量子力学习题解答-第2章

合集下载

量子力学第2章习题

量子力学第2章习题

240
n6 6
,
n = 1, 2, 3L
n 为偶 n 为奇
能量平均值
E
a

dx
0
a c2 x(a
0
x)(
h2 2μ
)
d2 dx 2
x(a
x)dx
h2 30 a
5h2
x(a x)dx
μ a5 0
μa 2
能量平方的平均值
E 2
a

2
dx
0
a c2 x(a
0
x)(
h2 )2 2μ
a
2
讨论:显然 M 0, N 0,且N M > 0
令:
N M =n N nM
= n ,
a
En
2h2 2a2
n2 ,
n 1, 2,L
( x) = Asin( 1 n x + 1 n + M )
a
2
Asin n x + a
a2
(2.4)题
先归一化
1 a dx a A2 x2 ( x a)2 dx
(
z
)
=
0
2 3
2 μE3 h2
方程的解:
1( x) = A1sin(1 x) + B1cos(1 x) 2( y) = A2sin(2 y) + B2cos(2 y) 3(z) = A3sin(2z) + B3cos(3z)
( x, y, z) =1( x) 2( y) 3(z) = [ A1sin(1 x) + B1cos(1 x)] [ A2sin(2 y) + B2cos(2 y)] [ A3sin(2z) + B3cos(3z)]

量子力学解答(1-2 章)

量子力学解答(1-2 章)

ψ (0) = 0, ψ ( a ) = 0,
B ≠ 0, ⇒ k =
⇒ A=0 ⇒ B sin ka = 0
归一化,


i ⎧ 2 nπ − h E n t sin xe , ⎪ 得: ψ n ( x, t ) = ⎨ a a ⎪ 0, ⎩

ww

a
0
B 2 sin 2
nπx dx = 1, ⇒ B = a
&dx = ∫ mx & ∫ pdq = ∫ mx

3 h 2 k 2 n 2 1/ 3 ( ) , n = 1,2,3... 2 m v v kr ) 证明: 注意到 F = − = − kr , 径向牛顿力学方程为 r k k = ma n = mrω 2 , 即 rω 2 = m 0 0 v ˆ ⋅ dr = ∫ − kdr = kr 选取 r=0 为势能零点, 势能为 E p = ∫ − kr
ww
对全空间积分并注意可与对时间求导交换,得:
//
w.
∂ * h2 h2 * 2 2 * ih (ψ 1ψ 2 ) = − (ψ 1 ∇ ψ 2 − ψ 2 ∇ ψ 1 ) = − ∇ ⋅ (ψ 1*∇ψ 2 − ψ 2 ∇ψ 1* ) ∂t 2m 2m
粒子在一维势场 V(x) 中运动,V(x) 无奇点,设
v

∫ψψ
全 * 1
2

之值与时间无关. 证明: 由 Schrodinger 方程:
∂ψ 1 h2 2 ih = (− ∇ + V )ψ 1 ∂t 2m ih ∂ψ 2 h2 2 = (− ∇ + V )ψ 2 ∂t 2m ∂ψ 1* h2 2 = (− ∇ + V )ψ 1* ∂t 2m

量子力学习题及答案

量子力学习题及答案
?2k ( 7 )
(7)代入(6)
csin2kk22a?dcos2k2a??kccos2k2a?
k21
kdsin2k2a
1
利用(4)、(5),得
k1k2kasin2k2a?acos2k2a??acos2k2a?2kdsin2k2a
1
a[(
k1k2k?2k)sin2k2a?2cos2k2a]?0
1?a?0
?
2
2?
??4
??0?e?4(b?x)对于区域Ⅰ,u(x)??,粒子不可能到达此区域,故?1(x)?0
而. ????2? (u0?e)
2
0?
2
?2?①
??2? (u1?e)
3
???
2
?3?0 ②
??2?e4
???
2
?
4
?0
对于束缚态来说,有?u?e?0
∴ ????k21?2?0 k22? (u0?e)
因此k1x
??1?ae ?
3
?fe
?k
1x
由波函数的连续性,有
?1(0)??2(0),?a?d(4)
?1?(0)???2
(0),?k1a?k2c (5)??(2a)??1a
3?(2a),?k2ccos2k2a?k2dsin2k2a??k?2k2
1fe(6)
?1a
2(2a)??3(2a),?csin2k2a?dcos2k2a?fe
1???k1?1?1?2?(u0?e)?????2??k22?2?0 (2) k22?2?e?2
束缚态0<e<u0 ??
??3??k2
1?3?0 (3)?1x
1?ae
?k?be
?k1x

量子力学——第二章作业参考答案

量子力学——第二章作业参考答案

+
⎛ ⎜ ⎝
∂ψ ∂t
*

+
∂ψ ∂t

*
⎞ ⎟


(2)
ψ 、ψ * 满足薛定谔方程
i
∂ψ ∂t
=
⎛ ⎜ ⎝

2
2m
∇2
+V
⎞⎟ψ ⎠

−i
∂ψ * ∂t
=
⎛ ⎜


2
∇2 2m
+V
⎞⎟ψ * , ⎠
(3) (4)
用 ∂ψ * 乘以(3)式加上用 ∂ψ 乘以(4)式得
∂t
∂t
∂ψ ∂t
Vψ *
dt
s
通常 < 2V2 >≠ 0 ,也就是说在整个区域找到粒子的概率随时间发生变化,概率守恒破缺;
即使 < 2V2 >= 0 ,由(8)式知概率守恒也存在局域破缺除非V2 (r ) = 0
(b)证明如下: 由(a)得
d dt
∫∫∫ d 3rψ τ

=
−∫∫ dsi s
j
+
∫∫∫ d 3rψ τ
*
2V2 ψ
第二章作业参考答案
(曾谨言著《量子力学教程》(第二版) 习题 1 P24-P26)
∫ 1.1 证明:(a)能量的平均值 < E >= d 3rψ *Hˆψ ,
哈密顿量 Hˆ = Pˆ 2 2m +V (r ) ,波函数ψ =ψ (r ,t ) ,(1)式变为
(1)
∫ < E >=
d 3r
⎛ ⎜ψ
*
Pˆ 2
+
∂ψ ∂t

量子力学课后习题答案

量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学第二章习题 答案

量子力学第二章习题 答案

第二章习题解答p.522.1.证明在定态中,几率流与时间无关。

证:对于定态,可令)]r ()r ()r ()r ([m 2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与无关。

2.2 由下列定态波函数计算几率流密度:ikr ikr e re r -==1)2( 1)1(21ψψ从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。

解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0r mrk r mr k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。

表示向外传播的球面波。

rmrk r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )(m2i J )2(3020220ik r ik r ik r ik r *2*222-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。

表示向内(即向原点) 传播的球面波。

补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?∞==⎰⎰∞∞dx dx ψψ*∴波函数不能按1)(2=⎰∞dx x ψ方式归一化。

其相对位置几率分布函数为 12==ψω表示粒子在空间各处出现的几率相同。

量子力学习题解答-第2章

量子力学习题解答-第2章


ì0, V ( x ) = í î ¥ ,
则能量本征函数和能量本征值为
- a < x < a 其它地方
y n ( x) =
1 æ n p ö sin ç ( x + a ) ÷ , - a < x < a; n = 1,2,3,... a a è 2 ø
2 2 2 n p h E = n 2 2 m(2 a ) n = 1 是基态(能量最低) , n = 2 是第一激发态。波函数相对于势阱的中心是奇偶交替
定态波函数满足含时薛定谔方程。 对分立谱,定态是物理上可实现的态,粒子处在定态时,能量具有确定值 E n ,其它力 学量(不显含时间)的期待值不随时间变化。对连续谱,定态不是物理上可实现的态(不可 归一化) ,但是它们可以叠加成物理上可实现的态。 含时薛定谔方程的一般解可由定态解叠加而成,在分离谱情况下为
第二章 定态薛定谔方程
本章主要内容概要: 1. 定态薛定谔方程与定态的性质: 在势能不显含时间的情况下,含时薛定谔方程可以通过分离变量法来求解。首先求解 定态薛定谔方程(能量本征值方程)
h 2 d 2 y + Vy = E y . 2 m dx 2
求解时需考虑波函数的标准条件(连续、有限、单值等) 。能量本征函数y n 具有正交归一 性(分立谱)
2
可以是物理上可实现(可归一化)的态。其中叠加系数 f (k ) 由初始波包 Y ( x,0) 决定
Y ( x,0) =
由能量本征函数满足
1 2p
¥
¥ ikx f ( k ) e dk ò -¥
d 函数正交归一性
1 2p
- ikx Y ( x ,0) e dk ò -¥

陈鄂生《量子力学教程》习题答案

陈鄂生《量子力学教程》习题答案

第二章 力学量算符2.1 证明空间反演算符ˆˆ(()())x x ψψ∏∏=-是厄米算符。

指出在什么条件下,ˆd p i dx =- 是厄米算符。

2.2 动量在径向方向的分量定义为1ˆˆˆ2r p r r ⎛⎫=⋅+⋅ ⎪⎝⎭r r p p ,求出ˆr p 在球坐标系中的表示式。

2.3 证明[][]ˆˆˆ,()();,()()ˆx x x x p f x i f x x f p i f p x p∂∂=-=∂∂ 2.4 设算符ˆA满足条件2ˆ1A =,证明ˆˆcos sin i A e i A ααα=+,其中α为实常数. 2.5 设算符ˆˆˆˆˆˆˆ,1KLM LM ML =-=,又设ϕ为ˆK 的本征矢,相应本征值为λ.求证ˆˆu L v M ϕϕ≡≡和也是ˆK 的本征矢,并求出相应的本征值.2.6 粒子作一维运动,2ˆˆ()2p H V x μ=+,定态波函数为n ,ˆ,1,2,3,n H n E n n == (1)证明ˆnm n pm a n x m =,并求出系数nm a . (2)利用(1)式推导求和公式()22222ˆn m nEE n x m m p m μ-=∑ (3)证明()222n m n EE n x m μ-=∑ 2.7 设ˆF为厄米算符,证明在能量表象中下式成立:()21ˆˆˆ,,2n m nk n E E F k F F H k ⎡⎤⎡⎤-=⎣⎦⎣⎦∑ 2.8 已知(,)lm Y θϕ是2ˆˆZL L 和的共同本征函数,本征值分别为2(1)l l m + 和。

令ˆˆˆx y L L L ±=±. (1)证明ˆ(,)lm L Y θϕ±仍是2ˆˆZ L L 和的共同本征函数,求出他们的本征值.(2)推导公式1ˆ(,)(,)lm lm L Y Y θϕθϕ±± 2.9 证明ˆˆ11ˆˆˆˆˆˆˆˆˆˆˆ,,,,,,2!3!A A e Be B A B A A B A A A B -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=++++⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦2.10 设算符ˆA 与ˆB 同它们的对易关系式ˆˆ,A B ⎡⎤⎣⎦都对易,证明1ˆˆˆˆˆ,,n n A B nB A B -⎡⎤⎡⎤=⎣⎦⎣⎦ 1122ˆˆˆˆˆˆ,,ˆˆˆˆˆˆA B A B A B A B A B A B e e e e e e e ⎡⎤⎡⎤-+++⎣⎦⎣⎦==或2.11 设ˆL 为轨道角动量算符。

量子力学导论第2章答案

量子力学导论第2章答案

第二章 波函数与Schrödinger 方程2.1设质量为m 的粒子在势场)(r V中运动。

(a )证明粒子的能量平均值为 ω⋅=⎰r d E 3,ψψψψωV m**22+∇=(能量密度)(b )证明能量守恒公式 0=⋅∇+∂∂s tw⎪⎪⎭⎫⎝⎛∇∂∂+∇∂∂-=**22ψψψψt t m s (能流密度) 证:(a )粒子的能量平均值为(设ψ已归一化)V T r d V mE +=⎪⎪⎭⎫⎝⎛+∇-=⎰322*2ψψ (1) ⎰=ψψV r d V *3 (势能平均值) (2)()()()[]⎰⎰∇⋅∇-∇⋅∇-=⎪⎪⎭⎫ ⎝⎛∇-=ψψψψψψ**3222*32)(2动能平均值r d mm r d T其中T 的第一项可化为面积分,而在无穷远处归一化的波函数必然为0。

因此ψψ∇⋅∇=⎰*322r d mT(3)结合式(1)、(2)和(3),可知能量密度,2**2ψψψψωV m+∇⋅∇=(4)且能量平均值 ⎰⋅=ωr dE 3。

(b )由(4)式,得...2**.....2*22**..2222*2222V Vt m t t t tV V m t t t t t t s V V t mt m s E ωψψψψψψψψψψψψψψψψψψψψψψψψ⎡⎤∂∂*∂∂*∂⎢⎥=∇⋅∇+∇⋅∇++∂⎢∂∂⎥∂∂⎣⎦⎡⎤⎛⎫⎛⎫∂*∂∂*∂∂*∂⎢⎥ ⎪ ⎪=∇⋅∇+∇-∇+∇++⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫∂*∂=-∇⋅+-∇++-∇+ ⎪ ⎪∂∂⎝⎭⎝⎭=-∇⋅+..*t t ψψψψ⎛⎫∂*∂ ⎪+ ⎪∂∂⎝⎭ρt E s ∂∂+⋅-∇=(ρ :几率密度)s⋅-∇= (定态波函数,几率密度ρ不随时间改变)所以0=⋅∇+∂∂s tw。

2.2考虑单粒子的Schrödinger 方程()()()()[]()t r r iV r V t r mt r t i ,,2,2122ψψψ++∇-=∂∂(1) 1V 与2V 为实函数。

量子力学答案 苏汝铿 第二章课后答案2.4-2#05

量子力学答案 苏汝铿 第二章课后答案2.4-2#05

由其它边界条件,又有
A1 sin k1a A2e k2 a B2e k2 a , A1k1 cos k1a A2 k2e k2 a B2 k2e k2 a ; A3 sin k1a A2e k2 ( a b ) B2e k2 ( a b ) , A3k1 cos k1a A2 k2e k2 ( a b ) B2 k2e k2 ( a b ) .
改写上式可得关于不全为 0 系数 ( A1 , A2 , B2 , A3 ) 的线性方程组:
A1 sin k1a
A2e k2a
B2e k2a B2 k2 e k2 a
0, 0, A3 sin k1a 0,
A1k1 cos k1a A2 k2e k2 a
A2 ek2 ( a b ) B2e k2 ( a b )
U0 ) U0 )
2.4 粒子处在势能
பைடு நூலகம்
(当x<0和x>2a+b) U x 0(当0 x a和a+b x 2a+b) U(当a<x<a+b) 0
的场中运动,求在能量小于 U 0 的情况下,决定能量的关系式。 解:
势能如上图所示。 薛定谔方程是:
1 k12 1 =0,
由薛定谔方程及边界条件 1 (0) 0 和 3 (2a b) 0 ,我们有
1 ( x) A1 sin k1 x, 2 ( x) A2ek x B2e k x , 3 ( x) A3 sin[k1 ( x 2a b)],
2 2
当0 x a; 当a x a b; 当a b x 2a b.

量子力学习题解答-第2章

量子力学习题解答-第2章
(三维情况为 )
计算出
反射系数 和透射系数 之和为1.
*习题2.1证明下列三个定理
解:(a)证:假设在定态解把实数 改为复数 ,则
若在 时刻,波函数是归一化的,即
在以后时刻
所以要求在任何时候都有
必须有 ,即 必须为实数。
(b)设 满足定态薛定谔方程
把这个式子取复共轭,注意到 是实的,得到
显然 和 是同一薛定谔方程的解,所以它们的线性叠加

也是同一薛定谔方程的解。显然 是实函数,所以一维定态薛定谔方程的解总可以取为实函数。
(c)对
进行空间反演 ,得到
如果势能 是偶函数,则有
因此 和 是同一薛定谔方程的解,所以它们的线性叠加
也是同一薛定谔方程的解。 ,所以当势能是偶函数,定态薛定谔方程的解总可以取为有确定宇称的解。
*习题2.2
解:如果 ,那么 和它的二次导数有同样的符号。如果 是正值,它将一直增加,这与我们 , 的要求不符,导致函数是不可归一化的。如果 是负值,它将一直减少(绝对值在增大),这同样与我们 , 的要求不符,导致函数是不可归一化的。
能量本征函数为
能量本征值为
含时薛定谔方程的一般解为
当 时,
显然对 测量能量,不可能得到 ,因为现在的能量本征态中,没有这个本征值,所以测量能量得到 的几率为零。现在体系基态的能量为 ,所以测量能量得到 的几率是 ,由
代入
(注意在 时刻,体系的能量期待值不是 ,因为体系的哈密顿是频率为 的谐振子哈密顿。)

由波函数 的归一性,可以得到系数 的归一性
对 态测量能量只能得到能量本征值,得到 的几率是 ,能量的期待值可由
求出。这种方法与用
方法等价。
2.一维典型例子:

量子力学答案 苏汝铿 第二章课后答案2#02

量子力学答案 苏汝铿 第二章课后答案2#02

d 2W dV ( ) 0 , 相 应 的 必 有 ), 则 若 满 足 W ( 0) 0, 且 dx 2 dx
d ( ) 0. dx
(1) 证 决定 2 P 和 3D 态能级的 Schondinger 方程是 (2m
1)
批注 [JL1]:
u "
g2 2 u 2 u V u r r g2 6 v 2 v V v r r



u 2 v2 dr r r
(5)
d r
0

r
u r v 2 r dr r r
2
u 2 v 2 dr 0
0
而在 r 很大时 , 由 I r 的特性知 I r 0 , 所以 J r I r dr 0 , 综合上述可知在
U ( x) ( x d ) U ( x) 0 ( x d )
中运动,求:
(i)当势壁离粒子很远时,对束缚态能量的修正值。并据此说明“远离”的意义; (ii)至少存在一个束缚态时, U 0 和 d 应满足的条件。 解: (1) x d 时,势为无穷大,波函数 0
则 U ( x) 的束缚态不超过 V2 ( x) 的束缚态个数,而后者的束缚态个数为 [
2m a 2

] 1,
则所给的势 U ( x) 对应的束缚态个数在 [
2m a 2 m a 2 ] 和[ ] 1 之间 2
v 无节点,且满足
u(0) v(0) 0 ?
uv ' vu ' (
0
r
4 E2 P E3 D )uvdr ' F (r ) , r '2

曾谨言《量子力学》答案 第2章

曾谨言《量子力学》答案 第2章

刚体的平面平行运动.例如双原子分子的旋转 .按刚体力学,转子的 角动量
,但 是角速度,能量是 E 2

利用量子化条件,将 p 理解成为角动量, q 理解成转角 ,一个周期内的运动理解成旋转一周, 则有
1 2
pdq
(2)
2
0
d 2 nh
1 1
[乙法]见同一图,取 x 为变分参数,取 0 为原点,则有:
I n1 a 2 x 2 n2 b 2 (c x 2 )
求此式变分,令之为零,有:
I
n xx
1
a x
2
2

n (c x)x
2
b (c x ) 2
E c 2 c 2 , p k v vG
vp
c2
v
(7)
G
# [6](1)试用 Fermat 最小光程原理导出光的折射定律
n sin n sin
1 1 2
2
(2)光的波动论的拥护者曾向光的微粒论者提出下述非难: 如认为光是粒子,则其运动遵守最小作用量原理
pdl 0

2 0
sin n xdx
=
(n 1)!! n!! 2
( n 正偶数)来自2 0cos n xdx
(n 1)!! n!!
( n 正奇数)
2
(10)
(a 0)


0
sin ax dx x

(11))

2
( a 0) ( n 正整数, a 0 )


0
e ax x n dx
a
1 m 2 a 2 ,(1)改写为: 2

量子力学曾谨严 第2章作业答案

量子力学曾谨严 第2章作业答案

教材P50 ~ 52:2、3、5、6、7、13 2.解:一维无限深势阱中粒子的本征波函数为⎪⎭⎫ ⎝⎛=ψa x n a x n πsin 2)(,a x <<0 0)(=x n ψ,a x x ><,0计算平均值22cos 1212sin 2)()(0200*a dx a x n x a dx a x n x a dxx x x x aaan n =⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛==⎰⎰⎰ππψψ222220202*223sin 2)()(ππψψn a a dx a x n x a dxx x x x aan n -=⎪⎭⎫ ⎝⎛==⎰⎰(查积分表)因此126112)(2222222a n a x x x x n →∞→⎪⎭⎫ ⎝⎛-=-=-π 在经典力学中,粒子处于dx x x +~的概率为a dx ,而2a x =,则有()1222202a a dx a x x x a=⎪⎭⎫ ⎝⎛-=-⎰因此当∞→n 时,量子力学结果→经典力学结果。

3.解:用p34(12)式⎪⎪⎩⎪⎪⎨⎧≥<⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=ψ2,02,exp exp 221cos 2)(1a x ax a x i a x i a a x a x πππ其Fourier 逆变换为dx px i x p a a ⎪⎭⎫⎝⎛-=⎰-exp )(21)(21ψπΦ ⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=22222cos 2 p a a a pa πππ此即粒子动量表象波函数,因此粒子动量分布的概率密度为2)()(p p W Φ=。

5.解:在0=t 时刻22212m a Eπ=,⎪⎩⎪⎨⎧><<<⎪⎭⎫⎝⎛=ψax x a x a x a x ,0,00,sin 2)0,(π 阱宽为a 2时粒子Hamilton 量的本征问题的解为,3,2,1,82222==n n man πε⎪⎩⎪⎨⎧><<<⎪⎭⎫⎝⎛=Φax x a x a x n a x n 2,0,020,2s i n 1)(π因波函数的定义域不同,所以)0,(x ψ已不是这时的本征态。

周世勋量子力学习题答案(七章全)

周世勋量子力学习题答案(七章全)

第一章 绪论1.1 由黑体辐射公式导出维思位移定律,能量密度极大值所对应的波长m λ与温度T 成反比,即b T m =λ (常数),并近似计算b 的数值,准确到二位有效值。

[解]:由黑体辐射公式,频率在ν与ννd +之间的辐射能量密度为ννπνρννd ec hd kTh 11833-=由此可以求出波长在λ与λλd +之间的能量密度λλρd )( 由于 λν/c =, λλνd cd 2+=因而有:λλπλλρλd ehcd kT hc 118)(5-=令λkT hc x =所以有: 11)(5-=xe Ax λρ (44558c h T k A π=常数) 由 0)(=λλρd d 有0)1(115)(254=⎥⎦⎤⎢⎣⎡---=λλλρd dxe e x e x A d d x x x于是,得: 1)51(=-x e x该方程的根为 965.4=x因此,可以给出,k hcxk hc T m 2014.0==λ即b T m =λ (常数)其中 k hcb 2014.0=2383410380546.110997925.21062559.62014.0--⨯⨯⨯⨯⨯=k m ⋅⨯=-310898.2[注]根据11833-=kTh ec h νννπρ 可求能量密度最大值的频率:令kT h x ν=113-=xe Ax νρ (23338h c T k A π=) 0]11[3=-=ννρνd dxe Ax dx d d d x因而可得 131=⎪⎭⎫ ⎝⎛-x e x此方程的解 821.2=xh kTh kTx 821.2max ==νb T Tb '=⇒'=-1max max νν其中34231062559.610380546.1821.2821.2--⨯⨯=='h k b 1910878.5-⋅︒⨯=s k这里求得m ax ν与前面求得的m ax λ换算成的m ν的表示不一致。

量子力学答案 苏汝铿 第二章课后答案2.7-2#06

量子力学答案 苏汝铿 第二章课后答案2.7-2#06
i t
it 2


2 x 2 ipx x
e dx 1/ 2 e 2 2

2


e

2
2
( x
ipx
2
)
dx
e 2 2 2 1/ 2 e 2
px
2

2

1
1/ 2
1
1/ 2
e

p2 x
2 2
i 2 t 2
这样,动量的概率分布函数 c px (t )
其中 2
得U
2 1 2 2 1 3 2 2 4 4 4 2

(ii)
ˆ x 的本征函数展开,有 将 ( x) 用动量算符 p
( x )


c px t( ) px x(dp)x 其中 px ( x)
=
2 1 3 x x sin x (sin sin ) a a a a
=
1 x 1 3 x sin sin a a a a
1 2 x 2 3 x 1 sin sin 1 ( x) 3 ( x) a a a 2 a 2
=
其中, n

i px x 1 则动量的概率分布振幅为 e 2
2 2
c px (t ) px ( x)dx




1 i px x d x e 1/ 2 e 2 2
2 it 2

it 2
dx
p2x
2
e 1/ 2 e = 2
1 2 x 2 2

陈鄂生《量子力学教程》习题答案第二章力学量算符

陈鄂生《量子力学教程》习题答案第二章力学量算符

陈鄂生《量子力学教程》习题答案第二章_力学量算符陈鄂生《量子力学教程》习题答案第二章_力学量算符含答案第一节算符理论基础1.量子力学中的基本假设包括哪些?它们各自的物理意义是什么?答:量子力学中的基本假设包括:(1) 波函数假设:用波函数Ψ(x)描述微观粒子的运动状态,波函数的模的平方表示找到粒子在空间中某一点的概率。

(2) 物理量算符假设:每个物理量都对应一个算符,而对应的测量值是算符的本征值。

(3) 波函数演化假设:波函数随时间的演化遵循薛定谔方程。

(4) 基态能量假设:系统的最低能量对应于基态,且能量是量子化的。

这些基本假设反映了量子力学的基本原理和规律。

2.什么是算符的本征值和本征函数?答:算符的本征值是指对应于某个物理量的算符的一个特征值,它代表了该物理量的一个可能的测量结果。

本征函数是对应于某个物理量的算符的一个特征函数,它表示的是该物理量的一个可能的状态。

3.什么是算符的厄米性?答:算符的厄米性是指一个算符与其共轭转置算符相等。

对于一个算符A,如果满足A†=A,则称该算符是厄米算符。

4.什么是算符的厄米共轭?答:算符的厄米共轭是指将算符的每一项的系数取复共轭得到的新算符。

对于一个算符A,它的厄米共轭算符A†可以通过将A的每一项的系数取复共轭得到。

5.什么是算符的共同本征函数?答:算符的共同本征函数是指对于两个或多个算符A和B,存在一组波函数Ψ(x)使得同时满足AΨ(x)=aΨ(x)和BΨ(x)=bΨ(x)。

其中a和b分别是A和B的本征值。

6.什么是算符的对易性?答:算符的对易性是指两个算符之间的交换顺序不改变它们的结果。

如果两个算符A和B满足[A,B]=AB-BA=0,则称它们对易。

第二节动量算符1.什么是动量算符?它的本征值和本征函数分别是什么?答:动量算符是描述粒子动量的算符,用符号p表示。

动量算符的本征值是粒子的可能动量值,本征函数则是对应于这些可能动量的波函数。

动量算符的本征函数是平面波函数,即Ψp(x)=Nexp(ipx/ħ),其中N是归一化常数,p是动量的本征值。

量子力学(第二版)答案 苏汝铿 第二章课后答案2.31-2#14

量子力学(第二版)答案 苏汝铿 第二章课后答案2.31-2#14

(射系T (的势83B计.解: 其中22所以由边界条件1(2ik 或12t k =+处的反射有'()2((]k x b x e ϕ--+ ,02(x ϕ由'2ϕ1T t =2T (ii) Tlα'0ik r i tik r i tωω⋅-⋅-在1(,)x y ϕ=在2222mϕ∇=2)E V +在2'2(0,)(0,(0,)(0,y y ϕϕ=='sin yik y θ由上述二式得00c o s s i n xxk k R k k θθ-=+ 反射回来的概率2200c o s s i n x xk k P R k k θθ-==+ 222022()s i n x m E V k k θ+=- 2022mE k =(ii )在x<0时,波函数与(1)中相同,在0<x<t 时Schrodinger 方程为2202mϕ-∇=若取iky kx e ϕ+=,则有:'220k k -+=即 'k k =± 所以0<x<t 的波函数为 '''2(,)()k x k xi k yx y a e b eeϕ-=+综上所述 1(,)()y xxik yik x ik x x y e re eϕ=+ ,0x <''2(,)()y ik yk x k x x y ae be eϕ-=+ ,0x t <<3(,)x i k xx y c e ϕ= ,x t >x k θ='s i n k θi n y k θ=利用边界条件121200(0)(0)()()x x x x d x d x x dx dx ϕϕϕϕ=====⎧⎪⎨=⎪⎩2322()()()()x t x t x t x t d x d x dx dx ϕϕϕϕ=====⎧⎪⎨=⎪⎩得 ''''1(1)'()''x x xik t k t k tik t k t k t xr a bik r k a b ce ae be ik ce k ae k be --+=+⎧⎪-=-⎪⎨=+⎪⎪=-⎩ 解得:2'22'11k t k te r e β-=- ''k i k xk i k x β-=+ 2'2'222'2'22cos 4k t k t k t k t e e R r e e θ--+-==+-14QM-2.33求一维薛定谔方程在势场()2/V x Ze x =-下的能级和波函数,并与势场()()()2/,0,0Ze x x V x x ⎧->⎪=⎨∞≤⎪⎩的结果相比较. 解:根据维里定律()()221122x E V x Ze dx xψ∞-∞==-⎰如果当0x →时,()x ψ不趋于零,上述积分会发散,E 会趋近于负无穷大.这是不可能的,所以我们得到()00ψ=.这样我们就可以用Laplace 变换来解决这个问题. 势能为()V x 一维薛定谔方程为()()()22222d x Ze x E x m dx xψψψ--= ()1 进行变量代换0xζγ==>则()1式变为()()2210d d ψζγψζζζ⎛⎫+-= ⎪⎝⎭()2 对上式使用Laplace 变换,在0ζ>的区域,有()()()()211010sd ss s ds d ψφγφζ+∞''-+-=⎰, ()3其中()()10s s ed ζφψζζ∞-=⎰()()()000lim d d ζψψζψζζ++∆→+∆-=∆解(3)式得:()/212111B s s s s γφ-⎛⎫= ⎪-+⎝⎭/211s s γ-⎛⎫ ⎪+⎝⎭是一个多值函数,但是()1s φ必须是单值的,所以我们有2n γ= 1,2,3,n =则有()12111nB s s s s φ-⎛⎫= ⎪-+⎝⎭其中()0d B d ψζ+=.则()()()()1111Re 1,2;21n s n s s B e B e F n s ζζψζζζ--+=-⎡⎤-==-⎢⎥+⎢⎥⎣⎦ ()0ζ> ()1,2;2F n ζ-是合流超比函数.对0ζ<的区域,引入变换0t ζ=->则()2式变为()()2210d t t dt t ψγψ⎛⎫+--= ⎪⎝⎭ ()4 解为()22111nC s s s s φ+⎛⎫= ⎪--⎝⎭则有()()()()()()111212!1!n k tk n n n k t Ce t t k k ψ-=⎡⎤---=+⎢⎥+⎣⎦∑我们看到(),,t s t ψ→∞→-∞→∞自然边界条件要求()t ψ→∞有限,则必须有0C =.于是在0ζ<区域中0ψ=. 所以题目中的两种势函数都有相同的解()()1,2;2,00,0B e F n ζζζζψζζ-⎧->⎪=⎨≤⎪⎩由2n γ= 1,2,3,n =以及γ=可得2422,1,2,3,2n mZ e E n n=-=。

曾谨言量子力学第二章习题解答

曾谨言量子力学第二章习题解答

第二章习题解答p.522.1.证明在定态中,几率流与时间无关。

证:对于定态,可令)]r ()r ()r ()r ([m2i ]e )r (e )r (e )r (e )r ([m 2i )(m 2i J e )r ( )t (f )r ()t r (**Et iEt i**Et iEt i**Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见tJ 与无关。

2.2 由下列定态波函数计算几率流密度:ikrikrer er -==1)2( 1)1(21ψψ从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。

解:分量只有和r J J 21在球坐标中ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0 r mr k r mr k r r ik r r r ik r r m i r e r r e r e r r e r m i m i J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψrJ 1 与同向。

表示向外传播的球面波。

r mr k r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )(m 2i J )2(3020220ik r ik r ik r ik r *2*222-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ 可见,rJ 与2反向。

表示向内(即向原点) 传播的球面波。

补充:设ikxex =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?∞==⎰⎰∞∞dx dx ψψ*∴波函数不能按1)(2=⎰∞dx x ψ方式归一化。

其相对位置几率分布函数为12==ψω表示粒子在空间各处出现的几率相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(d)对于 情况,我们可以求出,
所以
对于 , ,所以反射系数在这种情况下等于1。
习题2.37:
解:利用三角公式
其中
是一维无限方势阱能量本征函数。归一化
所以
在 时刻,波函数为
其中
是一维无限方势阱能量本征值。
其中
坐标的期待值为
代入
最后得到
*习题2.38:
解:(a)体系的初始波函数为
当右阱壁从 移到 后,体系的能量本征函数和本征值为
对奇函数解 ,在 和 两个区域定态薛定谔方程的解为
在 处波函数连续要求 ( 函数势引起)波函数导数跃变给出
(自然满足)
在 的边界条件给出
由此我们得到能级满足的方程

这正是阱宽为 的无限深势阱的能量本征值中 为偶数的那些,所以在 势在势阱中心存在的情况下,对奇函数解能量本征值没有变化。这是因为波函数在势阱中心为零,所以感受不到此处 势的影响。
消去F得到
反射系数为
(a)由于右边透射波区域势能与左边入射波区域不一样,所以透射系数不能简单地用 ,而应该用透射波几率流密度 比上入射波几率流密度 。其中几率流密度的定义为(一维情况)
对于 情况,代入入射波 ,透射波 ,我们得到
所以
即除了振幅之比外,还有波矢之比出现。
对于 ,代入透射波 ,可以求出 (透射波是指数衰减波,它不能传到无限远处,透射波是实函数,几率流密度公式中的两项相互抵消),所以 。
习题2.44:
解:对偶函数解 ,在 和 两个区域定态薛定谔方程的解为
其中
在 处波函数连续已经满足 ,( 函数势引起)波函数导数跃变给出
在 的边界条件给出
由此我们得到能级满足的方程
数值解这个超越方程(如下图)可以得到解
从图中可以看出,解得的 值略大于
而且随着 的增加越来越靠近 ,所以能量本征值为
此式右边为阱宽为 的无限深势阱的能量本征值,所以在 势在势阱中心存在的情况下,能量本征值比没有时略有增加。当 势的强度减弱( 减小),图中直线变得更加倾斜, 将更加接近于阱宽为 的无限深势阱的能量本征值。当 势的强度增加( 增大),图中直线将变得比较水平, 将接近 , 将接近阱宽为 的无限深势阱的能量本征值 。 时, ,中心的势垒把势阱分割成两个孤立的阱宽为 的无限深势阱。
散射态(连续谱):定态薛定谔方程的解为
尽管散射态不是可归一化的态,但是我们可以用它作为代表来讨论入射粒子(波包)被势反射或透射的情况。由波函数及其导数在 连续和跃变条件,可以得出反射波振幅 ,透射波振幅 与入射波振幅 的关系(设 ,没有从右向左入射的波)。计算出反射波几率流密度 ,投射波几率流密度 ,入射波几率流密度 ,可以得到反射系数 和透射系数 。由几率流密度定义
显然满足Ehrenfest’s定理
如果用 替代 ,则有
其中 ,重复上面的计算,有
显然此时, 仍然满足(也必须满足)。
讨论:当不同的谐振子定态叠加时,只有叠加态中有相邻态时,即有 态时,必须还有 态, 才会以 的形式震荡。
(d)测量能量得到 的几率是 ,得到 的几率是 。
习题2.14
解:本题其实就是以经典频率为 的基态为体系的初始态,体系的哈密顿为
(三维情况为 )
计算出
反射系数 和透射系数 之和为1.
*习题2.1证明下列三个定理
解:(a)证:假设在定态解把实数 改为复数 ,则
若在 时刻,波函数是归一化的,即
在以后时刻
所以要求在任何时候都有
必须有 ,即 必须为实数。
(b)设 满足定态薛定谔方程
把这个式子取复共轭,注意到 是实的,得到
显然 和 是同一薛定谔方程的解,所以它们的线性叠加
习题2.8
解:(a)初始波函数为
归一化
所以
(b)一维无限深势阱的定态波函数为
把初始波函数用定态展开
其中展开系数为
所以测量能量得到基态 的几率为
*习题2.12
解:由

习题2.13
解:(a)归一化
所以
(b)
其中 是谐振子基态和第一激发态的能量。
(c)
利用


或者
由Ehrenfest’s定理
代入谐振子势能 ,及 ,有
由于本征函数的正交性,结果为零。但是对 算苻,干涉项一般不为零( 与 , 与 一般不会正交)
*习题2..7
解:(a) 的图形为
归一化波函数
所以
(b)一维无限深势阱的定态波函数为
把初始波函数用定态展开
其中展开系数为
利用积分公式
可以求出
所以
(c)测量能量得到结果为 的几率是
(d)
其中利用了级数求和公式(这些公式可由函数的傅里叶级数展开式得到,可在数学手册上查到)
习题2.42:
解:定态薛定谔方程在 区域与谐振子的方程完全一样,但是在 处波函数必须为零,所以我们可以从谐振子的本征函数中选出满足在 处的能量本征函数函数,显然 为奇函数的满足我们的要求,而 为偶函数的不满足要求。所以半谐振子势的解是谐振子解中 的那些解。能量本征值为
基态为 的态,这比谐振子基态能量高 。
所以能量为
注意当取 时,单势阱的能量为 ,所以双阱时的两个能量本征值,一个比单阱时大,一个比单阱时低。
对 情况,
满足的方程为
数值解为
所以能量为
但是 的解,不符合波函数必须归一化的要求(在这种情况下,波函数在三个区间都是常数,积分为无限大,或者说不符合我们开始要求的 束缚态的要求。)所以现在我们只有一个解。
*习题2.5
解:
(a)利用哈密顿本征函数的正交归一性
所以
(b)
代入
并令
(c) 时
完成积分得到
(以 为中心的振荡)
(d)由动量期待值与坐标期待值之间的关系
(e)
对 测量能量,得到 的几率为1/2,得到 的几率为1/2.,这个几率同 时刻是一样的,也就是说 不随时间变化,这是能量守恒的体现。
为什么 会随时间变化,而 不随时间变化?因为 是哈密顿算苻的本征函数导数在 处的跃变。同样可以求得波函数导数在 处的跃变为
所以

一起整理得到
其中
这个以 为未知数的方程组有非零解的条件是系数行列式为零,即
得到
这个方程可以表示为
所以我们有两个解 (单势阱时有一个解,双势阱时有两个解,你可以推论当有N个势阱时,应该有N个解)

得到 满足的方程为
数值解这两个方程(注意 )得到
所以我们需要把 用现在的本征函数展开
展开系数可以由傅里叶技巧求出
对能量进行测量得到 的几率为
显然 是最可几几率,所以测量得到 的几率最大,注意这个能量与势阱壁没有移动时的基态能量一样。
(b) 所以次最可几几率是
(c) ,
这正是势阱移动前的基态能量,所以势阱移动前后体系的能量是一样的,这是能量守恒的体现。
下面求出两种情况下的波函数。首先把所有的系数都用 表示,可以解出
对 ,满足 的解,有
所以波函数为
可以看出这是一个偶函数。
归一化
积分得到
解出
这个波函数的图形为
对 ,满足 的解,有
所以波函数为
可以看出这是一个奇函数。
归一化
积分得到
解出
这个波函数的图形为
对 情况, , (我们也只需考虑这种情况),我们得到
(b)一维简谐振子(分立谱,束缚态):
能量本征函数和能量本征值为
其中 厄米多项式,可由母函数 生成
厄米多项式多项式满足递推关系
定义产生算符 与湮灭算符
则有
当处于能量本征态时
(c)一维自由粒子(连续谱,散射态):
定态薛定谔方程为
能量本征函数和本征值为
能量本征函数满足 函数正交归一性
定态波函数为
定态不是物理上可实现的态(不可归一化),它代表一个向右传播的正弦波( )或向左传播的正弦波( ),波的传播速度(相速度)为
定态波函数满足含时薛定谔方程。
对分立谱,定态是物理上可实现的态,粒子处在定态时,能量具有确定值 ,其它力学量(不显含时间)的期待值不随时间变化。对连续谱,定态不是物理上可实现的态(不可归一化),但是它们可以叠加成物理上可实现的态。
含时薛定谔方程的一般解可由定态解叠加而成,在分离谱情况下为
系数 由初始波函数确定

也是同一薛定谔方程的解。显然 是实函数,所以一维定态薛定谔方程的解总可以取为实函数。
(c)对
进行空间反演 ,得到
如果势能 是偶函数,则有
因此 和 是同一薛定谔方程的解,所以它们的线性叠加
也是同一薛定谔方程的解。 ,所以当势能是偶函数,定态薛定谔方程的解总可以取为有确定宇称的解。
*习题2.2
解:如果 ,那么 和它的二次导数有同样的符号。如果 是正值,它将一直增加,这与我们 , 的要求不符,导致函数是不可归一化的。如果 是负值,它将一直减少(绝对值在增大),这同样与我们 , 的要求不符,导致函数是不可归一化的。
能量本征函数为
能量本征值为
含时薛定谔方程的一般解为
当 时,
显然对 测量能量,不可能得到 ,因为现在的能量本征态中,没有这个本征值,所以测量能量得到 的几率为零。现在体系基态的能量为 ,所以测量能量得到 的几率是 ,由
代入
(注意在 时刻,体系的能量期待值不是 ,因为体系的哈密顿是频率为 的谐振子哈密顿。)
所以波函数为
是偶函数。除了能量与 时不同外,形式上这个波函数与 时,能量为 的波函数一样。
(b)*习题2.34:
解: (a)对 情况,定态薛定谔方程的解为
其中
并且我们已经假设在 仅有透射波。由波函数及其导数在 处的连续条件
消去F得到
反射系数为
(b)对于 情况,定态薛定谔方程的解为
相关文档
最新文档