高中数学--数学归纳法

合集下载

高中数学中的数学归纳法应用全面总结与演绎

高中数学中的数学归纳法应用全面总结与演绎

高中数学中的数学归纳法应用全面总结与演绎数学归纳法(Mathematical Induction)是一种常用于数学证明的方法,在高中数学中也得到广泛应用。

它是通过证明一个基本情况成立,并证明如果某个情况成立,则下一个情况也必然成立,从而得出整个数列或命题的正确性。

本文将对高中数学中常见的数学归纳法应用进行全面总结与演绎。

一、数列的数学归纳法数列是高中数学中常见的一个概念,在数学归纳法中也得到了广泛的应用。

通过数学归纳法可以证明数列的某种性质对任意项都成立。

以斐波那契数列为例,其定义为:F(1) = 1, F(2) = 1, F(n) = F(n-1)+ F(n-2),其中n≥3。

首先,我们证明F(1)成立,即n=1时,F(1) = 1,显然此时该数列满足斐波那契数列的定义。

其次,我们假设F(k)成立,则F(k+1)也成立,即,在假设F(k)成立的情况下证明F(k+1)成立。

F(k+1) = F(k) + F(k-1)根据假设,F(k) = F(k-1) + F(k-2)将上式代入F(k+1)的表达式中,得到F(k+1) = (F(k-1) + F(k-2)) + F(k-1) = 2F(k-1) + F(k-2)由于假设F(k)成立,所以F(k-1)也成立,故2F(k-1)也成立。

而根据斐波那契数列的定义,F(k-2)也成立,故F(k+1)也成立。

综上所述,通过数学归纳法我们证明了斐波那契数列的定义在任意项上都成立。

二、命题的数学归纳法数学归纳法不仅可以用于证明数列的性质,还可以用于证明一般的命题。

以命题“对于任意的正整数n,在n²+3n为偶数时,n为偶数”为例,我们使用数学归纳法进行证明。

首先,我们证明当n=1时,该命题成立。

因为当n=1时,n²+3n=4,是偶数,而1也是偶数。

其次,假设当n=k时,该命题成立。

即假设n²+3n为偶数时,n为偶数。

我们需要证明当n=k+1时,该命题也成立。

高中数学中的数学归纳法解题技巧

高中数学中的数学归纳法解题技巧

高中数学中的数学归纳法解题技巧数学归纳法是一种常用的解题思路,特别适用于高中数学中的证明、递推问题以及数列等内容。

通过观察题目的特点,我们可以灵活运用数学归纳法的解题技巧,快速解决问题。

本文将从数学归纳法的基本概念、应用场景以及解题策略三个方面,介绍高中数学中的数学归纳法解题技巧。

一、数学归纳法的基本概念数学归纳法是一种数学推理方法,常用于证明命题对于所有自然数都成立。

其基本思想是:先证明当n为某个自然数时命题成立,然后证明如果n为某个自然数时,命题对于n+1也成立。

根据这个思路,如果命题对于n=1成立,并且对于n=k成立时,可以推出对于n=k+1也成立,那么我们可以断定命题对于所有自然数都成立。

二、数学归纳法的应用场景数学归纳法的应用场景广泛,特别适用于证明与递推问题。

在高中数学中,常见的应用场景包括:1. 证明等式和不等式成立。

2. 证明数列的通项公式。

3. 证明递推关系式成立。

4. 证明集合中的元素具有某种性质。

三、数学归纳法解题策略在应用数学归纳法解题时,我们可以按照以下策略进行操作:1. 确定基本情况:首先证明当n为某个具体的数时命题成立。

通常选择n=1或n=0作为基本情况。

2. 假设归纳成立:假设命题对于n=k成立,即假设命题在n=k时是成立的。

3. 证明归纳成立:利用假设的前提,证明对于n=k+1时命题也成立。

可以通过计算、推导、代入等方法进行证明。

4. 总结归纳:由于基本情况成立并且归纳步骤推导成立,我们可以得出结论,命题对于所有的自然数n成立。

通过上述解题策略,我们可以快速有效地运用数学归纳法解决涉及证明、递推、数列等问题。

需要注意的是,在解题过程中,我们要保证每一步的推导都是准确无误的,以确保最终结论的可靠性。

总结数学归纳法是高中数学中常用的解题思路,它能够帮助我们理清问题的思路,快速解决证明、递推、数列等类型的问题。

在运用数学归纳法时,我们要注意确定基本情况,假设归纳成立,证明归纳成立以及总结归纳的步骤。

高中数学中的数学归纳法详细解释与应用

高中数学中的数学归纳法详细解释与应用

高中数学中的数学归纳法详细解释与应用数学归纳法是高中数学中一个重要的证明方法,它可以用来证明关于整数的命题的真实性。

数学归纳法包括三个步骤:基础步骤、归纳假设和归纳步骤。

本文将详细解释数学归纳法的原理和应用。

一、数学归纳法的原理数学归纳法是一种直观且有效的证明方法。

它的主要思想是从一个已知命题在整数集中的某个整数成立开始,证明该命题在整数集中的所有满足一定性质的整数上成立。

1. 基础步骤:首先,我们需要证明命题在某个整数上是成立的。

通常,这个整数是最小的可能值,例如0或者1。

2. 归纳假设:接下来,我们假设命题在一个自然数k上成立,即假设命题P(k)为真。

3. 归纳步骤:通过归纳假设,我们将证明命题在下一个整数k+1上也成立,即证明P(k+1)为真。

这一步通常需要运用数学方法,如代数运算、推导或其他定理的应用等。

通过以上三个步骤,我们可以得出结论:命题P(n)对于所有大于等于基础步骤中所选择的整数n成立。

二、数学归纳法的应用数学归纳法在高中数学中有广泛的应用,下面举例说明其中几个重要的应用领域。

1. 数列与数和:数学归纳法可以用来证明数列的性质。

例如,我们可以通过数学归纳法证明等差数列的通项公式。

首先,证明当n=1时命题成立;然后假设当n=k时命题成立,即得到通项公式的正确性;最后,通过归纳步骤证明当n=k+1时命题也成立,从而得到通项公式的普遍性。

2. 数学恒等式的证明:数学归纳法可以用来证明数学恒等式的正确性。

例如,我们可以通过数学归纳法来证明n个自然数的和公式:1+2+3+...+n = n(n+1)/2。

首先,证明当n=1时恒等式成立;然后假设当n=k时恒等式成立;最后通过归纳步骤证明当n=k+1时恒等式也成立,从而证明了恒等式的普遍性。

3. 不等式的证明:数学归纳法也可以用来证明不等式的正确性。

例如,我们可以通过数学归纳法证明当n为正整数时,2^n > n。

首先,证明当n=1时不等式成立;然后假设当n=k时不等式成立;最后通过归纳步骤证明当n=k+1时不等式也成立,从而证明了不等式的普遍性。

【新教材】高中数学课件之数学归纳法

【新教材】高中数学课件之数学归纳法

【新教材】高中数学课件之数学归纳法一、教学内容本节课选自新教材高中数学必修三,主要涉及第十二章第一节“数学归纳法”。

详细内容包括数学归纳法的定义、应用步骤、以及数学归纳法在数列和不等式证明中的应用。

二、教学目标1. 理解数学归纳法的概念,掌握数学归纳法的应用步骤。

2. 能够运用数学归纳法证明数列的通项公式和不等式。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点教学难点:数学归纳法证明过程中逻辑关系的理解,特别是递推关系的建立。

教学重点:数学归纳法的定义、应用步骤,以及其在数列和不等式证明中的应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体课件。

2. 学具:教材、练习本、笔。

五、教学过程2. 新课导入:讲解数学归纳法的定义,阐述其基本思想。

3. 例题讲解:以数列通项公式的证明为例,详细讲解数学归纳法的应用步骤,强调递推关系的建立。

4. 随堂练习:让学生尝试运用数学归纳法证明一个简单的不等式。

5. 知识拓展:介绍数学归纳法在数学竞赛中的应用。

六、板书设计1. 数学归纳法2. 定义:数学归纳法的概念及递推关系。

3. 步骤:数学归纳法的应用步骤。

4. 例题:数列通项公式证明。

5. 练习:简单不等式证明。

七、作业设计1. 作业题目:(1)运用数学归纳法证明:1+2+3++n = n(n+1)/2。

(2)运用数学归纳法证明:对于任意正整数n,都有2^n > n。

2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对数学归纳法的掌握情况,教学中存在的问题,以及改进措施。

2. 拓展延伸:引导学生研究数学归纳法在其它数学分支中的应用,如组合数学、数论等。

鼓励学生参加数学竞赛,提高运用数学归纳法解决问题的能力。

重点和难点解析1. 教学难点与重点的识别。

2. 例题讲解中数学归纳法应用步骤的详细阐述。

3. 作业设计中作业题目的难度和答案的准确性。

4. 课后反思及拓展延伸的深度和实用性。

高中数学数学归纳法

高中数学数学归纳法

数学归纳法能通过“归纳—猜想—证明”解决一些数学问题.1.数学归纳法公理对于某些与正整数n有关的数学命题,可以用数学归纳法证明.2.数学归纳法证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立.(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.想一想:(1)数学归纳法的第一步n0的初始值是否一定为1?提示不一定,如证明n边形的内角和为(n-2)·180°,第一个值n0=3.(2)为什么可以先假设n=k(k≥n0,k∈N+)时命题成立?再证n=k+1时命题也成立就可说明命题成立?提示“假设n=k(k≥n0,k∈N+)时命题成立,证明当n=k+1时命题成立,”其本质是证明一个递推关系,有了这种向后传递的关系,就能从一个起点不断发展,以至无穷.如果没有它,即使前面验证了命题对许多正整数n都成立,也不能保证命题对后面的所有正整数都成立.3.用数学归纳法证题时,要把n=k时的命题当作条件,在证n=k+1命题成立时须用上假设.要注意当n=k+1时,等式两边的式子与n=k时等式两边的式子的联系,弄清楚增加了哪些项,减少了哪些项,问题就会顺利解决.想一想:数学归纳法的两个步骤有何关系?提示使用数学归纳法时,两个步骤缺一不可,步骤(1)是递推的基础,步骤(2)是递推的依据.名师点睛1.运用数学归纳法的注意点数学归纳法的步骤(1)是命题论证的基础,步骤(2)是判断命题的正确性能否递推下去的保证,这两个步骤缺一不可.如果缺少步骤(2),无法对n取n0后的数时的结论是否正确作出判断;如果缺少步骤(1)这个基础,假设就失去了成立的前提,步骤(2)就没有意义了.(1)验证是基础数,并不一定所有的第一个允许值n0都是1.(2)递推乃关键“假设n=k(k≥n0,k∈N*)时命题成立”这一归纳假设起着已知的作用,“n=k+1时命题成立”则是求证的目标.在证明“n=k+1时命题也成立”的过程中,必须利用归纳假设,再根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时命题成立.可见数学归纳法证明的关键在于第二步.说明:(1)数学归纳法是直接证明的一种重要方法,应用十分广泛.一般来说,与正整数有关的恒等式、不等式、数的整除性、数列的通项及前n项和等问题,都可以考虑用数学归纳法证明.(2)归纳推理可以帮助我们发现一般规律,但是其正确性需要通过证明来验证.一般情况下,有关正整数的归纳、猜想问题,都需要由不完全归纳法得到猜想,然后用数学归纳法证明猜想是否正确.2.归纳→猜想→证明(1)归纳、猜想和证明是人们探索事物发展规律的常用方法,在数学中是我们分析问题、解决问题的一个重要的数学思想方法.(2)在归纳、猜想阶段体现的是一般与特殊的相互转化关系.(3)在数学归纳法证明阶段体现的是有限和无限的转化,是一种极限的思想.知识点一正确判断命题从n=k到n=k+1项的变化【例1】已知f(n)=1+12+13+…+1n(n∈N*),证明不等式f(2n)>n2时,f(2k+1)比f(2k)多的项数是________.在书写f(k+1)时,一定要把包含f(k)的式子写出来,尤其是f(k+1)中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚.变式迁移1 设f(n)=1+12+13+…+13n-1(n∈N*),那么f(n+1)-f(n)等于________.知识点二 证明与自然数n 有关的等式 【例2】 已知n ∈N *,证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .变式迁移2 用数学归纳法证明:当n ≥2,n ∈N *时,211111111149162n n n+⎛⎫⎛⎫⎛⎫⎛⎫----= ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.知识点三 用数学归纳法证明不等式问题【例3】 用数学归纳法证明:122+132+142+…+1n 2<1-1n (n ≥2,n ∈N *).用数学归纳法证明不等式时常要用到放缩法,即在归纳假设的基础上,通过放大或缩小等技巧变换出要证明的目标不等式.变式迁移3 用数学归纳法证明:对一切大于1的自然数n ,不等式11111+1+1+1+357212n ⎛⎫⎛⎫⎛⎫⎛⎫> ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭成立.知识点四用数学归纳法证明整除性问题【例4】用数学归纳法证明:f(n)=(2n+7)·3n+9(n∈N*)能被36整除.变式迁移4用数学归纳法证明62n-1+1(n∈N*)能被7整除.知识点五归纳—猜想—证明【例5】在数列{a n},{b n}中,a1=2,b1=4,且a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列{n∈N+}.(1)求a2,a3,a4及b2,b3,b4,由此猜测{a n},{b n}的通项公式,并证明你的结论;(2)证明:1a1+b1+1a2+b2+…+1a n+b n<512.变式迁移5已知数列11×4,14×7,17×10,…,1(3n-2)(3n+1),…,计算S1,S2,S3,S4,根据计算结果,猜想S n的表达式,并用数学归纳法进行证明.第1课时数学归纳法【课标要求】1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.【核心扫描】1.用数学归纳法证明数学命题的两个步骤相辅相成,缺一不可.2.对数学归纳法的考查主要是在解答题中出现,用数学归纳法证明不等式是高考的热点.自学导引1.数学归纳法公理对于某些与正整数n有关的数学命题,可以用数学归纳法证明.2.数学归纳法证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立.*想一想:(1)数学归纳法的第一步n 0的初始值是否一定为1?提示 不一定,如证明n 边形的内角和为(n -2)·180°,第一个值n 0=3.(2)为什么可以先假设n =k (k ≥n 0,k ∈N +)时命题成立?再证n =k +1时命题也成立就可说明命题成立? 提示 “假设n =k (k ≥n 0,k ∈N +)时命题成立,证明当n =k +1时命题成立,”其本质是证明一个递推关系,有了这种向后传递的关系,就能从一个起点不断发展,以至无穷.如果没有它,即使前面验证了命题对许多正整数n 都成立,也不能保证命题对后面的所有正整数都成立.名师点睛运用数学归纳法的注意点数学归纳法的步骤(1)是命题论证的基础,步骤(2)是判断命题的正确性能否递推下去的保证,这两个步骤缺一不可.如果缺少步骤(2),无法对n 取n 0后的数时的结论是否正确作出判断;如果缺少步骤(1)这个基础,假设就失去了成立的前提,步骤(2)就没有意义了.(1)验证是基础一般情况下,用数学归纳法证明与正整数有关的数学命题时,第一个允许值是命题成立的第一个正整数,并不一定所有的第一个允许值n 0都是1.(2)递推乃关键“假设n =k (k ≥n 0,k ∈N *)时命题成立”这一归纳假设起着已知的作用,“n =k +1时命题成立”则是求证的目标.在证明“n =k +1时命题也成立”的过程中,必须利用归纳假设,再根据有关的定理、定义、公式、性质等数学结论推证出n =k +1时命题成立.可见数学归纳法证明的关键在于第二步.说明:(1)数学归纳法是直接证明的一种重要方法,应用十分广泛.一般来说,与正整数有关的恒等式、不等式、数的整除性、数列的通项及前n 项和等问题,都可以考虑用数学归纳法证明.(2)归纳推理可以帮助我们发现一般规律,但是其正确性需要通过证明来验证.一般情况下,有关正整数的归纳、猜想问题,都需要由不完全归纳法得到猜想,然后用数学归纳法证明猜想是否正确.题型一 正确判断命题从n =k 到n =k +1项的变化【例1】 已知f (n )=1+12+13+…+1n (n ∈N *),证明不等式f (2n )>n 2时,f (2k +1)比f (2k )多的项数是________.[思路探索] 仔细观察命题的结构特点,理解命题由n =k 到n =k +1的变化趋势. 解析 观察f (n )的表达式可知,右端分母是连续的正整数,f (2k )=1+12+13+…+12k ,而f (2k +1)=1+12+13+…+12k +12k +1+12k +2+…+12k +2k .因此f (2k +1)比f (2k )多了2k 项. 答案 2k 项在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k +1)中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚.【变式1】 设f (n )=1+12+13+…+13n -1(n ∈N *),那么f (n +1)-f (n )等于________.解析 ∵f (n )=1+12+13+…+13n -1,∴f (n +1)=1+12+13+…+13n -1+13n +13n +1+13n +2,∴f (n +1)-f (n )=13n +13n +1+13n +2.答案13n +13n +1+13n +2题型二 证明与自然数n 有关的等式【例2】 已知n ∈N *,证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .[思路探索]证明 (1)当n =1时,左边=1-12=12,右边=12,等式成立;(2)假设当n =k (k ≥1,且k ∈N *)时等式成立,即: 1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k .则当n =k +1时,左边=1-12+13-14+…+12k -1-12k +12(k +1)-1=1k +1+1k +2+…+12k +12k +1-12(k +1)=1k +2+1k +3+…+12k +12k +1+⎣⎡⎦⎤1k +1-12(k +1)=1(k +1)+1+1(k +1)+2+…+1(k +1)+k+12(k +1)=右边;所以当n =k +1时等式也成立. 由(1)(2)知对一切n ∈N *等式都成立.(1)用数学归纳法证明命题时,两个步骤缺一不可,且书写必须规范;(2)用数学归纳法证题时,要把n =k 时的命题当作条件,在证n =k +1命题成立时须用上假设.要注意当n =k +1时,等式两边的式子与n =k 时等式两边的式子的联系,弄清楚增加了哪些项,减少了哪些项,问题就会顺利解决.【变式2】 用数学归纳法证明:当n ≥2,n ∈N *时,⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…·⎝⎛⎭⎫1-1n 2 =n +12n. 证明 (1)当n =2时,左边=1-14=34,右边=2+12×2=34,∴n =2时等式成立.(2)假设当n =k (n ≥2,n ∈N *)时等式成立, 即⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…⎝⎛⎭⎫1-1k 2=k +12k , 那么当n =k +1时,⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…⎝⎛⎭⎫1-1k 2⎣⎡⎦⎤1-1(k +1)2=k +12k ·⎣⎡⎦⎤1-1(k +1)2=(k +1)2-12k (k +1)=k +22(k +1)=(k +1)+12(k +1).∴当n =k +1时,等式也成立.根据(1)和(2)知,对任意n ≥2,n ∈N *,等式都成立.题型三 证明与数列有关的问题【例3】 某数列的第一项为1,并且对所有的自然数n ≥2,数列的前n 项之积为n 2. (1)写出这个数列的前五项;(2)写出这个数列的通项公式,并加以证明. 审题指导 据条件写出前五项→猜测出通项公式→[规范解答] (1)已知a 1=1,由题意得a 1·a 2=22, ∴a 2=22,∵a 1·a 2·a 3=32,∴a 3=3222. 同理可得a 4=4232,a 5=5242. 因此这个数列的前五项为1,4,94,169,2516.(4分) (2)观察这个数列的前五项,猜测数列的通项公式应为:a n =⎩⎪⎨⎪⎧ 1 (n =1),n 2(n -1)2 (n ≥2),(6分) 下面用数学归纳法证明当n ≥2时,a n =n 2(n -1)2. ①当n =2时,a 2=22(2-1)2=22, 所以等式成立.(8分)②假设当n =k (k ≥2,k ∈N +)时,结论成立,即a k =k 2(k -1)2, 则当n =k +1时,∵a 1·a 2·…·a k -1=(k -1)2,∴a 1·a 2·…·a k +1=(k +1)2.∴a k +1=(k +1)2(a 1·a 2·…·a k -1)·a k=(k +1)2(k -1)2·(k -1)2[(k +1)-1]2=(k +1)2[(k +1)-1]2, 所以当n =k +1时,结论也成立.(11分)根据①②可知,当n ≥2时,这个数列的通项公式是a n =n 2(n -1)2,∴a n =⎩⎪⎨⎪⎧ 1 (n =1),n 2(n -1)2 (n ≥2).(12分)【题后反思】 (1)数列{a n }既不是等差数列,又不是等比数列,要求其通项公式,只能根据给出的递推式和初始值,分别计算出前几项,然后归纳猜想出通项公式a n ,并用数学归纳法加以证明.(2)数学归纳法是重要的证明方法,常与其他知识结合,尤其是数学中的归纳,猜想并证明或与数列中的不等式问题相结合综合考查,证明中要灵活应用题目中的已知条件,充分考虑“假设”这一步的应用,不考虑假设而进行的证明不是数学归纳法.【变式3】 数列{a n }满足:a 1=16,前n 项和S n =n (n +1)2a n ,(1)写出a 2,a 3,a 4;(2)猜出a n 的表达式,并用数学归纳法证明.解 (1)令n =2,得S 2=2×(2+1)2a 2, 即a 1+a 2=3a 2,解得a 2=112. 令n =3,得S 3=3×(3+1)2a 3, 即a 1+a 2+a 3=6a 3,解得a 3=120. 令n =4,得S 4=4×(4+1)2a 4, 即a 1+a 2+a 3+a 4=10a 4,解得a 4=130. (2)由(1)的结果猜想a n =1(n +1)(n +2),下面用数学归纳法给予证明: ①当n =1时,a 1=16=1(1+1)(2+1),结论成立. ②假设当n =k (k ∈N *)时,结论成立,即a k =1(k +1)(k +2), 则当n =k +1时,S k =k ·(k +1)2a k ,① S k +1=(k +1)(k +2)2a k +1,② ②与①相减得a k +1=(k +1)(k +2)2a k +1-k ·(k +1)2a k , 整理得a k +1=k +1k +3a k =k +1k +3·1(k +1)(k +2)=1(k +2)(k +3)=1[(k +1)+1][(k +1)+2], 即当n =k +1时结论也成立.由①、②知对于n ∈N +,上述结论都成立.误区警示 未应用归纳假设而导致错误【示例】 证明:12+122+123+…+12n -1+12n =1-12n (n ∈N *) [错解] (1)当n =1时,左边=12,右边=1-12=12,等式成立. (2)假设当n =k (k ∈N *,且k ≥1)时,等式成立,即12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=12⎣⎡⎦⎤1-⎝⎛⎭⎫12k +11-12=1-12k +1. 这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任意n ∈N *都成立.从形式上看,会认为以上的证明是正确的,过程是完整的,但实际上以上的证明却是错误的.错误的原因在第(2)步,它是直接利用等比数列的求和公式求出了当n =k +1时式子12+122+123+…+12k -1+12k +12k +1的和,而没有利用“归纳假设”,这是在用数学归纳法证题时极易犯的一种错误,要引以为戒,一定要引起同学们的足够重视.[正解] (1)当n =1时,左边=12,右边=1-12=12,等式成立. (2)假设当n =k (k ∈N *,且k ≥1)时,等式成立,有12+122+123+…+12k -1+12k =1-12k . 那么当n =k +1时,左边=12+122+123+…+12k -1+12k +12k +1=1-12k +12k +1=1-2-12k +1=1-12k +1=右边. 这就是说,当n =k +1时,等式也成立.根据(1)和(2),可知等式对任何n ∈N *都成立.数学归纳法证明命题的步骤及注意事项:①两个步骤,缺一不可,其中第一步是递推的基础,第二步是递推的依据;②两个步骤中关键是第二步,即当n =k +1时命题为什么成立.在证n =k +1命题时成立时,必须利用归纳假设当n =k 时成立这一条件,再根据有关定理、定义、公式、性质等推证出当n =k +1时成立.切忌直接代入,否则当n =k +1时成立也是假设了,命题并没有得到证明.题型三 用数学归纳法证明几何问题【例3】 用数学归纳法证明凸n 边形的对角线有12n (n -3)条. [思路探索] 可先弄清凸n 边形多增加一条边时对角线的变化情况,再归纳出变化规律,然后求解.证明 ①当n =3时,12n (n -3)=0,这就说明三角形没有对角线,故结论正确. ②假设当n =k (k ≥3,k ∈N +)时结论正确,即凸k 边形的对角线有12k (k -3)条, 则当n =k +1时,凸(k +1)边形的对角线的条数f (k )=12k (k -3)(k ≥4), 当n =k +1时,凸(k +1)边形是在k 边形基础上增加了一边,增加了一个顶点,设为A k +1,增加的对角线是顶点A k +1与不相邻顶点的连线再加上原k 边形一边A 1A k ,共增加了对角线的条数为k -2+1=k -1.∴f (k +1)=12k (k -3)+k -1 =12(k 2-k -2)=12(k +1)(k -2) =12(k +1)[(k +1)-3] 故当n =k +1时命题成立.由(1)(2)知,对任意n ≥4,n ∈N *,命题成立.用数学归纳法证明几何问题,关键在于分析由n =k 到n =k +1的变化情况,即分点(或顶点)增加了多少,直线的条数(或划分区域)增加了几部分等,或先用f (k +1)-f (k )得出结果,再结合图形给予严谨的说明,几何问题的证明:一要注意数形结合;二要注意要有必要的文字说明.【变式3】 平面内有n (n ∈N *,n ≥2)条直线,其中任何两条不平行,任何三条不过同一点,求证交点的个数f (n )=n (n -1)2. 证明 (1)当n =2时,两条直线的交点只有一个,又f (2)=12×2×(2-1)=1, ∴当n =2时,命题成立.(2)假设当n =k (k ∈N *,k ≥2)时命题成立,即平面内满足题设的任何k 条直线的交点个数f (k )=12k (k -1), 那么,当n =k +1时,任取一条直线l ,除l 以外其他k 条直线的交点个数为f (k )=12k (k -1), l 与其他k 条直线交点个数为k ,从而k +1条直线共有f (k )+k 个交点,即f (k +1)=f (k )+k =12k (k -1)+k =12k (k -1+2)=12k (k +1) =12(k +1)[(k +1)-1], ∴当n =k +1时,命题成立.由(1),(2)可知,对任意n ∈N *(n ≥2)命题都成立.题型四 归纳—猜想—证明【例4】 在数列{a n },{b n }中,a 1=2,b 1=4,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列{n ∈N +}.(1)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测{a n },{b n }的通项公式,并证明你的结论;(2)证明:1a 1+b 1+1a 2+b 2+…+1a n +b n <512. 审题指导 (1)根据已知条件求出{a n },{b n }的前几项,由此猜测{a n },{b n }的通项公式.然后根据递推关系式用数学归纳法加以证明.(2)用放缩法证明不等式.[规范解答] (1)由条件得2b n =a n +a n +1,a 2n +1=b n b n +1.由此可以得a 2=6,b 2=9,a 3=12,b 3=16,a 4=20,b 4=25.猜测a n =n (n +1),b n =(n +1)2.(4分)用数学归纳法证明:①当n =1时,由上可得结论成立.②假设当n =k (k ∈N *)时,结论成立.即a k =k (k +1),b k =(k +1)2,那么当n =k +1时,a k +1=2b k -a k =2(k +1)2-k (k +1)=(k +1)(k +2),b k +1=a 2k +1b k=(k +2)2, 所以当n =k +1时,结论也成立.由①②,可知a n =n (n +1),b n =(n +1)2对一切正整数都成立.(8分)(2)证明 1a 1+b 1=16<512. n ≥2时,由(1)知a n +b n =(n +1)(2n +1)>2(n +1)n .故1a 1+b 1+1a 2+b 2+…+1a n +b n<16+12⎣⎡⎦⎤12×3+13×4+…+1n (n +1) =16+12⎝⎛⎭⎫12-13+13-14+…+1n -1n +1 =16+12⎝⎛⎭⎫12-1n +1<16+14=512. 综上,原不等式成立.(12分)【题后反思】 探索性命题是近几年高考试题中经常出现的一种题型,此种问题未给出问题的结论,往往需要由特殊情况入手,归纳、猜想、探索出结论,然后再对探索出的结论进行证明,而证明往往用到数学归纳法.这类题型是高考的热点之一,它对培养创造性思维具有很好的训练作用.【变式4】 已知数列11×4,14×7,17×10,…,1(3n -2)(3n +1),…,计算S 1,S 2,S 3,S 4,根据计算结果,猜想S n 的表达式,并用数学归纳法进行证明.解 S 1=11×4=14;S 2=14+14×7=27; S 3=27+17×10=310;S 4=310+110×13=413.可以看到,上面表示四个结果的分数中,分子与项数n 一致,分母可用项数n 表示为3n +1.于是可以猜想S n =n 3n +1(n ∈N *). 下面我们用数学归纳法证明这个猜想.(1)当n =1时,左边=S 1=14,右边=n 3n +1=13×1+1=14, 猜想成立.(2)假设当n =k (k ∈N *)时猜想成立,即11×4+14×7+17×10+…+1(3k -2)(3k +1)=k 3k +1,那么, 11×4+14×7+17×10+…+1(3k -2)(3k +1)+1[3(k +1)-2][3(k +1)+1]=k 3k +1+1(3k +1)(3k +4)=3k 2+4k +1(3k +1)(3k +4)=(3k +1)(k +1)(3k +1)(3k +4)=k +13(k +1)+1, 所以,当n =k +1时猜想也成立.根据(1)和(2),可知猜想对任何n ∈N *都成立.误区警示 未使用归纳假设而出错【示例】 用数学归纳法证明n 2+n <n +1(n ∈N *).[错解] (1)n =1时显然命题成立.(2)假设n =k (k ∈N *)时,有k 2+k <k +1,则当n =k +1时, 左边=(k +1)2+k +1=k 2+3k +2<k 2+4k +4=(k +1)+1.∴当n =k +1时,命题成立,根据(1)(2)对n ∈N *原不等式成立.以上证明过程中,第(2)步未用归纳假设,不用归纳假设的证法不是数学归纳法,故以上解法是错误的.[正解] (1)当n =1时,显然命题成立.(2)假设n =k (k ∈N *)时,原不等式成立. 即k 2+k <k +1,∴k 2+k <(k +1)2.则当n =k +1时, 左边=(k +1)2+(k +1)=k 2+3k +2 =k 2+k +2k +2<(k +1)2+2k +2 =k 2+4k +3<k 2+4k +4=k +2=(k +1)+1. ∴(k +1)2+k +1<(k +1)+1,故当n =k +1时,原不等式成立.由(1)(2)知,原不等式对n ∈N *成立. 即n 2+n <n +1.数学归纳法一般被用于证明某些与正整数n (n 取无限多个值)有关的数学命题,但是,并不是所有与正整数n 有关的数学命题都可以用数学归纳法证明,例如用数学归纳法证明⎝⎛⎭⎫1+1n n (n ∈N *)的单调性就难以实现.一般说,从n =k 时的情形过渡到n =k +1时的情形,如果问题中存在可利用的递推关系,则数学归纳法有用武之地,否则使用数学归纳法就有困难.。

高中数学知识点归纳数学归纳法与递归数列

高中数学知识点归纳数学归纳法与递归数列

高中数学知识点归纳数学归纳法与递归数列高中数学知识点归纳:数学归纳法与递归数列数学归纳法和递归数列是高中数学中非常重要的知识点,它们在解决数列、证明问题以及推理推广中发挥着重要的作用。

下面将对数学归纳法与递归数列进行归纳总结,以帮助同学们更好地掌握和应用这两个概念。

一、数学归纳法数学归纳法是一种用于证明以及构造数学问题解决方案的重要方法。

它分为三个步骤:基础步骤、归纳假设和归纳推理。

基础步骤:首先,我们需要证明当n取某个特定值时,命题成立。

这个特定值通常是一个自然数,比如n = 1 或 n = 0。

通过验证这个基础步骤,我们确保了对于第一个自然数命题成立。

归纳假设:接下来,我们假设当n = k时,命题成立,其中k是一个正整数。

这个假设被称为“归纳假设”。

归纳推理:最后,我们需要证明当n = k+1时,命题也成立。

这一步通常是通过使用归纳假设,并根据命题的规律进行推理得出的。

通过这样的步骤,我们可以推广这个命题对于所有自然数n成立的结论。

数学归纳法在证明数学命题中使用广泛,特别是在数列和等式的证明中。

二、递归数列递归数列是指一个数列的每一项都是前面一些项的函数。

通常,递归数列的第一项和第二项是已知的,而后面的项则通过递归关系得到。

常见的递归数列有斐波那契数列和阶乘数列。

1. 斐波那契数列:斐波那契数列的定义如下:F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2), n≥2斐波那契数列的特点是每一项都是前两项的和。

通过递归关系,我们可以计算出任意一项的值。

2. 阶乘数列:阶乘数列的定义如下:n! = n * (n-1) * (n-2) * ... * 2 * 1阶乘数列的特点是每一项都是前一项与当前项的乘积。

通过递归关系,我们可以计算出任意一项的值。

递归数列在数学中具有重要的应用,例如在组合数学、概率论以及计算机科学等领域有广泛的应用。

综上所述,数学归纳法和递归数列是高中数学中重要的知识点。

高中数学中的数学归纳法知识点总结

高中数学中的数学归纳法知识点总结

高中数学中的数学归纳法知识点总结数学归纳法是数学中常用的一种证明方法,在高中数学课程中占有重要的地位。

它是通过对特定命题的逐一验证来证明一般性结论的方法。

本文将对高中数学中的数学归纳法的相关知识点进行总结。

一、数学归纳法的基本思想数学归纳法是一种以自然数为基础的证明方法。

其基本思想是:假设某个命题对自然数1成立,然后假设对于任意的自然数k成立,可以证明对于自然数k+1也成立,最后通过数学归纳法原理得出该命题对所有自然数成立。

二、数学归纳法的基本步骤使用数学归纳法证明一个命题通常包括以下几个步骤:1. 基础步骤:证明该命题在自然数1上成立;2. 归纳假设:假设对于任意的自然数k,命题成立;3. 归纳证明:证明对于自然数k+1,命题也成立;4. 数学归纳法原理:根据数学归纳法原理,可以得出该命题对于所有自然数成立。

三、数学归纳法的示例下面通过几个具体的数学归纳法示例来说明其应用:1. 数列的性质证明:证明斐波那契数列的性质,即F(1)=1,F(2)=1,并且对于自然数n≥3,F(n)=F(n-1)+F(n-2)。

(1)基础步骤:当n=1或2时,斐波那契数列成立;(2)归纳假设:假设对于任意的自然数k,斐波那契数列成立;(3)归纳证明:考虑n=k+1的情况,有F(k+1)=F(k)+F(k-1),根据归纳假设,F(k)和F(k-1)都成立,因此F(k+1)也成立;(4)根据数学归纳法原理,得出斐波那契数列对所有自然数成立。

2. 数学命题的证明:证明1+2+3+...+n=n(n+1)/2。

(1)基础步骤:当n=1时,等式成立;(2)归纳假设:假设对于任意的自然数k,等式成立;(3)归纳证明:考虑n=k+1的情况,有1+2+3+...+(k+1)=k(k+1)/2+(k+1)=[(k+1)(k+2)]/2,根据归纳假设,等式成立;(4)根据数学归纳法原理,得出等式对所有自然数成立。

3. 方程求解:证明n^2-n+41是素数的情况。

高中数学《数学归纳法》课件

高中数学《数学归纳法》课件
12 22 32 n2 n(n 1)(2n 1) 6
证明:
1
(1)当n=1时,左边=12=1,右边=
2
3
1
6
等式成立。
(2)假设当n=k时,等式成立,即
12 22 32 k 2 k(k 1)(2k 1) 6
那么: 左边=12+22+……+k2+(k+1)2
k(k 1)(2k 1) (k 1)2 6
❖ 设{pn}是一个与自然数相关的命题集合,如果 (1)证明起始命题p1(或p0)成立; (2)在假设pk成立的前提下,推出pk+1也成 立,那么可以断定。{pn}对一切正整数(或自 然数)成立,这种方法叫做数学归纳法。
引例1:已知数列{an}中, a1=1,an+1=an/(an+1),试求出a2,a3,a4并猜 想{an}的通项公式
k(k 1)(2k 1) 6(k 1)2
6 (k 1)(2k 2 7k 6)
6 (k 1)(k 2)(2k 3)
6
(k 1)(k 1) 12(k 1) 1 右边
6
即当n=k+1时等式也成立。 根据(1)和(2),可知命题
对任何n∈N*都成立。
重点:两个步骤、一个结论; 注意:递推基础不可少,
故 n=k+1 时猜想也成立. 由①②可知,对 n≥2,n∈N*,有 an=5×2n-2. 所以数列{an}的通项公式为 an=55, ×n2= n-21,,n≥2.
Hale Waihona Puke 1 1 1 1 n .24 46 68
2n(2n 2) 4(n 1)
证明 (1)当n=1时,等式左边 1 1 , 24 8
等式右边 1 1, 所以等式成立. 4(11) 8

了解高中数学中的数学归纳法原理

了解高中数学中的数学归纳法原理

了解高中数学中的数学归纳法原理数学归纳法是高中数学中常用的一种证明方法,它在解决数列、等式、不等式等问题时有着重要的应用。

本文将介绍数学归纳法的原理、应用以及一些相关的例题。

一、数学归纳法的原理数学归纳法是一种证明方法,它的基本思想是通过证明某个命题在某个条件下成立,然后证明它在下一个条件下也成立,以此类推,最终证明该命题对于所有条件都成立。

数学归纳法一般分为三个步骤:基础步骤、归纳假设和归纳步骤。

基础步骤是证明当条件为某个特定值时,命题成立。

通常需要通过计算或其他方法来证明。

归纳假设是假设当条件为某个特定值时,命题成立。

这一步骤是为了在下一步证明中使用。

归纳步骤是证明当条件为n+1时,命题成立。

通过利用归纳假设以及其他数学推理方法,可以得出结论。

二、数学归纳法的应用数学归纳法在解决数列问题时有着重要的应用。

例如,我们想证明一个数列的通项公式成立,可以使用数学归纳法。

首先,我们证明当n=1时,通项公式成立,这是基础步骤。

然后,假设当n=k时,通项公式成立,这是归纳假设。

最后,通过利用归纳假设和数学推理,证明当n=k+1时,通项公式也成立,这是归纳步骤。

通过这样的步骤,我们可以得出结论,证明通项公式对于所有正整数都成立。

数学归纳法还可以用于证明等式和不等式。

例如,我们想证明一个等式在所有正整数下成立,可以使用数学归纳法。

首先,证明当n=1时,等式成立。

然后,假设当n=k时,等式成立。

最后,通过利用归纳假设和数学推理,证明当n=k+1时,等式也成立。

通过这样的步骤,我们可以得出结论,证明等式对于所有正整数都成立。

三、数学归纳法的例题下面我们来看几个关于数学归纳法的例题。

例题1:证明1+2+3+...+n=n(n+1)/2对于所有正整数n成立。

解:基础步骤:当n=1时,左边等于1,右边等于1(1+1)/2,两边相等。

归纳假设:假设当n=k时,等式成立。

归纳步骤:当n=k+1时,左边等于1+2+3+...+k+(k+1),根据归纳假设,等于k(k+1)/2+(k+1)=(k+1)(k+2)/2,右边等于(k+1)((k+1)+1)/2,两边相等。

高中数学数学归纳法的原理及相关题目解析

高中数学数学归纳法的原理及相关题目解析

高中数学数学归纳法的原理及相关题目解析数学归纳法是高中数学中常见的证明方法之一,它在数列、恒等式、不等式等问题的证明中具有重要的应用价值。

本文将介绍数学归纳法的原理,并通过具体的题目解析,帮助高中学生掌握数学归纳法的使用技巧。

一、数学归纳法的原理数学归纳法是一种证明方法,它基于以下两个基本原理:1. 基本原理:若一个命题在某个特定条件下成立,且在满足这个条件的情况下,它的下一个条件也成立,那么这个命题对所有满足该条件的情况都成立。

2. 归纳假设:假设命题在某个特定条件下成立,即假设命题对第n个情况成立。

根据这两个基本原理,数学归纳法的证明步骤如下:1. 基础步骤:证明命题在第一个特定条件下成立,即证明命题对n=1成立。

2. 归纳步骤:假设命题对第n个情况成立,即假设命题对n=k成立,其中k为任意正整数。

3. 归纳证明:证明命题在第n+1个情况下也成立,即证明命题对n=k+1成立。

通过这样的证明过程,可以得出结论:命题对所有满足该条件的情况都成立。

二、数学归纳法的应用举例下面通过具体的题目解析,来说明数学归纳法的应用。

例题1:证明等差数列的通项公式。

等差数列的通项公式为:an = a1 + (n-1)d,其中a1为首项,d为公差。

证明:首先,我们需要证明等差数列的通项公式对n=1成立。

当n=1时,an = a1 + (1-1)d = a1,等式左边为首项,等式右边也为首项,所以命题对n=1成立。

其次,假设等差数列的通项公式对n=k成立,即假设an = a1 + (k-1)d成立。

我们需要证明等差数列的通项公式对n=k+1也成立。

当n=k+1时,an+1 = a1 + (k+1-1)d = a1 + kd由归纳假设可知,an = a1 + (k-1)d将an代入上式,得到an+1 = an + d = a1 + (k-1)d + d = a1 + kd所以,等差数列的通项公式对n=k+1也成立。

根据数学归纳法的原理,等差数列的通项公式对所有满足条件的情况都成立。

数学归纳法-高中数学知识点讲解

数学归纳法-高中数学知识点讲解

数学归纳法
1.数学归纳法
【知识点的认识】
1.数学归纳法
一般地,当要证明一个命题对于不小于某正整数n0 的所有正整数n 都成立时,可以用以下两个步骤:
(1)证明当n=n0 时命题成立;
(2)假设当n=k(k∈N+,且k≥n0)时命题成立,证明n=k+1 时命题也成立.
在完成了这两个步骤后,就可以断定命题对于不小于n0 的所有正整数都成立.这种证明方法称为数学归纳法.
2.用数学归纳法证明时,要分两个步骤,两者缺一不可.
(1)证明了第一步,就获得了递推的基础,但仅靠这一步还不能说明结论的正确性.
在这一步中,只需验证命题结论成立的最小的正整数就可以了,没有必要验证命题对几个正整数成立.
(2)证明了第二步,就获得了推理的依据.仅有第二步而没有第一步,则失去了递推的基础;而只有第一步而没有第二步,就可能得出不正确的结论,因为单靠第一步,我们无法递推下去,所以我们无法判断命题对n0+1,
n0+2,…,是否正确.
在第二步中,n=k 命题成立,可以作为条件加以运用,而n=k+1 时的情况则有待利用命题的已知条件,公理,定理,定义加以证明.
完成一,二步后,最后对命题做一个总的结论.
3.用数学归纳法证明恒等式的步骤及注意事项:
①明确初始值n0 并验证真假.(必不可少)
②“假设n=k 时命题正确”并写出命题形式.
③分析“n=k+1 时”命题是什么,并找出与“n=k”时命题形式的差别.弄清左端应增加的项.
④明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,并用上假设.
1/ 1。

高中数学中的数学归纳法

高中数学中的数学归纳法

高中数学中的数学归纳法数学归纳法是一种重要的证明方法,在高中数学中也是一个重要的概念。

它是一种通过证明基础情况成立,再证明推理过程成立的方法,常用于证明自然数性质。

本文将介绍数学归纳法的基本原理、应用以及一些相关的数学问题。

一、数学归纳法的基本原理数学归纳法的基本原理是:如果能够证明以下两个条件成立,那么对于任意自然数n,命题P(n)都成立。

1. 基础情况:证明P(1)成立。

2. 推理过程:假设P(k)成立,证明P(k+1)也成立。

数学归纳法的基本思想是通过证明基础情况成立,再证明推理过程成立,从而得出结论。

它的证明过程类似于搭积木,每一块积木都依赖于前一块的存在,最终搭建出一个完整的结构。

二、数学归纳法的应用数学归纳法在高中数学中有广泛的应用,特别是在数列和不等式的证明中常常用到。

1. 数列的证明:数学归纳法可以用来证明数列的递推公式成立。

首先证明基础情况,即证明当n=1时递推公式成立;然后假设当n=k时递推公式成立,即P(k)成立;接着证明当n=k+1时递推公式也成立,即证明P(k+1)成立。

通过这样的证明过程,可以得出结论:递推公式对于任意自然数n都成立。

2. 不等式的证明:数学归纳法也可以用来证明不等式的成立。

首先证明基础情况,即证明当n=1时不等式成立;然后假设当n=k时不等式成立,即P(k)成立;接着证明当n=k+1时不等式也成立,即证明P(k+1)成立。

通过这样的证明过程,可以得出结论:不等式对于任意自然数n都成立。

三、数学归纳法的相关问题除了基本原理和应用,数学归纳法还与一些相关的数学问题密切相关。

1. 斐波那契数列:斐波那契数列是一个经典的数列,在数学归纳法中有着重要的应用。

斐波那契数列的递推公式为Fn = Fn-1 + Fn-2,其中F1 = 1,F2 = 1。

通过数学归纳法可以证明斐波那契数列的递推公式成立。

2. 整数的奇偶性:数学归纳法还可以用来证明整数的奇偶性。

首先证明基础情况,即证明1是奇数;然后假设k是奇数,证明k+1也是奇数。

数学归纳法-人教版高中数学

数学归纳法-人教版高中数学

第03讲一数学归纳法知识图谱-数学归纳法数学归纳法的原理和步骤数学归纳法的应用第03讲成学归纳法错题回顾数学归纳法知识精讲一・数学归纳法原理设{R}是一个与正整数相关的命题的集合,如果①证明起始命题月成立;(2)在假设M成立的前提下,推出门也成立,那么可以断定,{R}对一切正整数成立.二・用数学归纳法证明命题的步骤1 .证明当力取第一个值%(例如乌=。

或其他正整数)时结论正确.2 .假设当久=机腥"才次)时结论正确(归纳假设),证明当〃=卜1时结论正确.3 .对任何心忒时命题均正确.三点剖析_.注意事页1.证明了笫F,就获得了递推的基础,但仅靠这f还不能说明结论的晋遍性.在第一步中,考察结论成立的最小正整数就足够了,没有必要再考察几个正整数,即使命题对这几个正整数都成立.证明了策二步,就获得了递推的依据,但没有第F就失去了递推的基础.只有把第一步和第二步结合在一起,才能获得普遍性的结论.因此,完成了笫一步、笙二步后,还要做一个总的结论.2.在递推之前,M=k时结论是否成立是不确定的,因此用假设二字,这一步的实质是证明命题对X的正确性可以?!=阵1时的情况.有了这一步,联系第一步的结论(命题对汶=晃成立),就可以知道命题对/・1也成立,进而再由第二步可知〃,即也成立…这样递推下去就可以知道对于所有不小于斗的正整数都成立.在这一步中,时命题成立,可以作为条件加以运用,而a时的情况则有待利用归纳假设、已知的定义、公式、定理加以证明,不能直接将处=上十】代入命题.二.方法点夜数学归纳法的应用1.用数学归纳法证明恒等式用数学归纳法证明恒等式时,首先要搞清等式两边的结构特点,注意由“Z到“=虹1“时等式两边项的变化情况,关键是如何将式子转化为与归纳假设结构相同的形式,以便使用归纳假设.特别是用数学归纳法证明三角恒等式时,要能熟练运用有关的三角知识,特别是一些三角公式,要密切关注两边三角式的结构特征,特别是"假设g*成立时,到M=也成立"的等式右边的形式,可将此时等式右边的式孑乍为要证的目标,使等式的左边通过三角公式的变换逐步向右边靠拢,最终达到两边完全一致.2.证明不等式用数学归纳法证明不等式的命题,远比证明恒等式困难得多,证明时要灵活运用不等式的性质.结合不等式证明的其他方法,明确“以=4+1"成立时的形式,抓住关键,理清思路,变换出符合形式的不等式.第二步的思路是:假设〃小时不等式成立,就是庭3,如果卜上1时不等式也成立,形式是,为了要证明②,可从式①再推出另一个不等式」之序,使得4二月•(或8=矿).于是只要能证出gq,(或才I"),则根据不等式的传递性可以得以上推理的关键是由①推出式③.至于在证明中究竟是使式③中的口|""4顼为好,还是B=为好,要根据实际条件来决定.3.证明几何问题用数学归纳法证明几何问题时,要注意结合几何图形的性质,在求由"7”到“1+1“增加的元素个数时,可以先用不完全归纳法找出其变化规律.4.证明数或式的整除问题用数学归纳法证明]余性问题必然会涉及数或式的整除性的知识,应适当复习・例如:①c\a^c\pa[②c\a,c b^c\(a-b\.题瞄井题模一数学归纳法的原理和步£例LL111用数学归纳法证明1+三+§+...+<n(neN+l n>l)时,笫一步应验证不等式()111A、3 B.--1+2<21+2+3<211111C>~-D、亍三;1+2+3<31+2+3+4<3例1.2、11113用数学归纳法证明不等式” +L +〃十2>24的过程中,由推导k+1”时,不等式的左边增加了()A--------------(&+l)+(k+l)、侬+1)+侬+1)丁#侬+1)(k+l)+(k+l)/+传+1). B、1FTID、以上都不对例1.3、某同学回答"用数学归纳法证明W qc+I e N」,,的过程如下:证明:(1)当卜1时,显然命题是正确的;(2)假设m"时,有般-Sk-L那么当”=卜1时,顼虹1).♦阵JF_3HJ好H4=优-1)-1,所以当”=技1时命题是正确的,由(1)(2)可知对于心匕命题都是正确的.以上证法是错误的,错误在于()A、从&到5的推理过程没有使用归b、归纳假设的写法不正确纳假设C、从*到的推理不严密D、”=1时,验证过程不具体题模二数学归纳法的应用例2.1、用数学归纳法证明:当心艾时,(1、2:-2乂3:}+(3乂4:-4工5;-2M(2n*lf'=-?l(*l-rl)(4?2-r3j例2.2、已知伞3•求证:"-(H)(耳冲-矗H扃^一例2.3、平面内有芥个园都交于两点,其中每两个圆都交于两点,且无三个圆交于一点,求证:这刃个圆将平面分成*-刀-2个部分.例2.4、求证:,国=涉顷3,。

高中数学讲义:数学归纳法

高中数学讲义:数学归纳法

数学归纳法一、基础知识:1、数学归纳法适用的范围:关于正整数n 的命题(例如数列,不等式,整除问题等),则可以考虑使用数学归纳法进行证明2、第一数学归纳法:通过假设n k =成立,再结合其它条件去证1n k =+成立即可。

证明的步骤如下:(1)归纳验证:验证0n n =(0n 是满足条件的最小整数)时,命题成立(2)归纳假设:假设()0,n k k n n N =³Î成立,证明当1n k =+时,命题也成立(3)归纳结论:得到结论:0,n n n N ³Î时,命题均成立3、第一归纳法要注意的地方:(1)数学归纳法所证命题不一定从1n =开始成立,可从任意一个正整数0n 开始,此时归纳验证从0n n =开始(2)归纳假设中,要注意0k n ³,保证递推的连续性(3)归纳假设中的n k =,命题成立,是证明1n k =+命题成立的重要条件。

在证明的过程中要注意寻找1n k =+与n k =的联系4、第二数学归纳法:在第一数学归纳法中有一个细节,就是在假设n k =命题成立时,可用的条件只有n k =,而不能默认其它n k £的时依然成立。

第二数学归纳法是对第一归纳法的补充,将归纳假设扩充为假设n k £,命题均成立,然后证明1n k =+命题成立。

可使用的条件要比第一归纳法多,证明的步骤如下:(1)归纳验证:验证0n n =(0n 是满足条件的最小整数)时,命题成立(2)归纳假设:假设()0,n k k n n N £³Î成立,证明当1n k =+时,命题也成立(3)归纳结论:得到结论:0,n n n N ³Î时,命题均成立二、典型例题例1:已知等比数列{}n a 的首项12a =,公比3q =,设n S 是它的前n 项和,求证:131n n S n S n++£思路:根据等比数列求和公式可化简所证不等式:321n n ³+,n k =时,不等式为321k k ³+;当1n k =+时,所证不等式为1323k k +³+,可明显看到n k =与1n k =+中,两个不等式的联系,从而想到利用数学归纳法进行证明证明:()11311n nn a q S q -==--,所证不等式为:1313131n n n n+-+£-()()()1313131n n n n +\-£+-1133331n n n n n n n ++Û×-£×+--321n n Û³+,下面用数学归纳法证明:(1)验证:1n =时,左边=右边,不等式成立(2)假设()1,n k k k N =³Î时,不等式成立,则1n k =+时,()()133332163211k k k k k +=׳+=+>++所以1n k =+时,不等式成立n N *\"Î,均有131n n S n S n++£小炼有话说:数学归纳法的证明过程,关键的地方在于寻找所证1n k =+与条件n k =之间的联系,一旦找到联系,则数学归纳法即可使用例2(2015,和平模拟):已知数列{}n a 满足0n a >,其前n 项和1n S >,且()()112,6n n n S a a n N *=++Î(1)求数列{}n a 的通项公式(2)设21log 1n n b a æö=+ç÷èø,并记n T 为数列{}n b 的前n 项和,求证:233log ,2n n a T n N *+æö>Îç÷èø解:(1)2632n n n S a a =++①()21116322,n n n S a a n n N *---=++³Î②①-②可得:()222211116333n n n n n n n n n a a a a a a a a a ----=-+-Þ+=-0n a >Q 所以两边同除以1n n a a -+可得:13n n a a --={}n a \是公差为3的等差数列()131n a a n \=+-,在2632n n n S a a =++中令1n =可得:211116321S a a a =++Þ=(舍)或12a =31n a n \=-(2)思路:利用(1)可求出n b 和n T ,从而简化不等式可得:33633225312n n n +æö×××>ç÷-èøL ,若直接证明则需要进行放缩,难度较大。

2024高考数学数学归纳法知识点整理

2024高考数学数学归纳法知识点整理

2024高考数学数学归纳法知识点整理数学归纳法是高中数学中的重要概念和解题方法之一。

它是一种推理方法,用于证明一些关于整数或正整数的性质。

在高考数学中,对于数学归纳法的理解和运用都是必备的知识点。

本文将整理归纳了2024年高考数学数学归纳法的知识点,以帮助同学们更好地理解和掌握这一内容。

1. 数学归纳法的基本思想数学归纳法是一种证明方法,基本思想是:首先证明当n=1时命题成立,然后假设当n=k时命题成立,再证明当n=k+1时命题也成立。

这样,就可以通过递推的方式证明命题对于所有正整数都成立。

2. 数学归纳法的三个步骤数学归纳法主要包含三个步骤:2.1 基础步骤(或称初始步骤)首先,我们需要证明当n=1时命题成立。

这是数学归纳法的基础,也是推理的起点。

2.2 归纳步骤(或称归纳假设)假设当n=k时命题成立,我们需要证明当n=k+1时命题也成立。

这是数学归纳法的关键,通过这一步骤我们可以建立起命题成立的递推关系。

2.3 归纳结论在经过归纳步骤后,我们可以得出结论:对于所有大于等于1的正整数n,命题都成立。

这是数学归纳法的最终目标,通过这一步骤我们将命题的正确性扩展到了所有正整数上。

3. 数学归纳法的应用数学归纳法在高考数学中有广泛的应用。

下面列举几个常见的应用场景:3.1 证明数列的性质我们可以使用数学归纳法证明某个数列的性质。

以等差数列为例,假设我们已知当n=k时等差数列的某个性质成立,通过归纳步骤可以推导出当n=k+1时该性质也成立。

3.2 证明数学等式数学归纳法也可以用来证明某些数学等式的成立。

例如,我们可以使用数学归纳法证明等式1+2+...+n=n(n+1)/2。

3.3 证明不等式的性质对于一些数学不等式,我们也常常使用数学归纳法进行证明。

例如,证明2^n > n^2对于所有大于等于5的正整数n成立。

4. 数学归纳法的注意事项在使用数学归纳法时,需要注意以下几个方面:4.1 对于基础步骤的证明要充分,不能遗漏。

高中数学解题基本方法之数学归纳法

高中数学解题基本方法之数学归纳法

五、数学归纳法归纳是一种有特殊事例导出一般原理的思维方法。

归纳推理分完全归纳推理与不完全归纳推理两种。

不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。

完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。

数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。

它是一个递推的数学论证方法,论证的第一步是证明命题在n =1(或n 0)时成立,这是递推的基础;第二步是假设在n =k 时命题成立,再证明n =k +1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。

这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或n ≥n 0且n ∈N )结论都正确”。

由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。

运用数学归纳法证明问题时,关键是n =k +1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。

运用数学归纳法,可以证明下列问题:与自然数n 有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。

Ⅰ、再现性题组:1. 用数学归纳法证明(n +1)(n +2)…(n +n)=2n·1·2…(2n -1) (n ∈N ),从“k 到k +1”,左端需乘的代数式为_____。

A. 2k +1 B. 2(2k +1) C. 211k k ++ D. 231k k ++ 2. 用数学归纳法证明1+12+13+…+121n -<n (n>1)时,由n =k (k>1)不等式成立,推证n =k +1时,左边应增加的代数式的个数是_____。

A. 2k -1B. 2k -1C. 2kD. 2k+1 3. 某个命题与自然数n 有关,若n =k (k ∈N)时该命题成立,那么可推得n =k +1时该命题也成立。

数学归纳法高中知识点总结

数学归纳法高中知识点总结

数学归纳法高中知识点总结一、数学归纳法的概念数学归纳法是一种数学证明方法,它通过证明一个命题在某个基本情形成立,然后证明它在某一个情形成立时也在下一个情形成立,从而证明这个命题对所有情形都成立。

数学归纳法通常包括以下两个基本步骤:1. 基础情形的证明:首先证明当n取某个基本值时命题成立,通常情况下取n=1时成立。

2. 归纳假设的证明:假设当n=k时命题成立,然后证明在n=k+1时命题也成立。

通过这两个步骤可以证明对于所有的正整数n都成立,这就是数学归纳法的基本原理。

二、数学归纳法的步骤数学归纳法的具体步骤可以分为以下几个步骤:1. 确定基础情形:首先需要确定要证明的命题的基础情形,通常取n=1。

2. 证明基础情形成立:证明当n取基础值时命题成立。

3. 假设归纳前提成立:假设当n=k时命题成立,即归纳假设。

4. 证明归纳假设成立:证明当n=k+1时命题也成立。

5. 结论:根据数学归纳法的原理,得出对所有正整数n命题成立的结论。

通过以上步骤可以完整地运用数学归纳法来证明一个命题对所有正整数n成立的结论。

三、高中数学中的数学归纳法应用知识点数学归纳法在高中数学中有着广泛的应用,主要包括以下几个知识点:等差数列、等比数列、二次不等式、整式的推广、不等式的证明等。

1. 等差数列等差数列是一类数学中常见的数列,它的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为项数,an为第n项。

在高中数学中,我们经常需要证明一些等差数列的性质,如等差数列的通项公式、前n项和公式等。

而数学归纳法正是证明这些性质的有效方法之一。

2. 等比数列等比数列是另一类常见的数列,它的通项公式为an=a1*q^(n-1),其中a1为首项,q为公比,n为项数,an为第n项。

在高中数学中,我们同样需要证明一些等比数列的性质,如等比数列的通项公式、前n项和公式等。

数学归纳法同样可以用来证明这些性质。

3. 二次不等式在高中数学中,我们学习了很多的二次不等式,如x^2>0,ax^2+bx+c>0等。

数学归纳法高中知识点总结

数学归纳法高中知识点总结

数学归纳法高中知识点总结数学归纳法是数学中一种重要的证明方法,它在高中数学中也是一个重点知识点。

在本文中,将对数学归纳法的概念、原理以及具体应用进行总结。

希望通过本文的阐述,能够帮助大家更好地理解和掌握数学归纳法的相关知识。

一、概念和原理数学归纳法是一种用于证明某个命题对于所有自然数都成立的方法。

它的基本思想是:首先证明当n=m时命题成立,然后假设当n=k时命题成立,再证明当n=k+1时命题也成立,从而可以得出结论:对于任意自然数n,命题都成立。

数学归纳法的推理过程分为两步:归纳基础和归纳步骤。

归纳基础是证明当n=m时命题成立,通常情况下令m=1或m=0。

归纳步骤是证明当n=k+1时,命题也成立。

二、具体应用1. 证明数学等式或不等式的成立数学归纳法可以用来证明一些与自然数有关的等式或不等式的成立。

具体的做法是,首先证明当n=m时命题成立,再假设当n=k时命题成立,证明当n=k+1时命题也成立,从而得出结论:对于任意自然数n,命题都成立。

例如,我们要证明1+2+3+...+n = n(n+1)/2对于任意正整数n成立。

首先当n=1时,显然等式两边相等。

然后假设当n=k时等式成立,即1+2+3+...+k=k(k+1)/2。

我们需要证明当n=k+1时等式也成立。

根据归纳步骤,易知1+2+3+...+(k+1) = (k+1)(k+2)/2。

因此,通过数学归纳法,我们可以证明该等式对于任意正整数n成立。

2. 证明命题关于自然数集的成立数学归纳法还可以用于证明一些命题关于自然数集的成立。

通常情况下,我们需要在归纳步骤中利用归纳假设来进行推理。

例如,我们要证明命题P(n):1+3+5+...+(2n-1) = n^2对于任意正整数n成立。

首先当n=1时,命题显然成立。

然后假设当n=k时命题成立,即1+3+5+...+(2k-1) = k^2。

我们需要证明当n=k+1时命题也成立。

根据归纳步骤,易知1+3+5+...+(2(k+1)-1) = (k+1)^2。

高中数学数学归纳法解析

高中数学数学归纳法解析

高中数学数学归纳法解析在高中数学学习过程中,归纳法(Mathematical Induction)是一种重要的证明方法,常常应用于数列、等式、不等式等数学问题的证明和推导过程中。

通过递推的方式,它可以帮助我们推广数学结论,解决一类问题,提高解题的效率。

本文将对高中数学中的归纳法进行解析和说明。

一、归纳法基本原理归纳法的基本思想是通过证明“第一步成立,第n步成立则第n+1步也成立”的方法,推导出某个结论在无穷个特定情形下成立。

归纳法主要包括三个步骤:1. 第一步:证明当n取某个特定值时结论成立,通常n=1或n=0;2. 第二步:假设当n=k时结论成立,即假设第k步成立;3. 第三步:通过上述假设,证明当n=k+1时结论也成立,即证明第k+1步成立。

通过上述三个步骤的证明,就可以得出结论在所有特定情形下成立的结论。

二、归纳法的应用举例1. 数列问题归纳法在数列问题的证明中经常被使用。

假设我们有一个数列an,首项a1满足某种条件,同时假设当n=k时结论成立,即an=k成立,通过归纳法证明当n=k+1时结论也成立,即an=k+1也成立。

举例来说,现有一个数列an,前两项已知,a1=1,a2=2,且an=an-1+an-2成立。

我们通过归纳法可以证明这个数列从第三项开始每一项都满足此公式。

2. 等式和不等式问题归纳法在等式和不等式问题的证明中同样可以发挥重要作用。

在证明某个等式或者不等式对于所有特定情形成立时,我们可以通过归纳法简化证明过程。

同样地,我们需要证明当n取特定值时等式或者不等式成立,假设当n=k时结论成立,通过归纳法证明当n=k+1时结论也成立。

举例来说,我们要证明n非负整数时,2的n次方大于等于n。

首先,我们证明当n=0时,2的0次方大于等于0是成立的。

然后,假设当n=k时2的k次方大于等于k成立,通过归纳法证明当n=k+1时结论也成立,即2的k+1次方大于等于k+1也成立。

三、总结归纳法是一种重要的数学证明方法,在高中数学学习中具有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.4 数学归纳法一、填空题1.用数学归纳法证明1+12+13…+12n -1<n (n ∈N ,且n >1),第一步要证的不等式是________.解析 n =2时,左边=1+12+122-1=1+12+13,右边=2.答案 1+12+13<22.用数学归纳法证明:121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 .解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3)=k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3)即可.答案 k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3)3.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析 ∵f (k )=12+22+…+(2k )2,∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2; ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2.答案 f (k +1)=f (k )+(2k +1)2+(2k +2)23.若存在正整数m ,使得f (n )= (2n -7)3n +9(n ∈N *)能被m 整除,则m =________.解析 f (1)=-6,f (2)=-18,f (3)=-18,猜想:m =-6. 答案 64.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N *)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开的式子是________.解析 假设当n =k 时,原式能被9整除,即k 3+(k +1)3+(k +2)3能被9整除. 当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将 (k +3)3展开,让其出现k 3即可. 答案 (k +3)35.用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k的基础上加上________.解析 ∵当n =k 时,左侧=1+2+3+…+k 2, 当n =k +1时,左侧=1+2+3+…+k 2+(k 2+1)+…+(k +1)2, ∴当n =k +1时,左端应在n =k 的基础上加上(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2. 答案 (k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)26.用数学归纳法证明1-12+13-14+…+12n -1-12n =1n +1+1n +2+12n,则当n =k +1时,左端应在n =k 的基础上加上________.解析 ∵当n =k 时,左侧=1-12+13-14+…+12k -1-12k 当n =k +1时,左侧=1-12+13-14+…+12k -1-12k +12k +1-12k +2.答案12k +1-12k +27.设平面内有n 条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n 条直线交点的个数,则f(4)= ;当n>4时,f(n)= (用n 表示). 答案:5 1(1)(2n n +-2)解析:f(3)=2,f(4)=5,f(5)=9,每增加一条直线,交点增加的个数等于原来直线的条数. ∴f(4)-f(3)=3, f(5)-f(4)=4, …f(n)-f(n-1)=n-1.累加得f(n)-f(3)=3+4+…+(n -1) 3(2)(2)2n n +-=-.∴1()(1)(2f n n n =+-2).8.用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取________.解析 右边=1+12+14+…+12n -1=1-⎝ ⎛⎭⎪⎫12n1-12=2-12n -1,代入验证可知n 的最小值是8. 答案 89.在数列{a n }中,a 1=13且S n =n (2n -1)a n ,通过计算a 2,a 3,a 4,猜想a n 的表达式是________.解析 当n =2时,a 1+a 2=6a 2,即a 2=15a 1=115;当n =3时,a 1+a 2+a 3=15a 3, 即a 3=114(a 1+a 2)=135; 当n =4时,a 1+a 2+a 3+a 4=28a 4, 即a 4=127(a 1+a 2+a 3)=163. ∴a 1=13=11×3,a 2=115=13×5,a 3=135=15×7,a 4=17×9,故猜想a n =12n -12n +1. 答案 a n =12n -12n +110.用数学归纳法证明(n +1)(n +2)…(n +n )=2n ·1·3…(2n +1)(n ∈N *),从“k 到k +1”左端需乘的代数式是________.解析 左端需乘的代数式是2k +12k +2k +1=2(2k +1).答案 2(2k +1)11.如下图,在杨辉三角形中,从上往下数共有n (n ∈N *)行,在这些数中非1的数字之和是________________.1 1 1 12 1 13 3 1 14 6 4 1…解析 所有数字之和S n =20+2+22+…+2n -1=2n -1, 除掉1的和2n -1-(2n -1)=2n -2n . 答案 2n -2n12.对于不等式n 2+n <n +1(n ∈N *),某同学应用数学归纳法的证明过程如下: (1)当n =1时,12+1<1+1,不等式成立. (2)假设当n =k (k ∈N *)时,不等式成立, 即k 2+k <k +1,则当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1,∴当n =k +1时,不等式成立.则上述证法中________________(哪一步推理)不正确. 解析 此同学从n =k 到n =k +1的推理中没有应用归纳假设. 答案 从n =k 到n =k +1的推理13.12-22+32-42+…+(-1)n -1·n 2,当n 分别取1,2,3,4时的值依次为________,所以猜想原式=________. 解析 当n =1时,原式=12=1=(-1)1-1·1×(1+1)2当n =2时,原式=12-22=-3=(-1)2-1·2×(2+1)2当n =3时,原式=12-22+32=6=(-1)3-1·3×(3+1)2当n =4时,原式=12-22+32-42=-10=(-1)4-1·4×(4+1)2∴猜想原式=(-1)n -1·n (n +1)2.答案 1,-3,6,-10 (-1)n -1·n n +12二、解答题14.已知数列{a n }满足a n +1=-a 2n +pa n (p ∈R ),且a 1∈(0,2),试猜想p 的最小值,使得a n ∈(0,2)对n ∈N *恒成立,并给出证明. 证明 当n =1时,a 2=-a 21+pa 1=a 1(-a 1+p ). 因为a 1∈(0,2),所以欲使a 2∈(0,2)恒成立,则要⎩⎨⎧p >a 1,p <a 1+2a 1恒成立,解得2≤p ≤22,由此猜想p 的最小值为2.因为p ≥2,所以要证该猜想成立,只要证:当p =2时,a n ∈(0,2)对n ∈N *恒成立.现用数学归纳法证明: ①当n =1时结论显然成立;②假设当n =k 时结论成立,即a k ∈(0,2), 则当n =k +1时,a k +1=-a 2k +2a k =a k (2-a k ), 一方面,a k +1=a k (2-a k )>0成立,另一方面,a k +1=a k (2-a k )=-(a k -1)2+1≤1<2, 所以a k +1∈(0,2),即当n =k +1时结论也成立. 由①②可知,猜想成立,即p 的最小值为2. 15.在数列{a n }中,对于任意n ∈N *,a n +1=4a 3n -3a n . (1)求证:若|a n |>1,则|a n +1|>1; (2)若存在正整数m ,使得a m =1,求证:①|a1|≤1;②a1=cos 2kπ3m-1(其中k∈Z).(参考公式:cos 3α=4cos3α-3cos α)证明(1)因为|a n|>1,a n+1=4a3n-3a n.所以|a n+1|=|4a3n-3a n|=|a n|(4|a n|2-3)>1.(2)①假设|a1|>1,则|a2|=|4a31-3a1|=|a1|(4|a1|2-3)>1.若|a k|>1,则|a k+1|=|4a3k-3a k|=|a k|(4|a k|2-3)>1.所以当|a1|>1时,有|a n|>1(n∈N*),这与已知a m=1矛盾,所以|a1|≤1.②由①可知,存在θ,使得a1=cos θ,则a2=4cos3θ-3cos θ=cos 3θ.假设n=k时,有a n=cos 3n-1θ,即a k=cos 3k-1θ,则a k+1=4a3k-3a k=4(cos 3k-1θ)3-3(cos 3k-1θ)=cos 3kθ.所以对任意n∈N*,a n=cos 3n-1θ,则a m=cos 3m-1θ=1,3m-1θ=2kπ,其中k∈Z.即θ=2kπ3m-1.所以a1=cos 2kπ3m-1(其中k为整数).16.在数列{a n}中,a1=1,a n+1=c-1an .(1)设c=52,b n=1an-2,求数列{b n}的通项公式;(2)求使不等式a n<a n+1<3成立的c的取值范围.解析(1)a n+1-2=52-1an-2=an-22a n,1a n+1-2=2a nan-2=4an-2+2,即b n+1=4b n+2.b n+1+23=4⎝⎛⎭⎪⎫bn+23,又a1=1,故b 1=1a 1-2=-1, 所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫b n +23是首项为-13,公比为4的等比数列,b n +23=-13×4n -1,b n =-4n -13-23.(2)a 1=1,a 2=c -1,由a 2>a 1,得c >2. 用数学归纳法证明:当c >2时,a n <a n +1. ①当n =1时,a 2=c -1a 1>a 1,命题成立;②设当n =k 时,a k <a k +1, 则当n =k +1时,a k +2=c -1a k +1>c -1a k=a k +1.故由①②知当c >2时,a n <a n +1. 当c >2时,因为c =a n +1+1a n >a n +1a n,所以a 2n -ca n +1<0有解, 所以c -c 2-42<a n <c +c 2-42,令α=c +c 2-42,当2<c ≤103时,a n <α≤3. 当c >103时,α>3,且1≤a n <α, 于是α-a n +1=1a n α(α-a n )<13(α-a n )<132(α-a n -1)<…<13n (α-1). 所以α-a n +1<13n (α-1),当n >log 3α-1α-3时,α-a n +1<α-3,a n +1>3,与已知矛盾. 因此c >103不符合要求. 所以c 的取值范围是⎝⎛⎦⎥⎤2,103.17.已知在正项数列{a n }中,对于一切的n ∈N *均有a 2n ≤a n -a n +1成立. (1)证明:数列{a n }中的任意一项都小于1; (2)探究a n 与1n的大小,并证明你的结论.证明 (1)由a 2n ≤a n -a n +1,得a n +1≤a n -a 2n .因为在数列{a n }中,a n >0, 所以a n +1>0.所以a n -a 2n >0. 所以0<a n <1.故数列{a n }中的任意一项都小于1.(2)由(1)知0<a n <1=11,那么a 2≤a 1-a 21=-⎝ ⎛⎭⎪⎫a 1-122+14≤14<12,由此猜想:a n <1n(n ≥2),下面用数学归纳法证明:①当n =2时,显然成立;②当n =k 时(k ≥2,k ∈N )时,假设猜想正确, 即a k <1k ≤12,那么a k +1≤a k -a 2k =-⎝ ⎛⎭⎪⎫a k -122+14<-⎝ ⎛⎭⎪⎫1k -122+14=1k -1k 2=k -1k 2<k -1k 2-1=1k +1, 故当n =k +1时,猜想也正确. 综上所述,对于一切n ∈N *,都有a n <1n.18. 设函数y =f(x),对任意实数x ,y 都有f(x +y)=f(x)+f(y)+2xy. (1)求f(0)的值;(2)若f(1)=1,求f(2),f(3),f(4)的值;(3)在(2)的条件下,猜想f(n)(n∈N *)的表达式并用数学归纳法证明. 【解题指南】(1)令x ,y 均为0可得f(0); (2)利用递推条件可得f(2),f(3),f(4);(3)证明时要利用n =k 时的假设及已知条件进行等式转化.【解析】(1)令x =y =0,得f(0+0)=f(0)+f(0)+2×0×0,得f(0)=0. (2)由f(1)=1,得f(2)=f(1+1)=f(1)+f(1)+2×1×1=4.f(3)=f(2+1)=f(2)+f(1)+2×2×1=9.f(4)=f(3+1)=f(3)+f(1)+2×3×1=16.(3)由(2)可猜想f(n)=n2,用数学归纳法证明:(i)当n=1时,f(1)=12=1显然成立.(ii)假设当n=k时,命题成立,即f(k)=k2,则当n=k+1时,f(k+1)=f(k)+f(1)+2×k×1=k2+1+2k=(k+1)2,故当n=k+1时命题也成立,由(i),(ii)可得,对一切n∈N*都有f(n)=n2成立.。

相关文档
最新文档