ADS7843使用详解含时序图
触摸屏的驱动芯片ADS7843
触摸屏的驱动芯片ADS7843触摸屏由于其体积小、轻便和接口简单的特点,成为一种在嵌入式系统中应用广泛的输入设备。
S3C44B0X通过端口G模拟串行的SIO接口与触摸屏专门的控制芯片ADS7843(由Burr-Brown公司生产)开展数据传输,来完成对触摸屏触摸位置坐标的读取。
触摸屏接口专用芯片ADS7843要完成两件事:一是完成电极电压的切换;二是采集接触点处的电压值,并开展A/D转换。
触摸屏组成:触摸检测部件:安装在显示器屏幕前面,检测用户触摸位置,承受后送触摸屏控制器。
触摸屏控制器:接收触摸点检测装置信息,并将它转换成触点坐标,再送给CPU。
比方ADS7843。
ADS7843是TI 公司生产的4 线电阻触摸屏转换接口芯片。
ADS7843功能:(1)电极电压的切换。
(2)采集接触点处的电压值,并开展A/D转换。
ADS7843特性:(1)可编程控制8位或者12位A/D转换模式。
(2)低导通电阻模拟开关。
(3)实现触摸屏的驱动选择控制(X、Y通道)。
(4)供电电压为2.7~5V。
(5)参考电压VREF为1V~+Vcc。
(6)转换电压的输入范围为0~VREF。
(7)最高转换速率为125kHz。
编程说明:(1)S3C44B0X端口初始化:PCONG(2)S3C44B0X端口初始化:PUPG(3)触摸屏X坐标控制字(4)触摸屏Y坐标控制字(5)触摸点坐标读取过程(6)检测PENIRQ是否为低电平。
如果PENIRQ=0,则认为有接触。
(7)使ADS7843有效、无效(8)向ADS7843发送控制字(9)等待ADS7843 的BUSY管脚从高变低(10)从ADS7843接收数据。
触摸屏芯片ADS7846ADS7843驱动程序(单片机C51)
触摸屏芯片ADS7846ADS7843驱动程序(单片机C51)触摸屏芯片ADS7846/ADS7843驱动程序(单片机C51) #include "reg51.h"#include "intrins.h"sbit DCLK=P1^6;sbit CS=P2^2;sbit DIN=P2^3;sbit DOUT=P2^4;sbit BUSY=P2^5;void delay(unsigned char i);void start();void ads7843_wr(unsigned char num);unsigned int ads7843_rd();//===============================main(){TMOD=0x11; // 记数器0 计数器1 都以16 位记数TCON=0x00;IE=0x83; //1000 0001 EA=1中断允许,IP=0x01;while(1);}//===================================== =====void ZhongDuan() interrupt 0 //外部中断0 用来接受键盘发来的数据{unsigned int X=0,Y=0;delay(10000); //中断后延时以消除抖动,使得采样数据更准确start(); //启动SPI//while(BUSY); //如果BUSY信号不好使可以删除不用delay(2);ads7843_wr(0x90); //送控制字10010000 即用差分方式读X坐标详细请见有关资料//while(BUSY); //如果BUSY信号不好使可以删除不用delay(2);DCLK=1; _nop_();_nop_();_nop_();_nop_();DCLK=0; _nop_();_nop_();_nop_();_nop_();X=ads7843_rd();ads7843_wr(0xD0); //送控制字11010000 即用差分方式读Y坐标详细请见有关资料DCLK=1; _nop_();_nop_();_nop_();_nop_();DCLK=0; _nop_();_nop_();_nop_();_nop_();Y=ads7843_rd();CS=1;}//===================================void delay(unsigned char i){while(i--);}//==================================void start() //SPI开始{DCLK=0;CS=1;DIN=1;DCLK=1;CS=0;}//===================================== ==void ads7843_wr(unsigned char num) //SPI写数据{unsigned char i=0;DCLK=0;for(i=0;i<8;i++){num<<=1;DIN=CY;DCLK=0; _nop_();_nop_();_nop_(); //上升沿有效?? DCLK=1; _nop_();_nop_();_nop_();}}//===================================== === unsigned int ads7843_rd() //SPI 读数据{unsigned char i=0;unsigned int Num=0;for(i=0;i<12;i++){Num<<=1;DCLK=1; _nop_();_nop_();_nop_(); //下降沿有效DCLK=0; _nop_();_nop_();_nop_();if(DOUT) Num++;}return(Num);}。
12位A/D转换器ADS7864在电网谐波分析仪中的应用
全硬 件 控制 。
引脚 ,这 是 一 种 常用 方 式 。 当输 入 模 拟信 号 为 2 . 4 V~ . V之 间时 , 以使 用 12V~ . V范 围内 的外 52 可 . 26
内部 结 构 、 _ 作 模 式 及 编 程 要 点 ,给 出 了 A 7 6 Y - DS 8 4在 电 网谐 波 分 析 仪 中与 数 字 信 号 处 理 器
T 3 0 2 6的接 口应 用 实例 . 且对 D P与 AD 转换 器的接 口特 点进 行 了总 结。 MS 2 F 0 并 S /
Ab t ac : s r t ADS 6 s 1 - t 6-c n la l g i p tA/ c n e trb i-Brwn.t n e tucu e 78 4 i bi, 2 ha ne nao n u D o v re y Bu T o Is i n rsr t r , o e a i n mo e a d t e k y o r g a p r to d n h e fp o r mmi r n r du e I dd to a p i ai n o ng a e i to c d.n a iin, p lc to fADS 8 n t 7 6 i he 4 h r n c a ay e n t n ef c t P r lo p e e td. a mo i n lz ra d i i tra e wih DS a e a s r s n e s Ke r ADS7 6 ; A/ c n e so y wo d: 8 4 D o v r in; DS P; h r n c a a y e amo i n l z r
液晶模块使用说明书
2) 图形显示区 此RAM 区专用于图形方式显示。在该显示RAM 区中每个字节的数
320240A 液晶显示模块使用说明书
3. 最大工作范围
1) 逻辑工作电压(Vdd): 5V±10%
2) 电源地(GND):
0V
3) LCD 驱动电压(Vop): 30Vmax
4) 输入电压:
0~Vdd
4. 电气特性(测试条件,Vdd=5.0±10%)
1) 输入高电平(Vih):0.8Vdd~Vdd 2) 输入低电平(Vil): Vss~0.2Vdd 3) 输出高电平(Voh): 2.4Vmin 4) 输出低电平(Vol): 0.4Vmax 5) 模块工作电流: <120mA (不含背光) 6) 侧白光工作电流: 140mA
1 深圳汉昇实业有限公司 SHENZHEN HANSHENG INDUSTRIAL CO.,LTD
一. 概述
320240A 液晶显示模块使用说明书
320240A 使用 EPSON 公司出品的 SED1335F(兼容 RaiO 8835)作为控制器,它 在同类产品种是功能最强的。适配 Intel8080 系列和 M6800 系列 MPU 的两种操 作时序,通过硬件设置,可选择两种时序之一。它具有较强功能的 I/O 缓冲器; 四位数据并行发送,传输数据迅速;具有强大的作图功能;支持文本显示、图形 显示以及图形和文本混合显示;具备简捷的 MPU 接口和功能齐全的控制指令集。 320240A 采用 SMT 工艺制作,结构稳固可靠,使用寿命长。
触摸屏控制器驱动程序设计
触摸屏控制器驱动程序设计在便携式的电子类产品中 ,触摸屏由于其便、灵活、占用空间少等优点 ,已经逐渐取代键盘成为嵌入式计算机系统常选用的人机交互输入设备。
触摸屏输入系统由触摸屏、触摸屏控制器、微控制器及其相应的驱动程序构成。
本文从触摸屏控制器的驱动程序设计着手 ,介绍触摸屏控制器 ADS7843 的内部结构及工作原理和在嵌入式 Linux 操作系统中基于PXA255微处理器的ADS784羽驱动程序设计。
1触摸屏控制器ADS7843的介绍1.1ADS7843的内部结构ADS7843内驻一个多路低导通电阻模拟开关组成的供电-测量电路网络、12bit逐次逼近A/D转换器和异步串行数据输入输出,ADS7843艮据微控制器发来的不同测量命令导通相应的模拟开关 ,以便向触摸屏电极对提供电压 ,并把相应电极上的触点坐标位置所对应的电压模拟量引入A/D转换器,图1为ADS7843内部结构图。
X+、Y+ X-、丫为触摸屏电极模拟电压输入;CS为ADS7843的片选输入信号,低电平有效;DCLK接外部时钟输入 ,为芯片进行 A/D 转换和异步串行数据输入 /输出提供时钟;DIN串行数据输入端,当CS低电平时,输入数据在时钟的上升沿将串行数据锁存;DOUT串行数据输出端,在时钟下降沿数据由此移位输出,当 CS 为高电平时,DOUT呈高阻态。
BUSY为系统忙标志端,当CS为低电平, 且BUSY为高电平时,表示ADS7843正在进行数据转换;VREF参考电压输入端,电压值在+1V到+VCC之间变化;PENIRC为笔触中断,低电平有效;IN3、IN4为辅助ADC转换输入通道;+VCC为电源输入。
图1ADS7843内部结构1.2ADS7843的转换时序ADS7843完成一次数据转换需要与微控制器进行3次通信,第一次微处理器通过异步数据传送向 ADS843 发送控制字 ,其中包括起始位、通道选择、 8/12 位模式、差分 /单端选择和掉电模式选择 ,其后的两次数据传送则是微控制器从 ADS7843 取出 16bitA/D 转换结果数据(最后四位自动补零),每次通信需要 8 个时钟周期 ,完成一次数据转换共需 24 个时钟周期周2为ADS7843转换时序。
ADS7844N数模转换器
©1998 Burr-Brown Corporation PDS-1463D Printed in U.S.A. July, 1999®2ADS7844SPECIFICATION: +5VAt T A = –40°C to +85°C, +V CC = +5V, V REF = +5V, f SAMPLE = 200kHz, and f CLK = 16 • f SAMPLE = 3.2MHz, unless otherwise noted.The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.SPECIFICATION: +2.7VAt T A = –40°C to +85°C, +V CC = +2.7V, V REF = +2.5V, f SAMPLE = 125kHz, and f CLK = 16 • f SAMPLE = 2MHz, unless otherwise noted.®3ADS7844®4ADS7844PIN CONFIGURATIONTop ViewPIN DESCRIPTIONSPIN NAME DESCRIPTION1CH0Analog Input Channel 0.2CH1Analog Input Channel 1.3CH2Analog Input Channel 2.4CH3Analog Input Channel 3.5CH4Analog Input Channel 4.6CH5Analog Input Channel 5.7CH6Analog Input Channel 6.8CH7Analog Input Channel 7.9COMGround reference for analog inputs. Sets zero code voltage in single ended mode. Connect this pin to ground or ground reference point.10SHDN Shutdown. When LOW, the device enters a very low power shutdown mode.11V REF Voltage Reference Input. See Specification Table for ranges.12+V CC Power Supply, 2.7V to 5V.13GND Ground 14GND Ground15D OUTSerial Data Output. Data is shifted on the falling edge of D CLK . This output is high impedance when CS is high.16BUSYBusy Output. Busy goes low when the DIN control bits are being read and also when the device is converting.The Output is high impedance when CS is High.17D IN Serial Data Input. If CS is LOW, data is latched on rising edge of D CLK .18CSChip Select Input. Active LOW. Data will not be clocked into D IN unless CS is low. When CS is high D OUT is high impedance.19CLK External Clock Input. The clock speed determines the conversion rate by the equation f CLK = 16 • f SAMPLE .20+V CCPower Supply12345678910CH0CH1CH2CH3CH4CH5CH6CH7COMSHDN +V CC D CLK CS D IN BUSY D OUT GND GND +V CC V REF20191817161514131211ADS7844MINIMUM RELATIVE MAXIMUM SPECIFICATION PACKAGE ACCURACYGAIN ERRORTEMPERATUREDRAWING ORDERING TRANSPORTPRODUCT (LSB)(LSB)RANGE PACKAGE NUMBER (1)NUMBER (2)MEDIA ADS7844E±2±4–40°C to +85°C20-Lead QSOP349ADS7844E Rails""""""ADS7844E/2K5Tape and ReelADS7844N"""20-Lead SSOP334ADS7844N Rails""""""ADS7844N/1K Tape and ReelADS7844EB±1±3–40°C to +85°C20-Lead QSOP349ADS7844EB Rails""""""ADS7844EB/2K5Tape and ReelADS7844NB"""20-Lead SSOP334ADS7844NB Rails""""""ADS7844NB/1KTape and ReelNOTES: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of “ADS7844/2K5” will get a single 2500-piece Tape and Reel. For detailed Tape and Reel mechanical information, refer to Appendix B of Burr-Brown IC Data Book.PACKAGE/ORDERING INFORMATIONABSOLUTE MAXIMUM RATINGS (1)+V CC to GND ........................................................................–0.3V to +6V Analog Inputs to GND ............................................–0.3V to +V CC + 0.3V Digital Inputs to GND ...........................................................–0.3V to +6V Power Dissipation..........................................................................250mW Maximum Junction Temperature...................................................+150°C Operating Temperature Range ........................................–40°C to +85°C Storage Temperature Range .........................................–65°C to +150°C Lead Temperature (soldering, 10s)...............................................+300°C NOTE: (1) Stresses above those listed under “Absolute Maximum Ratings”may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifi-cations.®5ADS7844TYPICAL PERFORMANCE CURVES:+5VAt T A = +25°C, +V CC = +5V, V REF = +5V, f SAMPLE = 200kHz, and f CLK = 16 • f SAMPLE= 3.2MHz, unless otherwise noted.0–20–40–60–80–100–120FREQUENCY SPECTRUM(4096 Point FFT; f IN = 1,123Hz, –0.2dB)100257550Frequency (kHz)A m p l i t u d e (d B)0–20–40–60–80–100–120FREQUENCY SPECTRUM(4096 Point FFT; f IN = 10.3kHz, –0.2dB)0100257550Frequency (kHz)A m p l i t u d e (dB )SIGNAL-TO-NOISE RATIO AND SIGNAL-TO-(NOISE+DISTORTION) vs INPUT FREQUENCY101100Input Frequency (kHz)S N R a n d S I N A D (d B )74737271706968SPURIOUS FREE DYNAMIC RANGE AND TOTAL HARMONIC DISTORTION vs INPUT FREQUENCY101100Input Frequency (kHz)S F D R (d B )T H D (d B )8580757065–85–80–75–70–6512.011.811.611.411.211.0EFFECTIVE NUMBER OF BITSvs INPUT FREQUENCY101100Input Frequency (kHz)E f f e c t i v e N u m b e r o f B i t sCHANGE IN SIGNAL-TO-(NOISE+DISTORTION)vs TEMPERATURE–20–40100Temperature (°C)D e l t a f r o m +25°C (d B )0.40.20.0–0.2–0.4–0.60.6020406080®6ADS78440–20–40–60–80–100–120FREQUENCY SPECTRUM(4096 Point FFT; f IN = 1,129Hz, –0.2dB)62.515.646.931.3Frequency (kHz)A m p l i t u d e (dB )0–20–40–60–80–100–120FREQUENCY SPECTRUM(4096 Point FFT; f IN = 10.6kHz, –0.2dB)062.515.646.931.3Frequency (kHz)A m p l i t u d e (d B)SIGNAL-TO-NOISE RATIO AND SIGNAL-TO-(NOISE+DISTORTION) vs INPUT FREQUENCY101100Input Frequency (kHz)S N R a n d S I N A D (d B )78747066625854SPURIOUS FREE DYNAMIC RANGE AND TOTAL HARMONIC DISTORTION vs INPUT FREQUENCY101100Input Frequency (kHz)S F D R (d B )T H D (d B )908580757065605550–90–85–80–75–70–65–60–55–50EFFECTIVE NUMBER OF BITSvs INPUT FREQUENCY101100Input Frequency (kHz)E f f e c t i v e N u m b e r o f B i t s12.011.511.010.510.09.59.0TYPICAL PERFORMANCE CURVES:+2.7VAt T A = +25°C, +V CC = +2.7V, V REF = +2.5V, f SAMPLE = 125kHz, and f CLK = 16 • f SAMPLE = 2MHz, unless otherwise noted.CHANGE IN SIGNAL-TO-(NOISE+DISTORTION)vs TEMPERATURE–20–40100Temperature (˚C)D e l t a f r o m +25°C (d B )0.20.0–0.2–0.4–0.6–0.80.4020406080®7ADS7844SUPPLY CURRENT vs TEMPERATURE20–40100–2040Temperature (˚C)S u p p l y C u r r e n t (µA )4003503002502001501006080POWER DOWN SUPPLY CURRENTvs TEMPERATURE20–40100–2040Temperature (˚C)S u p p l y C u r r e n t (n A )140120100806040206080Output Code1.000.750.500.250.00–0.25–0.50–0.75–1.00INTEGRAL LINEARITY ERROR vs CODE800H FFF H000HI L E (L S B)Output Code1.000.750.500.250.00–0.25–0.50–0.75–1.00DIFFERENTIAL LINEARITY ERROR vs CODE800H FFF H000HD LE (L S B )CHANGE IN GAIN vs TEMPERATURE20–40100–2040Temperature (˚C)D e l t a f r o m +25˚C (L S B )0.150.100.050.00–0.05–0.10–0.156080CHANGE IN OFFSET vs TEMPERATURE20–40100–2040Temperature (˚C)D e l t a f r o m +25˚C (L S B )0.60.40.20.0–0.2–0.4–0.66080TYPICAL PERFORMANCE CURVES:+2.7V (CONT)At T A = +25°C, +V CC = +2.7V, V REF = +2.5V, f SAMPLE = 125kHz, and f CLK = 16 • f SAMPLE = 2MHz, unless otherwise noted.®8ADS7844REFERENCE CURRENT vs SAMPLE RATE751252550100Sample Rate (kHz)R e f e r e n c e C u r r e n t (µA )14121086420REFERENCE CURRENT vs TEMPERATURE20–40100–2040Temperature (˚C)R e f e r e n c e C u r r e n t (µA )1816141210866080SUPPLY CURRENT vs +V CC3.5252.54+V CC (V)S u p p l y C u r r e n t (µA )3203002802602402202001804.53MAXIMUM SAMPLE RATE vs +V CC3.5252.54+V CC (V)S a m p l e R a t e (H z )1M100k10k1k4.53TYPICAL PERFORMANCE CURVES (CONT)At T A = +25°C, +V CC = +2.7V, V REF = +2.5V, f SAMPLE = 125kHz, and f CLK = 16 • f SAMPLE = 2MHz, unless otherwise noted.®9ADS7844THEORY OF OPERATIONThe ADS7844 is a classic successive approximation register (SAR) analog-to-digital (A/D) converter. The architecture is based on capacitive redistribution which inherently includes a sample/hold function. The converter is fabricated on a 0.6µs CMOS process.The basic operation of the ADS7844 is shown in Figure 1.The device requires an external reference and an external clock. It operates from a single supply of 2.7V to 5.25V. The external reference can be any voltage between 100mV and +V CC . The value of the reference voltage directly sets the input range of the converter. The average reference input current depends on the conversion rate of the ADS7844.The analog input to the converter is differential and is provided via an eight-channel multiplexer. The input can be provided in reference to a voltage on the COM pin (which is generally ground) or differentially by using four of the eight input channels (CH0 - CH7). The particular configura-tion is selectable via the digital interface.FIGURE 1. Basic Operation of the ADS7844.ANALOG INPUTFigure 2 shows a block diagram of the input multiplexer on the ADS7844. The differential input of the converter is derived from one of the eight inputs in reference to the COM pin or four of the eight inputs. Table I and Table II show the relationship between the A2, A1, A0, and SGL/DIF control bits and the configuration of the analog multiplexer. The control bits are provided serially via the DIN pin, see the Digital Interface section of this data sheet for more details.When the converter enters the hold mode, the voltage difference between the +IN and –IN inputs (see Figure 2) is captured on the internal capacitor array. The voltage on the –IN input is limited between –0.2V and 1.25V, allowing the input to reject small signals which are common to both the +IN and –IN input. The +IN input has a range of –0.2V to +V CC + 0.2V.The input current on the analog inputs depends on the conversion rate of the device. During the sample period, the source must charge the internal sampling capacitor (typi-®10ADS7844cally 25pF). After the capacitor has been fully charged, there is no further input current. The rate of charge transfer from the analog source to the converter is a function of conversion rate.REFERENCE INPUTThe external reference sets the analog input range. The ADS7844 will operate with a reference in the range of 100mV to +V CC . Keep in mind that the analog input is the difference between the +IN input and the –IN input as shown in Figure 2. For example, in the single-ended mode, a 1.25V reference, and with the COM pin grounded, the selected input channel (CH0 - CH7) will properly digitize a signal in the range of 0V to 1.25V. If the COM pin is connected to 0.5V,the input range on the selected channel is 0.5V to 1.75V.There are several critical items concerning the reference input and its wide voltage range. As the reference voltage is re-duced, the analog voltage weight of each digital output code is also reduced. This is often referred to as the LSB (least significant bit) size and is equal to the reference voltage divided by 4096. Any offset or gain error inherent in the A/D converter will appear to increase, in terms of LSB size, as the reference voltage is reduced. For example, if the offset of a given converter is 2 LSBs with a 2.5V reference, then it will typically be 10 LSBs with a 0.5V reference. In each case, the actual offset of the device is the same, 1.22mV.Likewise, the noise or uncertainty of the digitized output will increase with lower LSB size. With a reference voltage of 100mV, the LSB size is 24µV. This level is below the internal noise of the device. As a result, the digital output code will not be stable and vary around a mean value by a number of LSBs. The distribution of output codes will be gaussian and the noise can be reduced by simply averaging consecutive conversion results or applying a digital filter.With a lower reference voltage, care should be taken to provide a clean layout including adequate bypassing, a clean (low noise, low ripple) power supply, a low-noise reference,and a low-noise input signal. Because the LSB size is lower,the converter will also be more sensitive to nearby digital signals and electromagnetic interference.The voltage into the V REF input is not buffered and directly drives the capacitor digital-to-analog converter (CDAC)portion of the ADS7844. Typically, the input current is 13µA with a 2.5V reference. This value will vary by microamps depending on the result of the conversion. The reference current diminishes directly with both conversion rate and reference voltage. As the current from the reference is drawn on each bit decision, clocking the converter more quickly during a given conversion period will not reduce overall current drain from the reference.DIGITAL INTERFACEFigure 3 shows the typical operation of the ADS7844’s digital interface. This diagram assumes that the source of the digital signals is a microcontroller or digital signal processor with a basic serial interface (note that the digital inputs are over-voltage tolerant up to 5.5V, regardless of +V CC ). Each communication between the processor and the converter consists of eight clock cycles. One complete conversion can be accomplished with three serial communications, for a total of 24 clock cycles on the DCLK input.The first eight clock cycles are used to provide the control byte via the DIN pin. When the converter has enough information about the following conversion to set the input multiplexer appropriately, it enters the acquisition (sample)mode. After three more clock cycles, the control byte is complete and the converter enters the conversion mode. At this point, the input sample/hold goes into the hold mode.The next twelve clock cycles accomplish the actual analog-to-digital conversion. A thirteenth clock cycle is needed for the last bit of the conversion result. Three more clock cycles are needed to complete the last byte (DOUT will be LOW).These will be ignored by the converter.Control ByteAlso shown in Figure 3 is the placement and order of the control bits within the control byte. Tables III and IV give detailed information about these bits. The first bit, the ‘S’ bit,must always be HIGH and indicates the start of the control byte. The ADS7844 will ignore inputs on the DIN pin until the start bit is detected. The next three bits (A2 - A0) select the active input channel or channels of the input multiplexer (see Tables I and II and Figure 2).FIGURE 2. Simplified Diagram of the Analog Input.®11ADS7844FIGURE 3. Conversion Timing, 24-Clocks per Conversion, 8-Bit Bus Interface. No DCLK delay required with dedicatedserial port.1DCLKCS8111DOUT BUSYSDIN CONTROL BITSSCONTROL BITS109876543210111098118FIGURE 4. Conversion Timing, 16-Clocks per Conversion, 8-bit Bus Interface. No DCLK delay required with dedicatedserial port.Bit 7Bit 0(MSB)Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1(LSB)SA2A1A0—SGL/DIFPD1PD0TABLE III.Order of the Control Bits in the Control Byte.TABLE IV.Descriptions of the Control Bits within theControl Byte.BIT NAME DESCRIPTION7SStart Bit. Control byte starts with first HIGH bit on DIN. A new control byte starts with every 15th clock cycle.6 - 4A2 - A0Channel Select Bits. Along with the SGL/DIF bit,these bits control the setting of the multiplexer input as detailed in Tables I and II.3—Not Used.2SGL/DIFSingle-Ended/Differential Select Bit. Along with bits A2 - A0, this bit controls the setting of the multiplexer input as detailed in Tables I and II.1 - 0PD1 - PD0Power-Down Mode Select Bits. See Table V for details.The SGL/DIF bit controls the multiplexer input mode: either single-ended (HIGH) or differential (LOW). In single-ended mode, the selected input channel is referenced to the COM pin. In differential mode, the two selected inputs provide a differential input. See Tables I and II and Figure 2 for more information. The last two bits (PD1 - PD0) select the power-down mode as shown in Table V. If both inputs are HIGH,the device is always powered up. If both inputs are LOW, the device enters a power-down mode between conversions.When a new conversion is initiated, the device will resume normal operation instantly—no delay is needed to allow the device to power up and the very first conversion will be valid.16-Clocks per ConversionThe control bits for conversion n+1 can be overlapped with conversion ‘n’ to allow for a conversion every 16 clock cycles, as shown in Figure 4. This figure also shows possible serial communication occurring with other serial peripherals between each byte transfer between the processor and the converter. This is possible provided that each conversion completes within 1.6ms of starting. Otherwise, the signal that has been captured on the input sample/hold may droop enough to affect the conversion result. In addition, the ADS7844 is fully powered while other serial communica-tions are taking place.®12ADS7844Digital TimingFigure 5 and Tables VI and VII provide detailed timing for the digital interface of the ADS7844.15-Clocks per ConversionFigure 6 provides the fastest way to clock the ADS7844.This method will not work with the serial interface of most microcontrollers and digital signal processors as they are generally not capable of providing 15 clock cycles per serial transfer. However, this method could be used with field programmable gate arrays (FPGAs) or application specific integrated circuits (ASICs). Note that this effectively in-creases the maximum conversion rate of the converter be-yond the values given in the specification tables, which assume 16 clock cycles per conversion.PD1PD0DescriptionPower-down between conversions. When each conversion is finished, the converter enters a low power mode. At the start of the next conversion,the device instantly powers up to full power. There is no need for additional delays to assure full operation and the very first conversion is valid.01Reserved for future use.10Reserved for future use.11No power-down between conversions, device al-ways powered.TABLE V. Power-Down Selection.SYMBOL DESCRIPTION MIN TYP MAX UNITS t ACQ Acquisition Time1.5µs t DS DIN Valid Prior to DCLK Rising 100ns t DH DIN Hold After DCLK HIGH 10nst DO DCLK Falling to DOUT Valid 200ns t DV CS Falling to DOUT Enabled 200ns t TR CS Rising to DOUT Disabled 200ns t CSS CS Falling to First DCLK Rising 100ns t CSH CS Rising to DCLK Ignored0ns t CH DCLK HIGH 200ns t CL DCLK LOW200ns t BD DCLK Falling to BUSY Rising 200ns t BDV CS Falling to BUSY Enabled 200ns t BTRCS Rising to BUSY Disabled200nsTABLE VI. Timing Specifications (+V CC = +2.7V to 3.6V,T A = –40°C to +85°C, C LOAD = 50pF).SYMBOL DESCRIPTION MIN TYPMAXUNITS t ACQ Acquisition Time900ns t DS DIN Valid Prior to DCLK Rising 50ns t DH DIN Hold After DCLK HIGH 10ns t DO DCLK Falling to DOUT Valid 100ns t DV CS Falling to DOUT Enabled 70ns t TR CS Rising to DOUT Disabled 70ns t CSS CS Falling to First DCLK Rising 50ns t CSH CS Rising to DCLK Ignored0ns t CH DCLK HIGH 150ns t CL DCLK LOW150ns t BD DCLK Falling to BUSY Rising 100ns t BDV CS Falling to BUSY Enabled 70ns t BTRCS Rising to BUSY Disabled70nsTABLE VII. Timing Specifications (+V CC = +4.75V to+5.25V, T A = –40°C to +85°C, C LOAD = 50pF).FIGURE 6. Maximum Conversion Rate, 15-Clocks per Conversion.FIGURE 5. Detailed Timing Diagram.1DCLKCS 11DOUTBUSY A2SDIN A1A0SGL/DIFPD1PD0109876543210111098765432A1A0151151A2SA1A0SGL/DIFPD1PD0A2Ssupply current for these two cases are shown in Figure 9.from switching power supplies, nearby digital logic, and®13ADS7844®14ADS7844high power devices. The degree of error in the digital output depends on the reference voltage, layout, and the exact timing of the external event. The error can change if the external event changes in time with respect to the DCLK input.With this in mind, power to the ADS7844 should be clean and well bypassed. A 0.1µF ceramic bypass capacitor should be placed as close to the device as possible. In addition, a 1µF to 10µF capacitor and a 5Ω or 10Ω series resistor may be used to lowpass filter a noisy supply.The reference should be similarly bypassed with a 0.1µF capacitor. Again, a series resistor and large capacitor can be used to lowpass filter the reference voltage. If the reference voltage originates from an op amp, make sure that it can drive the bypass capacitor without oscillation (the series resistor can help in this case). The ADS7844 draws very little current from the reference on average, but it does place larger demands on the reference circuitry over short periods of time (on each rising edge of DCLK during a conversion).The ADS7844 architecture offers no inherent rejection of noise or voltage variation in regards to the reference input.This is of particular concern when the reference input is tied to the power supply. Any noise and ripple from the supply will appear directly in the digital results. While high fre-quency noise can be filtered out as discussed in the previous paragraph, voltage variation due to line frequency (50Hz or 60Hz) can be difficult to remove.The GND pin should be connected to a clean ground point.In many cases, this will be the “analog” ground. Avoid connections which are too near the grounding point of a microcontroller or digital signal processor. If needed, run a ground trace directly from the converter to the power supply entry point. The ideal layout will include an analog ground plane dedicated to the converter and associated analog circuitry.。
基于ADS7843的触摸屏控制系统设计
Science &Technology Vision科技视界0引言在电子产品及工业产品的设计中,触摸屏由于其轻便、占用空间少、方便灵活等优点越来越受到设计师及用户的青睐。
触摸屏可作为模拟键盘,使用起来比普通键盘灵活,因为键的位置可根据需要进行改变,并且省去了按键所占用的空间。
触摸屏分为电阻、电容、表面声波、红外线扫描和矢量压力传感等,其中四线电阻触摸屏应用广泛。
1ADS7843简介ADS7843是一款专为四线电阻触摸屏设计的带SPI 接口的12位AD 转换器,内部含模拟电子开关和逐次比较型AD 转换器。
当要采样Y 方向的AD 值时,通过将Y+、Y 一端施加电压,将X+送入AD 转换器得到Y 方向的AD 值;同理可得X 方向的AD 值。
而这些转换均由MCU 通过SPI 方式向ADS7843发送命令来完成。
ADS7843的引脚功能如表1所示。
表1ADS7843的引脚功能ADS7843之所以能实现对触摸屏的控制,是因为其内部结构很容易实现电极电压的切换,并能进行快速A/D 转换。
内部结构如图1所示,A2~A0和SER 为控制寄存器中的控制位,用来进行开关切换和参考电压的选择。
图1ADS7843内部结构2触摸屏控制系统设计以应用广泛的STC89C52作为主控制器,进行触摸控制系统设计。
2.1硬件接口电路设计ADS7843串行接口的一次完整操作需要3×8=24个DCLK 时钟周期,前8个脉冲接收8位的命令,并在第6个脉冲的上升沿开始A/D 转换器进入采样阶段,从第9个脉冲开始进入转换阶段,输出,输出12位采样值,转换结束进入空闲阶段。
直到24个DCLK 结束,CS 置高电平,一次测量结束。
ADS7843采用、转换时序如图2所示。
图2ADS7843采用、转换时序ADS7843与STC89C52的连接图如图3所示。
图3ADS7843与STC89C52的连接图2.2软件设计当用户在触摸屏上的有效区域内点击时,触摸屏的X 方向、Y 方向输出电阻分别随X 和Y 呈线性变化,ADS7843控制器将其分别转换为12位数据,通过中断告知STC89C52需要接收数据,STC89C52接收到数据后进行处理;首先进行触点数据是否有效判断,包括两方面:一是判断是否误操作,即是否是由于人的抖动产生的错误数据;二是ADS7843传过来得数据是否有效,由于刚开始的传过来的第一个基于ADS7843的触摸屏控制系统设计薛大为杨春兰(蚌埠学院机械与电子工程系,安徽蚌埠233030)【摘要】触摸屏在现代电子设备中广泛使用。
ads7843中文资料
•’—•p 应用与设计¡¤³—˜”“触摸屏接口解放军信息工程大学胡冰吴升艳岳春生Touch Scre e n Inte r f a ce Ch i p ADS7843¨Õ¢ÉÎÇ·Õ³ÈÅÎÇÙÁιÕÅ£ÈÕÎÓÈÅÎÇ摘要š简单介绍了¡¤³—˜”“的功能特点和工作原理Œ探讨了¡¤³—˜”“触摸屏接口芯片的模式选择和应用技巧Œ最后给出了基于该系统的一个实际使用方案"关键词š触摸屏控制器›嵌入式系统›¡¤³—˜”“分类号š´°’—“文献标识码š¢文章编号š‘••–•–™——ˆ’••’‰•—•••’—••“图‘¡¤³—˜”“的连接关系¡¤³—˜”“触摸屏接口‘前言随着生活中类似于°¤¡的手持设备的越来越多Œ彩色¬£¤触摸屏也变得越来越普及Œ并逐渐成为当今的主流配置"触摸屏分为电阻!电容!表面声波!红外线扫描和矢量压力传感等Œ其中使用最多的是四线或五线电阻触摸屏"四线电阻触摸屏是由两个透明电阻膜构成的Œ在它的水平和垂直电阻网上施加电压Œ就可通过¡•¤转换面板在触摸点测量出电压Œ从而对应出坐标值"本文除了简单介绍¡¤³—˜”“的特点和原理之外Œ主要讨论触摸屏控制器的使用技巧Œ同时给出了具体的应用连接图"’¡¤³—˜”“的功能特性¡¤³—˜”“是´©公司生产的”线电阻触摸屏转换接口芯片"它是一款具有同步串行接口的‘’位取样模数转换器"在‘’•Ë¨Ú吞吐速率和’Ž—¶电压下的功耗为—••L ·Œ而在关闭模式下的功耗仅为•Ž•L ·"因此Œ¡¤³—˜”“以其低功耗和高速率等特性Œ被广泛应用在采用电池供电的小型手持设备上"¡¤³—˜”“采用³³¯°•‘–引脚封装形式Œ温度范围是•”•*‹˜•e "¡¤³—˜”“具有两个辅助输入ˆ©®“!©®”‰Œ可设置为˜位或‘’位模式"其外部连接电路如图‘所示Œ该电路的工作电压¶ÃÃ在’Ž—*•Ž’•¶之间Œ基准电压¶ÒÅÆ介于‘¶*‹¶ÃÃ"该电路的基准电压确定了转换器的输入范围Œ输出数据中每个数字位代表的模拟电压等于基准电压除以”•™–"平均基准输入电流由¡¤³—˜”“的转换率来确定"以下是¡¤³—˜”“的主要引脚功能š¸‹!¹‹!¸•!¹•š转换器模拟输入端Œ实际上是一个”通道多路器›¤£¬«š外部时钟输入引脚›£³š片选端›参考文献‘Ž张芳兰Ž´-³“’•£’ØØ用户指南Ž电子工业出版社Œ‘™™™Ž–’Ž赵保经Ž¡•¤和¤•¡转换器应用手册Ž上海科学普及出版社Œ‘™™•“Ž-ÁØÉÍŽ‹•¶³ÉÎÇÌÅ•³ÕÐÐÌÙŒ‘-ÓÐÓŒ‘–•¢ÉÔ³ÅÌÆ•£ÁÌÉÂÒÁÔÉÎÇ¡¤£Œ’•••”Ž闻亭公司Ž´-³“’•£’¸¸高速数字信号处理器原理与应用Ž‘™™˜Œ”•Ž´ÅØÁÓ©ÎÓÔÒÕÍÅÎÔÓ©ÎÃŽ´-³“’•£’•ØµÓÅÒ‡Ó§ÕÉÄÅŒ‘™™™收稿日期š’••‘•‘’•’‘咨询编号š•’•—‘•海纳电子资讯网:www.fpga-arm.com 为您提供各种IC中文资料•’˜•5国外电子元器件6’••’年第—期’••’年—月¤©®š串行输入Œ其控制数据通过该引脚输入›¤¯µ´š串行数据输出Œ用于输出转换后的触摸位置数据Œ最大数为二进制的”•™•›©®“!©®”š辅助输入引脚›°¥®©²±š°¥®中断引脚Œ可用于在触摸显示屏后引发一个中断"“工作原理¡¤³—˜”“是一款连续近似记录ˆ³¡²‰的¡•¤转换器"可通过连结触摸屏¸‹将触摸信号输入到¡•¤转换器Œ同时打开¹‹和¹•驱动Œ然后数字化¸‹的电压Œ从而得到当前¹位置的测量结果"同理也可得到¸方向的坐标"具体设置和使用方法可查阅´©公司的¡¤³—˜”“数据手册Œ下面主要介绍¡¤³—˜”“的模式设置!°¥®中断引脚的使用和软件编程方法"“Ž‘模式设置¡¤³—˜”“有差分ˆ¤©¦¦¥²¥®´©¡¬‰和单端ˆ³©®2§¬¥•¥®¤¥¤-¯¤¥‰两种工作模式"这两种模式对转换后的精度和可靠性有一些影响"如果将¡•¤转换器配置为读绝对电压ˆ单端模式‰方式Œ那么驱动ˆ¤²©¶¥²‰电压的下降将导致转换输入数据的错误"而如果配置为差分模式Œ则可以避免上述错误"当触摸屏被按下时Œ有两种情况可影响接触点的电压š一种是当触摸到显示屏时Œ会导致触摸屏外层振动›另一种是触摸屏顶层和低层之间的寄生电容引起的电流振荡以及在¡¤³—˜”“输入引脚上引起的电压振荡"这两种情况都可导致触摸屏上的电压发生振荡以及增加¤£值稳定的时间"在单端模式中Œ一旦在触摸屏上检测到一次触摸事件Œ电路系统将发送一串控制字节给¡¤³—˜”“Œ并要求它进行一次转换"然后¡¤³—˜”“将在获取周期的起始点通过内部¦¥´开关给面板提供电压Œ而这将导致触摸点电压的升高"正如上面所介绍的Œ上升的电压在最终稳定之前会振荡一段时间"当获取周期结束后Œ所有的¦¥´开关关闭Œ¡•¤转换器进入转换周期"如果在转换周期期间Œ没有发出下一个控制字节Œ¡¤³—˜”“将进入低功耗模式并等待下一条指令"由于面板上分布有大量电容Œ特别是滤波噪音Œ因此Œ应该注意设置好对应于¸坐标或¹坐标上的电压"在单端模式中Œ输入电压必须在¤ÁÔÁ©Î×ÏÒÄ的最后三个时钟周期期间设置Œ否则将产生错误"除了内部¦¥´开关从获取周期开始到转换周期结束期间一直保持打开状态以外Œ差分模式的操作类似于单端模式"加在面板上的电压将成为¡•¤转换器的基准电压Œ提供一个度量比操作"这意味着如果加在面板上的电压发生变化ˆ由于电源!驱动电阻!温度或触摸屏电阻等原因‰Œ¡•¤转换器的度量比操作将对这种变化进行补偿"如果在当前转换周期发向¡¤³—˜”“的下一个控制字节所选择的通道与前一个控制字节相同Œ那么在当前转换完成后开关仍然不会关闭"在这两种模式中Œ¡¤³—˜”“只有“个时钟周期可以从触摸屏上获取ˆ取样‰输入模拟电压Œ因此Œ为了¡¤³—˜”“可以获取正确的电压Œ输入电压必须在“个时钟周期的时间范围内设置好"打开驱动将引起触摸屏的电压快速升高到最终值"为了得到正确的转换数据Œ获取必须在触摸屏完全设置好时完成"获取的方式有两种š一种是采用单端模式Œ即采用相对较慢的时钟扩展获取时间ˆ三个时钟周期‰›二是采用差分模式Œ即用相对较快的时钟在第一个转换周期内设置电压Œ在第二个转换周期获取准确电压"该方式的两个控制字节相同Œ且内部¸•¹开关在首次转换后不会关闭"由于首次转换期间电压还不稳定Œ因此应当丢弃首次转换的结果"使用第二种方式的另一个优点是功耗低"因为在全部转换后Œ¡¤³—˜”“会进入低功耗模式来等待下一次取样周期›对于慢时钟Œ下一次取样可能在当前转换结束后立即进入取样周期Œ而没有时间进入低功耗模式"实际在单端模式下不能使用快速时钟"差分模式还具有以下两个优点š第一个优点是能够在不扩展转换器获取时间的条件下用很长的设置时间处理触摸屏Œ即触摸屏电压可以有足够的时间稳定下来"第二个优点是¡¤³—˜”“通过快速时钟可以进入低功耗模式Œ从而可以节约电池能量"因此Œ通常建议使用差分模式"“Ž’°¥®中断引脚的使用°¥®中断引脚的主要作用是让设计者可以完全控制¡¤³—˜”“的低功耗操作模式"图’所示是其模式操作连接示意图"图中Œ©•¯‘和©•¯’是引自¥°—’‘’的通用目的输入•输出口"当电源加入系统且转换器被设置ˆ°¤‘Œ°¤••••‰之后Œ器件进入低功耗模式"而当未触摸面板时Œ¡¤³—˜”“内部的二极海纳电子资讯网:www.fpga-arm.com 为您提供各种IC中文资料•’™•¡¤³—˜”“触摸屏接口图“采用判断两次的方法来克服触摸屏信号的抖动图”采用最后的结果来克服触摸屏信号的抖动图’¡¤³—˜”“ˆ°¤•Œ°¤‘•••‰下的示意图管没有偏压Œ因此没有电流流过ˆ忽略漏流‰›当触摸面板时Œ¹•将提供一条电流ˆ©‰通路Œ这时¸‹!¸•和¹‹处于高阻状态Œ电流经过‘••Ë8电阻和中断二极管Œ°¥®©²±被拉低Œ从而通过©•¯’上一个不超过•Ž–•¶的电压唤醒£°µŒ然后¥°—’‘’再拉低©•¯‘和©•¯’上的电位Œ同时对¡¤³—˜”“控制寄存器写一个字节以进行转换初始化"为了转换°¥®©²±二极管上的偏置电压Œ¥°—’‘’必须拉低©•¯‘和©•¯’上的电压"否则Œ如果在转换期间二极管上有一个前向偏压Œ那么附加的电流将引起错误的输入数据"“Ž“错误触发由于¸‹输入引脚与°¥®中断输出相连Œ因此在¸‹上的噪声可能引起触摸屏的错误触发"设计时可以在°¥®中断输出引脚上连结一个²£滤波器ˆ可对地连结一个‘8的电阻和一个•Ž•‘L ¦的电容‰Œ以过滤噪声脉冲并避免错误触发"“Ž”差分模式下的软件流程图“和图”所示的两种算法假设¡¤³—˜”“配置成差分模式Œ每次转换为‘–个时钟Œ¸轴坐标的结果在¤¡´¡¸中Œ¹轴的坐标在¤¡´¡¹中"其中图“的例子采用的是判断两次的方法来克服触摸屏信号的抖动"¤¡´¡‘用于存储当前转换的结果Œ¤¡´¡’用于存储上一次转换的结果Œ当两次结果相同时Œ转换数据有效"但是Œ应当注意š当输入电压的振动频率和取样频率相近时Œ可能会漏掉正确结果"图”的例子是将最后的转换结果ˆ第Î次‰作为有效转换"可以看出š该方式更加简单Œ但该方法只对某一类触摸屏有效Œ且/Î0的具体值依赖于¡¤³—˜”“输入电压的设置时间Œ同时Œ在确定/Î0值以前还需要对一些触摸屏进行测试"参考文献‘Ž刘永智Œ杨开愚Ž液晶显示技术Ž电子科技大学出版社’Ž¡¤³—˜”“¤ÁÔÁÓÈÅÅÔ´©Œªµ¬¹Œ’••‘收稿日期š’••‘•‘’•’•咨询编号š•’•—‘‘海纳电子资讯网:www.fpga-arm.com 为您提供各种IC中文资料。
ADS7843简介及应用
1
OUTLINE
1.ADS7843特性 2.ADS7843腳位定義 3.ADS7843方塊圖 4.ADS7843廠內之應用
2
1.ADS7843特性
a.4-WIRE T/P INTERFACE b.SINGLE SUPPLY:2.7V~5.0V c.SERIAL INTERFACE d.PROGRAMMABLE 8-OR 12-BIT RESOLUTION e.2 AUXILIARY ANALOG INPUTS
HandIN為讀取I18_Bit,ADS7843應用為8_Bit,試 問TFT Control Box上可變電阻在軟體上需 做幾階調的變化較適當?
2^8=256 可變化總階調 2^6=64 RGB各佔6_Bit 256/64=4 故軟體應做每調四階實際輸出變化一次較適當
開關 控制 腳
Out to control A/D 階數變化值
10
3. Timing characteristics diagram
11
Timing characteristics diagram SPI (System Interface)
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
6
4-WIRE T/P 動作原理
7
TOUCH PANEL軟體
int runTP(void) { while (PENIRQ); 中斷指令 Xdata=HandShack(scanX_comm); Ydata=HandShack(scanY_comm); if(((Xdata>=0x0ddd)&&(Xdata<=0x0fff))&&((Ydata>=0x0000)&&(Ydata<=0x0333))) return 1; else if(((Xdata>=0x0444)&&(Xdata<=0x0777))&&((Ydata>=0x0000)&&(Ydata<=0x0444))) return 2; else if(((Xdata>=0x0444)&&(Xdata<=0x0777))&&((Ydata>=0x0ccc)&&(Ydata<=0x0fff))) return 3; else if(((Xdata>=0x0ddd)&&(Xdata<=0x0fff))&&((Ydata>=0x0ddd)&&(Ydata<=0x0fff))) return 4; else if(((Xdata>=0x0555)&&(Xdata<=0x0aaa))&&((Ydata>=0x0555)&&(Ydata<=0x0aaa))) return 5; else return 0; } X+
ADS7844application
ADS7844串行模/数转换芯片的原理及其在嵌入式的应用12位高精度AD的使用ADS7844串行模/数转换芯片的原理及其在嵌入式的应用摘要:ADS7844是一种12-Bit的串行数模转换器芯片。
它具有与CPU方便联接的同步串行接口,接口灵活, 功耗低等特点。
文中详细介绍了ADS7844的工作原理、引脚定义、工作时序及同步串行模式下与51单片机的接口电路及部分读写程序以及需要注意的地方。
关键词:模数转换器 SPI接口 ADS7844 单片机概述A/D采集芯片在以单片机为核心构成的智能仪器仪表、测控系统、工业控制等领域中有着广泛影响。
但是现在有的A/D转换芯片存在着精度差和接口电路复杂等缺点。
ADS7844是Burr-Brown公司推出的一种高性能、宽电压、低功耗的可以程控为8通道单端输入或4通道差分端输入的12-Bit的串行数模转换器,内部集成有SPI口。
从而简化了接口电路设计,无需用复杂的外围元件,就可实现精度高、性能稳定的数据采集转换。
在5V电源,转换速率为200kHz的情况下功耗仅仅3Mw。
在节电模式下,功耗可以减小到1uW1、特性及引脚说明1〃1 ADS7844主要特性如下:①单电源,电压范围:2.7V-5V均能正常工作,最大工作电流为1mA,进入低功耗状态后的耗电仅3μA②其转换率高达200kHz③它有8个模拟输入端,可用软件编程为8通道单端输入A/D转换器或4通道差分输入A/D转换器④典型信噪比为72dB。
⑤积分非线性(INL)和差分非线性(DNL)最大为±0.5LSB⑥保证无漏码⑦SPI接口⑧采用20脚QSOP或SSOP封装形式。
1〃2 ADS7844引脚的功能和排列说明AD7844引脚功能说明如表1所示,引脚排列如图1所示表1引脚号引脚名称功能描述备注1、2、3、4、5、6、7、8 CH0-CH7模拟输入端。
器件被设置为单端输入时,这些引脚可分别与信号地COM构成8通道单端输入A/D转换器;当器件被设置为差分输入时,利用CH0~CH1、CH2~CH3、CH4~CH5和CH6~CH7可构成4通道差分输入A/D转换器 对状态寄存器的SGL/DIF位进行配置以设定输入模式。
基于ARM处理器的LCD控制及触摸屏接口设计
本文由sunli19820113贡献doc文档可能在WAP端浏览体验不佳。
建议您优先选择TXT,或下载源文件到本机查看。
摘要:摘要:对由 S3C44B0X 控制彩色显示屏和四线电阻式触摸屏组成的人机界面控制系统作了较为深入的分析与研究。
介绍了 S3C44B0X 内置 LCD 控制器、液晶屏 LM7M632 和触摸屏控制器 ADS7843 的管脚功能和工作原理,完成了 S3C44B0X 与 LM7M632 及ADS7843 的接口设计,论述了 LCD 和触摸屏的驱动过程, 实现了彩色液晶显示及触摸屏控制功能。
实验表明本系统通用性好,可应用于其它嵌入式系统中。
关键词:关键词:ARM 处理器;S3C44B0X;LCD;ADS7843;触摸屏; 0 引言随着信息技术的不断发展,嵌入式系统正在越来越广泛的应用到航空航天、消费类电子、通信设备等领域。
而在嵌入式系统中,LCD 作为人机交互的主要设备之一,显示系统又是不可缺少的一部分。
近年来,随着微处理器性能的不断提高,特别是 ARM 处理器系列的出现,嵌入式系统的功能也变得越来越强大。
液晶显示器由于具有功耗低、外形尺寸小、价格低、驱动电压低等特点以及其优越的字符和图形的显示功能,已经成为嵌入式系统使用中的首选的输出设备。
随着多媒体技术的发展,单色的 LCD 已不能满足人们在各种多媒体应用方面的更高要求,彩色 LCD 正越来越广泛地被应用到嵌入式系统中。
触摸屏是人们获取信息的一种便利工具, 已广泛应用于工商、税务、银行等各种需要对公众提供信息服务的行业[1]。
触摸屏作为一种特殊的计算机外设,是目前最简单、方便、自然的一种人机交互方式。
它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备[2]。
S3C44B0X 是三星公司生产的基于 ARM7TDMI 内核的 RISC 微处理器,主频可达 66MHz[3]。
它集成了包括 LCD 控制器在内的等外围器件。
ADS7843EG4中文资料
FEATURESq 4-WIRE TOUCH SCREEN INTERFACE q RATIOMETRIC CONVERSION q SINGLE SUPPLY: 2.7V to 5V q UP TO 125kHz CONVERSION RATE q SERIAL INTERFACEq PROGRAMMABLE 8- OR 12-BIT RESOLUTION q 2 AUXILIARY ANALOG INPUTS qFULL POWER-DOWN CONTROLDESCRIPTIONThe ADS7843 is a 12-bit sampling Analog-to-Digital Con-verter (ADC) with a synchronous serial interface and low on-resistance switches for driving touch screens. Typical power dissipation is 750µW at a 125kHz throughput rate and a +2.7V supply. The reference voltage (V REF ) can be varied between 1V and +V CC , providing a corresponding input voltage range of 0V to V REF . The device includes a shutdown mode which reduces typical power dissipation to under 0.5µW. The ADS7843 is specified down to 2.7V operation.Low power, high speed, and onboard switches make the ADS7843 ideal for battery-operated systems such as per-sonal digital assistants with resistive touch screens and other portable equipment. The ADS7843 is available in an SSOP-16 package and is specified over the –40°C to +85°C temperature range.APPLICATIONSq PERSONAL DIGITAL ASSISTANTS q PORTABLE INSTRUMENTS q POINT-OF-SALES TERMINALS q PAGERSqTOUCH SCREEN MONITORSTOUCH SCREEN CONTROLLERCSDIN DOUTBUSYDCLKX+PENIRQX –Y+Y –IN3IN4V REFADS7843SBAS090B – SEPTEMBER 2000 – REVISED MAY 2002PRODUCTION DATA information is current as of publication date.Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.Copyright © 2001, Texas Instruments IncorporatedPlease be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.US Patent No. 6246394ADS78432SBAS090BPIN NAME DESCRIPTION1+V CC Power Supply, 2.7V to 5V.2X+X+ Position Input. ADC input Channel 1.3Y+Y+ Position Input. ADC input Channel 2.4X –X – Position Input 5Y –Y – Position Input 6GND Ground7IN3Auxiliary Input 1. ADC input Channel 3.8IN4Auxiliary Input 2. ADC input Channel 4.9V REF Voltage Reference Input 10+V CC Power Supply, 2.7V to 5V.11PENIRQ Pen Interrupt. Open anode output (requires 10k Ωto 100k Ω pull-up resistor externally).12DOUTSerial Data Output. Data is shifted on the falling edge of DCLK. This output is high impedance when CS is HIGH.13BUSY Busy Output. This output is high impedance when CS is HIGH.14DIN Serial Data Input. If CS is LOW, data is latched on rising edge of DCLK.15CS Chip Select Input. Controls conversion timing and enables the serial input/output register.16DCLKExternal Clock Input. This clock runs the SAR con-version process and synchronizes serial data I/O.ABSOLUTE MAXIMUM RATINGS (1)+V CC to GND ........................................................................–0.3V to +6V Analog Inputs to GND ............................................–0.3V to +V CC + 0.3V Digital Inputs to GND .............................................–0.3V to +V CC + 0.3V Power Dissipation..........................................................................250mW Maximum Junction Temperature...................................................+150°C Operating Temperature Range ........................................–40°C to +85°C Storage Temperature Range .........................................–65°C to +150°C Lead Temperature (soldering, 10s)...............................................+300°C NOTE: (1) Stresses above those listed under “Absolute Maximum Ratings ”may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.This integrated circuit can be damaged by ESD. Texas Instru-ments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.12345678+V CC X+Y+X –Y –GND IN3IN4DCLK CS DIN BUSY DOUT PENIRQ +V CC V REF161514131211109ADS7843PIN CONFIGURATIONTop ViewSSOPPIN DESCRIPTIONMAXIMUM INTEGRAL SPECIFIED LINEARITY PACKAGE TEMPERATUREPACKAGE ORDERING TRANSPORT PRODUCT ERROR (LSB)PACKAGE-LEADDESIGNATOR (1)RANGE MARKING NUMBER MEDIA, QUANTITY ADS7843E±2SSOP-16DBQ–40°C to +85°CADS7843E ADS7843E Rails, 100"""""ADS7843EADS7843E/2K5Tape and Reel, 2500NOTES: (1) For the most current specifications and package information, refer to our web site at .PACKAGE/ORDERING INFORMATIONADS78433SBAS090BPARAMETER CONDITIONSMIN TYPMAX UNITS ANALOG INPUTFull-Scale Input Span Positive Input – Negative Input0V REF V Absolute Input Range Positive Input –0.2+V CC +0.2V Negative Input–0.2+0.2V Capacitance 25pF Leakage Current0.1µA SYSTEM PERFORMANCE Resolution12Bits No Missing Codes 11Bits Integral Linearity Error ±2LSB (1)Offset Error±6LSB Offset Error Match 0.1 1.0LSB Gain Error±4LSB Gain Error Match 0.1 1.0LSB Noise30µVrms Power-Supply Rejection 70dB SAMPLING DYNAMICS Conversion Time 12Clk Cycles Acquisition Time 3Clk CyclesThroughput Rate125kHz Multiplexer Settling Time 500ns Aperture Delay 30ns Aperture Jitter100ps Channel-to-Channel Isolation V IN = 2.5Vp-p at 50kHz100dBSWITCH DRIVERS On-Resistance Y+, X+5ΩY –, X –6ΩREFERENCE INPUT Range 1.0+V CC V Resistance CS = GND or +V CC 5G ΩInput Current1340µA f SAMPLE = 12.5kHz2.5µA CS = +V CC0.0013µADIGITAL INPUT/OUTPUT Logic FamilyCMOSLogic Levels, Except PENIRQ V IH | I IH | ≤ +5µA +V CC • 0.7+V CC +0.3V IL | I IL | ≤ +5µA –0.3+0.8V V OH I OH = –250µA +V CC • 0.8V V OL I OL = 250µA0.4V PENIRQ V OLT A = 0°C to +85°C, 100k Ω Pull-Up0.8VData FormatStraight BinaryPOWER-SUPPLY REQUIREMENTS +V CCSpecified Performance 2.73.6V Quiescent Current280650µA f SAMPLE = 12.5kHz 220µA Shutdown Mode with 3µA DCLK = DIN = +V CCPower Dissipation +V CC = +2.7V1.8mW TEMPERATURE RANGE Specified Performance–40+85°CELECTRICAL CHARACTERISTICSAt T A = –40°C to +85°C, +V CC = +2.7V, V REF = +2.5V, f SAMPLE = 125kHz, f CLK = 16 • f SAMPLE = 2MHz, 12-bit mode, and digital inputs = GND or +V CC , unless otherwise noted.ADS7843ENOTE: (1) LSB means Least Significant Bit. With V REF equal to +2.5V, 1LSB is 610µV.ADS78434SBAS090BTYPICAL CHARACTERISTICSAt T A = +25°C, +V CC = +2.7V, V REF = +2.5V, f SAMPLE = 125kHz, and f CLK = 16 • f SAMPLE = 2MHz, unless otherwise noted.SUPPLY CURRENT vs +V CC3.5252.54+V CC (V)S u p p l y C u r r e n t (µA )3203002802602402202001804.53MAXIMUM SAMPLE RATE vs +V CC3.5252.54+V CC (V)S a m p l e R a t e (H z )1M100k10k1k4.53SUPPLY CURRENT vs TEMPERATURE20–40100–2040Temperature (°C)S u p p l y C u r r e n t (µA )4003503002502001501006080CHANGE IN GAIN vs TEMPERATURE20–40100–2040Temperature (°C)D e l t a f r o m +25˚C (L S B )0.150.100.050.00–0.05–0.10–0.156080CHANGE IN OFFSET vs TEMPERATURE20–40100–2040Temperature (°C)D e l t a f r o m +25˚C (L S B )0.60.40.20.0–0.2–0.4–0.66080POWER-DOWN SUPPLY CURRENTvs TEMPERATURE20–40100–2040Temperature (°C)S u p p l y C u r r e n t (n A )140120100806040206080ADS78435SBAS090BTYPICAL CHARACTERISTICS (Cont.)At T A = +25°C, +V CC = +2.7V, V REF = +2.5V, f SAMPLE = 125kHz, and f CLK = 16 • f SAMPLE= 2MHz, unless otherwise noted.REFERENCE CURRENT vs SAMPLE RATE751252550100Sample Rate (kHz)R e f e r e n c e C u r r e n t (µA )14121086420REFERENCE CURRENT vs TEMPERATURE20–40100–2040Temperature (°C)R e f e r e n c e C u r r e n t (µA )1816141210866080SWITCH-ON RESISTANCE vs +V CC (X+, Y+: +V CC to Pin; X –, Y –: Pin to GND)3.5252.54+V CC (V)R O N (Ω)18765432 4.53SWITCH-ON RESISTANCE vs TEMPERATURE (X+, Y+: +V CC to Pin; X –, Y –: Pin to GND)20–40100–2040Temperature (°C)R O N (Ω)18765432608021.81.61.41.210.80.60.40.20L S B E r r o r20406080100120140160180200Sampling Rate (kHz)MAXIMUM SAMPLING RATE vs RINTHEORY OF OPERATIONThe ADS7843 is a classic Successive Approximation Regis-ter (SAR) ADC. The architecture is based on capacitive redistribution which inherently includes a sample-and-hold function. The converter is fabricated on a 0.6µs CMOS process.The basic operation of the ADS7843 is shown in Figure 1. The device requires an external reference and an external clock. It operates from a single supply of 2.7V to 5.25V. The external reference can be any voltage between 1V and +V CC. The value of the reference voltage directly sets the input range of the converter. The average reference input current depends on the conversion rate of the ADS7843.The analog input to the converter is provided via a four-channel multiplexer. A unique configuration of low on-resis-tance switches allows an unselected ADC input channel to provide power and an accompanying pin to provide ground for an external device. By maintaining a differential input to the converter and a differential reference architecture, it is pos-sible to negate the switch’s on-resistance error (should this be a source of error for the particular measurement).ANALOG INPUTSee Figure 2 for a block diagram of the input multiplexer on the ADS7843, the differential input of the ADC, and the converter’s differential reference. Table I and Table II show the relation-ship between the A2, A1, A0, and SER/DFR control bits and the configuration of the ADS7843. The control bits are pro-vided serially via the DIN pin—see the Digital Interface section of this data sheet for more details.When the converter enters the hold mode, the voltage difference between the +IN and –IN inputs (see Figure 2) is captured on the internal capacitor array. The input current on the analog inputs depends on the conversion rate of the device. During the sample period, the source must charge the internal sampling capacitor (typically 25pF). After the capacitor has been fully charged, there is no further input current. The rate of charge transfer from the analog source to the converter is a function of conversion rate.TABLE I. Input Configuration, Single-Ended Reference Mode (SER/DFR HIGH).NOTE: (1) Internal node, for clarification only—not directly accessible by the user.A2A1A0X+Y+IN3IN4–IN(1)X SWITCHES Y SWITCHES+REF(1)–REF(1) 001+IN–Y OFF ON+Y–Y 101+IN–X ON OFF+X–X 010+IN GND OFF OFF+V REF GND 110+IN GND OFF OFF+V REF GND NOTE: (1) Internal node, for clarification only—not directly accessible by the user.TABLE II. Input Configuration, Differential Reference Mode (SER/ LOW).ADS7843 6SBAS090BFIGURE 2. Simplified Diagram of Analog Input.REFERENCE INPUTThe voltage difference between +REF and –REF (shown in Figure 2) sets the analog input range. The ADS7843 will operate with a reference in the range of 1V to +V CC. There are several critical items concerning the reference input and its wide voltage range. As the reference voltage is reduced, the analog voltage weight of each digital output code is also reduced. This is often referred to as the LSB (least significant bit) size and is equal to the reference voltage divided by 4096. Any offset or gain error inherent in the ADC will appear to increase, in terms of LSB size, as the reference voltage is reduced. For example, if the offset of a given converter is 2LSBs with a 2.5V reference, it will typically be 5LSBs with a 1V reference. In each case, the actual offset of the device is the same, 1.22mV. With a lower reference voltage, more care must be taken to provide a clean layout including adequate bypassing, a clean (low noise, low ripple) power supply, a low-noise reference, and a low-noise input signal.The voltage into the V REF input is not buffered and directly drives the Capacitor Digital-to-Analog Converter (CDAC) por-tion of the ADS7843. Typically, the input current is 13µA with V REF = 2.7V and f SAMPLE = 125kHz. This value will vary by a few microamps depending on the result of the conversion. The reference current diminishes directly with both conversion rate and reference voltage. As the current from the reference is drawn on each bit decision, clocking the converter more quickly during a given conversion period will not reduce overall current drain from the reference.There is also a critical item regarding the reference when making measurements where the switch drivers are on. For this discussion, it’s useful to consider the basic operation of the ADS7843 as shown in Figure 1. This particular applica-tion shows the device being used to digitize a resistive touch screen. A measurement of the current Y position of the pointing device is made by connecting the X+ input to the ADC, turning on the Y+ and Y– drivers, and digitizing the voltage on X+ (shown in Figure 3). For this measurement, the resistance in the X+ lead does not affect the conversion (it does affect the settling time, but the resistance is usually small enough that this is not a concern).FIGURE 3.Simplified Diagram of Single-Ended Reference (SER/DFR HIGH, Y Switches Enabled, X+ isAnalog Input).ADS78437 SBAS090B ADS78438SBAS090BFIGURE 5. Conversion Timing, 24 Clocks per Conversion, 8-bit Bus Interface. No DCLK Delay Required with DedicatedSerial Port.However, since the resistance between Y+ and Y – is fairly low,the on-resistance of the Y drivers does make a small differ-ence. Under the situation outlined so far, it would not be possible to achieve a 0V input or a full-scale input regardless of where the pointing device is on the touch screen because some voltage is lost across the internal switches. In addition,the internal switch resistance is unlikely to track the resistance of the touch screen, providing an additional source of error.This situation can be remedied as shown in Figure 4. By setting the SER/DFR bit LOW, the +REF and –REF inputs are connected directly to Y+ and Y –. This makes the A/D conver-sion ratiometric. The result of the conversion is always a percentage of the external resistance, regardless of how it changes in relation to the on-resistance of the internalFIGURE 4. Simplified Diagram of Differential Reference (SER/DFR LOW, Y Switches Enabled, X+ is Analog Input).switches. Note that there is an important consideration regard-ing power dissipation when using the ratiometric mode of operation, see the Power Dissipation section for more details.As a final note about the differential reference mode, it must be used with +V CC as the source of the +REF voltage and cannot be used with V REF . It is possible to use a high precision reference on V REF and single-ended reference mode for mea-surements which do not need to be ratiometric. Or, in some cases, it could be possible to power the converter directly from a precision reference. Most references can provide enough power for the ADS7843, but they might not be able to supply enough current for the external load (such as a resistive touch screen).DIGITAL INTERFACEFigure 5 shows the typical operation of the ADS7843’s digital interface. This diagram assumes that the source of the digital signals is a microcontroller or digital signal processor with a basic serial interface. Each communication between the pro-cessor and the converter consists of eight clock cycles. One complete conversion can be accomplished with three serial communications, for a total of 24 clock cycles on the DCLK input.The first eight clock cycles are used to provide the control byte via the DIN pin. When the converter has enough information about the following conversion to set the input multiplexer,switches, and reference inputs appropriately, the converter enters the acquisition (sample) mode and, if needed, the internal switches are turned on. After three more clock cycles,the control byte is complete and the converter enters the conversion mode. At this point, the input sample-and-hold goes into the hold mode and the internal switches may turn off. TheADS78439SBAS090B1DCLKCS8111DOUT BUSYSDIN CONTROL BITSSCONTROL BITS109876543210111098118next 12th clock cycles accomplish the actual A/D conversion.If the conversion is ratiometric (SER/DFR LOW), the internal switches are on during the conversion. A 13th clock cycle is needed for the last bit of the conversion result. Three more clock cycles are needed to complete the last byte (DOUT will be LOW). These will be ignored by the converter.Control ByteSee Figure 5 for the placement and order of the control bits within the control byte. Tables III and IV give detailed informa-tion about these bits. The first bit, the ‘S ’ bit, must always be HIGH and indicates the start of the control byte. The ADS7843will ignore inputs on the DIN pin until the start bit is detected.The next three bits (A2-A0) select the active input channel or channels of the input multiplexer (see Tables I and II and Figure 2). The MODE bit determines the number of bits for each conversion, either 12 bits (LOW) or 8 bits (HIGH).The SER/DFR bit controls the reference mode: either single-ended (HIGH) or differential (LOW). (The differential mode is also referred to as the ratiometric conversion mode.) In single-ended mode, the converter ’s reference voltage is always the difference between the V REF and GND pins. In differential mode, the reference voltage is the difference between the currently enabled switches. See Tables I and II and Figures 2through 4 for more information. The last two bits (PD1-PD0)select the power-down mode as shown in Table V. If both inputs are HIGH, the device is always powered up. If both inputs are LOW, the device enters a power-down mode between conversions. When a new conversion is initiated, the device will resume normal operation instantly —no delay is needed to allow the device to power up and the very first conversion will be valid. There are two power-down modes:one where PENIRQ is disabled and one where it is enabled.PD1PD0PENIRQ DESCRIPTIONEnabledPower-down between conversions. When each conversion is finished, the converter enters a low power mode. At the start of the next conversion,the device instantly powers up to full power.There is no need for additional delays to assure full operation and the very first conversion is valid. The Y – switch is on while in power-down.01Disabled Same as mode 00, except PENIRQ is disabled.The Y – switch is off while in power-down mode.10Disabled Reserved for future use.11DisabledNo power-down between conversions, device is always powered.TABLE V. Power-Down Selection.FIGURE 6. Conversion Timing, 16 Clocks per Conversion, 8-bit Bus Interface. No DCLK Delay Required with DedicatedSerial Port.BIT NAME DESCRIPTION7SStart Bit. Control byte starts with first HIGH bit on DIN. A new control byte can start every 16th clock cycle in 12-bit conversion mode or every 12th clock cycle in 8-bit conversion mode.6-4A2-A0Channel Select Bits. Along with the SER/DFR bit,these bits control the setting of the multiplexer input,switches, and reference inputs, see Tables I and II.3MODE12-Bit/8-Bit Conversion Select Bit. This bit controls the number of bits for the following conversion: 12bits (LOW) or 8 bits (HIGH).2 SER/DFRSingle-Ended/Differential Reference Select Bit. Along with bits A2-A0, this bit controls the setting of the multiplexer input, switches, and reference inputs, see Tables I and II.1-0PD1-PD0Power-Down Mode Select Bits. See Table V for details.TABLE IV. Descriptions of the Control Bits within the ControlByte.Bit 7Bit 6Bit 5Bit 4Bit 3Bit 2Bit 1Bit 0(MSB)(LSB)SA2A1A0MODE SER/DFRPD1PD0TABLE III. Order of the Control Bits in the Control Byte.16-Clocks per ConversionThe control bits for conversion n + 1 can be overlapped with conversion ‘n ’ to allow for a conversion every 16 clock cycles,as shown in Figure 6. This figure also shows possible serial communication occurring with other serial peripherals between each byte transfer between the processor and the converter.ADS784310SBAS090BFIGURE 8. Ideal Input Voltages and Output Codes.This is possible provided that each conversion completes within 1.6ms of starting. Otherwise, the signal that has been captured on the input sample-and-hold may droop enough to affect the conversion result. Note that the ADS7843 is fully powered while other serial communications are taking place during a conversion.Digital TimingFigure 7 and Table VI provide detailed timing for the digital interface of the ADS7843.SYMBOL DESCRIPTION MIN TYPMAXUNITS t ACQ Acquisition Time1.5µs t DS DIN Valid Prior to DCLK Rising 100ns t DH DIN Hold After DCLK HIGH 10ns t DO DCLK Falling to DOUT Valid 200ns t DV CS Falling to DOUT Enabled 200ns t TR CS Rising to DOUT Disabled 200ns t CSS CS Falling to First DCLK Rising 100ns t CSH CS Rising to DCLK Ignored0ns t CH DCLK HIGH 200ns t CL DCLK LOW200ns t BD DCLK Falling to BUSY Rising 200ns t BDV CS Falling to BUSY Enabled 200ns t BTRCS Rising to BUSY Disabled200nsTABLE VI. Timing Specifications (+V CC = +2.7V and Above,T A = –40°C to +85°C, C LOAD = 50pF).FIGURE 7. Detailed Timing Diagram.Data FormatThe ADS7843 output data is in Straight Binary format, as shown in Figure 8. This figure shows the ideal output code for the given input voltage and does not include the effects of offset, gain, or noise.8-Bit ConversionThe ADS7843 provides an 8-bit conversion mode that can be used when faster throughput is needed and the digital result is not as critical. By switching to the 8-bit mode, a conversion is complete four clock cycles earlier. This could be used in conjunction with serial interfaces that provide 12-bit transfers or two conversions could be accomplished with three 8-bit transfers. Not only does this shorten each conversion by four bits (25% faster throughput), but each conversion can actu-ally occur at a faster clock rate. This is because the internal settling time of the ADS7843 is not as critical —settling to better than 8 bits is all that is needed. The clock rate can be as much as 50% faster. The faster clock rate and fewer clock cycles combine to provide a 2x increase in conversion rate.POWER DISSIPATIONThere are two major power modes for the ADS7843: full power (PD1-PD0 = 11B ) and auto power-down (PD1-PD0 = 00B ).When operating at full speed and 16 clocks per conversion ( see Figure 6), the ADS7843 spends most of its time acquiring or converting. There is little time for auto power-down, assuming that this mode is active. Therefore, the difference between full power mode and auto power-down is negligible. If the conver-sion rate is decreased by simply slowing the frequency of the DCLK input, the two modes remain approximately equal. How-ever, if the DCLK frequency is kept at the maximum rate during a conversion but conversions are simply done less often, the difference between the two modes is dramatic.Figure 9 shows the difference between reducing the DCLK frequency (“scaling ” DCLK to match the conversion rate) or maintaining DCLK at the highest frequency and reducing the number of conversions per second. In the later case, the converter spends an increasing percentage of its time in power-down mode (assuming the auto power-down mode is active).Another important consideration for power dissipation is the reference mode of the converter. In the single-ended refer-ence mode, the converter ’s internal switches are on only when the analog input voltage is being acquired (see Figure 5). Thus, the external device, such as a resistive touch screen, is only powered during the acquisition period. In the differential reference mode, the external device must be powered throughout the acquisition and conversion periods (see Figure 5). If the conversion rate is high, this could substantially increase power dissipation.devices have fairly “clean ” power and grounds because most of the internal components are very low power. This situation would mean less bypassing for the converter ’s power and less concern regarding grounding. Still, each situation is unique and the following suggestions should be reviewed carefully.For optimum performance, care should be taken with the physical layout of the ADS7843 circuitry. The basic SAR architecture is sensitive to glitches or sudden changes on the power supply, reference, ground connections, and digital inputs that occur just prior to latching the output of the analog comparator. Thus, during any single conversion for an ‘n-bit ’SAR converter, there are n ‘windows ’ in which large external transient voltages can easily affect the conversion result.Such glitches might originate from switching power supplies,nearby digital logic, and high-power devices. The degree of error in the digital output depends on the reference voltage,layout, and the exact timing of the external event. The error can change if the external event changes in time with respect to the DCLK input.With this in mind, power to the ADS7843 should be clean and well bypassed. A 0.1µF ceramic bypass capacitor should be placed as close to the device as possible. A 1µF to 10µF capacitor may also be needed if the impedance of the connection between +V CC and the power supply is high.The reference should be similarly bypassed with a 0.1µF capacitor. If the reference voltage originates from an op amp,make sure that it can drive the bypass capacitor without oscillation. The ADS7843 draws very little current from the reference on average, but it does place larger demands on the reference circuitry over short periods of time (on each rising edge of DCLK during a conversion).The ADS7843 architecture offers no inherent rejection of noise or voltage variation in regards to the reference input.This is of particular concern when the reference input is tied to the power supply. Any noise and ripple from the supply will appear directly in the digital results. While high frequency noise can be filtered out, voltage variation due to line fre-quency (50Hz or 60Hz) can be difficult to remove.The GND pin should be connected to a clean ground point.In many cases, this will be the “analog ” ground. Avoid connections which are too near the grounding point of a microcontroller or digital signal processor. If needed, run a ground trace directly from the converter to the power-supply entry or battery connection point. The ideal layout will include an analog ground plane dedicated to the converter and associated analog circuitry.In the specific case of use with a resistive touch screen, care should be taken with the connection between the converter and the touch screen. Since resistive touch screens have fairly low resistance, the interconnection should be as short and robust as possible. Longer connections will be a source of error, much like the on-resistance of the internal switches.Likewise, loose connections can be a source of error when the contact resistance changes with flexing or vibrations.FIGURE 9. Supply Current versus Directly Scaling the Fre-quency of DCLK with Sample Rate or Keeping DCLK at the Maximum Possible Frequency.LAYOUTThe following layout suggestions should provide the most optimum performance from the ADS7843. However, many portable applications have conflicting requirements concern-ing power, cost, size, and weight. In general, most portable元器件交易网。
基于AD7734的多通道高精度测量电路设计
基于AD7734的多通道高精度测量电路设计摘要:在复杂的高精度测量系统中,ADC芯片的选择和应用对最终数据采集质量的高低起着决定性作用。
本文主要介绍了AD7734的芯片性能及外围电路设计,并通过STM32F407单片机进行软件配置以此来实现多通道高精度测量需求。
最后以三通道高精度磁场测量应用场景为例进行系统设计验证。
关键词:AD7734; STM32F407;高精度测量;Design of multi-channel high-precision measurement circuit basedon AD7734ZHAOLinchao(No.38 Research Institute. CETC, Hefei 230088, China;)Abstract:In complex high-precision measurement systems, the selection and application of ADC chips play a decisive role in the final quality of data acquisition. This article mainly introduces the chip performance and peripheral circuit design of AD7734 and uses STM32F407 software configuration to achievemulti-channel high-precision measurement requirements. Finally, a three-channel high-precision magnetic field measurement application scenario is used as an example for system design verification.Key words:AD7734;STM32F407; High precision measurement;1引言在现代仪器仪表设备中,一个完整的测量系统主要由传感器采集电路、放大电路、滤波电路、A/D转换电路、单片机控制电路以及数据传输电路组成。
基于PXA255的触摸屏控制的实现
引脚号 1,10 2,3 4,5 6 7,8 9 11
exit(-1); } printf("open device ok!\n"); while(1) {
write(fd,wrlte_buf,1); qr=read(fd,read,1); if(qr>0) {
GetLocation(); } } } void GetLocation() { fp=fopen("/home/touch.txt","w+"); write(fd,write_buf,1); fwrite(read(fd,read_buf,1),1,1,fp); write(fd,&write_buf[1],1); fwrite(read(fd,read_buf,1),1,1,fp); fclose(fp); } 主程序通过 fd=open("/dev/touch",O_RDWR)语句进行了一个 open()函数的系统调用, 用来调用这个触摸屏驱动程序,并以可读可写的方式来打开触摸屏,把该 open()系统调用的 值返回给 fd,作为判断打开该触摸屏是否成功。接下来程序用 while(1)来进行循环检测触摸
电阻式触摸屏有两层电阻层:一层为横向驱动;另一层为纵向驱动。工作时,ADS7843 在某个方向加一定的电压,当有笔接触到触摸屏时,两电阻层在触点位置有一个接通,导致 另一个方向的层上电压产生变化。通过 A/D 转换,控制器就可以计算出触点在这条轴上的 坐标值。
基于LPC2478与ADS7843的电阻触摸屏设计方案
基于LPC2478与ADS7843的电阻触摸屏设计方案触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等许多优点,相比键盘输入,触摸屏技术更简单、直观、快捷,且具有丰富多彩的表现能力。
设计触摸屏时,最重要的问题是准确定位触摸点的坐标位置。
本文详细介绍了利用工业级芯片LPC2478 与ADS7843 设计四线电阻触摸屏的实际方案。
1 硬件设计1.1 硬件选择LPC2478 芯片内部集成了LCD 接口,它的工作范围为-40~+80℃,其宽温的特点特别适合工业领域。
ADS7843 芯片是一款专为触摸采样设计的芯片,12 位可编程精度。
外部参考电压范围从1V~Vcc 均可,Vcc 最高电压为5 V,高速低功耗使得ADS7843 非常适用于电阻触摸屏的手持设备。
1.2 硬件电路笔者设计了ADS7843 的硬件接口电路(如图1 所示)。
该电路中采取了利用LPC2478 的GPIO 管脚模拟SPI 时序的方式,将DCLK,CS,DIN,BUS-Y,DOUT 接到LPC2478 的5 个GPIO 引脚上。
将ADS7843 的引脚接到LPC2478 的中断1 上的方式。
采用的四线电阻触摸屏,分别接到ADS7843 的X+,Y+,X-,Y-引脚上。
1.3 采集方式ADS7843 有2 种参考电压模式:单端模式和差分模式。
在单端模式中,参考输入电压选取的是Vcc 和GND。
由于内部的开关电阻压降影响转换结果带来误差,所以转换器内部的低阻开关对转换精度有一定影响。
差分模式参考输入由未选中的输入通道Y+,Y-,X+,X-提供参考电源和地。
不管内部开关电阻如何变化,其转换结果总与触摸屏的电阻成比例,克服了内部开关电阻的影响,但当转换频率很高时则增加了功耗,需要考虑低功耗设计。
笔者基于采样精度的原因在程序中采用了差分方式。
ADS7843 的引脚是一个PIN 中断引脚,在触摸显示屏时可产生一个低电平,触发LPC2478 的中断,采。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LCALL AD_RUN
MOV CHYAdResultH,AD_RESULTH
MOV CHYAdResultL,AD_RESULTL
RET
; A/D转换子程序(AD_RUN)
;输入: AD_CH-模式和通道选择命令字
;输出: AD_RESULTH,L ;12 bit的A/D转换值
2 M68VZ328ADS Application Development System User's Manual. Revision 1.4. 2000
3 Burr-Brown IC Data Book
触摸屏的工作原理及典型应用
摘要简要介绍触摸屏的结构及工作原理,并以Burr-Brown公司的触摸屏控制芯片ADS7843为例,介绍触摸屏应用的典型电路和操作。由于ADS7843内置12位A/D,理论上触摸屏的输入坐标识别精度为有效长宽的1/4096。
关键词触摸屏ITO ADS7843嵌入式系统
1触摸屏的基本原理
RL A
DJNZ R2,AD_LOOP
NOP
NOP
NOP
NOP
ADW0: JNB BUSY,AD_WAIT ;等待转换完成
SJMP ADW1
AD_WAIT:
LCALL WATCHDOG
NOP
SJMP ADW0
CLR DIN
ADW1: MOV R2,#12 ;开始读取12bit结果
SETB DCLK
CLR DCLK
CHYAdResultL EQU 3BH
;采集通道CHX+的程序段(CHXAD)
CHXAD: MOV AD_CH,#CHX
LCALL AD_RUN
MOV CHXAdResultH,AD_RESULTH
MOV CHXAdResultL,AD_RESULTL
RET
;采集通道CHY+的程序段(CHYAD)
图5 ADS7843内部结构
ADS7843支持两种参考电压输入模式:一种是参考电压固定为VREF,另一种采取差动模式,参考电压来自驱动电极。这两种模式分别如图6(a)、(b)所示。采用图6(b)的差动模式可以消除开关导通压降带来的影响。表2和表3为两种参考电压输入模式所对应的内部开关状况。
图6参考电压输Βιβλιοθήκη 模式2.1 ADS7843的基本特性与典型应用
ADS7843是一个内置12位模数转换、低导通电阻模拟开关的串行接口芯片。供电电压2.7~5 V,参考电压VREF为1 V~+VCC,转换电压的输入范围为0~ VREF,最高转换速率为125 kHz。ADS7843的引脚配置如图3所示。表1为引脚功能说明,图4为典型应用。
表4 ADS7843的控制字Y=0X90 X=0XD0
为了完成一次电极电压切换和A/D转换,需要先通过串口往ADS7843发送控制字,转换完成后再通过串口读出电压转换值。标准的一次转换需要24个时钟周期,如图7所示。由于串口支持双向同时进行传送,并且在一次读数与下一次发控制字之间可以重叠,所以转换速率可以提高到每次16个时钟周期,如图8所示。如果条件允许,CPU可以产生15个CLK的话(比如FPGAs和ASICs),转换速率还可以提高到每次15个时钟周期,如图9所示。
; A/D接口控制线
DCLK BIT P1.3
CS BIT P1.4
DIN BIT P1.5
BUSY BIT P1.6
DOUT BIT P1.7
; A/D通道选择命令字和工作寄存器
CHX EQU 094H ;通道X+的选择控制字
CHY EQU 0D4H;通道Y+的选择控制字
CH3 EQU0A4H
CH4 EQU 0E4H
;使用: R2 ;辅助工作寄存器
AD_RUN:
CLR CS ;芯片允许
CLR DCLK
MOV R2,#8 ;先写8 bit命令字
MOV A,AD_CH
AD_LOOP:
MOV C, ACC.7
MOV DIN,C ;时钟上升沿锁存DIN
SETB DCLK ;开始发送命令字
CLR DCLK ;时钟脉冲,一共24个
图7 A/D转换时序(每次转换需24个时钟周期)
图8 A/D转换时序(每次转换需16个时钟周期)
图9 A/D转换时序(每次转换需15个时钟周期)
2.4 A/D转换时序的程序设计
ADS7843的典型应用如图4所示。假设μP接口与51单片机的P1.3~P1.7相连,现以一次转换需24个时钟周期为例,介绍A/D转换时序的程序设计。
图2工作时的导体层
2触摸屏的控制实现
现在很多PDA应用中,将触摸屏作为一个输入设备,对触摸屏的控制也有专门的芯片。很显然,触摸屏的控制芯片要完成两件事情:其一,是完成电极电压的切换;其二,是采集接触点处的电压值(即A/D)。本文以BB(Burr-Brown)公司生产的芯片ADS7843为例,介绍触摸屏控制的实现。
图1触摸屏结构
触摸屏工作时,上下导体层相当于电阻网络,如图2所示。当某一层电极加上电压时,会在该网络上形成电压梯度。如有外力使得上下两层在某一点接触,则在电极未加电压的另一层可以测得接触点处的电压,从而知道接触点处的坐标。比如,在顶层的电极(X+,X-)上加上电压,则在顶层导体层上形成电压梯度,当有外力使得上下两层在某一点接触,在底层就可以测得接触点处的电压,再根据该电压与电极(X+)之间的距离关系,知道该处的X坐标。然后,将电压切换到底层电极(Y+,Y-)上,并在顶层测量接触点处的电压,从而知道Y坐标。
结束语
在许多嵌入式系统中,CPU提供专门的模块来支持液晶显示和触摸屏的输入,使得接口非常简单。比如,MOTOROLA的MC68VZ328(称为Dragon Ball)就提供专门的引脚来支持8位和4位的液晶显示,对触摸屏的支持通过SPI2借助ADS7843也很容易完成。
参考文献
1 MC68VZ328 Integrated Processor User's Manual
表2参考电压非差动输入模式(SER/DFR="1")
表3参考电压差动输入模式(SER/DFR="0")
2.3 ADS7843的控制字及数据传输格式
ADS7843的控制字如表4所列,其中S为数据传输起始标志位,该位必为"1"。A2~A0进行通道选择(见表2和3)。MODE用来选择A/D转换的精度,"1"选择8位,"0"选择12位。SER/选择参考电压的输入模式(见表2和3)。PD1、PD0选择省电模式:"00"省电模式允许,在两次A/D转换之间掉电,且中断允许;"01"同"00",只是不允许中断;"10"保留;"11"禁止省电模式。
图3 ADS7843引脚
表1引脚功能说明
图4 ADS7843的典型应用
2.2 ADS7843的内部结构及参考电压模式选择
ADS7843之所以能实现对触摸屏的控制,是因为其内部结构很容易实现电极电压的切换,并能进行快速A/D转换。图5所示为其内部结构,A2~A0和SER/为控制寄存器中的控制位,用来进行开关切换和参考电压的选择。
IGNORE:
SETB DCLK
CLR DCLK
DJNZ R2,IGNORE
SETB CS ;禁止芯片
ANL AD_RESULTH,#0FH ;屏蔽高4 bit
RET
2.5 A/D转换结果的数据格式
ADS7843转换结果为二进制格式。需要说明的是,在进行公式计算时,参考电压在两种输入模式中是不一样的。而且,如果选取8位的转换精度,1LSB=VREF/256,一次转换完成时间可以提前4个时钟周期,此时串口时钟速率也可以提高一倍。
典型触摸屏的工作部分一般由三部分组成,如图1所示:两层透明的阻性导体层、两层导体之间的隔离层、电极。阻性导体层选用阻性材料,如铟锡氧化物(ITO)涂在衬底上构成,上层衬底用塑料,下层衬底用玻璃。隔离层为粘性绝缘液体材料,如聚脂薄膜。电极选用导电性能极好的材料(如银粉墨)构成,其导电性能大约为ITO的1000倍。
AD_READ:
SETB DCLK
CLR DCLK ;用时钟的下降沿读取
MOV A,AD_RESULTL
MOV C,DOUT
RLC A
MOV AD_RESULTL,A
MOV A,AD_RESULTH
RLC A
MOV AD_RESULTH,A
DJNZ R2,AD_READ
MOV R2,#4 ;最后是没用的4个时钟
AD_CH EQU 35H ;通道选择寄存器
AD_RESULTH EQU 36H ;存放12 bit A/D值
AD_RESULTL EQU 37H
;存放通道CHX+的A/D值
CHXAdResultH EQU 38H
CHXAdResultL EQU 39H
;存放通道CHY+的A/D值
CHYAdResultH EQU 3AH