨=⎩,32332519x y ∴+=⨯+⨯=分即小颖得分为19分, 故选A .本题考查了二元一次方程组的应用,读懂题意找到等量关系式是解题的关键.9.B解析:B 【分析】 由4520430x y z x y z -+⎧⎨+-⎩=①=②,①×3+②×2,得出x 与y 的关系式,①×4+②×5,得出x 与z 的关系式,从而算出xyz 的比值即可. 【详解】 ∵4520430x y z x y z -+⎧⎨+-⎩=①=②,∴①×3+②×2,得2x=y ,①×4+②×5,得3x=z , ∴x :y :z=x :2x :3x=1:2:3, 故选B . 【点睛】本题考查了三元一次方程组的解法,用含有x 的代数式表示y 与z 是解此题的关键.10.A解析:A 【分析】把x y =代入方程组43235x y kx y -=⎧⎨+=⎩,得到关于x 、k 的二元一次方程组,即可求解.【详解】x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得43235x x k x x -=⎧⎨+=⎩,即1x kx =⎧⎨=⎩,所以k=1, 故选:A 【点睛】此题考查了解二元一次方程组.把x=y 代入到方程组,消去y 是解答此题的关键.11.D解析:D 【分析】根据二元一次方程的概念可得关于m 、n 的方程组,解方程组求得m 、n 即可. 【详解】 由题意得3211m n n m -=⎧⎨-=⎩,解得34m n =⎧⎨=⎩,【点睛】本题考查了二元一次方程的概念,解二元一次方程组,熟练掌握相关知识是解题的关键.12.B解析:B 【分析】先解二元一次方程组求出a,b 的值,然后再根据三角形三边之间的关系确定c 的值. 【详解】解:由题意可知:10(1)216(2)a b a b +=⎧⎨+=⎩,(2)-(1)式得:a =6,代回(1)中,解得b =4,根据三角形两边之和大于第三边,两边之差小于第三边可知, 6-4<c<6+4,即:2<c<10, 故选:B . 【点睛】本题考查了二元一次方程组的解法及三角形三边之间的关系,熟练掌握二元一次方程组的解法是解决本题的关键.二、填空题13.【分析】先把点的纵坐标为40代入得出x =2则两个一次函数的交点P 的坐标为(240);那么交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解解析:240x y =⎧⎨=⎩【分析】先把点P 的纵坐标为40代入20y x =,得出x =2,则两个一次函数的交点P 的坐标为(2,40);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解; 【详解】解:把y =40代入20y x =, 得出x =2,函数20y x =和40y ax =-的图象交于点P (2,40), 即x =2,y =40同时满足两个一次函数的解析式.所以关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是240x y =⎧⎨=⎩.故答案为:240x y =⎧⎨=⎩. 【点睛】此题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.14.63【分析】设左下角的小正方形边长为左上角最大的正方形的边长为根据长方形的长和宽列出方程组求解即可【详解】解:设左下角的小正方形边长为左上角最大的正方形的边长为解得长方形的长是:长方形的宽是:面积是 解析:63【分析】设左下角的小正方形边长为x ,左上角最大的正方形的边长为y ,根据长方形的长和宽列出方程组求解即可.【详解】解:设左下角的小正方形边长为x ,左上角最大的正方形的边长为y ,()()31311x y x x y y -=⎧⎨++=+-⎩,解得25x y =⎧⎨=⎩, 长方形的长是:22239+++=,长方形的宽是:257+=,面积是:7963⨯=.故答案是:63.【点睛】本题考查二元一次方程组的应用,解题的关键是找到等量关系列出方程组求解. 15.【分析】变形方程组根据整体代入的方法进行分析计算即可;【详解】方程组可变形为方程组即是当代入方程组之后的方程组则也是这一方程组的解所以∴故答案是【点睛】本题主要考查了二元一次方程组的求解准确分析计算解析:52m n =⎧⎨=-⎩【分析】变形方程组,根据整体代入的方法进行分析计算即可;【详解】方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩可变形为方程组()()111222a 2m 6b (1)c a 2m 6b (1)c n n ⎧-+--=⎪⎨-+--=⎪⎩,即是当261x m y n =-⎧⎨=--⎩代入方程组111222a b c a b c x y x y +=⎧⎨+=⎩之后的方程组,则41x y =⎧⎨=⎩也是这一方程组的解,所以26411x my n=-=⎧⎨=--=⎩,∴52mn=⎧⎨=-⎩.故答案是52 mn=⎧⎨=-⎩.【点睛】本题主要考查了二元一次方程组的求解,准确分析计算是解题的关键.16.【分析】从给出图象中得到二元一次方程的两组解进而确定具体的二元一次方程为x+2y=2再代入x=3即可求出y的值【详解】解:从图象可以得到和是二元一次方程ax+by=c的两组解∴2a=cb=c∴x+2解析:1 2 -【分析】从给出图象中得到二元一次方程的两组解,进而确定具体的二元一次方程为x+2y=2,再代入x=3即可求出y的值.【详解】解:从图象可以得到,2xy=⎧⎨=⎩和1xy=⎧⎨=⎩是二元一次方程ax+by=c的两组解,∴2a=c,b=c,∴x+2y=2,当x=3时,y=12 -,故答案为12 -.【点睛】本题考查二元一次方程的解与一次函数图象的关系;能够从一次函数图象上获取二元一次方程的解,代入求出具体的二元一次方程是解题的关键.17.答案不唯一【分析】以2与1列出两个算式为2+1=32-1=1即可列出所求的二元一次方程组【详解】解:根据题意列得:故答案为:【点睛】本题考查二元一次方程组的解属于开方型试题此题答案不唯一只要满足题意解析:答案不唯一、31 x yx y+=⎧⎨-=⎩【分析】以2与1列出两个算式为2+1=3,2-1=1,即可列出所求的二元一次方程组.【详解】解:根据题意列得:31 x yx y+=⎧⎨-=⎩故答案为:31x y x y +=⎧⎨-=⎩. 【点睛】本题考查二元一次方程组的解,属于开方型试题,此题答案不唯一,只要满足题意即可. 18.7【分析】设从甲地到乙地坡路长平路长根据从甲地到乙地需从乙地到甲地需即可得出关于的二元一次方程组解之即可得出的值再将其代入中即可求出结论【详解】设从甲地到乙地坡路长平路长依题意得:解得:∴(km)故 解析:7【分析】设从甲地到乙地坡路长xkm ,平路长ykm ,根据“从甲地到乙地需48,min ,从乙地到甲地需36,min ”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入()x y +中即可求出结论.【详解】设从甲地到乙地坡路长xkm ,平路长ykm , 依题意,得:483460365460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得:6532x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴3 1.2 1.5 2.7265x y +=+=+=(km). 故答案为:2.7.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.675【分析】设小矩形的长为xcm 宽为ycm 由图形的条件列出方程组可求解【详解】设小矩形的长为xcm 宽为ycm 由题意可得:解得:∴小矩形砖块的面积为=45×15=675cm2故答案为:675【点睛】解析:675【分析】设小矩形的长为xcm ,宽为ycm ,由图形的条件列出方程组,可求解.【详解】设小矩形的长为xcm ,宽为ycm ,由题意可得:275 23x yx y x+=⎧⎨=+⎩,解得:4515 xy=⎧⎨=⎩,∴小矩形砖块的面积为=45×15=675cm2,故答案为:675.【点睛】本题考查了二元一次方程组的应用,找到正确的等量关系是本题的关键.20.【分析】根据勾股定理求得OB即可求得b的值得到直线解析式令y=0求得x的值即可求得OC的值【详解】解:∵点A坐标为(60)∴OA=6∵AB=4∴OB=∴b=OB=2∴直线的解析式为y=x+2令y=0解析:【分析】根据勾股定理求得OB,即可求得b的值,得到直线解析式,令y=0,求得x的值,即可求得OC的值.【详解】解:∵点A坐标为(6,0),∴OA=6,∵∴=∴∴直线的解析式为令y=0,则∴C(0),∴故答案为【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.三、解答题21.532 xyz=⎧⎪=⎨⎪=⎩【分析】将①式代入其它两式可抵消掉y ,将方程组变为二元一次方程组,利用加减消元法求解即可.【详解】解:31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩①②③ 将①代入②后整理得:4318y z +=④,将①代入③后整理得:5y z +=⑤,④-3×⑤得3y =,代入⑤可得2z =,代入①得2x =,故该方程组的解为:532x y z =⎧⎪=⎨⎪=⎩【点睛】本题考查解三元一次方程组.掌握消元思想是解题关键.22.(1)照明灯45万个,投射灯5万个;(2)m =20.【分析】(1)设该城市灯光秀使用照明灯x 万个,投射灯y 万个,根据“该城市灯光秀共使用照明灯和投射灯共50万个,共花费1005万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,即可得出关于m 的一元一次方程,解之即可得出结论.【详解】解:(1)设该城市灯光秀使用照明灯x 万个,投射灯y 万个,依题意,得:5091201005x y x y +=⎧⎨+=⎩, 解得:455x y =⎧⎨=⎩. 答:该城市灯光秀使用照明灯45万个,投射灯5万个. (2)依题意,得:9(1﹣m %)×1000+120(135-m %)×50×(1+20%)=13536,解得:m =20.答:m 的值为20.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,找准题目中等量关系列出方程是解题关键.23.(1)从甲、乙、丙购买的数量分别为20、40、40;(2)86%;(3)能,方案见解析【分析】(1)根据题意所述的两个等量关系列出方程组,解出即可得出答案;(2)先求出优品数量,然后除以100即可得出优品率;(3)设从甲厂购买x件,从乙厂购买y件,则从丙厂购买(100-x-y)件,根据优品的数量不变,可得出方程,解出即可.【详解】解:(1)由题意得:2100122x x yx x y++=⎧⎪⎨+⨯=⎪⎩,解得:2040 xy=⎧⎨=⎩,所以从甲、乙、丙购买的数量分别为20、40、40;(2)优品率为(80%×20+85%×40+90%×40)÷100=86%;(3)设从甲厂购买x件,从乙厂购买y件,则从丙厂购买(100-x-y)件,80%x+85%y+90%(100-x-y)=100(86%+2%),化简得:2x+y=40因为各厂购买的优品件数是整数,所以45x,1720y要是整数,所以当y=0时,x=20符合;则从甲购20件,乙购0件,丙购80件;当y=20时,x=10符合;则从甲购10件,乙购20件,丙购70件;当y=40时,x=0符合;则从甲购0件,乙购40件,丙购60件.【点睛】本题考查了二元一次方程组的应用,解答此类应用性题目,一定要仔细审题,找到等量关系,然后运用方程思想进行解答.24.(1)a=50,b=40;(2)可以做竖式无盖礼品盒8个,横式无盖礼品盒16个.【分析】(1)由图示利用板材的长列出关于a、b的二元一次方程组求解;(2)设可以做竖式无盖礼品盒x个,横式无盖礼品盒y个,根据已知和图示计算出两种裁法共产生A型板材和B型板材的张数,然后根据竖式与横式礼品盒所需要的A、B两种型号板材的张数列出关于x、y的二元一次方程组,然后求解即可.【详解】解:(1)由题意得:310200330200 a ba b++=⎧⎨++=⎩,解得:5040ab=⎧⎨=⎩,答:图甲中a与b的值分别为:50、40;(2)设可以做竖式无盖礼品盒x个,横式无盖礼品盒y个,依题意得:43325+5225+35x yx y+=⨯⎧⎨+=⨯⎩,解得:816 xy=⎧⎨=⎩.答:可以做竖式无盖礼品盒8个,横式无盖礼品盒16个.【点睛】本题考查的知识点是二元一次方程组的应用,掌握二元一次方程组解应用题的方法与步骤,关键是数形结合构造出关于a 、b 的二元一次方程组,以及竖式与横式两种无盖礼品盒数量的方程组.25.(1)2x =-;(2)34x y =-⎧⎨=⎩【分析】(1)先去括号,再移项、合并同类项,最后将系数化为1,即可求出其解;(2)将两个方程直接相减,可消去未知数y ,求出x 的值,再求出y 的值即可.【详解】解:(1)()()4213311x x ---=去括号得,84931x x --+=,移项合并得,2x -=,系数化为1得,2x =-.(2)148x y x y +=⎧⎨+=-⎩①② ②-①得:39x =-解得:3x =-把3x =-代入①得:4y =.所以34x y =-⎧⎨=⎩. 【点睛】本题考查一元一次方程及二元一次方程组的解法,属于基础题型,比较简单.解一元一次方程的一般步骤是:去分母,去括号,移项,合并同类项,系数化为1.注意:在去分母时,应该将分子用括号括上.切勿漏乘不含有分母的项.解二元一次方程组的基本思想是消元,即化二元为一元,基本解法是代入法和加减法.26.(1) 1.611y x =+;(2)是,理由见解析【分析】(1)根据题意和表格中的数据可以计算出y 与x 的函数关系式;(2)将x=42.0代入(1)中的函数解析式,然后与78.2作比较,即可解答本题.【详解】解:(1)设y 与x 的函数关系式为y kx b =+,把40x =,75y =和37x =,70.2y =代入y kx b =+中,得40753770.2k b k b +=⎧⎨+=⎩,解得 1.611k b =⎧⎨=⎩所以 1.611y x =+ (2)把42x =代入 1.611y x =+ 得 1.6421178.2y =⨯+= 答:是配套的.【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,求出相应的函数解析式.。
七年级初一下册 二元一次方程组数学试卷(含答案)
七年级初一下册 二元一次方程组数学试卷(含答案)一、选择题1.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x y x y +⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是( )A .2114327x y x y +=⎧⎨+=⎩B .21437x y x y +=⎧⎨+=⎩C .2274311x y x y +=⎧⎨+=⎩D .2114327y x y x +=⎧⎨+=⎩2. 三个二元一次方程2x +5y -6=0,3x -2y -9=0,y =kx -9有公共解的条件是k =( ) A .4 B .3 C .2 D .1 3.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .4种 B .5种 C .6种 D .7种 4.三元一次方程5x y z ++=的正整数解有( )A .2组B .4组C .6组D .8组5.中国象棋是中华民族的文化瑰宝,也是怡神益智的一种有益身心的活动,源远流长,趣味浓厚,千百年来长盛不衰.甲、乙制定比赛规定:胜一局得4分,平一局得1分,负一局得0分,甲共进行了9局比赛,得了12分,则甲获胜的可能种数有( ) A .2B .3C .4D .56.已知2x y a=⎧⎨=⎩是方程25x y +=的一个解,则a 的值为( )A .1a =-B .1a =C .23a =D .32a =7.对于实数x ,y ,定义新运算1x y ax by *=++,其中a ,b 为常数,等式右边为通常的加法和乘法运算,若3515*=,4728*=,则59*=( ) A .40B .41C .45D .468.甲、乙两人共同解关于x ,y 的方程组,甲正确地解得乙看错了方程②中的系数c ,解得,则的值为( ) A .16B .25C .36D .499.三元一次方程组236216x y zx y z==⎧⎨++=⎩①②的解是()A.135xyz=⎧⎪=⎨⎪=⎩B.556xyz=⎧⎪=⎨⎪=⎩C.632xyz=⎧⎪=⎨⎪=⎩D.642xyz=⎧⎪=⎨⎪=⎩10.若二元一次方程组的解为x=a,y=b,则a+b的值 ( ) A .B .C .D .11.甲、乙两人同求方程ax-by=7的整数解,甲正确地求出一个解为11xy=⎧⎨=-⎩,乙把ax-by=7看成ax-by=1,求得一个解为12xy=⎧⎨=⎩,则a,b的值分别为( )A.25ab=⎧⎨=⎩B.52ab=⎧⎨=⎩C.35ab=⎧⎨=⎩D.53ab=⎧⎨=⎩12.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为()A .;B .;C .;D .二、填空题13.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有种.14.三位先生A、B、C带着他们的妻子a、b、c到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A比b多买9件商品,先生B 比a多买7件商品.则先生A的妻子是__________.15.三位先生A、B、C带着他们的妻子a、b、c到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A比b多买9件商品,先生B 比a多买7件商品.则先生C购买的商品数量是________.16.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.17.甲乙两人共同解方程组515(1)42(2)ax y x by +=⎧⎨-=-⎩,由于甲看错了方程(1)中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程(2)中的b ,得到方程组的解为54x y =⎧⎨=⎩;计算20192018110ab ⎛⎫+-= ⎪⎝⎭________.18.小明今年五一节去三峡广场逛水果超市,他分两次购进了A 、B 两种不同单价的水果.第一次购买A 种水果的数量比B 种水果的数量多50%,第二次购买A 种水果的数量比第一次购买A 种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A 、B 水果的总费用比第一次购买A 、B 水果的总费用少10%(两次购买中A 、B 两种水果的单价不变),则B 种水果的单价与A 种水果的单价的比值是______.19.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 20.方程组1111121132x y x z y z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩的解为______.21.已知关于x 、y 的方程组135x y ax y a +=-⎧⎨-=+⎩,给出下列结论:①当1a =时,方程组的解也是方程3x y -=的解;②当x 与y 互为相反数时,1a =③不论a 取什么实数,2x y +的值始终不变;④若12z xy =,则z 的最大值为1.正确的是________(把正确答案的序号全部都填上)22.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多______分.23.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A 植树点植树,乙、丁两组到B 植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A 、B 两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.24.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =⎧⎨=⎩和24x y =-⎧⎨=-⎩,试写出符合要求的方程组________(只要填写一个即可). 三、解答题25.对于数轴上的点A ,给出如下定义:点A 在数轴上移动,沿负方向移动a 个单位长度(a 是正数)后所在位置点表示的数是x ,沿正方向移动2a 个单位长度(a 是正数)后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的a 关联数”,记作G (A ,a )={x ,y},其中x <y .例如:原点O 表示0,原点O 的1关联数是G (0,1)={-1,+2} (1)若点A 表示-3,a =3,直接写出点A 的3关联数. (2)①若点A 表示-1,G (A ,a )={-5,y},求y 的值. ②若G (A ,a )={-2,7},求a 的值和点A 表示的数.(3)已知G (A ,3)={x ,y},G (B ,2)={m ,n},若点A 、点B 从原点同时同向出发,且点A 的速度是点B 速度的3倍.当|y -m|=6时,直接写出点A 表示的数. 26.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.27.对x ,y 定义一种新运算T ,规定()22,ax by T x y a y +=+(其中a ,b 是非零常数且0x y +≠),这里等式右边是通常的四则运算.如:()223193,1314a b a b T ⨯+⨯+==+,()24,22am bT m m +-=-. (1)填空:()4,1T =_____(用含a ,b 的代数式表示); (2)若()2,02T -=-且()5,16T -=. ①求a 与b 的值;②若()()310,33,310T m m T m m --=--,求m 的值.28.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件)质量(吨/件)A型商品0.80.5B型商品21(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?29.已知:平面直角坐标系中,A(a,3)、B(b,6)、C(c,1),a、b、c都为实数,并且满足3b-5c=-2a-18,4b-c=3a+10(1) 请直接用含a的代数式表示b和c(2) 当实数a变化时,判断△ABC的面积是否发生变化?若不变,求其值;若变化,求其变化范围(3) 当实数a变化时,若线段AB与y轴相交,线段OB与线段AC交于点P,且S△PAB>S△PBC,求实数a的取值范围.30.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】图2中,第一个方程x 的系数为2,y 的系数为1,相加为11;第二个方程x 的系数为4,y 的系数为3,相加为27,据此解答即可. 【详解】解:图2所示的算筹图所表示的方程组是2114327x y x y +=⎧⎨+=⎩.故选:A . 【点睛】本题考查了二元一次方程组的应用,读懂题意、明确图1表示方程组的方法是解题关键.2.B解析:B 【分析】把2x 5y 60+-=,3x 2y 90--=,y kx 9=-组成方程组,求解即可. 【详解】 解:由题意可得:256032909x y x y y kx +-⎧⎪--⎨⎪-⎩===, ①×3-②×2得y=0, 代入①得x=3, 把x ,y 代入③, 得:3k-9=0, 解得k=3. 故选B. 【点睛】本题考查了解三元一次方程组,解题的关键是运用三元一次方程组的知识,把三个方程组成方程组求解.3.C解析:C 【分析】设兑换成10元x 张,20元的零钱y 元,根据题意可得等量关系:10x 张+20y 张=100元,根据等量关系列出方程求整数解即可. 【详解】解:设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10, 方程的整数解为:方程的整数解为:246810x 0,,,,,,432105x x x x x y y y y y y ======⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩因此兑换方案有6种, 故选C . 【点睛】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.4.C解析:C 【分析】最小的正整数是1,当x=1时,y+z=4,y 分别取1,2,,3,此时z 分别对应3,2,1;当x=2时,y+z=3,y 分别取1,2,此时z 分别对应2,1;当x=3时,y+z=2,y 分别取1,此时z 分别对应1;依此类推,然后把个数加起来即可. 【详解】解:当x=1时,y+z=4,y 分别取1,2,,3,此时z 分别对应3,2,1,有3组正整数解; 当x=2时,y+z=3,y 分别取1,2,此时z 分别对应2,1,有2组正整数解; 当x=3时,y+z=2,y 分别取1,此时z 分别对应1,有1组正整数解; 所以正整数解的组数共:3+2+1=6(组). 故选:C . 【点睛】本题考查三元一次不定方程的解,解题关键是确定x 、y 、z 的值,分类讨论.5.B解析:B 【分析】设甲获胜x 局,平y 局,则负()9x y --局,根据题意得出关于x 和y 的二元一次方程,由x ,y ,()9x y --均为整数即可得出结论. 【详解】解:设甲获胜x 局,平y 局,则负()9x y --局, 根据题意可得:412x y +=,即124y x =-,当1x =时,8y =,90x y --=; 当2x =时,4y =,93x y --=; 当3x =时,0y =,96x y --=; 当4x =时,4y =-(舍);综上所述,获胜的场数可能为1,2,3,共3种可能, 故选:B . 【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.6.B解析:B 【分析】 直接把2x y a =⎧⎨=⎩代入方程,即可求出a 的值. 【详解】 解:根据题意, ∵2x y a=⎧⎨=⎩是方程25x y +=的一个解, ∴225a ⨯+=, ∴1a =; 故选:B . 【点睛】本题考查了二元一次方程的解,以及解一元一次方程,解题的关键是掌握运算法则进行解题.7.B解析:B 【分析】根据定义新运算列出二元一次方程组即可求出a 和b 的值,再根据定义新运算公式求值即可. 【详解】解:∵1x y ax by *=++,3515*=,4728*=,∴1535128471a b a b =++⎧⎨=++⎩解得:3725a b =-⎧⎨=⎩∴59*=3752591-⨯+⨯+=41 故选B . 【点睛】此题考查的是定义新运算和解二元一次方程组,掌握定义新运算公式和二元一次方程组的解法是解决此题的关键.8.B解析:B【解析】【分析】将x=2,y=﹣1代入方程组中,得到关于a与b的二元一次方程与c的值,将x=3,y=1代入方程组中的第一个方程中得到关于a与b的二元一次方程,联立组成关于a与b的方程组,求出方程组的解得到a与b的值,即可确定出a,b及c的值.【详解】把代入得:,解得:c=4,把代入得:3a+b=5,联立得:,解得:,则(a+b+c)2=(2﹣1+4)2=25.故选B.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.D解析:D【分析】根据2x=3y=6z,设x=3k,y=2k,z=k,代入求值即可解题.【详解】解:∵2x=3y=6z,∴设x=3k,y=2k,z=k,∵x+2y+z=16,即3k+4k+k=16,解得:k=2,∴642 xyz=⎧⎪=⎨⎪=⎩,故选D.【点睛】本题考查了三元一次方程组的求解,中等难度,根据等量关系设未知数是解题关键. 10.A解析:A【解析】【分析】首先解方程组求得x、y的值,即可得到a、b的值,进而求得a+b的值.【详解】解:解方程组得:则 则故选:A . 【点睛】此题主要考查了二元一次方程组解法,解方程组的基本思想是消元,正确解方程组是关键.11.B解析:B 【解析】把甲的解代入ax -by =7可得a +b =7,把乙的解代入可得a -2b =1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩,故选B . 12.C解析:C【解析】试题分析:设安排x 个工人做螺杆,y 个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可得到95{16220x y x y +=-= .故选:C点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.二、填空题 13.6 【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案. 【详解】 解:设8解析:6 【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得3202x y =-,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案. 【详解】解:设80分的邮票购买x 张,120分的邮票购买y 张,0.8x+1.2y=16, 解得3202x y =-, ∵x 、y 都是正整数,∴当y=2、4、6、8、10、12时,x=17、14、11、8、5、2,∴共有6种购买方案,故答案为:6.【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题.14.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且与有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合和解析:c【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x y +与x y -有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合9x y -=和7x y -=的情况即可进行解答.【详解】设一对夫妻,丈夫买了x 件商品,则钱数为2x ,妻子买了y 件商品,则钱数为2y , 依题意有x 2-y 2=48,即()()48x y x y +-=,∵x 、y 都是正整数,且x y +与x y -有相同的奇偶性,又∵x y x y +>-,48=24×2=12×4=8×6,∴242x y x y +=⎧⎨-=⎩或124x y x y +=⎧⎨-=⎩或86x y x y +=⎧⎨-=⎩, 解得13x =,11y =或8x =,4y =或7x =,1y =,符合9x y -=的只有一种,可见A 买了13件商品,b 买了4件,同时符合7x y -=的也只有一种,可知B 买了8件,a 买了1件,∴C 买了7件,c 买了11件.由此可知三对夫妻的组合是:A 、c ;B 、b ;C 、a .故答案为:c.【点睛】本题考查了不定方程组的解及数的奇偶性,根据题意列出关于x、y的不定方程是解答此题的关键.15.7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y解析:7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x件商品,妻子买了y件商品.则有x2-y2=48,即(x十y)(x-y)=48.∵x、y都是正整数,且x+y与x-y有相同的奇偶性,又∵x+y>x-y,48=24×2=12×4=8×6,∴242x yx y+⎧⎨-⎩==或124x yx y+⎧⎨-⎩==或86x yx y+⎧⎨-⎩==.解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A买了13件商品,b买了4件.同时符合x-y=7的也只有一种,可知B买了8件,a买了1件.∴C买了7件,c买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.16.100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,解析:100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.17.0【分析】根据题意,将代入方程(2)可得出b的值,代入方程(1)可得出a的值,将a与b的值代入所求式子即可得出结果.【详解】解:根据题意,将代入方程组中的4x-by=-2得:-12+b=-2解析:0【分析】根据题意,将31xy=-⎧⎨=-⎩代入方程(2)可得出b的值,54xy=⎧⎨=⎩代入方程(1)可得出a的值,将a与b的值代入所求式子即可得出结果.【详解】解:根据题意,将31xy=-⎧⎨=-⎩代入方程组中的4x-by=-2得:-12+b=-2,即b=10;将54xy=⎧⎨=⎩代入方程组中的ax+5y=15得:5a+20=15,即a=-1,∴20192018110a b⎛⎫+-⎪⎝⎭=1-1=0.故答案为:0.【点睛】此题考查了二元一次方程组的解,方程组的解为能使方程组中两方程成立的未知数的值.18.【分析】根据水果数量的等量关系,可设第一次购买种水果数量为个,用分别表示第一次购买种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为元和元,根据两次购买价钱的等量关系列方程,所列方 解析:12【分析】根据水果数量的等量关系,可设第一次购买B 种水果数量为x 个,用x 分别表示第一次购买A 种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为a 元和b 元,根据两次购买价钱的等量关系列方程,所列方程中x 是可以约去的,化简即得到a 与b 的数量关系.【详解】解:设第一次购买B 种水果数量为x ,∴第一次购买A 种水果的数量为:3(150%)2x x +=, ∴第二次购买A 种水果数量为:3323(160%)2255x x x -==, ∴第二次购买水果的总数量为:356()(120%)3225x x xx ++==, ∴第二次购买B 种水果个数为:312355x x x -=, 设A 种水果单价为a 元,B 种水果单价为b 元,依题意得:3312()(110%)255a x bx a xb x +-=+, 化简得:2a b = ∴12b a =, B ∴水果的单价与A 水果的单价的比值是12,故答案为:12. 【点睛】本题考查了一次方程的应用,在缺少确切数值的情况下,可先假设等量关系中的关键量为未知数,再列方程化简求值. 19.【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为本,设甲班解析:【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x +5)本,丙班的人均捐书数量为2x 本, 设甲班有y 人,乙班有(80﹣y )人.根据题意,得xy +(x +5)(80﹣y )+2x •40=3(5)1205x +⨯ 解得:y =284035855x x x +=++, 可知x 为2且5的倍数,故x =10,y =64,共捐书10×64+15×16+5×40=1080.答:甲、乙、丙三班共捐书1080本.故答案为1080.【点睛】此题考查二元一次方程的实际应用,题中有三个量待求,但是只有一个等量关系,因此只能设出两个未知数,用一个未知数表示另一个未知数,根据数量的要求及代数式的形式确定未知数的值,这是此题的难点.20.【分析】先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组,可得:,所以④,由可得:,由可得:,由可得综上所述方程组的解是.【点睛】 解析:43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩【分析】 先将三个方程依次标号,然后相加可得11194x y z ++=④,由④-①,④-②,④-③即可得【详解】 解:由方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭, 所以11194x y z ++=④, 由-④①可得:154,45z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4x = 43x ∴= 综上所述方程组的解是43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩.【点睛】本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.21.①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,,解得: ,则,∴①错误;当x 与y 互为相反数时,,得,∴②正确;解析:①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.解:当a=1时,08x y x y +=⎧⎨-=⎩,解得:44x y =⎧⎨=-⎩, 则()448x y -=--=,∴①错误;当x 与y 互为相反数时,01a =-,得1a =,∴②正确;∵135x y a x y a +=-⎧⎨-=+⎩,解得:322x a y a=+⎧⎨=--⎩ , 则()()223224x y a a +=++--=,∴③正确; ∴()()()21132221122z xy a a a ==+--=-++≤, 即若12z xy =则z 的最大值为1, ∴④正确,综上说述,正确的有:①③④,故答案为: ①③④.【点睛】本题考查二元一次方程组的解、二元一次方程的解,解答本题的关键是明确题意,可以判断题目中的各个结论是否成立.22.5【分析】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2解析:5【分析】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2分列出代数式,即可求出答案.【详解】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,由题意可得:5x+15y+40z=10(x ﹣3)+20(y ﹣2)+30(z ﹣1)①,z=y ﹣7 ②; 由①得:x+y ﹣2z=20 ③,将②代入③得:x+y ﹣2(y ﹣7)=20,解得:x﹣y=6,即原来一等奖比二等奖平均分多6分,∵调整后一等奖平均分降低3分,二等奖平均分降低2分,∴(x﹣3)﹣(y﹣2)=(x﹣y)﹣1=6﹣1=5(分),即调整后一等奖比二等奖平均分数多5分,故答案为:5.【点睛】本题考查了三元一次方程组的应用.找出等量关系并列出方程是解答本题的关键.23.320【解析】【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵解析:320【解析】【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵,根据题意列出方程,整理后可得a=140-13x,再根据a 和x的取值范围确定a和x的值,从而得到植树的数量。
消元-解二元一次方程组练习卷(含答案)
消元-解二元一次方程组练习卷课堂练习:1.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是()A .第一象限B .第二象限C .第三象限D .第四象限2.关于x 、y 的方程组3x y m x my n -=⎧⎨+=⎩的解是11x y =⎧⎨=⎩,则|m-n|的值是()A .5B .3C .2D .13.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩,则a+b 的值为()A .-4B .4C .-2D .24.二元一次方程组的解为()A .B.C .D.5.已知x ,y 满足方程组,则x+y 的值为()A .9B .7C .5D .36.先阅读第(1)小题的解答,然后解答第(2)小题。
(1)、解方程组⎩⎨⎧=--=--5)(401y y x y x 解:由①得1=-y x ③将③代入②得4×51=-y ,即1-=y ,将1-=y 代入③得,0=x 所以⎩⎨⎧-==10y x ①②(2)、解方程组⎪⎩⎪⎨⎧=++-=-927532232y y x y x 7.甲、乙两人同时解方程组⎩⎨⎧=-=+1325ny x y mx 甲解题看错了①中的m ,解得⎪⎩⎪⎨⎧-==227y x ,乙解题时看错②中的n ,解得⎩⎨⎧-==73y x ,试求原方程组的解8.已知关于x ,y 的方程组342x y k x y k +=-⎧⎨-=+⎩,(1)若方程组的解满足方程341x y -=,求k 的值;(2)请你给出k 的一个值,使方程组的解中x ,y 都是正整数,并直接写出方程组的解.课后练习:1.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A .222B .280C .286D .2922.甲数的2倍比乙数大3,甲数的3倍比乙数的2倍小1,若设甲数为x,乙数为y,则根据题意可列出的方程组为()A.⎩⎨⎧-=-=12332y x y xB.⎩⎨⎧=-=+y x y x 21332C.⎩⎨⎧-=+=12332y x y x D.⎩⎨⎧=-=+12332y x y x 3.方程组327413x y x y +=⎧⎨-=⎩的解是()A .13x y =-⎧⎨=⎩B .31x y =⎧⎨=-⎩C .31x y =-⎧⎨=-⎩D .13x y =-⎧⎨=-⎩5.若方程组35432x y a x y a +=+⎧⎨+=⎩的解x 与y 的值的和为3,则a 的值为()A.-3 B.-2 C.2 D.106.已知x ,y 满足方程组2524x y x y +=⎧⎨+=⎩,则x ﹣y 的值是.7.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则m ﹣n 的平方根为.8.方程组31x y x y +=⎧⎨-=⎩的解是.9.若关于x 、y 的方程组2343223x y x y m +=⎧⎨+=-⎩的解满足x+y=35,则m=.10.已知关于x 的方程2x =m 的解满足325x y n x y n -=-⎧⎨+=⎩(0<n <3),若y >1,则m 的取值范围是.11.已知关于x ,y 的二元一次方程组221x y k x y +=⎧⎨+=-⎩的解互为相反数,求k 的值.课堂练习答案1.以方程组21y xy x=-+⎧⎨=-⎩的解为坐标的点(,)x y在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A.考点:1.点的坐标;2.解二元一次方程组.2.关于x、y的方程组3x y mx my n-=⎧⎨+=⎩的解是11xy=⎧⎨=⎩,则|m-n|的值是()A.5B.3C.2D.1【答案】D.【解析】试题解析:∵方程组3x y mx my n-=⎧⎨+=⎩的解是11xy=⎧⎨=⎩,∴311mm n-=⎧⎨+=⎩,解得23 mn=⎧⎨=⎩,所以,|m-n|=|2-3|=1.故选D.考点:二元一次方程组的解.3.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩,则a+b的值为()A.-4B.4C.-2D.2【答案】B.考点:解二元一次方程组.4.二元一次方程组的解为()A .B.C .D.【答案】C【解析】试题分析:根据加减消元法,可得方程组的解.①+②,得3x=9,解得x=3,把x=3代入①,得3+y=5,y=2,所以原方程组的解为考点:二元一次方程组的解.5.已知x ,y 满足方程组,则x+y 的值为()A .9B .7C .5D .3【答案】C【解析】试题分析:方程组两方程相加求出x+y 的值即可.,①+②得:4x+4y=20,则x+y=5,考点:二元一次方程组的解6.先阅读第(1)小题的解答,然后解答第(2)小题。
一次函数与二元一次方程(1)含答案
第11课时一次函数与二元一次方程(1)知识梳理一般地,以一个二元一次方程的解为________组成的图象与相应的一次函数的图象相同,是________课堂作业1. 下列有序实数对中,对应二元一次方程2x +3y=7的解的是( ).A. (1,2)B. (2,1)C. (一1,-2)D. (一2,-1)2.把方程x+1=4y+x 3化为y=kx +b 的形式,正确的是( )A. y=-13x+1B. y=-16x+14C. y=-16x+1D. y=13x+143.下列四条直线,其中直线上每个点的坐标都是二元一次方程x-2y=2的解的是( )4.二元一次方程ax+by=c 对应如图所示的直线,那么这个二元-一次方程可能为. ( )A. 3x-2y=6B.2x-3y=6C.2x-3y=-6D. 3x-2y=-65.点(3,5)________(填“在”或“不在”)-一次函数y=2x一1的图象上;{x=3,y=5.________(填“是”或“不是”二元一次方程2x-y=1的解.6. -次函数y=kx+b(k、b (k.为常数,且k≠0)的图象过(2.3,)则关于x、y的二元-次方程kx-y+b-3=0的一组解为_____.7.二元一次方程2x-y=4的解有_______组,请写出其中的两组解:_________________.8. 在平面直角坐标系中画出下面二元-次方程所对应的直线.(1) 2x+y=8; (2) 3x +2y= 8.课后作业9.在平面直角坐标系中,以二元一次方程5.x-y=2的解为坐标的点所组成的直线与y轴的交点坐标为( )A. (0,4)B. (0,2)C. (0,-2)D. (0,-4)10.已知一次兩数y=2x +b的图象与y轴的交点坐标为(0,3),则下列有序实数对中,是二元一次方程2x-y+b=0的解的是( )A. (1,4)B. (2,7)C. (一1,一5)D. (一2,-7)11.下列图象中,以方程y- 2x -2=0的解为坐标的点组成的图象是( )12.在平面直角坐标系中,以方程- 2x +y=5的解.为坐标的点所组成的直线与x轴交于点A,与y轴交于点B,0为坐标原点,则三角形AOB .的面积为()D.8A.5B.6 C25413.在平面直角坐标系中,以方程2x-4y=8的解.为坐标的所有点都在一次函数_______的图象上.14.在一次函数y=3x+5的图象上任取一点的坐标都满足方程:__________15.若点A(2,a)、B(b,3)在直线y=2x-3.上,试求a、b的值,并判断A、B两点的坐标是不是方程2x-y=3的解.16. 已知二元一次方程2x+y-6=0.(1)在如图所示的平面直角坐标系中画出该二元一次方程所对应的直线;(2)给出该二元一-次方程任意3组非整数解.17.在平面直角坐标系中,以方程-4x +3y=-12的解为坐标的点所组成的直线与x 轴交于点A,与y轴交于点B,O为坐标原点,求三角形AOB的面积.参考答案第11课时﹐一次函数与二元一次方程(1)[知识梳理]坐标的点一条直线[课堂作业]1.B 2.B 3.C 4. B 5.在是6. {x=2y=07、无数答案不唯一,如{x=1y=−2,{x=2y=08.(1)如图①所示(2)如图②所示[课后作业9.C 10 P 1 12.C13. y=12x-2 14. Y-3x=5 15. a =1,b=3 A、B两点的坐标都是万程2x一y一3的解16.(1)如图所示(2)答案不唯一,如17.令y=o,则c=3,所以OA=3.令无=0,则y=一4,所以OB=4.所以三角形AOB的面积为1×3×4=62。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系,二元一次方程一.选择题(共6小题)1.若点P位于x轴上方,位于y轴的左边,且距x轴的距离为2个单位长度,距y轴的距离为3个单位长度,则点P的坐标是()A.(2,﹣3)B.(2,3) C.(3,﹣2)D.(﹣3,2)2.已知点A(3,﹣2)、B(1,﹣2),则直线AB()A.与x轴垂直B.与x轴平行C.与y轴重合D.与x、y轴相交3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b 的值为()A.2 B.3 C.4 D.54.一个两位数,交换它的十位数字与个位数字所得的两位数是原来两位数的倍,则这样的两位数有()A.1个 B.2个 C.3个 D.4个5.若方程组的解为,则被“☆”、“□”遮住的两个数分别是()A.10,3 B.3,10 C.4,10 D.10,46.由方程组可得到x与y的关系式是()A.x+y=7 B.x+y=3 C.x﹣y=﹣7 D.x﹣y=﹣3二.填空题(共6小题)7.P的坐标是(﹣2,a2+1),则点P一定在第______象限.8.如图,在一次军棋比赛中,若团长所在的位置坐标为(1,﹣4),工兵所在的位置坐标为(0,﹣1),则司令所在的位置坐标是_______.9.若线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点C(2,6),则点B(﹣3,1)的对应点D的坐标是__________.10.若(a﹣3)x+y|a|﹣2=1是关于x、y的二元一次方程,则a的值是__________.11.方程组中,则x+y=__________,10x﹣y=__________.12.如图,周长为68cm的长方形ABCD被分成7个相同的小长方形,则长方形ABCD的面积是__________.三.解答题(共11小题)13.在平面直角坐标系中,有点A(﹣2,a+3),B(b,b﹣3).(1)当点A在第二象限的角平分线上时,求a的值;(2)当点B到x轴的距离是它到y轴的距离2倍时,求点B所在的象限位置.14.已知点A(﹣1,2)、B(3,2)、C(1,﹣2).(1)求证:AB∥x轴;(2)求△ABC的面积;(3)若在y轴上有一点P,使S△ABP =S△ABC,求点P的坐标.15.在平面直角坐标系中,有点A(1,2a+1),B(﹣a,a﹣3).(1)当点A在第一象限的角平分线上时,求a的值;(2)当点B在x轴的距离是到y轴的距离2倍时,求点B所在的象限位置;(3)若线段AB∥x轴,求三角形AOB的面积.16.如图,若用A(2,1)表示放置2个胡萝卜,1棵小白菜;点B(4,2)表示放置4个胡萝卜,2棵小白菜:(1)请你写出C、E所表示的意义.(2)若一只兔子从A顺着方格线向上或向右移动到达B,试问有几条路径可供选择,其中走哪条路径吃到的胡萝卜最多?走哪条路径吃到的小白菜最多?请你通过计算的方式说明.17.如图所示,△ABC在平面直角坐标系中,△A1B1C1与△ABC关于y轴对称,将△ABC向右平移m个单位得到△A2B2C2,已知A(﹣3,4),B(﹣6,0),C(﹣2,0).(1)在备用图1中画出△A1B1C1;(2)m为何值时,点A1与A2重合?并说明B2C1=B1C2;(3)m为何值时,△A1B1C1与△A2B2C2一边重合?若A1B1与A2B2并交于P点,请证明PA1=PA2;(4)m为何值时,B2、C2的横坐标是某正数的两个不同的平方根?18.(1)用代入法解方程组(2)用加减法解方程组.19..20.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?21.蔬菜零售业主小李在批发市场上了解到以下信息内容:他共用110元钱从批发市场上批发了辣椒和西红柿两种蔬菜共45千克,然后他到菜市场以建议零售价去卖,当天卖完,请你帮小李算一算他能赚多少钱?辣椒黄瓜西红柿茄子批发价(元•千克) 3.5 1.2 1.60.9建议零售价(元•千克)5 1.4 2.5 1.322.今年“五•一”黄金周期间,河池市某旅行社接待一日游和三日游的旅客共1600人,收取旅游费129万元,其中一日游每人收费150元,三日游每人收费1200元.该旅行社接待的一日游和三日游旅客各多少人?23.琪琪、倩倩、斌斌三位同学去商店买文具用品.琪琪说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”倩倩说:“我买了2支水笔,3本笔记本,10本练习本共用了20元.”斌斌说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.平面直角坐标系,二元一次方程参考答案与试题解析一.选择题(共6小题)1.若点P位于x轴上方,位于y轴的左边,且距x轴的距离为2个单位长度,距y轴的距离为3个单位长度,则点P的坐标是()A.(2,﹣3)B.(2,3) C.(3,﹣2)D.(﹣3,2)【分析】根据x轴的上方,y轴的左边,可得第二象限,根据到x的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,可得答案.【解答】解:由点P位于x轴上方,位于y轴的左边,得点位于第二象限,由距x轴的距离为2个单位长度,距y轴的距离为3个单位长度,得点的坐标为(﹣3,2),故选:D.【点评】本题考查了点的坐标,利用到x的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值是解题关键.2.已知点A(3,﹣2)、B(1,﹣2),则直线AB()A.与x轴垂直B.与x轴平行C.与y轴重合D.与x、y轴相交【分析】由点A、B到x轴的距离相等可求得答案.【解答】解:∵A(2,﹣2)、B(﹣1,﹣2),∴A、B两点到x轴的距离相等且在x轴的下方,∴AB∥x轴,故选:B.【点评】题主要考查坐标与图形的性质,掌握点的坐标到坐标轴的距离是解题的关键.3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.一个两位数,交换它的十位数字与个位数字所得的两位数是原来两位数的倍,则这样的两位数有()A.1个 B.2个 C.3个 D.4个【分析】设个位数为x,十位数为y,则这个两位数为10y+x,个位十位交换后两位数表示为10x+y,根据所得的数比原来的数大9列出方程,再根据未知数的取值确定符合质数的个数即可.【解答】解:设原两位数的个位数为x,十位数为y(x,y为自然数),原两伴数为10y+x,新两位数为10x+y,根据题意得:10x+y=(10y+x),化简得:x=2y,因为x,y为1﹣9内的自然数,故12、24、36、48,共4个.故选:D.【点评】本题考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解,注意不要漏解.5.若方程组的解为,则被“☆”、“□”遮住的两个数分别是()A.10,3 B.3,10 C.4,10 D.10,4【分析】把x=6代入方程组中第二个方程求出y的值,确定出所求两个数即可.【解答】解:把x=6代入2x+y=16得:y=4,把x=6,y=4代入得:x+y=6+4=10,则被“☆”、“□”遮住的两个数分别是10,4,故选:D.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6.由方程组可得到x与y的关系式是()A.x+y=7 B.x+y=3 C.x﹣y=﹣7 D.x﹣y=﹣3【分析】方程组消去m即可得到x与y的关系式.【解答】解:,把②代入①得:x+y﹣2=5,整理得:x+y=7,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.二.填空题(共6小题)7.P的坐标是(﹣2,a2+1),则点P一定在第二象限.【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【解答】解:﹣2<0,a2+1>1,的坐标是(﹣2,a2+1),则点P一定在第二象限,故答案为:二.【点评】本题考查了点的坐标,第二象限内点的横坐标小于零,纵坐标大于零.8.如图,在一次军棋比赛中,若团长所在的位置坐标为(1,﹣4),工兵所在的位置坐标为(0,﹣1),则司令所在的位置坐标是(3,﹣1).【分析】根据工兵所在的位置坐标得出原点的位置,进而得出答案.【解答】解:根据题意可建立如图所示的平面直角坐标系:则司令所在的位置坐标是(3,﹣1),故答案为:(3,﹣1).【点评】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.9.若线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点C(2,6),则点B(﹣3,1)的对应点D的坐标是(0,3).【分析】直接利用平移的性质得出平移规律进而得出答案.【解答】解:如图所示:(0,3)即为所求.故答案为:(0,3).【点评】此题主要考查了平移变换,正确得出平移规律是解题关键.10.若(a﹣3)x+y|a|﹣2=1是关于x、y的二元一次方程,则a的值是﹣3.【分析】依据二元一次方程的定义可得到a﹣3≠0,|a|﹣2=1,从而可确定出a 的值.【解答】解:∵(a﹣3)x+y|a|﹣2=1是关于x、y的二元一次方程,∴a﹣3≠0,|a|﹣2=1.解得:a=﹣3.故答案为:﹣3.【点评】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.11.方程组中,则x+y=202,10x﹣y=3210.【分析】用方程②减去方程①可得到22x+22y=4444,然后可解得x+y=202,最后用②﹣①×2可求得10x﹣y的值.【解答】解:②﹣①得;22x+22y=4444,∴22(x+y)=4444.∴x+y=202.②﹣①×2得:10x﹣y=3210.故答案为:202,3210.【点评】本题主要考查的是二元一次方程组的解法,利用加减消元法整体求解是解题的关键.12.如图,周长为68cm的长方形ABCD被分成7个相同的小长方形,则长方形ABCD的面积是280cm2.【分析】设小长方形的长和宽分别为x、ycm,根据周长为68cm可以列出方程4x+7y=68,根据图中信息可以列出方程2x=5y,联立两个方程组成方程组,解方程组即可求出结果.【解答】解:设一个小长方形的长为xcm,宽为ycm,则可列方程组,解得:,则长方形ABCD的面积=2x×(x+y)=2×10×(10+4)=280cm2.故答案为:280cm2.【点评】本题考查了二元一次方程组的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组,弄清小长方形的长、宽与大长方形ABCD 长、宽的关系.三.解答题(共11小题)13.在平面直角坐标系中,有点A(﹣2,a+3),B(b,b﹣3).(1)当点A在第二象限的角平分线上时,求a的值;(2)当点B到x轴的距离是它到y轴的距离2倍时,求点B所在的象限位置.【分析】(1)根据第二象限角平分线上的点的横坐标与纵坐标互为相反数列方程求解即可;(2)根据题意列出绝对值方程,求出b的值,再求出点B的坐标,然后根据各象限内点的坐标特征解答.【解答】解:(1)由题意,得a+3=2,解得a=﹣1;(2)由题意,得|b﹣3|=2|b|,解得b=﹣3或b=1,当b=﹣3时,点B(﹣3,﹣6)在第三象限,当b=1时,点B(1,﹣2)在第四象限.【点评】本题考查了点的坐标,主要利用了第二象限角平分线上点的坐标特征以及点到坐标轴的距离的表示.14.已知点A(﹣1,2)、B(3,2)、C(1,﹣2).(1)求证:AB∥x轴;(2)求△ABC的面积;(3)若在y轴上有一点P,使S△ABP =S△ABC,求点P的坐标.【分析】(1)由A、B的纵坐标直接证得;(2)作CD⊥AB,根据题意求得AB和CD的长,然后根据三角形面积公式即可求得;(3)设AB与y轴交于E点,则E(0,2),根据S△ABP =S△ABC,即可求得PE,进而求得P的坐标.【解答】(1)证明:∵A(﹣1,2)、B(3,2),∴A、B的纵坐标相同,∴AB∥x轴;(2)解:如图,作CD⊥AB,∵A(﹣1,2)、B(3,2)、C(1,﹣2).∴AB=1+3=4,CD=2+2=4,∴△ABC的面积==×4×4=8;(3)解:设AB与y轴交于E点,则E(0,2),∵S△ABP =S△ABC,∴PE=CD=2,∴P(0,4)或(0,0).【点评】本题考查了坐标和图形的性质,平行线的判定,三角形面积等,利用数形结合是解题关键.15.在平面直角坐标系中,有点A(1,2a+1),B(﹣a,a﹣3).(1)当点A在第一象限的角平分线上时,求a的值;(2)当点B在x轴的距离是到y轴的距离2倍时,求点B所在的象限位置;(3)若线段AB∥x轴,求三角形AOB的面积.【分析】(1)根据在第一象限的角平分线上时横纵坐标相等求得a值即可;(2)根据题意得到|a﹣3|=2|﹣a|,求得a值后即可确定点B的坐标;(3)根据线段AB∥x轴求得a的值后即可确定点A和点B的坐标,从而求得线段AB的长,利用三角形的面积公式求得三角形的面积即可.【解答】解:(1)由题意,得2a+1=1,解得a=0.(2)由题意,得|a﹣3|=2|﹣a|,解得a=﹣3或a=1.当a=﹣3时,点B(3,﹣6)在第四象限.当a=1时,点B(﹣1,﹣2)在第三象限.(3)∵AB∥x轴,∴2a+1=a﹣3.解得a=﹣4.∴A(1,﹣7),B(4,﹣7).∴AB=3.过点O作OC⊥AB交BA的延长线于点C,则OC=7.∴△ABC的面积为:AB•OC=×3×7=10.5.【点评】本题目考查了点与坐标的对应关系,坐标轴上的点的特征,各个象限的点的特征,第一、三象限的角平分线上的点的特征.16.如图,若用A(2,1)表示放置2个胡萝卜,1棵小白菜;点B(4,2)表示放置4个胡萝卜,2棵小白菜:(1)请你写出C、E所表示的意义.(2)若一只兔子从A顺着方格线向上或向右移动到达B,试问有几条路径可供选择,其中走哪条路径吃到的胡萝卜最多?走哪条路径吃到的小白菜最多?请你通过计算的方式说明.【分析】(1)从题干可知,数对中的两个数,前一个表示放置胡萝卜的数量,后一个数表示放置白菜的数量,据此即可写出C、E所表示的意义;(2)观察图形即可得出路径的条数;先求出走每条路径所吃到的胡萝卜与白菜的数量,再比较即可.【解答】解:(1)点D表示放置2个胡萝卜,2棵小白菜,点E表示放置3个胡萝卜,1棵小白菜,(2)从A到达B,共有3条路径可供选择,其中路径①A吃到11个胡萝卜,7棵小白菜,路径A吃到12个胡萝卜,6棵小白菜,路径③A吃到13个胡萝卜,5棵小白菜,∴走路径③A吃到胡萝卜最多,走路径①A吃到小白菜最多.【点评】本题考查了坐标与图形变换﹣平移,由已知条件正确确定数对所表示的实际意义是解决本题的关键.17.如图所示,△ABC在平面直角坐标系中,△A1B1C1与△ABC关于y轴对称,将△ABC向右平移m个单位得到△A2B2C2,已知A(﹣3,4),B(﹣6,0),C(﹣2,0).(1)在备用图1中画出△A1B1C1;(2)m为何值时,点A1与A2重合?并说明B2C1=B1C2;(3)m为何值时,△A1B1C1与△A2B2C2一边重合?若A1B1与A2B2并交于P点,请证明PA1=PA2;(4)m为何值时,B2、C2的横坐标是某正数的两个不同的平方根?【分析】(1)让各点的横坐标不变,纵坐标互为相反数即可得到A1,B1,C1的坐标,顺从连接即可;(2)让点A1的横坐标减去点A的横坐标即可求得m的值;(3)让点B1的横坐标减去点B的横坐标即可求得m的值;可证得PA1和PA2所在的三角形全等,那么可求得两边相等;(4)B2C2之间相隔4,要想为一个正数的两个平方根,那么B2的横坐标应为﹣2,减去B的横坐标即为m的值.【解答】解:(1)画图如下图:(2)当点A1与点A2重合时,A2(3,4)∵A2(﹣3+m,4)∴m=6(4分)由B2C2=B1C1∴B2C1=B1C2(5分)(3)如右图,当m=8时,△A1B1C1与△A2B2C2一边重合,则B2C2与B1C1重合;(6分)∵△A1B1C1≌△A2B2C2在△A1C1P和△A2C2P中∴△A1C1P≌△A2C2P∴PA1=PA2;(9分)(4)当m=4时,B2、C2的横坐标是正数4的两个不同的平方根.(10分)∵B2(﹣6+m),C2(﹣2+m)∴(﹣6+m)+(﹣2+m)=0∴m=4(12分).【点评】用到的知识点为:图形的平移要归结为对应点的平移;两个点关于y轴对称,纵坐标不变,横坐标互为相反数.18.(1)用代入法解方程组(2)用加减法解方程组.【分析】(1)应用代入法,求出方程组的解是多少即可.(2)应用加减法,求出方程组的解是多少即可.【解答】解:(1)由①,可得:x=2y﹣1③,把③代入②,解得y=1,∴x=2×1﹣1=1,∴原方程组的解是.(2)①+②,可得:4x=12,解得x=3,把x=3代入①,解得y=﹣1,∴原方程组的解是.【点评】此题主要考查了解二元一次方程组问题,要熟练掌握,注意代入法和加减法的应用.19..【分析】①+②能求出x的值,把x的值代入②得到一元一次方程,求出方程的解y即可【解答】解:,①+②得:7x=7,∴x=1,把x=1代入①得:2+3y=5,解得:y=1,∴方程组的解是.【点评】本题主要考查对解一元一次方程,解二元一次方程组等知识点的理解和掌握,能把二元一次方程组转化成一元一次方程是解此题的关键.20.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?【分析】本题需先根据题意设出未知数,再根据题目中的等量关系列出方程组,求出结果即可.【解答】解:设A饮料生产了x瓶,B饮料生产了y瓶,由题意得:,解得:,答:A饮料生产了30瓶,B饮料生产了70瓶.【点评】本题主要考查了二元一次方程组的应用,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.21.蔬菜零售业主小李在批发市场上了解到以下信息内容:他共用110元钱从批发市场上批发了辣椒和西红柿两种蔬菜共45千克,然后他到菜市场以建议零售价去卖,当天卖完,请你帮小李算一算他能赚多少钱?辣椒黄瓜西红柿茄子批发价(元•千克) 3.5 1.2 1.60.9建议零售价(元•千克)5 1.4 2.5 1.3【分析】根据题意可知本题的等量关系有:西红柿的重量+辣椒的重量=45;1.6×西红柿的重量+3.5×辣椒的重量=110.根据这两个等量关系,可列出方程组.【解答】解:设小李在市场上批发了红辣椒x千克,西红柿y千克.(1分)根据题意得,(3分)解这个方程组得:,(6分)20×5+25×2.5﹣110=52.5(元)(8分)答:他卖完这些西红柿和红辣椒能赚52.5元.(9分)【点评】本题考查二元一次方程组的应用,解题关键是要弄清题意,找出等量关系,列出方程组.要注意题目给出的表格中的数据,要求小李卖完辣椒和西红柿所赚的钱,就要先求出辣椒和西红柿的重量,再求赚的钱.利润=卖价﹣进价.题目需要用到的数据只是红辣椒和西红柿那两列数据,其他都没有关系.要注意分清哪些数据是对解题有用,哪些没用.22.今年“五•一”黄金周期间,河池市某旅行社接待一日游和三日游的旅客共1600人,收取旅游费129万元,其中一日游每人收费150元,三日游每人收费1200元.该旅行社接待的一日游和三日游旅客各多少人?【分析】用二元一次方程组解决问题的关键是找到2个合适的等量关系.本题有包含两个等量关系:一日游旅客人数+三日游旅客人数=1600;一日游收入+三日游的收入=1290000,根据这两个等量关系可列出方程组.【解答】解:设接待1日游旅客x人,接待3日游旅客y,根据题意得解这个方程组得答:该旅行社接待1日游旅客600人,接待3日游旅客1000人.【点评】解题关键是弄清题意,合适的等量关系,一日游旅客人数+三日游旅客人数=1600;一日游收入+三日游的收入=1290000,列出方程组.本题还需注意细节问题;万元和元应统一单位.23.琪琪、倩倩、斌斌三位同学去商店买文具用品.琪琪说:“我买了4支水笔,2本笔记本,10本作文本共用了19元.”倩倩说:“我买了2支水笔,3本笔记本,10本练习本共用了20元.”斌斌说:“我买了12本练习本,8本作文本共用了10元;作文本与练习本的价格是一样哦!”请根据以上内容,求出笔记本,水笔,练习本的价格.【分析】设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,根据条件可以建立三个方程,从而构成三元一次方程组,求出其解即可.【解答】解:设笔记本每本的价格是x元,水笔每支y元,练习本或作文本每本的价格为z元,由题意,得,解得:.答:笔记本每本的价格是4元,水笔每支1.5元,练习本0.5元.【点评】本题考查了列三元一次方程组解实际问题的运用,三元一次方程组的解法的运用,解答时找准等量关系建立方程是关键.。