化工原理1
化工原理(第一章第三节)
• 三、流动类型
• 1.层流 层流 • 流体质点作直线运动,即流体分层运动, 流体质点作直线运动,即流体分层运动,层 次分明,彼此互不混杂。 次分明,彼此互不混杂。 在总体上沿管道向前运动, 在总体上沿管道向前运动,同时还在各个方 向作随机的脉动。 向作随机的脉动。
• 2.湍流 湍流 •
• 四、影响流型的因素
• 二、粘度 • 衡量流体粘性大小的物理量叫粘度。 衡量流体粘性大小的物理量叫粘度。 • 粘度的物理意义是促使流体流动产生单位速 度梯度时剪应力的大小。 度梯度时剪应力的大小 。 粘度总是与速度梯度相 联系,只有在运动时才显现出来。 联系,只有在运动时才显现出来。 • 粘度是流体物理性质之一, 粘度是流体物理性质之一 , 其值一般由实验 测定。液体的粘度随温度升高而减小, 测定 。 液体的粘度随温度升高而减小 , 气体的粘 度则随温度升高而增大。 度则随温度升高而增大 。 压力对液体粘度的影响 很小,可忽略不计,气体的粘度, 很小 , 可忽略不计 , 气体的粘度 , 除非在极高或 极低的压力下,可以认为与压力无关。 极低的压力下,可以认为与压力无关。 • 粘度的单位, SI制中为 制中为: .s, 粘度的单位,在SI制中为:Pa .s,常用单位 还有: (P)、厘泊(cP) 它们之间的换算是: (cP), 还有:泊(P)、厘泊(cP),它们之间的换算是: • 1 Pa .s = 10 P = 1000 cP
1. 连续性方程
u1 d2 2 u2 =( d1 )
2. 柏努利方程
p2 1 2 p1 1 2 u2 +Wf u1 +We = gZ2 + ρ + gZ1 + ρ + 2 2 当能量用液柱高度表示时,上式可改写成 当能量用液柱高度表示时, p2 1 2 p1 1 2 u2 +hf u1 +he = Z2 + Z1 + + + ρg ρg 2g 2g 当能量用压力表示时, 当能量用压力表示时,柏氏方程可改写成
化工原理第一章(1)
本门课程主要讨论的内容
1、研究遵循流体动力学基本规律的单元操 作,包括流体流动、流体输送、流体通过 颗粒层的流动。 2、研究遵循热量传递基本规律的单元操 作,包括加热、冷却、冷凝。 3、研究遵循质量传递基本规律的单元操 作,包括蒸馏、吸收、萃取。 4、研究同时遵循热质传递规律的单元操 作,包括气体的增湿与减湿、干燥。
21
p1 表压 当地大气压 p2 真空度 绝对压强 绝对真空 压强的基准和度量
22
绝对压强
1-2-3流体静力学基本方程式 ——研究流体柱内压强沿高度变化的规律
1、推导 在垂直方向上,力的平衡:
p2=p1+ρg(Z1−Z2)
p2A=p1A+W=p1A+ρgA(Z1−Z2)
若Z1面在水平面上
p2=p0+ρgh
p1 = p A + ρgh1
p2 = p B + ρg (h2 − R) + ρ I gR
( p A + ρgz A ) − ( p B − ρgz B ) = Rg ( ρ i − ρ )
(℘ A − ℘B ) = Rg ( ρ i − ρ )
U形压差计直接测得的读数R不是 真正的压差,而是虚拟压强差。
PM m ρm = RT
体积分率表示
yA、yB…yn—气体混合物中各组分的体积分率。
或
M m = M A y A + M B y B + LL + M n y n
19
1-2-2 流体的静压强
1、 静压强 定义:流体垂直作用于单位面积上的压力。
P p = A
2、压强的单位 (1)直接按压强定义:N/m2,Pa(帕斯卡) (2)间接按流体柱高度表示:m H2O柱,mm Hg柱 (3)以大气压作为计量单位:标准大气压(atm), 工程大气压(at)kgf/cm2
化工原理-所有章节
一、 化工生产过程
绪 论
1. 化工生产过程:对原料进行化学加工获得有用产 品的过程称为化工生产过程。
聚氯 乙烯 生产
CH2=CH2+Cl2 CH2Cl—CH2Cl CH2Cl—CH2Cl CHCl=CH2+HCl
2CH2=CH2+2HCl+O2
乙烯 氯 提纯 提纯 单体 合成 反应热 分 离
2CHCl-CH2+2H2O
1. 黏性
① 含义:当流体流动时,流体内部存在着内摩擦力, 这种内摩擦力会阻碍流体的流动,流体的这种特性称为 黏性。 ② 实验 (两平行平板间距很小)
面积A u F
y方向的速度 分布为线性
x 固定板
内摩擦力:运动着的流体内部相邻两流体层间的相 互作用力。
产生内摩擦力的根本原因:流体具有黏性。
2. 牛顿黏性定律
对分子运动作统计平均,以得到表征宏观现象的物理量
宏观上充分小 分子团的尺度<<所研究问题的特征尺寸
物理量都可看成是均匀分布的常量
V=10-5cm3 分子数目N=2.7×1014个
3. 连续性假定 ① 内容 流体由无数的彼此相连的流体质点组成,是一种连 续性介质,其物理性质和运动参数也相应连续分布。 ② 适用范围 绝大多数情况适用,但高真空下的气体不适用。
1.1.2 流体流动中的作用力
一、质量力 作用于所考察对象的每一个质点上的力,并与流 体的质量成正比
二、表面力 1. 表面力:作用于所考察对象表面上的力,与表面积 成正比。 2. 应力:单位面积上所受到的表面力。
3. 表面力的分解
切向力(剪力) 表面力 法向力
剪应力
拉力
压力
拉应力
化工原理1和2的区别
化工原理1和2的区别
《化工原理1》和《化工原理2》是两本不同的教材,它们的内容和重点各
有不同。
《化工原理1》以流体流动、传热及传质分离为重点,论述了化工、石油、轻工、食品、冶金工业等的典型过程原理及应用。
而《化工原理2》的具体内容和重点则不得而知,因为它可能是在《化工原理1》的基础上进行了修订、增补或侧重不同的内容。
此外,不同版本的教材之间也会有差异,比如新增内容、修改部分理论或案例等。
因此,要了解两本教材的具体差异,建议直接查阅这两本教材的目录和内容,或者咨询出版机构或专业人士。
化工原理基本知识点
化工原理基本知识点一、物质转化物质的转化是化工过程中最基本的环节之一、物质转化包括化学反应、分离提取以及催化等。
化学反应是指通过物质之间的化学反应,将原料转化为产物。
分离提取是将混合物中的各种组分分开或提取出所需的组分,常见的分离方法有蒸馏、结晶、吸附、萃取等。
催化是指通过催化剂的作用,促使反应速率提高或选择性改变。
二、能量转移能量转移是指在化工过程中,能量从一个系统传递到另一个系统的过程。
能量转移有传导、传热、传质、传动等形式。
传导是指热量、电流或质量在不同物体或介质之间由高温区向低温区传递的过程。
传热是指热量由高温物体通过传导、对流或辐射途径传递到低温物体的过程。
传质是指物质在不同浓度或温度条件下由高浓度或温度区向低浓度或温度区传递的过程。
传动是指物质在介质中的传递过程,包括传质、传热、传动等。
三、反应原理化学反应原理是研究化学反应中物质的物质转化或化学键的断裂与形成等过程的规律。
反应速率是反应条件下单位时间内反应物消失的量,影响反应速率的因素有温度、浓度、催化剂等。
反应平衡是指在一定温度下,反应物和生成物浓度达到一定比例时,反应物和生成物浓度不再发生变化的状态。
平衡常数是用来描述反应平衡程度的物理量。
四、化工工艺流程化工工艺流程是指将原料经过一系列的物质转化和能量转移的过程,得到所需产物的方法、步骤和设备。
化工工艺流程包括原料准备、反应过程、分离提取、能量转移和产品制备等。
原料准备是指将原料加工处理后,满足反应所需的要求。
反应过程是指根据反应条件,将原料转化为产物的过程。
分离提取是将反应生成物中得到所需产物并与其他组分分离的过程。
能量转移是热量、物质或动能在设备中的传递和转换过程。
产品制备是指根据产品的要求,经过加工、过滤、干燥等工艺,制得成品。
五、工艺控制工艺控制是指对化工工艺流程进行监测和调节,以保证工艺参数的稳定和产品质量的良好。
工艺控制包括温度、压力、流量、质量、液位等参数的调节和监测。
化工原理(1)
一、名词解释绪论1.单元操作:使物质发生组成、状态、能量等变化的物理过程2.动量传递:在流体质点随机运动和碰撞过程中,动量从速度大处向速度小处传递的过程。
3.热量传递:流体内部因温度不同,热量从温度高处向温度低处传递的过程。
4.质量传递:因物质在流体内存在浓度差,物质从浓度高处向浓度低处传递的过程。
第一章5.流体质点:指包含足够多的分子,它比分子的自由程长度大很多,但它的形状与容器或管道相比又微不足道的小块流体。
6.表压强:当被测流体的绝对压强大于外界大气压强时,可用压强表来测量流体的压强。
此时压强表上的读数表示流体的绝对压强比大气压强高出的数值,称为表压强。
7.真空度:当被测流体的绝对压强小于外界大气压时,可用真空表来测量流体的压强,此时真空表上的读数表示流体的绝对压强比大气压强低的数值8.比容:单位质量流体的体积9.体积流量:单位时间内流体经过管道任一截面的体积10.质量流量:单位时间内流体经过任一管道截面的质量11.层流:当流体在管中流动时,若其质点始终沿着与管轴平行的方向作直线运动,充满整个管中的流体就如一层一层的同心圆筒在平行的流动,这种流动状态称为层流12.湍流:当流体在管路中流动时,流体质点除了沿管轴向前运动外,各质点的运动速度大小和方向时刻发生改变,质点间相互碰撞,相互混合,这种流动状态称为湍流第二章13.有效功率:单位时间内液体从泵叶轮处获得的有效能量14.扬程:泵对单位重量液体提供的有效能量15.有效气蚀余量:液体经泵吸入管到达泵入口处,入口处所具有的压头P1/ρg+U12/2g与液体在工作温度下的饱和蒸汽压头P v/ρg的差值为有效气蚀余量,以△H a表示16.必须气蚀余量:表示液体从泵入口流到叶轮内最低压力点处的全部压头损失第三章17.重力沉降:由地球引力作用而引发的颗粒沉降过程18.离心沉降:依靠离心力的作用,使流体中的颗粒产生的沉降运动19.临界粒径:含尘气体中,设有一种粒径能满足u tc=qV s/WL的条件,此粒径称为能100%除去的最小粒径,也称临界粒径20.过滤:是使含固体颗粒的非均相物系通过布、网等多孔性材料,分离出固体颗粒的操作第四章21.热传导:物体内部或直接接触的两个物体之间存在温度差,热量会自动地从高温部分流向低温部分的过程22.传热速率:单位时间内通过传热面传递的热量23.热通量:单位面积的传热速率,也称热流密度,单位为W/m224.稳定传热过程:传热物体中各点温度仅随位置的改变而改变,不随时间的变化而变化的热量传递过程25.温度场:物体或系统内某一瞬间所有各点的温度分布总和26.等温面:温度场中同一时刻下所有相同温度的点想连接而构成的面27.温度梯度:两相邻等温面的温度差△t与两等温面之间的垂直距离△n的比值的极限第五章28.吸收:利用气体混合物中各组分溶解度不同来分离气体混和物的操作29.气体溶解度:在恒定的温度和压力下,气液相长期接触后,液相中溶质浓度不再增加,而达到饱和30.分子扩散:当静止流体内部某一组分存在浓度差时,因微观分子热运动使组分从浓度高处向浓度低处扩散的现象31.湍流扩散:当流体流动或搅动时,由于流体质点的宏观随机运动,使组分从浓度高处向浓度低处传递的现象32.扩散速率:单位时间内单位面积上扩散的物质量,以J表示,单位kmol/m2·s二、问答题绪论1、动量传递理论由什么定律描述?简述定律的内容。
化工原理一
化工原理一
化工原理是化学工程专业的基础课程之一,它主要介绍了化工领域的基本原理
和基本知识。
化工原理一是化工原理课程中的第一部分,主要涉及化工基本概念、化工热力学和化工动力学等内容。
首先,化工原理一介绍了化工的基本概念,包括化工的定义、范围、发展历史
和重要性等方面。
化工是一门综合性强、应用广泛的学科,它涉及到化学、物理、工程等多个学科的知识,是现代工业生产的重要基础。
其次,化工原理一还涉及了化工热力学的基本内容。
热力学是研究能量转化和
能量传递规律的科学,而化工热力学则是将热力学原理应用于化工领域的一个重要分支。
化工热力学主要包括热力学基本概念、热力学过程、热力学定律等内容,它为化工工程的设计、运行和优化提供了重要的理论基础。
另外,化工原理一还涉及了化工动力学的基本内容。
动力学是研究物质在化学
反应过程中的行为规律的科学,而化工动力学则是将动力学原理应用于化工领域的一个重要分支。
化工动力学主要包括反应速率、反应机理、反应动力学方程等内容,它为化工工程的反应器设计、反应过程控制和优化提供了重要的理论支持。
综上所述,化工原理一是化学工程专业学生必修的一门重要课程,它为学生打
下了化工领域的基础知识和基本理论,为他们今后的学习和工作奠定了坚实的基础。
同时,化工原理一也为学生提供了一扇了解化工领域的窗口,让他们对化工这门学科有了更深入的了解和认识。
总之,化工原理一涵盖了化工的基本概念、化工热力学和化工动力学等内容,
它对于化学工程专业学生来说具有重要的意义。
希望学生们能够认真学习化工原理一这门课程,掌握其中的基本原理和知识,为将来的学习和工作打下坚实的基础。
化工原理第一章 流体流动1
A
B
所以
下午6时51分
0 h R
8喻国华
3. 液封高度的计算
液封作用: 确保设备安全:当设备 内压力超过规定值时,气 体从液封管排出; 防止气柜内气体泄漏。 液封高度:
p(表) h g
9喻国华
下午6时51分
管内流体流动基本方程式
流量与流速
稳定流动与不稳定流动 稳定流动系统的质量守恒 ——连续性方程 稳定流动流动系统的能量守恒 ——柏努利方程
p1 p2 pa Hg g ( z0 z2 ) p4 p3 p1 H2O g ( z4 z2 ) p6 p5 p4 Hg g ( z4 z6 ) p p6 H2O g ( z7 z6 )
p pa H 2O g z6 z2 z7 z4 H g g ( z0 z 4 z 2 z 6 ) 1000 9.81 (0.7 0.9 2.5 2.0) 13600 9.81 (2.0 2.1 0.9 0.7) 下午6时51分 305.91kPa
p ——静压头 g
He——外加压头或有效压头。
Σhf——压头损失
下午6时51分
26喻国华
(3)以单位体积流体为基准 将(1)式各项同乘以 :
z1g z1g 1 1 u12 p1 We z2 g u2 2 p2 W f 2 2 1 1 u12 p1 We z2 g u2 2 p2 p f 2 2
6喻国华
2. 液位测量
(1)近距离液位测量装置
压差计读数R反映出容器
内的液面高度。
0 h R
液面越高,h越小,压差计读数R越小;当液 面达到最高时,h为零,R亦为零。
化工原理-1-第七章-质量传递基础
其中VC为物质的临界体积(属于基本物性),单位为cm3/mol,可查有关 数据表格,书中表7-4为常见物质的临界体积。 对液体:
同样可由一状态下的D推算出另一状态下的D,即:
T D2 D1 2 1 T 1 2
三、生物物质的扩散系数 常见的一些生物溶质在水溶液中的扩散系数见表7-5。对于水溶液中 生物物质的扩散系数的估算,当溶质相对分子质量小于1000或其分 子体积小于500 cm3/mol时,可用“二”中溶液的扩散系数估算式进 行估算;否则,可用下式进行估算:
解:以A——NH3,B——H2O p 800 y 0.0079 对气相: A A 5 P 1.013 10 pA 800 CA 0.3284 mol 3 m RT 8.314 20 273 0.01 17 对液相: x A 0.01 1 0.01048 17 18
原子扩散体积 v/cm3/mol
S 22.9
分子扩散体积 Σ v/cm3/mol
CO CO2 N2O NH3 H2O SF6 Cl2 Br2 SO2 18.0 26.9 35.9 20.7 13.1 71.3 38.4 69.0 41.8
注:已列出分子扩散体积的,以分子扩散体积为准;若表中未列分子,对一般有机化合物分 子可按分子式由相应的原子扩散体积加和得到。
1 1 MA MB
2
v 13 v 13 P A B
式中:D为A、B二元气体的扩散系数,m2/s;
P为气体的总压,Pa;T为气体的温度,K; MA、MB分别为组分A、B的摩尔质量,kg/kmol; Σ vA、Σ vB分别为组分A、B的分子扩散体积,cm3/mol。 由该式获得的扩散系数,其相对误差一般小于10%。
化工原理第一章总结
化工原理第一章总结化工原理是化学工程专业的重要基础课程,它为学生打下了坚实的理论基础,为日后的学习和工作奠定了基础。
在第一章中,我们主要学习了化工原理的基本概念、化学反应平衡和热力学基础等内容。
本文将对第一章的内容进行总结,希望能够帮助大家更好地理解和掌握这一部分知识。
首先,我们学习了化工原理的基本概念。
化工原理是研究化学工程中的基本原理和基本规律的学科,它包括物质的结构与性质、化学反应的基本原理、热力学基础等内容。
通过学习化工原理,我们可以更好地理解化学工程中的各种现象和过程,为日后的学习和工作打下坚实的基础。
其次,我们学习了化学反应平衡的相关知识。
化学反应平衡是化工原理中的重要内容,它描述了化学反应达到平衡时反应物和生成物的浓度之间的关系。
在学习中,我们了解了平衡常数的概念和计算方法,以及通过平衡常数来判断反应的方向和进行反应条件的优化等内容。
这些知识对于化学工程中的反应过程和工艺设计有着重要的指导作用。
最后,我们学习了热力学基础的相关内容。
热力学是研究能量转化和能量传递规律的学科,它在化工原理中占据着重要的地位。
在学习中,我们了解了热力学基本概念、热力学第一定律和第二定律等内容。
通过学习这些知识,我们可以更好地理解化学工程中的能量转化和传递过程,为工程实践提供理论支持。
综上所述,化工原理第一章主要介绍了化工原理的基本概念、化学反应平衡和热力学基础等内容。
通过学习,我们不仅对化工原理有了更深入的了解,也为日后的学习和工作打下了坚实的基础。
希望大家能够认真对待这门课程,努力学习,取得优异的成绩。
同时,也希望大家能够将所学知识应用到实际工程中,为化工行业的发展做出自己的贡献。
化工原理-第一章
29
返回
(3) 倒U形压差计
指示剂密度小于被测流体密度,如空 气作为指示剂
p1 p2 Rg( 0 ) Rg
(4) 倾斜式压差计 适用于压差较小的情况。
30
返回
例1-1 如附图所示,水在水平管道内流动。为测量流
体在某截面处的压力,直接在该处连接一U形压差计,
指示液为水银,读数
18
返回
表 压 = 绝对压力 - 大气压力 真空度 = 大气压力 - 绝对压力
p1
表压
大气压
真空度 绝对压力
p2
绝对压力 绝对真空
19
返回
1.1.3 流体静力学平衡方程
一、静力学基本方程 设流体不可压缩, (1)上端面所受总压力
P1 p1 A
Const.
p1 G p2
p0
重力场中对液柱进行受力分析:
5
返回
1.0.0 流体的特征
液体和气体统称为流体。
• 具有流动性;
• 无固定形状,随容器形状而变化; • 受外力作用时内部产生相对运动。 不可压缩流体:流体的体积不随压力变化而变化,
如液体;
可压缩性流体:流体的体积随压力发生变化,
如气体。
6
返回
1.0.1 研究流体流动的目的
1、流体输送:选择适宜流速、确定管路直径、 选用输送设备; 2、压强、流速和流量的测量:便于了解和控制 生产; 3、为强化设备提供适宜流动条件:如传热、传 质设备的强化。
9
返回
1.0.3 流体流动中的作用力
1、体积力: 体积力作用于流体的每一个质点上,并与流体的 质量成正比,也称为质量力,如重力、离心力。 2、表面力:包括压力与剪力 压力:垂直于表面的力 剪力:平行于表面的力,又称粘性力,与流体运动 有关。 返回
化工原理课件 第一章第三节
如图所示,设有上、下两块面积很大且相距 很近的平行平板,板间充满某种静止液体。 若将下板固定,而对上板施加一个恒定的外 力,上板就以恒定速度u沿x方向运动。 若u较小,则两板间的液体就会分成无数平行 的薄层而运动,粘附在上板底面下的一薄层流体 以速度u随上板运动, 其下各层液体的速度 依次降低,紧贴在下 板表面的一层液体, 因粘附在静止的下板 上, 其速度为零,两平 板间流速呈线性变化。
随着流体的向前流动,流速受影响的区域逐 渐扩大,即在垂直于流体流动方向上产生了速度 梯度。 流动边界层:存在着较大速度梯度的流体层区 域,即流速降为主体流速的99% 以内的区域。
边界层厚度:边界层外缘与壁面间的垂直距离。
流体在平板上流动时的边界层: 如图1-26所示, 由于边界层的形成,把沿壁面 的流动分为两个区域:边界层区和主流区。
二、流体的粘度 (动力粘度)
1.粘度的物理意义
流体流动时在与流动方向垂直的方向上产 生单位速度梯度所需的剪应力。 粘度总是与速度梯度相联系,流体只有在运 动时才显现出来。分析静止流体的规律时就不用 考虑粘度这个因素。 粘度的物理本质:分子间的引力和分子的运动与 碰撞。
讨论 :
μ=f(p,T) T位时间通过单位截面积流体的质量;
μu/d 与流体内的黏滞力成正比。
u /( u / d )
2
du
Re
Re 数实际上反映了流体流动中惯性力与
黏滞力的比。标志着流体流动的湍动程度。 当惯性力较大时, Re 数较大;
当黏滞力较大时, Re 数较小;
一、层流时的速度分布 实验和理论分析都已证明,层流时的速度分 布为抛物线形状,如图1- 23所示。以下进行理论 推导。
物理单位制:
化工原理1期末考试复习资料
《化工原理1》课程综合复习资料一、单选题1.流体在直管中流动,当Re≤()时,流体的流动类型属于层流。
A.1000B.2000C.3000D.4000答案:B2.流体在直管中流动,当Re≥()时,流体的流动类型属于湍流。
A.1000B.2000C.3000D.4000答案:D3.在滞流区颗粒的沉降速度正比于()。
A.(ρs-ρ)的1/2次方B.μ的零次方C.粒子直径的0.5次方D.粒子直径的平方答案:D4.流化床的压降随流体速度变化的大致规律是()。
A.起始随气速增大而直线地增大B.基本上不随气速变化C.ΔP∝µD.ΔP∝u2答案:B5.凡能以相同的吸收率且部分地吸收由零到∞所有波长范围的辐射能的物体,定义为()。
A.白体B.灰体D.不透热体答案:B6.有一套管换热器,环隙中有119.6℃的蒸气冷凝,管内的空气从20℃被加热到50℃,管壁温度应接近()。
A.20℃B.50℃C.77.3℃D.119.6℃答案:D7.判断下面的说法哪一种是错误的()。
A.在一定的温度下,辐射能力越大的物体,其黑度越大B.在同一温度下,物体吸收率α与黑度ε在数值上相等,因此α与ε的物理意义相同C.黑度越大的物体吸收热辐射的能力越强D.黑度反映了实际物体接近黑体的程度答案:B8.当换热器中冷、热流体的进出口温度一定时,判断下面的说法哪一个是错误的()。
A.逆流时,Δtm一定大于并流、错流或折流时的ΔtmB.采用逆流操作时可能会节约热流体(或冷流体)的用量C.采用逆流操作可能会减少所需的传热面积D.温度差校正系数φΔt的大小反映了流体流向接近逆流的程度答案:A9.两灰体间进行辐射换热,两者间的温度差为100℃。
若将两灰体的温度各升高100℃,则此时的辐射传热量与原来的传热量相比,将()。
A.增大B.减小C.不变D.不一定答案:A10.某设备内的真空度为0.3kgf/cm2,当地大气压为745mmHg,则设备内的绝对压强为()kPa。
《化工原理》基本知识点
《化⼯原理》基本知识点第⼀章流体流动⼀、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg====2、压⼒的表⽰(1)绝压:以绝对真空为基准的压⼒实际数值称为绝对压强(简称绝压),是流体的真实压强。
(2)表压:从压⼒表上测得的压⼒,反映表内压⼒⽐表外⼤⽓压⾼出的值。
表压=绝压-⼤⽓压(3)真空度:从真空表上测得的压⼒,反映表内压⼒⽐表外⼤⽓压低多少真空度=⼤⽓压-绝压3、流体静⼒学⽅程式0p p ghρ=+⼆、⽜顿粘性定律F du A dyτµ==τ为剪应⼒;dudy为速度梯度;µ为流体的粘度;粘度是流体的运动属性,单位为Pa·s;物理单位制单位为g/(cm·s),称为P (泊),其百分之⼀为厘泊cp111Pa s P cP== 液体的粘度随温度升⾼⽽减⼩,⽓体粘度随温度升⾼⽽增⼤。
三、连续性⽅程若⽆质量积累,通过截⾯1的质量流量与通过截⾯2的质量流量相等。
111222u A u A ρρ=对不可压缩流体1122u A u A =即体积流量为常数。
四、柏努利⽅程式单位质量流体的柏努利⽅程式:22u p g z We hfρ++=-∑22u pgz E ρ++=称为流体的机械能单位重量流体的能量衡算⽅程:HfHe p u z -=?+?+?ρ22z :位压头(位头);22u g :动压头(速度头);pρ:静压头(压⼒头)有效功率:Ne WeWs =轴功率:NeN η=五、流动类型雷诺数:Re du ρµ=Re 是⼀⽆因次的纯数,反映了流体流动中惯性⼒与粘性⼒的对⽐关系。
(1)层流:Re 2000≤:层流(滞流),流体质点间不发⽣互混,流体成层的向前流动。
圆管内层流时的速度分布⽅程:2max 2(1)r r u u R=-层流时速度分布侧型为抛物线型(2)湍流Re 4000≥:湍流(紊流),流体质点间发⽣互混,特点为存在横向脉动。
化工原理第一章答案
化工原理第一章答案化工原理是化学工程专业的基础课程,它是学生理解和掌握化工工艺的重要一环。
本章主要介绍了化工原理的基本概念和相关知识,包括化工工艺的基本流程、热力学基础、物质平衡等内容。
下面我们将针对第一章的相关问题进行详细解答。
1. 什么是化工原理?化工原理是指化学工程领域中的基本理论和基本原理,包括热力学、流体力学、传热传质等方面的知识。
它是化学工程专业学生理解和掌握化工工艺的基础,是日后从事化工工程实践的重要基础。
2. 化工工艺的基本流程是什么?化工工艺的基本流程包括原料准备、反应过程、分离纯化、产品制备等几个基本步骤。
在实际生产中,这些步骤可能会有所变化,但总体的基本流程是不变的。
3. 热力学基础在化工工艺中的作用是什么?热力学基础在化工工艺中起着至关重要的作用。
它可以帮助工程师分析和计算化工过程中的能量转化和热力学性能,为工艺设计和优化提供理论支持。
4. 什么是物质平衡?物质平衡是指在化工工艺中,原料、中间体和产物在各个环节中的流动和转化过程中,各种物质的质量守恒关系。
物质平衡是化工工艺设计和操作的基础,它对于保证生产过程的稳定和产品质量的一致性至关重要。
5. 化工原理的学习对于学生未来的发展有何意义?化工原理的学习可以帮助学生建立起对化工工艺的基本认识和理解,为日后的专业学习和工程实践打下坚实的基础。
同时,通过化工原理的学习,学生可以培养出扎实的理论基础和分析问题的能力,为未来的发展奠定良好的基础。
总结,化工原理是化学工程专业的重要基础课程,它涵盖了化工工艺的基本概念和相关知识,包括热力学基础、物质平衡等内容。
通过对本章相关问题的详细解答,相信学生们对化工原理的学习会有更深入的理解和把握。
希望大家能够在学习中勤思考、多实践,不断提升自己的专业能力,为将来的发展打下坚实的基础。
化工原理 实验一
30
(5)流体在管内流动时,如要测取管截面上的 流速分布,应选用流量计测量。 A 皮托管 B 孔板流量计 C 文丘里流量计 D 转子流量计 (6)流体在圆形管道中作层流流动,如果只将流 速增加一倍,则阻力损失为原来的 2 倍;如果 只将管径增加一倍而流速不变,则阻力损失为 原来的 1/4 倍。 (7)粘性流体在流动过程中产生直管阻力的原 因是什么?产生局部阻力的原因又是什么?
28
6.不同管径、不同水温下测定的λ~Re曲线数据能 否关联到同一曲线? 7.在λ~Re曲线中,本实验装置所测Re在一定范围 内变化,如何增大或减小Re的变化范围? 8.本实验以水作为介质,作出λ~Re曲线,对其它 流体是否适用?为什么? 9.影响λ值测量准确度的因素有哪些?
29
九、练习题
(2)全开的截止阀
式 (1—3) 中 pf 为两测压点间的局部阻力与直管 阻力之和。由于管件或阀门距测压孔的直管长 度很短,引起的摩擦阻力与局部阻力相比可以 忽略, pf可近似认为全部由局部阻力损失引起。
2 p 2 u
的大小与管径、阀门的材料及加工精度有关。
15
(2)突然扩大与突然缩小 在水平管的两测压点间列柏努力方程式
u12 p1 u2 2 p2 hf 2 2
局部阻力
hf
p1 p2
u12 u2 2 2
2 p1 p2 u12 u2 2 2( ) u 2
可见,pf的大小除了包括局部阻力损失和可忽略的摩擦 阻力损失之外,还包括动能和静压能之间能量转换值。
(1) 流体在变径管中作稳定流动,在管径缩小 的地方其静压能 。 (2)测流体流量时,随流量增加孔板流量计两侧 压差值将 ,若改用转子流量计,随 流量增加转子两侧压差值将 。 (3) 流体流动时的摩擦阻力损失hf所损失的是机 械能中的 (动能、位能、静压能)。 (4) 毕托管测量管道中流体的 ,而孔板流 量计测量管道中流体的 。
801化工原理(一)
801化工原理(一)801化工原理1. 介绍在化工领域,801化工原理是一门非常重要的基础课程。
它涉及了许多化工工程的基本原理和技术,对于理解化工过程与反应的机制、优化化工操作以及解决实际问题都有着重要的作用。
2. 化学反应的基本原理化学反应是化工过程的核心。
在801化工原理中,我们需要理解反应的速率、平衡以及热力学等基本原理。
化学反应速率化学反应速率是指在单位时间内反应物消失或产物生成的量。
它受到多种因素的影响,如温度、浓度、催化剂等。
我们可以通过实验来确定反应速率并建立数学关系,以了解反应的动力学特性。
反应平衡在化学反应中,反应物将会转化为产物,但并不是所有反应都能完全转化。
这是由于反应速率的差异所导致的。
当反应速率达到一个动态平衡时,反应物与产物的浓度将保持在一定的比例,此比例称为平衡常数。
平衡常数与温度有关,不同温度下会产生不同的平衡常数。
热力学是研究能量转换、能量传递以及系统在不同条件下的稳定性的物理学科。
在801化工原理中,我们需要了解不同反应的热力学特性,如焓变、反应熵以及自由能等。
3. 常见化工操作在化工工程中,有许多常见的化工操作,如混合操作、分离操作、反应操作等。
这些操作涉及不同的原理和技术。
混合操作混合操作是将不同的物料进行混合以得到所需的物料组成。
常见的混合操作包括搅拌、搅拌反应、喷淋以及液固搅拌等。
混合操作的目的是使不同物料均匀地分布在反应体系中,以提高反应效率。
分离操作分离操作是将混合物中的不同组分分离出来。
常见的分离操作包括蒸馏、萃取、结晶、过滤以及离心等。
分离操作的目的是根据不同组分的特性,将其分离出来并得到所需的纯度。
反应操作反应操作是将反应物转化为产物的过程。
常见的反应操作包括连续流动反应、间歇操作反应、聚合反应以及催化反应等。
反应操作的目的是提高反应速率、选择性以及产物的纯度。
801化工原理是化工工程中的一门重要课程,通过学习化学反应的基本原理以及常见的化工操作,我们能够更好地理解化工过程与反应的机制,并能够应用这些原理解决实际问题。
化工原理 第一章 流体流动
化工原理第一章流体流动第一章 流体流动一、流体流动的数学描述在化工生产中,经常遇到流体通过管道流动这一最基本的流体流动现象。
当流体在管内作稳定流动时,遵循两个基本衡算关系式,即质量衡算方程式和机械能衡算方程式。
质量衡算方程式在稳定的流动系统中,对某一划定体积而言,进入该体积的流体的质量流量等于流出该体积的质量流量。
如图1—1所示,若取截面1—1′、2—2′及两截面间管壁所围成的体积为划定体积,则ρρρuA A u A u ==222111 (1-1a)对不可压缩、均质流体(密度ρ=常数)的圆管内流动,上式简化为2221211ud d u d u == (1-1b)机械能衡算方程式在没有外加功的情况下,流动系统中的流体总是从机械能较高处流向机械能较低处,两处机械能之差为流体克服流动阻力做功而消耗的机械能,以下简称为阻力损失。
如图1—1所示,截面1—1′与2—2′间单位质量流体的机械能衡算式为f 21w Et Et += (1-2)式中 221111u p gz Et ++=ρ,截面1—1′处单位质量流体的机械能,J /kg ;222222u p gz Et ++=ρ,截面2—2′处单位质量流体的机械能,J /kg ;∑⎥⎦⎤⎢⎣⎡∑+∑=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∑+=2)(222f u d l l u d l w e λζλ,单位质量流体在划定体积内流动时的总阻力损失,J /kg 。
其中,λ为雷诺数Re 和相对粗糙度ε / d 的函数,即⎪⎪⎭⎫ ⎝⎛=d du εμρφλ,。
上述方程式中,若将Et 1、Et 2、w f 、λ视为中间变量,则有z 1、z 2、p 1、p 2、u 1、u 2、d 1、d 2、d 、u 、l 、∑ζ(或∑l e )、ε、ρ、μ等15个变量,而独立方程仅有式(1-1)(含两个独立方程)、式(1-2)三个。
因此,当被输送流体的物性(ρ,μ)已知时,为使方程组有唯一解,还需确定另外的10个变量,其余3个变量才能确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体流动8 .高位槽内的水面高于地面8m,水从φ108×4mm的管道中流出,管路出口高于地面2m。
在本题特定条件下,水流经系统的能量损失可按∑hf = 6.5 u2计算,其中u为水在管道的流速。
试计算:⑴ A—A'截面处水的流速;⑵水的流量,以m3/h计。
分析:此题涉及的是流体动力学,有关流体动力学主要是能量恒算问题,一般运用的是柏努力方程式。
运用柏努力方程式解题的关键是找准截面和基准面,对于本题来说,合适的截面是高位槽1—1,和出管口 2—2,,如图所示,选取地面为基准面。
解:设水在水管中的流速为u ,在如图所示的1—1,,2—2,处列柏努力方程Z1g + 0 + P1/ρ= Z2g+ u2/2 + P2/ρ + ∑hf(Z1 - Z2)g = u2/2 + 6.5u2代入数据(8-2)×9.81 = 7u2 , u = 2.9m/s换算成体积流量V S = uA= 2.9 ×π/4 × 0.12× 3600= 82 m3/h10.用离心泵把20℃的水从贮槽送至水洗塔顶部,槽内水位维持恒定,各部分相对位置如本题附图所示。
管路的直径均为Ф76×2.5mm,在操作条件下,泵入口处真空表的读数为24.66×10³Pa,水流经吸入管与排处管(不包括喷头)的能量损失可分别按∑hf,1=2u²,∑h f,2=10u2计算,由于管径不变,故式中u为吸入或排出管的流速m/s。
排水管与喷头连接处的压强为98.07×10³Pa(表压)。
试求泵的有效功率。
分析:此题考察的是运用柏努力方程求算管路系统所要求的有效功率把整个系统分成两部分来处理,从槽面到真空表段的吸入管和从真空表到排出口段的排出管,在两段分别列柏努力方程。
解:总能量损失∑hf=∑hf+,1∑hf,2u1=u2=u=2u2+10u²=12u²在截面与真空表处取截面作方程: z0g+u02/2+P0/ρ=z1g+u2/2+P1/ρ+∑hf,1 ( P0-P1)/ρ= z1g+u2/2 +∑hf,1 ∴u=2m/s∴ w s=uAρ=7.9kg/s在真空表与排水管-喷头连接处取截面 z1g+u2/2+P1/ρ+W e=z2g+u2/2+P2/ρ+∑hf,2 ∴W e= z2g+u2/2+P2/ρ+∑hf,2—( z1g+u2/2+P1/ρ)=12.5×9.81+(98.07+24.66)/998.2×10³+10×2²=285.97J/kgN e= W e w s=285.97×7.9=2.26kw22.如本题附图所示,,贮水槽水位维持不变。
槽底与内径为100mm 的钢质放水管相连,管路上装有一个闸阀,距管路入口端15m 处安有以水银为指示液的U管差压计,其一臂与管道相连,另一臂通大气。
压差计连接管内充满了水,测压点与管路出口端之间的长度为20m。
(1).当闸阀关闭时,测得R=600mm,h=1500mm;当闸阀部分开启时,测的R=400mm,h=1400mm。
摩擦系数可取0.025,管路入口处的局部阻力系数为0.5。
问每小时从管中水流出若干立方米。
(2).当闸阀全开时,U管压差计测压处的静压强为若干(Pa,表压)。
闸阀全开时l e/d≈15,摩擦系数仍取0.025。
解: ⑴根据流体静力学基本方程, 设槽面到管道的高度为xρ水g(h+x)= ρ水银gR103×(1.5+x) = 13.6×103×0.6x = 6.6m部分开启时截面处的压强 P1 =ρ水银gR -ρ水gh = 39.63×103Pa在槽面处和1-1截面处列伯努利方程Zg + 0 + 0 = 0 + u2/2 + P1/ρ + ∑h而∑h= [λ(ι+Σιe)/d +ζ]· u2/2 = 2.125 u2∴6.6×9.81 = u2/2 + 39.63 + 2.125 u2u = 3.09/s体积流量ωs= uAρ= 3.09×π/4×(0.1)2×3600 = 87.41m3/h⑵闸阀全开时取2-2,3-3截面列伯努利方程Zg = u2/2 + 0.5u2/2 + 0.025×(15 +ι/d)u2/2u = 3.47m/s取1-1﹑3-3截面列伯努利方程P1'/ρ = u2/2 + 0.025×(15+ι'/d)u2/2∴P1' = 3.7×104Pa第二章流体输送机械1 . 在用水测定离心泵性能的实验中,当流量为26m³/h时,泵出口处压强表和入口处真空表的读数分别为152kPa和24.7kPa,轴功率为2.45kw,转速为2900r/min,若真空表和压强表两测压口间的垂直距离为0.4m,泵的进出口管径相同,两测压口间管路流动阻力可忽略不计,试求该泵的效率,并列出该效率下泵的性能。
解:取20 ℃时水的密度ρ=998.2 Kg/m 3在泵出口和入口处列伯努利方程u12/2g + P1/ρg + Η = u12/2g + P2/ρg + Ηf + Z∵泵进出口管径相同, u1= u2不计两测压口见管路流动阻力Ηf = 0∴ P1/ρg + Η = P2/ρg + ZΗ = (P2- P1)/ρg + Z = 0.4 + (152+24.7)×103/998.2×9.8=18.46 m该泵的效率η= QHρg/N = 26×18.46×998.2×9.8/(2.45×103×3600)= 53.2.﹪3.常压贮槽内盛有石油产品,其密度为760kg/m³,粘度小于20cSt,在贮槽条件下饱和蒸汽压为80kPa,现拟用65Y-60B型油泵将此油品以15m³流量送往表压强为177kPa 的设备内。
贮槽液面恒定,设备的油品入口比贮槽液面高5m,吸入管路和排出管路的全部压头损失为1m 和4m 。
试核算该泵是否合用。
若油泵位于贮槽液面以下1.2m处,问此泵能否正常操作?当地大气压按101.33kPa计.解: 查附录二十三 65Y-60B型泵的特性参数如下流量 Q = 19.8m3/s, 气蚀余量△h=2.6 m扬程H = 38 m允许吸上高度 H g = (P0- P V)/ρg - △h-Ηf,0-1= -0.74 m > -1.2扬升高度 Z = H -Ηf,0-2 = 38 –4 = 34m如图在1-1,2-2截面之间列方程u12/2g + P1/ρg + Η = u22/2g + P2/ρg + Ηf,1-2 + △Z其中u12/2g = u22/2g = 0管路所需要的压头: Ηe=(P2 – P1)/ρg + △Z + Ηf,1-2= 33.74m < Z = 34 m游品流量Q m = 15 m3/s < Q = 19.8m3/s离心泵的流量,扬升高度均大雨管路要求,且安装高度有也低于最大允许吸上高度因此,能正常工作8.用两台离心泵从水池向高位槽送水,单台泵的特性曲线方程为 H=25—1×106Q²管路特性曲线方程可近似表示为 H=10+1×106Q²两式中Q的单位为m³/s,H的单位为m。
试问两泵如何组合才能使输液量最大?(输水过程为定态流动)分析:两台泵有串联和并联两种组合方法串联时单台泵的送水量即为管路中的总量,泵的压头为单台泵的两倍;并联时泵的压头即为单台泵的压头,单台送水量为管路总送水量的一半解:①串联 H e = 2H10 + 1×105Q e2 = 2×(25-1×106Q2)∴ Q e= 0.436×10-2m2/s②并联 Q = Q e/225-1×106× Q e2 = 10 + 1×105( Q e/2)2∴ Q e = 0.383×10-2m2/s总送水量 Q e'= 2 Q e= 0.765×10-2m2/s∴并联组合输送量大第三章机械分离和固体流态化5.含尘气体中尘粒的密度为2300kg/m³,气体流量为1000m³/h,粘度为3.6×10-5Pa•s密度为0.674kg/m³,采用如图3-8所示的标准型旋风分离器进行除尘。
若分离器圆筒直径为0.4m,试估算其临界直径,分割粒径及压强降。
解:(1) 临界直径选用标准旋风分离器 Ne = 5 ,ξ= 8.0B = D/4 ,h = D/2由V s = bhu i得 Bh = D/4 ·D/2 = V s /u i∴ u i = 8 V s /D2根据d c = [9μB/(πNeρs u i )]1/2计算颗粒的临界直径∴ d c = [9×3.6×10×0.25×0.4/(3.14×5×2300×13.889)]1/2= 8.04×10-6 m = 8.04 μm(2)分割粒径根据 d50 = 0.27[μD/u t(ρs- ρ)]1/2计算颗粒的分割粒径∴ d50 = 0.27[3.6×10-5×0.4/(13.889×2300)]1/2= 0.00573×10-3m = 5.73μm(3)压强降根据△P = ξ·ρu i2/2 计算压强降∴△P = 8.0×0.674×13.8892/2 = 520 Pa7.验室用一片过滤面积为0.1m³的滤叶对某种颗粒在水中的悬浮液进行实验,滤叶内部真空读为500mmHg,过滤5min的滤液1L,又过滤5min的滤液0.6L,若再过滤5min得滤液多少?分析:此题关键是要得到虚拟滤液体积,这就需要充分利用已知条件,列方方程求解解:⑴虚拟滤液体积由过滤方程式 V2 + 2VV e= KA2θ过滤5min得滤液1L(1×10-3)2 + 2×10-3 V e= KA2×5 ①过滤10min得滤液1.6L(1.6×10-3)2 + 2×1.6×10-3 V e= KA2×10 ②由①②式可以得到虚拟滤液体积V e= 0.7×10-3 KA2= 0.396⑵过滤15分钟假设过滤15分钟得滤液V'V'2 + 2V'V e= KA2θ'V'2 + 2×0.7×10-3V'= 5×0.396V' = 2.073×10-3∴再过滤5min得滤液 V = 2.073×10-3 - 1.6×10-3 = 0.473×10-3 m30.473L10.用一台BMS50/810-25型板框压滤机过滤某悬浮液,悬浮液中固体质量分率为0.139,固相密度为2200kg/m3,液相为水。