2017-2018期末随机过程试题及答案 (1)

合集下载

(完整word版)随机过程试题及答案(word文档良心出品)

(完整word版)随机过程试题及答案(word文档良心出品)

一.填空题(每空2分,共20分)1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为it (e -1)eλ。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为1(sin(t+1)-sin t)2ωω。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从Γ分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e t t X ,,3)(,则 这个随机过程的状态空间212t,t,;e,e 33⎧⎫⎨⎬⎩⎭。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为(n)n P P =。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)ji ij i Ip (n)p p ∈=⋅∑。

8.在马氏链{}n X ,n 0≥中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=≠≤≤==≥(n)ij ij n=1f f ∞=∑,若ii f 1<,称状态i 为非常返的。

9.非周期的正常返状态称为遍历态。

10.状态i 常返的充要条件为(n)iin=0p∞=∑∞。

二.证明题(每题6分,共24分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。

证明:左边=P(ABC)P(ABC)P(AB)P(C AB)P(B A )P(A)P(AB)P(A)===右边2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

随机过程试题及答案

随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

随机过程复习题及答案1

随机过程复习题及答案1

kh da
w.
co
m
2-69(P99)
2-70(P99)设 X [ n] 为独立同分布随机变量序列,定义离散时间随机过程
M [n] =
试求 M [ n] 的均值、方差和协方差。
课 后
X [1] + X [2] + ... + X [n] n



ww w.
kh da
w.
co
m
2-71(P100)
P{ X < Y } = ∫ P{ X − Y } = ∫
0 ∞
∫ ∫
0
2e − x e − 2 y dxdy =
y +10
0
0
课 后
P{ X 2 < Y } = ∫

0

0
2 2e − x e −2 y dxdy = 1 − e −10 3 1 y π 8 2 2e − x e − 2 y dxdy = 2 + e ( 2crf ( ) − 2 ) 4 4
2.5(P93) 已知集合S={1,2,3,4,5},试给出三个定义于集合S上的Borel集。 解:根据Borel集的定义,可以在S上定义如下Borel集:
_
B1 = {∅ , S} B2 = {∅ , S, {1}, {2, 3, 4, 5}}_ B3 = {S的所有子集}
其中集合B3一共有32个元素,包括空集和全集。 2.17(P94) 某实验室从A B C三个芯片制造商处购得某芯片,数量比为1:2:2.已知ABC三个芯 片制造商的芯片次品率分别为0.001,0.005和0.01。若该实验室随机使用的某芯片是次品,向该 次品芯片购自制造商Z或C的概率分别是多少? 解:用符号D表示芯片为次品这个事件,ABC分别表示芯片购自ABC三个芯片制造商,由Bayes 共识知道

随机过程试题及答案

随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

随机过程题库1

随机过程题库1

随机过程综合练习题一、填空题(每空3分) 第一章1.n X X X ,,21是独立同分布的随机变量,i X 的特征函数为)(t g ,则n X X X +++ 21的特征函数是 。

2.{}=)(Y X E E 。

3. X 的特征函数为)(t g ,b aX Y +=,则Y 的特征函数为 。

4.条件期望)(Y X E 是 的函数, (是or 不是)随机变量。

5.n X X X ,,21是独立同分布的随机变量,i X 的特征函数为)(t g i ,则n X X X +++ 21的特征函数是 。

6.n 维正态分布中各分量的相互独立性和不相关性 。

第二章7.宽平稳过程是指协方差函数只与 有关。

8.在独立重复试验中,若每次试验时事件A 发生的概率为)10(<<p p ,以)(n X 记进行到n 次试验为止A 发生的次数, 则},2,1,0),({ =n n X 是 过程。

9.正交增量过程满足的条件是 。

10.正交增量过程的协方差函数=),(t s C X 。

第三章11. {X(t), t ≥0}为具有参数0>λ的齐次泊松过程,其均值函数为 ; 方差函数为 。

12.设到达某路口的绿、黑、灰色的汽车的到达率分别为1λ,2λ,3λ且均为泊松过程,它们相互独立,若把这些汽车合并成单个输出过程(假定无长度、无延时),相邻绿色汽车之间的不同到达时间间隔的概率密度是 ,汽车之间的不同到达时刻间隔的概率密度是 。

13.{X(t), t ≥0}为具有参数0>λ的齐次泊松过程,{}==-+n s X s t X P )()( 。

,1,0=n14.设{X(t), t ≥0}是具有参数0>λ的泊松过程,泊松过程第n 次到达时间W n 的数学期望是 。

15.在保险的索赔模型中,设索赔要求以平均2次/月的速率的泊松过程到达保险公司.若每次赔付金额是均值为10000元的正态分布,求一年中保险公司的平均赔付金额 。

随机过程试题及答案说课材料

随机过程试题及答案说课材料

随机过程试题及答案收集于网络,如有侵权请联系管理员删除1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e t t X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ijp ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

随机过程习题及部分解答【直接打印】

随机过程习题及部分解答【直接打印】

随机过程习题及部分解答习题一1. 若随机过程()(),X t X t At t =-∞<<+∞为,式中A 为(0,1)上均匀分布的随机变量,求X (t )的一维概率密度(;)X P x t 。

2. 设随机过程()cos(),X t A t t R ωθ=+∈,其中振幅A 及角频率ω均为常数,相位θ是在[,]ππ-上服从均匀分布的随机变量,求X (t )的一维分布。

习题二1. 若随机过程X (t )为X (t )=At t -∞<<+∞,式中A 为(0,1)上均匀分布的随机变量,求12[()],(,)X E X t R t t2. 给定一随机过程X (t )和常数a ,试以X (t )的相关函数表示随机过程()()()Y t X t a X t =+-的自相关函数。

3. 已知随机过程X (t )的均值M X (t )和协方差函数12(,),()X C i t t ϕ是普通函数,试求随机过程()()()Y t X t t ϕ=+是普通函数,试求随机过程()()()Y t X t t ϕ=+的均值和协方差函数。

4. 设()cos sin X t A at B at =+,其中A ,B 是相互独立且服从同一高斯(正态)分布2(0,)N σ的随机变量,a 为常数,试求X (t )的值与相关函数。

习题三1. 试证3.1节均方收敛的性质。

2. 证明:若(),;(),X t t T Y t t T ∈∈均方可微,a ,b 为任意常数,则()()aX t bY t +也是均方可微,且有[()()]()()aX t bY t aX t bY t '''+=+3. 证明:若(),X t t T ∈均方可微,()f t 是普通的可微函数,则()()f t X t 均方可微且[()()]()()()()f t X t f t X t f t X t '''=+4. 证明:设()[,]X t a b 在上均方可微,且()[,]X t a b '在上均方连续,则有()()()b aX t dt X b X a '=-⎰5. 证明,设(),[,];(),[,]X t t T a b Y t t T a b ∈=∈=为两个随机过程,且在T 上均方可积,αβ和为常数,则有[()()]()()b b baaaX t Y t dt X t dt Y t dt αβαβ+=+⎰⎰⎰()()(),b c baacaX t dt X t dt X t dt a c b =+⎰⎰⎰≤≤6. 求随机微分方程()()()[0,](0)0X t aX t Y t t X '+=∈+∞⎧⎨=⎩的()X t 数学期望[()]E X t 。

概率统计随机过程-期末试卷-参考答案

概率统计随机过程-期末试卷-参考答案

7. 1
8. 1 1
4. ,
2
数理统计
57 33 e 30 154 e 15 9. , 8 24
2 2 2
又由
15 S 2
2
4

152
2 15 S 2 (15) 知 D 2 2 15

D S 2 2 15
2

得 D S

2 15
4
五、解:
数理统计
1 2 3 (1) 先求二步转移概率矩阵 1 1/ 2 1/ 4 1/ 4 2 P (2) [ P (1)] 2 1/ 4 1/ 2 1/ 4 3 1/ 4 1/ 4 1/ 2 3 P{ X 2 2} P X 0 iP X 2 2 | X 0 i
数理统计
《概率统计与随机过程》期末试卷二 参考答案 一、填空题
1. F (1, n)
2. P X 1 x1 ,..., X n xn p i 1 (1 p) 其中xi 0或1;
1 n 3. X , Xi X n i 1
xi
n
n
xi
i 1
n
,
E ( S 2 ) p(1 - p)
六、解:
a2 (3) 因 RX ( t , t ) cos 0 , 2 i 故 S X R e d X
2 a i cos( ) e d 0 2 2 a cos(0 )e i d 2 a2 0 0 2
p1 (0) P12 (2) p2 (0) P22 (2) p3 (0) P32 (2) 1 1 1 1 1 ( ) 3 4 2 4 3 (2) P{ X 2 2, X 3 2 | X 0 1}

随机过程题库1

随机过程题库1

随机过程综合练习题一、填空题(每空3分) 第一章1.n X X X ,,21是独立同分布的随机变量,i X 的特征函数为)(t g ,则n X X X 21的特征函数是 。

2.)(Y X E E 。

3. X 的特征函数为)(t g ,b aX Y ,则Y 的特征函数为 。

4.条件期望)(Y X E 是 的函数, (是or 不是)随机变量。

5.n X X X ,,21是独立同分布的随机变量,i X 的特征函数为)(t g i ,则n X X X 21的特征函数是 。

6.n 维正态分布中各分量的相互独立性和不相关性 。

第二章7.宽平稳过程是指协方差函数只与 有关。

8.在独立重复试验中,若每次试验时事件A 发生的概率为)10( p p ,以)(n X 记进行到n 次试验为止A 发生的次数, 则},2,1,0),({ n n X 是 过程。

9.正交增量过程满足的条件是 。

10.正交增量过程的协方差函数 ),(t s C X 。

第三章11. {X(t), t ≥0}为具有参数0 的齐次泊松过程,其均值函数为 ; 方差函数为 。

12.设到达某路口的绿、黑、灰色的汽车的到达率分别为1 ,2 ,3 且均为泊松过程,它们相互独立,若把这些汽车合并成单个输出过程(假定无长度、无延时),相邻绿色汽车之间的不同到达时间间隔的概率密度是 ,汽车之间的不同到达时刻间隔的概率密度是 。

13.{X(t), t ≥0}为具有参数0 的齐次泊松过程,n s X s t X P )()( 。

,1,0 n14.设{X(t), t ≥0}是具有参数0 的泊松过程,泊松过程第n 次到达时间W n 的数学期望是 。

15.在保险的索赔模型中,设索赔要求以平均2次/月的速率的泊松过程到达保险公司.若每次赔付金额是均值为10000元的正态分布,求一年中保险公司的平均赔付金额 。

16.到达某汽车总站的客车数是一泊松过程,每辆客车内乘客数是一随机变量.设各客车内乘客数独立同分布,且各辆车乘客数与车辆数N(t)相互独立,则在[0,t]内到达汽车总站的乘客总数是 (复合or 非齐次)泊松过程.17.设顾客以每分钟2人的速率到达,顾客流为泊松流,求在2min 内到达的顾客不超过3人的概率是 .第四章18. 无限制随机游动各状态的周期是 。

随机过程复习题二及其答案

随机过程复习题二及其答案

随机过程复习题二及其答案一、选择题1. 随机过程的定义是什么?A. 一系列随机变量的集合B. 一系列确定变量的集合C. 一个随机变量D. 一个确定变量2. 什么是马尔可夫链?A. 一个具有时间序列的随机过程B. 一个具有空间序列的随机过程C. 一个具有独立同分布的随机过程D. 一个具有时间依赖性的随机过程3. 随机过程的期望值定义为:A. \( E[X(t)] \)B. \( E[X] \)C. \( \int_{-\infty}^{\infty} x f(x,t) \, dx \)D. \( \sum_{i=1}^{\infty} x_i p_i \)4. 以下哪个不是随机过程的属性?A. 期望B. 方差C. 协方差D. 导数5. 什么是平稳随机过程?A. 随机过程的期望随时间变化B. 随机过程的方差随时间变化C. 随机过程的统计特性不随时间变化D. 随机过程的协方差随时间变化答案:1. A2. A3. A4. D5. C二、简答题1. 解释什么是遍历定理,并给出其在随机过程分析中的应用。

2. 描述什么是泊松过程,并解释其主要特点。

3. 简述什么是布朗运动,并解释其在金融领域中的应用。

三、计算题1. 给定一个随机过程 \( X(t) \),其期望 \( E[X(t)] = t \),方差 \( Var[X(t)] = t^2 \),计算 \( E[X^2(t)] \)。

2. 假设一个马尔可夫链 \( \{X_n\} \) 有状态空间 \( S = \{1, 2, 3\} \),转移概率矩阵 \( P \) 为:\[P = \begin{bmatrix}0.1 & 0.8 & 0.1 \\0.5 & 0.3 & 0.2 \\0.2 & 0.6 & 0.2\end{bmatrix}\]计算状态 1 在第 3 步的概率。

四、论述题1. 论述随机过程在信号处理中的应用,并举例说明。

随机过程复习题(含答案)

随机过程复习题(含答案)

随机过程复习题(含答案)随机过程复习题一、填空题:1.对于随机变量序列}{n X 和常数a ,若对于任意0>ε,有______}|{|lim =<-∞>-εa X P n n ,则称}{n X 依概率收敛于a 。

2.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t ,,则1592}6)5(,4)3(,2)1({-??====eX X X P ,618}4)3(|6)5({-===eX X P1532623292!23!2)23(!23}2)3()5({}2)1()3({}2)0()1({}2)3()5(,2)1()3(,2)0()1({}6)5(,4)3(,2)1({----??=?==-=-=-==-=-=-====eeeeX X P X X P X X P X X X X X X P X X X P66218!26}2)3()5({}4)3(|6)5({--===-===eeX X P X X P3.已知马尔可夫链的状态空间为},,{321=I ,初始分布为),,(4 12141,=43410313131043411)(P ,则167)2(12=P ,161}2,2,1{210====X X X P=4831481348436133616367164167165)1()2(2P P 167)2(12=P161314341}2|2{}1|2{}1{}2,1|2{}1|2{}1{}2,2,1{12010102010210=??=================X X P X X P X P X X X P X X P X P X X X P4.强度λ的泊松过程的协方差函数),min(),(t s t s C λ= 5.已知平稳过程)(t X 的自相关函数为πττcos )(=X R ,)]()([)(π?δπ?δπω-++=X S6. 对于平稳过程)(t X ,若)()()(ττX R t X t X >=+<,以概率1成立,则称)(t X 的自相关函数具有各态历经性。

期末随机过程试题及答案

期末随机过程试题及答案

《随机过程期末考试 卷》1设随机变量X 服从参数为的 泊松分布,贝U X 的特征函数为。

2 •设随机过程X(t)二Acos( t+ ),- <t< 其中为 率P j (n) P X n j , n 步转移概率 p j n ),三者之间的关系为。

8•设{X(t),t0}是泊松过程,且对于任意 t 2 t i 0 则P { X (5) 6|X (3) 4}—正常数,A 和是相互独立的随机变 量,且A 和服从在区间0,1上的 均匀分布,则X(t)的数学期望为。

3. 强度为入的泊松过程的点间间 距是相互独立的随机变量,且服从均 值为的同一指数分布。

9. 更新方程tK t H t K t sdF s 解的0 一般形式为。

10. 记EX n ,对一切a 0,当t 时,M。

4道小题,每题8分,共32分)列,则W n 服从分布5. 袋中放有一个白球,两个红球, 每隔单位时间从袋中任取一球,取后 放回,对每一个确定的t 对应随机变则这个随机过程的状态空间。

6. 设马氏链的一步转移概率矩阵P=(P ij ),n 步转移矩阵 P (n) (p (n)),二者之间的关系为。

7. 设X n ,n 0为马氏链,状态空1. 设A,B,C 为三个随机事件,证明 条件概率的乘法公式: P(BCA)=P(B A)P(C AB)。

2. 设{X(t), t 0}是独立增量过程,且X(0)=0,证明{X(t), t 0}是一个马尔 科夫过程。

3. 设X n ,n 0为马尔科夫链,状态 空间为I ,则对任意整数 n 0,1 l <n 和i, j I ,n 步转移概率4. 设N(t),t 0是强度为的泊松间I ,初始概率p i P(X 0=i),绝对概科尔莫哥洛夫方程,证明并说明其意 义。

4.X(t,n 1是与泊松过程评卷人 二、证明题(本大题共 ),t 0对应的一个等待时间序 t +a M t量 X(t)丄3 t e ,如果t 时取得红球 如果t 时取得白球(n)P ijp ik )p j ),称此式为切普曼一k I分布随机变量,且与 N(t),t 0独N(t)立,令X(t)= Y k ,t 0,证明:若k=1E(Y I 12V ),则 E X(t) tE Y i 。

随机过程期末考题(2018.1.9)

随机过程期末考题(2018.1.9)

中国科学技术大学期末考试题考试科目:随机过程(B ) 得分: 学生所在系: 姓名: 学号:(2018年1月9日,半开卷)一、( 20分) 判断是非与填空: (1)(每空2分)设{,0}n X X =≥为一不可约、有限(N 个)状态的马氏链,且其转移概率矩阵P为双随机的(行和与列和均为1),则:.a X 的平稳分布不一定存在 ( ) ; .b X的平稳分布存在但不必唯一( ) ;Xc .的平稳分布为) (1)11N N N ,,,(( ); .d X的极限分布为:) (1)11N N N ,,,(( ) 。

(2)(每空3分)设公路上某观察站红、黄、蓝三种颜色的汽车到达数分别是强度为2、3和5(辆/分钟)的泊松过程。

则:.a 第一辆车到达的平均时间为( ) ; .b 红车首先到达的概率为 ( ) ;.c 在第一辆红车到达之前恰好到达k 辆非红车的概率为( )。

(3)(3分)有关某种商品的销售状况共有24个季度的连续数据 ( 1—畅销,0—滞销 ):,,1,1,1,0,1,0,1,1,0,0,1,10,1,0,1,1,1,0,0,1,0,1,1若该商品销售状况满足齐次马氏链,则据以上数据可估计出该马氏链的转移概率矩阵P 为( )。

二、(15分)设到达某计数器的脉冲数}0),({≥t t N 是一速率为λ的泊松过程,每个脉冲被记录的概率均为p ,且各脉冲是否被记录是相互独立的。

现以)(1t N 表示被记录的脉冲数,试求)(1t N 的矩母函数)()(1v g t N 以及)(1t EN ,)]([1t N Var 和))(),((11t N s N Cov 。

三、(20分)设马氏链}0,{≥n X n 的转移概率矩阵为:⎪⎪⎪⎭⎫ ⎝⎛=323132313231000321P(1)设30=X ,试求:)3,2,1(},{)2(},{121=====i i X P i X P i i ππ)(,并求: )(1X E 和)(2X E ;(2)试求该马氏链的极限分布:)3,2,1,(,)(,lim ==∞→j i p n j i n j π;(3)当初始分布)3,2,1(0=i i )(π为什么分布时,该马氏链为严格平稳过程?并求此时的)(n X E 。

随机过程习题答案

随机过程习题答案

随机过程习题解答(一)第一讲作业:1、设随机向量的两个分量相互独立,且均服从标准正态分布。

(a)分别写出随机变量和的分布密度(b)试问:与是否独立?说明理由。

解:(a)(b)由于:因此是服从正态分布的二维随机向量,其协方差矩阵为:因此与独立。

2、设和为独立的随机变量,期望和方差分别为和。

(a)试求和的相关系数;(b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。

解:(a)利用的独立性,由计算有:(b)当的时候,和线性相关,即3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为,且是一个周期为T的函数,即,试求方差函数。

解:由定义,有:4、考察两个谐波随机信号和,其中:式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。

(a)求的均值、方差和相关函数;(b)若与独立,求与Y的互相关函数。

解:(a)(b)第二讲作业:P33/2.解:其中为整数,为脉宽从而有一维分布密度:P33/3.解:由周期性及三角关系,有:反函数,因此有一维分布:P35/4. 解:(1) 其中由题意可知,的联合概率密度为:利用变换:,及雅克比行列式:我们有的联合分布密度为:因此有:且V和相互独立独立。

(2)典型样本函数是一条正弦曲线。

(3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且所以。

(4)由于:所以因此当时,当时,由(1)中的结论,有:P36/7.证明:(1)(2) 由协方差函数的定义,有:P37/10. 解:(1)当i =j 时;否则令,则有第三讲作业:P111/7.解:(1)是齐次马氏链。

经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。

(2)由题意,我们有一步转移矩阵:P111/8.解:(1)由马氏链的马氏性,我们有:(2)由齐次马氏链的性质,有:,(2)因此:P112/9.解:(2)由(1)的结论,当为偶数时,递推可得:;计算有:,递推得到,因此有:P112/11.解:矩阵 的特征多项式为:由此可得特征值为:,及特征向量:,则有:因此有:(1)令矩阵P112/12.解:设一次观察今天及前两天的天气状况,将连续三天的天气状况定义为马氏链的状态,则此问题就是一个马氏链,它有8个状态。

随机过程试题及答案

随机过程试题及答案

一.填空题(每空2分,共20分)分)1.设随机变量X 服从参数为l 的泊松分布,则X 的特征函数为it (e -1)el 。

2.设随机过程X(t)=Acos( t+),-<t<w F ¥¥ 其中w 为正常数,A 和F 是相互独立的随机变量,且A 和F 服从在区间[]0,1上的均匀分布,则X(t)的数学期望为1(sin(t+1)-sin t)2w w 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1l的同一指数分布。

的同一指数分布。

4.设{}n W ,n 1³是与泊松过程{}X(t),t 0³对应的一个等待时间序列,则n W 服从G 分布。

分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t对应随机变量ïîïíì=时取得白球如果时取得红球如果t t te tt X ,,3)(,则 这个随机过程的状态空间212t,t,;e,e 33ìüíýîþ。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为(n)nP P =。

7.设{}n X ,n 0³为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p Î=×å。

8.在马氏链{}n X ,n 0³中,记中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=¹££==³ (n)ij ij n=1f f ¥=å,若ii f 1<,称状态i 为非常返的。

2017-2018期末随机过程试题及答案.docx

2017-2018期末随机过程试题及答案.docx

《随机过程期末考试卷》1 •设随机变量X服从参数为■的泊松分布,则X的特征函数为 _________ 。

2•设随机过程X(t)=Acos( t+G),rvt<::其中为正常数,A和门是相互独立的随机变量,且A和门服从在区间∣0,11上的均匀分布,则X(t)的数学期望为。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为_的同一指数分布。

4•设:W n)是与泊松过程fX(t),t 一0?对应的一个等待时间序列,则W n服从分布。

5•袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,Γ对每一个确定的t对应随机变量x(t)=」3,如果t时取得红球,则这个随机过(e t, 如果t时取得白球程的状态空间__________ 。

6 •设马氏链的一步转移概率矩阵P=(P i j),n步转移矩阵Pg=(P(;)),二者之间的关系为。

7•设CX n)n -0?为马氏链,状态空间I ,初始概率P i= P(X°=i),绝对概率P j(n) =P「X n =j?,n步转移概率P j n),三者之间的关系为________________ 。

8 .设{X(t),t 一0}是泊松过程,且对于任意t20则P{X ⑸= 6|X (3) = 4} = _______t9 •更新方程K t =H^O K^SdFS解的一般形式为___________________ C 10•记亠-EX n)对一切a—0,当t—:时,M t+a -M t > _____________3. 设]X n)n — 0为马尔科夫链,状态空间为I ,则对任意整数n — 0,仁I Vn和i,j I ,n步转移概率P j n)=V P fk)P k n-I),称此式为切普曼一科尔莫哥洛夫方程,底I证明并说明其意义、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB) C2.设{X(t), t_0}是独立增量过程,且X(0)=0,证明{X(t), t_0}是一个马尔科夫过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《随机过程期末考试卷》
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放
回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e t
t X ,
,
3)(,则 这个随
机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率
{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则
{(5)6|(3)4}______P X X ===
9.更新方程()()()()0t
K t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

得 分
评卷 人
二、证明题(本大题共4道小题,每题8分,共32分)
1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:
P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t 0}是独立增量过程, 且X (0)=0, 证明{X (t ),t 0}是一个马
尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和
i,j I ∈,n 步转移概率(n)()(n-)
ij ik kj
k I
p p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

4.设{}N(t),t 0≥是强度为λ的泊松过程,{}k Y ,k=1,2,
是一列独立同分布随机变
量,且与{}N(t),t 0≥独立,令N(t)k k=1
X(t)=Y ,t 0≥∑,证明:若21E(Y <)∞,则
[]{}1E X(t)tE Y λ=。

三、计算题(本大题共4道小题,每题8分,共32分)
1.设齐次马氏链的一步转移概率矩阵为
⎪⎪⎪⎭
⎫ ⎝⎛=3/23/103/203/103/23/1P ,求其平稳分布。

2.设顾客以每分钟2人的速率到达,顾客流为泊松流,求在2分钟内到达的顾
客不超过3人的概率。

3.设明天是否有雨仅与今天的天气有关,而与过去的天气无关。

又设今天下雨
而明天也下雨的概率为α,而今天无雨明天有雨的概率为β;规定有雨天
气为状态0,无雨天气为状态1。

设0.7,0.4αβ==,求今天有雨且第四天仍有雨的概率。

4.设有四个状态{}I=0123,,,的马氏链,它的一步转移概率矩阵
110022110022
P=111144
4
40
1⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
(1)画出状态转移图; (2)对状态进行分类; (3)对状态空间I 进行分解。

四、简答题(本题6分)
一.填空题 1.为it
(e
-1)
e λ。

2. 1
(sin(t+1)-sin t)2
ωω。

3. 1λ
4. Γ 5. 2
12
t,t,
;e,e 33⎧⎫⎨⎬⎩⎭。

6.(n)n
P P =。

7.(n)j i ij i I
p (n)p p ∈=⋅∑。

8.618e - 9。

()()()()0t
K t H t K t s dM s =+-⎰ 10. a
μ
二.证明题 1. 证明:左边=P(ABC)P(ABC)P(AB)
P(C AB)P(B A )P(A)P(AB)P(A)
===右边 2.
证明:当12n 0t t t t <<<
<<时,
1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤=
n n 1122n n P(X(t)-X(t )x-x X(t )-X(0)=x ,X(t )-X(0)=x ,
X(t )-X(0)=x )≤=
n n P(X(t)-X(t )x-x )≤,又因为
n n P(X(t)x X(t )=x )=≤n n n n P(X(t)-X(t )x-x X(t )=x )≤=
n n P(X(t)-X(t )x-x )≤,故
1122n n P(X(t)x X(t )=x ,X(t )=x ,X(t )=x )≤=n n P(X(t)x X(t )=x )≤
3. 证明:
{}(n)
ij k I
P P X(n)=j X(0)=i P X(n)=j,X(l)=k X(0)=i ∈⎧⎫==⎨⎬⎩⎭=
{}k I
P X(n)=j,X(l)=k X(0)=i ∈∑
={}{}k I
P X(l)=k X(0)=i P X(n)=j X(l)=k,X(0)=i ∈∑=(l)(n-l)
ik
kj P P ∑,其意义为n 步转移概率可以用较低步数的转移概率来表示。

4.
证明:由条件期望的性质[]{}
E X(t)E E X(t)N(t)=⎡⎤⎣⎦,而
N(t)i i=1E X(t)N(t)n E Y N(t)n ⎡⎤
===⎡⎤⎢⎥⎣⎦
⎣⎦
∑ =n i i=1E Y N(t)n ⎡⎤=⎢⎥⎣⎦∑=n i i=1E Y ⎡⎤
⎢⎥⎣⎦
∑=1nE(Y ),所以[]{}1E X(t)tE Y λ=。

三.计算题(每题10分,共50分)
1. 解:
解方程组P ππ
=和1=∑i
π,即⎪⎪⎪⎩⎪⎪⎪⎨
⎧=+++=+=+=1
323231323131321
3
233
12
2
11ππππππππππππ 解得74,72,71321===πππ,故平稳分布为)7
4
,72,71(=π
2.解:设{}N(t),t 0≥是顾客到达数的泊松过程,2λ=,故{}k -4
(4)P N(2)=k e k!
=,则{}{}{}{}{}-4-4-4-4-4
3271P N(2)3P N(2)=0+P N(2)=1+P N(2)=2+P N(2)=3e 4e 8e e e 33
≤==+++
= 3.解:由题设条件,得一步转移概率矩阵为00
011011p p 0.70.3P=p p 0.40.6⎡⎤⎡⎤
=⎢
⎥⎢⎥⎣⎦
⎣⎦,于是(2)0.610.39P PP=0.520.48⎡⎤=⎢⎥⎣⎦,四步转移概率矩阵为(4)(2)(2)
0.57490.4251P P P 0.56680.4332⎡⎤==⎢⎥⎣⎦
,从而得到今天有雨且第四天仍有雨的概率为(4)
00P 0.5749=。

4.
解:(1)图略;
(2)33303132p 1,p p p =而,,均为零,所以状态3构成一个闭集,它是吸收态,记{}1C =3;0,1两个状态互通,且它们不能到达其它状态,它们构成一个闭集,记{}2C =01,,且它们都是正常返非周期状态;由于状态2可达12C C ,中的状态,而12C C ,中的状态不可能达到它,故状态2为非常返态,记{}D=2。

(3)状态空间I 可分解为:12E=D C C ⋃⋃
四.简答题(6分) 答:(略)。

相关文档
最新文档