北师大版八年级数学上册全套教学课件

合集下载

新版北师大版八年级数学上册第四章一次函数全章课件

新版北师大版八年级数学上册第四章一次函数全章课件
也是x的正比例函数;
(2)由圆的面积公式,得y=πx2,y不是x的正比例函数, 也不是x的一次函数;
(3)这个水池每时增加5 m3水,x h增加5x m3水,因 而y=15+5x,y是x的一次函数,但不是x的正比例函数.
二、新课讲解
例2 我国自2011年9月1日起,个人工资、薪金所得税征 收办法规定:月收入不超过3500元的部分不收税;月收 入超过3500元但不超过5000元的部分征收3%的所得 税……如某人月收入3860元,他应缴纳个人工资、薪金 所得税为(3860-3500)×3%=10.8(元). (1)当月收入超过3500元而又不超过5000元时,写出 应缴纳个人工资、薪金所得税y(元)与月收入x(元)之 间的关系式; (2)某人月收入为4160元,他应缴纳个人工资、薪金所 得税多少元? (3)如果某人本月缴纳个人工资、薪金所得税19.2元, 那么此人本月工资、薪金收入是多少元?
吗?
当t>-273时,t+273>0,即T>0,满足T≧0. 故给定一个大于-273℃的t值,能求出相应的T值.
二、新课讲解
在上面各例中,都有两个变量,给定其中某一个变量 的值,相应地就确定了另一个变量的值.
一般地,如果在一个变化过程中有两个变量x和y,并 且对于变量x的每一个值,变量y都有唯一的值与它对应, 那么我们称y是x的函数,其中x是自变量.
温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有 如下数量关系:T=t+273,T≧0.
(1)当t分别为-43℃,-27℃,0℃,18℃时,相应的热
力学温度T是多少? 根据T=t+273,当t=-43℃时,T=230K;当t=-27℃
时,T=246K;当t=0℃时,T=273K;当t=18℃时, T=291K. (2)给定一个大于-273℃的t值,你都能求出相应的T值

北师大版八年级数学上册 (轴对称与坐标变化)位置与坐标 教学课件

北师大版八年级数学上册 (轴对称与坐标变化)位置与坐标 教学课件

探究新知
y
5
4 3
将各点的纵坐标与 横坐标都×(-1), 图形会变成什么样?
2
1 –5 –4 –3 –2 –1 0 1 2 3 4
–1 –2
5x
横坐标与纵坐标 都×(-1),两个 图形关于原点对 称
–3
(x,y)
(0,0)
(5,4)
– 4
(3,0)
(5,1)
(5,-1)
(3,0) (4,-2) (0,0)
.
课堂检测
基础巩固题
4.已知点P(2a-3,3),点A(-1,3b+2),
2
(1)如果点P与点A关于x轴对称,那么a+b= 3 ;
7
(2)如果点P与点A关于y轴对称,那么a+b= 3 .
总结
图形坐标变化与对称的关系
坐标变化后 图形的变化
“数”
点的坐 标变化
横坐标不变, 纵坐标乘-1
纵坐标不变, 横坐标乘-1
5
1 23 4 5
x
(4,-2) ,(0,0),你得到
了一个怎样的图案?
探究新知
将各个顶点的纵坐标保持
y
5
不变,横坐标都×(-1),
4
则新图与原图有怎样的位
3
置关系?
2
-5 -4
1 -3 -2 -1 0
–1
1 2 3 4 5x
纵坐标保持不变, 横坐标都×(-1),
–2
两个图形关于y轴
–3
–4
对称
–5
(0,4) X轴
课堂检测
基础巩固题
对称 已知点
X轴
y轴
原点
A(-7,3) (-7,-3) (7,3) (7,-3)

北师大版数学八年级上册6.1 平均数(第1课时)课件(共35张PPT)

北师大版数学八年级上册6.1 平均数(第1课时)课件(共35张PPT)
数据的权能够反映数据的相对重要程度! 应试者 听 说 读 写
甲 85 78 85 73 乙 73 80 82 83
同样一张应试者的应聘成绩单,由于各个数据所赋的权数不 同,造成的录取结果截然不同.
巩固练习
变式训练
某县百合食品公司欲从我县女青年中招聘一名百合天使,作
为该公司百合产品的形象代言人.对甲、乙候选人进行了面
该公司每人所创年利润的平均数是__3_0__万元.
课堂检测
基础巩固题
5.下表是校女子排球队队员的年龄分布:
年龄 13 14 15 16
频数 1
4
5
2
求校女子排球队队员的平均年龄.
解: x 13114 4 15 5 16 2 14.7( 岁) 1 45 2
答:校女子排球队队员的平均年龄为14.7岁.
录用?
解:A的平均成绩为(72+50+88)÷3=70(分),
B的平均成绩为(85+74+45)÷3=68(分).
C的平均成绩为(67+70+67)÷3=68(分). 由70>68,故A将被录用.
这样选择 好不好?
探究新知
测试 项目 创新
测试成绩
A
B
C
72
85
67
(2)根据实际需要, 公司将创新、综合知 识和语言三项测试得
探究新知 素养考点 1 加权平均数的应用
例2 某跳水队为了解运动员的年龄情况,作了一次年龄调查, 结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个 跳水队运动员的平均年龄(结果取整数).
解:这个跳水队运动员的平均年龄为:
x
=
138 1416 1524 162

北师大版八年级上册初二数学全册课件(精心整理汇编)

北师大版八年级上册初二数学全册课件(精心整理汇编)

知1-讲
导引:可以以边长为c的正方形为基础,一在形外补拼(不 重叠)成新的正方形;二在形内叠合成新的正方形.
即S:A两+S条B直=S角C边上
的正方形面积之和等于 斜边上的正方形的面积.
观察所得到的各组数据,你有什么发现? 知1-导
A
a
Bb c
C
SA+SB=SC
a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
知1-讲
勾股定理 (毕达哥拉斯定理)
直角三角形两直角边的平方和等于 斜边的平方.
弦c 股b
知1-讲
议一议 观察下图,判断图中三角形的三边长是否满足a2+b2=c2.
知1-讲
例1 如图是用硬纸板做成的四个两直角边长分别是a, b,斜边长为c的全等的直角三角形和一个边长为 c的正方形,请你将它们拼成一个能说明勾股定 理正确性的图形. (1)画出拼成的这个图形的示意图; (2)说明勾股定理的正确性.
新北师大版八年级上册数学
全册课件
交网本 流络课 使只件 用供来
免源 费于
第一章 勾股定理
1.1 探索勾股定理
第1课时 认识勾股定理
1 课堂讲解 勾股定理
勾股定理与图形的面积
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
相传2500年前,一次毕达哥拉斯去朋友家作客, 发现朋友家用砖铺成的地 面反映直角三角形三边的 某种数量关系,同学们, 我们也来观察下面的图案, 看看你能发现什么?
2

2π,
所以c2=25,a2=16.
根据勾股定理,得
b2=c2-a2=9.
所以
S3

1 2

新版北师大版八年级数学上册全册课件共570张PPT

新版北师大版八年级数学上册全册课件共570张PPT
新版北师大版八年级数学上册 全册课件
第一章 勾股定理
1.1 探索勾股定理(第1课时)
一、新课引入
如图,从电线杆离地面8 m处向地面拉一条钢 索,如果这条钢索在地面的固定点距离电线杆底 部6 m,那么需要多长的钢索?
、新课引入
观察下面地板砖示意图:
你发现了什么?
你能发现图中三个正 方形的面积之间存在什么关系
三、归纳小结
你学到了什么?
1、 如果三角形三条边长分别为a,b,c ,且
满足 a 2 b2 c 2,那么这个三角形是直角三角
形. 2、勾股定理判定的应用.
四、强化训练
1、如果三角形的三边长a,b,c满足 _______________,那么这个三角形是直角三角形; 2、写出三组勾股数: _______________________________; 3、一艘帆船在海上航行,由于风向的原因,帆船先 向正东方向航行9千米,然后向正北方向航行40千米, 这时它离开出发点_________千米.
∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺
寸如图2所示,这个零件符合要求吗?
图1
图2
解:∵在Rt△ABD中,AB2+AD2=9+16=25=BD2, ∴△ABD是直角三角形,∠A是直角. ∵在△BCD中,BD2+BC2=25+144=169=CD2, ∴△BCD是直角三角形,∠DBC是直角. 因此,这个零件符合要求.
二、新课讲解
例 我方侦察员小王在距离东西向公路400 m 处侦察,发现一辆敌方汽车在公路上疾驶.他赶紧 拿出红外测距仪,测得汽车与他相距400 m,10 s 后,汽车与他相距500 m,你能帮小王计算敌方汽 车的速度吗?

最新北师大版八年级数学上全册优质教学课件(所有课时)

最新北师大版八年级数学上全册优质教学课件(所有课时)
最新北师大版八年级数学上全册优质教学课件
打造中学数学高效课堂的首先教学课件
第一章 勾股定理
1.1 探索勾股定理
第1课时 认识勾股定理
导入新课 讲授新课 当堂练习 课堂小结
学习目标
情境引入
1.了解勾股定理的内容,理解并掌握直角三角形三边之间的
数量关系.(重点) 2.能够运用勾股定理进行简单的计算.(难点)
(2)以5 cm、12 cm为直角边作出一个直角三角形,并测量斜 边的长度. (1)中的规律对这个三角形仍然成立吗?
要点归纳
勾股定理
直角三角形两直角边的平方和等于斜边的平 方.如果a,b和c分别表示直角三角形的两直角 边和斜边,那么a2+b2=c2.
名字的由来
我国古代把直角三角形中较 短的直角边称为勾,较长的直角 边称为股,斜边称为弦,“勾股 定理”因此而得名.
勾 弦 股
在西方又称毕达 哥拉斯定理
练一练
求下列图形中未知正方形的面积或未知边的长度(口答):
100 225
x
17 15
?
已知直角三角形两边,求第三边.
二 利用勾股定理进行计算
例 求斜边长为17 cm、一条直角边长为15 cm的直角三角
形的面积.
解:设另一条直角边长是x cm.由勾股定理得:
152+ x2 =172,x2=172-152=289–225=64, 解得 x=±8(负值舍去), 所以另一直角边长为8 cm, 故直角三角形的面积是: (cm2).
B的面积
9 9
C的面积
13 25
结论:以直角三角形两直角边为边长的小正方形的面
积的和,等于以斜边为边长的正方形的面积.
想一想
(1)你能用直角三角形的两直角边的长a,b和斜边长c来表示

【课件】一定是直角三角形吗++课件北师大版数学八年级上册

【课件】一定是直角三角形吗++课件北师大版数学八年级上册

第一章 勾股定理
今天你学到了什么?
1. 如果三角形的三边长, , 满足2+2=2,
那么这个三角形是直角三角形.
2. 满足 + = 的三个正整数,称为勾股
数.
教学过程——课后巩固
第一章 勾股定理
完成相关作业
教学过程——结束新课
第一章 勾股定理
感谢观看
教学过程——典例解析
第一章 勾股定理
解:连接AC,
∵AB=8,∠B=90°,BC=6,
∴ = ,
在△ACD中,CD=24, AD=26
∴ = =
= =
∵ + =
∴ + =
∴△ACD是直角三角形.

∴S=S△ACD-S△ABC= × × −



× × =
∴这块土地的面积是96.
教学过程——课后反思
第一章 勾股定理
如果三角形的三边长为, , ,满足
2+2=2,则该三角形是直角三角形.
如果2+2>2是什么三角形?
如果2+2<2是什么三角形?
教学过程——课堂小结
AB,AC,BC,则△ABC 的形状是(

A.锐角三角形
C.钝角三角形
B.直角三角形
D.无法确定
教学过程——典例解析
认真阅读课本第9页例题,体会勾股
定理逆定理在解决实际问题中的应用.
第一章 勾股定理
教学过程——典例解析

第一章 勾股定理
有一块土地,如图所示,已知∠B=90°,
AB=8,BC=6,CD=24, AD=26,求这块土地的面积..
90°

北师大版八年级数学上册第一章全部课件

北师大版八年级数学上册第一章全部课件
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-练
1 用四个边长均为a,b,c的直角三角板,拼成如
(来自《典中点》)
知2-导
知识点 2 勾股定理的应用
例2 我方侦察员小王在距离东西向公路400m处侦察,发现一 辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得 汽车与他相距400m,10s后,汽车与他相距500m,你能 帮小王计算敌方汽车的速度吗?
分析:根据题意,可以画出右图, 其中点A表示小王所在位置, 点C、点B表示两个时刻敌方 汽车的位置.
弦 勾
股 图1
北师大版八年级数学上册
C A
B C
图2-1
A
B
图2-2
(图中每个小方格代表一个单位面积)
知1-导
(1)观察图2-1 正方形A中含有 9 个 小方格,即A的面积 是 9 个单位面积. 正方形B的面积是 9 个单位面积.
正方形C的面积是 18 个单位面积.
北师大版八年级数学上册
C A
B C
(来自《点拨》)
知1-讲
总结
勾股定理的验证主要是通过拼图法利用面积的 关系完成的,拼图又常以补拼法和叠合法两种方式拼 图,补拼是要无重叠,叠合是要无空隙;而用面积法 验证的关键是要找到一些特殊图形(如直角三角形、 正方形、梯形)的面积之和等于整个图形的面积,从 而达到验证的目的.
(来自《点拨》)
知1-讲
1 课堂讲解 2 课时流程

7.4 平行线的性质课件 (30张PPT)北师大版八年级数学上册

7.4  平行线的性质课件 (30张PPT)北师大版八年级数学上册

所以梯形的另外两个角的度数分别是 80°、65°.
3、如图,由AB//CD,可以得到(C)易错
(A)∠1=∠2
(B)∠2=∠3
(C)∠1=∠4
(D)∠3=∠4
4、如图,已知A、B、C同在一条直线上,D、E、F同在一 条直线上,且∠A=∠F,∠C=∠D,判断AE与BF的位置关 系,并说明理由.
解: ∵∠C=∠D
∴∠1 = ∠D(两直线平行,内错角相等)
∵∠B = ∠D(已知)
∴∠1 = ∠B(等量代换)
∴AD∥BC(同位角相等,两直线平行)
D C
例2 已知:如图,AB∥CD,∠B =∠D.
求证:AD∥BC. 证法三: 如图,连接 BD (构造两组内错角). ∵ AB∥CD (已知),
A
12
B
D
3 4
C
∴∠1 =∠4 (两直线平行,内错角相等).
条直线与这条直线平行”相矛盾. 这说明∠1 ≠ ∠2 的假设不成立,所以 ∠1 =∠2.
总结归纳
一般地,平行线具有如下性质: 性质1 (定理) 两条平行线被第三条直线所截,同位角
简单说成:两直线平行,同位角相等.
c
应用格式:
1
∵ a∥b(已知),
a
∴∠1 =∠2
2
(两直线平行,同位角相等). b
议一议
(1) 从∠1 = 110° 可以知道∠2 是多少度?为什么?
(2) 从∠1 = 110° 可以知道∠3 是多少度?为什么?
(3) 从∠1 = 110° 可以知道∠4 是多少度?为什么?
解:(1) ∠2 = 110°,
两直线平行,内错角相等. (2)∠3 = 110°,
两直线平行,同位角相等. (3)∠4 = 70°,

北师大版八年级上册数学全册课件

北师大版八年级上册数学全册课件
北师大版八年级上册 数学全册课件
汇报人: 202X-01-01
contents
目录
• 第一章 勾股定理 • 第二章 实数 • 第三章 分式 • 第四章 平行四边形 • 第五章 一次函数
01
第一章 勾股定理
勾股定理的证明
毕达哥拉斯学派
勾股定理最早由古希腊的毕达哥 拉斯学派证明,他们通过观察直 角三角形的三边关系,发现了勾
平方根与算术平方根的区别
平方根包括正负两个解,而算术平方根只取非负 的那个解。
无理数与实数
01
无理数的定义
无理数是不能表示为两个整数之比的数,常见的无理数有无限不循环小
数和无法精确表示的数(如圆的周长与直径之比π)。
02 03
无理数的性质
无理数具有稠密性和连续性,即任意两个无理数之间都存在其他无理数 。此外,无理数在实数集中占据了“无处不在”的位置,即任意两个不 同的无理数之间都存在其他无理数。
一次函数的性质
一次函数图像的斜率为k,截距为b。 当k>0时,函数为增函数;当k<0时 ,函数为减函数。
一次函数的应用
一次函数在生活中的应用
一次函数可以用于描述生活中的许多问题,如速度与时间的 关系、成本与数量的关系等。
一次函数在实际问题中的应用
通过建立数学模型,将实际问题转化为一次函数问题,可以 方便地解决许多实际问题,如最优解问题、预测问题等。
勾股定理和其逆定理是密切相关的, 它们是互为逆命题的两个命题,具有 等价性。
逆定理的应用
勾股定理的逆定理在判断三角形是否 为直角三角形时非常有用,可以通过 检查三边的平方关系来确定。
02
第二章 实数
实数的定义与性质
实数的定义

2020最新北师大版八年级数学上册全册教学课件

2020最新北师大版八年级数学上册全册教学课件

第一章 勾股定理
2020最新北师大版八年级数学上册 全册教学课件
1. 探索勾股定理
2020最新北师大版八年级数学上册 全册教学课件
2. 一定是直角三角形吗
2020最新北师大版八年级数学上册 全册教学课件
3. 勾股定理的应用
2020最新北师大版八年级数学上 册全册教学课件目录
0002页 0037页 0084页 0103页 0123页 0146页 0178页 0230页 0267页 0317页 0351页 0385页 0420页 0546页 0565页 0581页 0616页
第一章 勾股定理 2. 一定是直角三角形吗 回顾与思考 第二章 实数 2. 平方根 4. 估算 6. 实数 回顾与思考 第三章 位置与坐标 2. 平面直角坐标系 回顾与思考 第四章 一次函数 2. 一次函数与正比例函数 4. 一次函数的应用 复习题 1. 认识二元一次方程组 3. 应用二元一次方程组——鸡兔同笼
2020最新北师大版八年级数学上册 全册教学课件

回顾与思考
2020最新北师大版八年级数学上册 全册教学课件
复习题
2020最新北师大版八年级数学上册 全册教学课件

北师大版八年级数学上册课件

北师大版八年级数学上册课件

北师大版八年级数学上册课件一、勾股定理。

1. 勾股定理内容。

- 直角三角形两直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么a^2+b^2=c^2。

- 例如,一个直角三角形的两条直角边分别为3和4,那么斜边c=√(3^2) +4^{2}=√(9 + 16)=√(25) = 5。

2. 勾股定理的证明。

- 常见的证明方法有赵爽弦图法。

赵爽通过构造以直角三角形的斜边为边长的正方形,然后将其分割成四个全等的直角三角形和一个小正方形,通过面积关系来证明勾股定理。

- 设直角三角形的两条直角边为a、b,斜边为c。

大正方形的面积可以表示为c^2,也可以表示为(a + b)^2- 2ab=a^2+b^2,从而证明a^2+b^2=c^2。

3. 勾股定理的逆定理。

- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

- 例如,三角形三边分别为5、12、13,因为5^2+12^2=25 + 144 =169=13^2,所以这个三角形是直角三角形。

4. 勾股数。

- 满足a^2+b^2=c^2的三个正整数a、b、c称为勾股数。

常见的勾股数有(3,4,5)、(5,12,13)、(8,15,17)等。

二、实数。

1. 无理数的概念。

- 无限不循环小数叫做无理数。

例如√(2),π等。

- √(2)的计算:设√(2)=(p)/(q)(p,q为互质的正整数),则2=frac{p^2}{q^2},即p^2=2q^2。

由此可推出p是偶数,设p = 2m,则(2m)^2=2q^2,即q^2=2m^2,所以q也是偶数,这与p,q互质矛盾,所以√(2)是无理数。

2. 实数的分类。

- 实数包括有理数和无理数。

有理数又包括整数和分数。

- 整数:正整数、0、负整数;分数:有限小数和无限循环小数。

3. 实数的运算。

- 实数的运算顺序:先算乘方、开方,再算乘除,最后算加减。

有括号的先算括号里面的。

北师大版八年级数学上册第五章教学课件全套

北师大版八年级数学上册第五章教学课件全套

上面两个问题中,我们分别得到 x-y=2,x+1=2(y-1)和x+y=8,5x+3y=34.这些 方程各含有几个未知数?含未知数项的次数是 多少?

含有两个未知数,并且所含未知数的项的次数 都是1的过程叫做二元一次方程.
讨论

在上面的方程x+y=8和5x+3y=34中, x所代 表的对象相同吗?y呢?

用加减法解二元一次方程组的基本思想是 什么?这种方法的适用条件是什么?步骤又
是怎样的?学习过程中还有哪些困惑?请与
同学们交流.
1.布置作业:习题5.3 第1 、2 题 2.完成创优作业中本课时的习题

应用二元一次方程组
——鸡兔同笼
《孔子算经》是我国古代一部较为普及的算书, 许多问题浅显有趣.其中下卷第31题:“雉兔同 笼”流传尤为久远,漂洋过海流传到日本等国.
“雉兔同笼”题为:“今有雉(鸡)兔同笼,上有 三十五头,下有九十四足.问雉兔各几何?” (1)“上有三十五头”的意思是什么?“下有九 十四足”呢? (2)你能根据(1)中的数量关系列出方程吗? (3)你能解这个有趣的问题吗?与同学们交流一 下.
方程x+y=8和5x+3y=34中,x,y所代表的对象分别相 同.因而x、y必须同时满足x+y=8和5x+3y=34.把它 们联立起来,得 x+y=8 5x+3y=34. 像这样,共含有两个未知中数的两元一次方程所组成 的一组方程叫做二元一次方程组.
做一做
(1)x=6,y=2适合方程x+y=8吗?x=5;y=3呢? x=4,y=4呢?你还能找到其他x、y值适合方程 x+y=8吗? (2)x=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?

八年级数学北师大版上册课件:第1章 1.探索勾股定理(共16张PPT)

八年级数学北师大版上册课件:第1章 1.探索勾股定理(共16张PPT)

A.6 米 C.6.8 米
B.8.4 米 D.9.6 米
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/102021/9/10Friday, September 10, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/102021/9/102021/9/109/10/2021 6:17:32 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/102021/9/102021/9/10Sep-2110-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/102021/9/102021/9/10Friday, September 10, 2021
13.如图,居民小区内有一块边长 AC=60 米的正方形草坪,在草坪 B 处有 健身器材,有的居民从 A 处去 B 处锻炼身体时,为了贪近,在草坪内踏出一 条路 AB,居委会王大妈想在 A 处立一个写有“少走 米,踏之何忍”的警 示牌,她在 处填上适当的数字应是 十 .
14.如图,直线 l 上有三个正方形 a、b、c,若 a、c 的面积为 5 和 11,则 b 的面积为 16 .
5.∴BD=10+x=15 m.
答:这棵树高 15 m.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/102021/9/102021/9/102021/9/109/10/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月10日星期五2021/9/102021/9/102021/9/10 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/102021/9/102021/9/109/10/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/102021/9/10September 10, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/102021/9/102021/9/102021/9/10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ⅰ、三边的平方分别是 各正方形的面积;
数格子法
ⅱ、满足“两直角边的平 方和等于斜边的平方”。
(4) 如果直角三角形的两直角边分别为1.6个单位长度 和2.4个单位长度,上面所猜想的数量关系还成立吗? 说明你的理由。
1.6 2.4
(4) 如果直角三角形的两直角边分别为1.6个单位长度 和2.4个单位长度,上面所猜想的数量关系还成立吗? 说明你的理由。
这种验证勾股定理的方法,据载最早是 三国时期数 学家赵爽在为《周髀算经》作注时给出的,我国历史上将 此图称为弦图 。
想一想:
你还有其它的拼图方法吗?
二、用“外镶法”拼图: 将直角三角形按图拼在大正方形外部
c2 (b a)2 1 ab 4 2
b2 2ab a2 2ab b2 a2
在直角三角形中: ∵ 92+122=斜边2 ∴ 斜边=15 ∴旗杆高=9+15=24(米)
知识归纳
“勾股定理”的应用: 已知直角三角形两边,求第三边。
B a2+b2= c2
a2= c2-b2 a
c
b2= c2-a2 C
b
A
1、求下图中字母所代表的正方形的面积:
2、求下列直角三角形未知边的长度:
仍然成立
1勾.6

较短的直角边称为“勾”
2股.4
较长的直角边称为“股”
斜边边称为“弦”
新知归纳
勾股定理:
(1)文字语言:直角三角形两直角边的平方和等于 斜边的平方。
(2)符号语言:
C 90 (已知)
B
a
c
a2 b2 c2 (勾股定理)
C
b
A
如图,强大的台风使得一根旗杆在离地面9米 处折断,旗杆顶部落在离旗杆底部12米处。旗杆 之前有多高?
第一章 勾股定理
1.1 探索勾股定理(1)
目录
Contents
01 情境导入
02 新知探究
03 问题解决
04 巩固练习
05 课堂小结
06 拓展阅读
科学家曾经建议用“勾股定理”的图来作为与“外星人” 联系的信号。
勾股定理有着悠久的历史,古巴比伦人和古 代中国人看出了这个关系。
古希腊的毕达哥拉斯学派首先证明了这个关系。
A B
E
C D
F
G
6、如图,求等腰△ABC的面积。
A5cm5cmBDC6cm
1、勾股定理:
(1)文字语言:直角三角形两直角边的平方和等于 斜边的平方。
(2)符号语言:
C 90 (已知)
B
a2 b2 c2 (勾股定理) a
c
C
b
A
2、验证“勾股定理”的方法: (1)测量法 (2)数格子法 3、 “勾股定理”的应用: 已知直角三角形两边,求第三边。
新知归纳
“勾股定理”的验证方法: 1、数形结合法: (1)拼正方形图: 运用正方形面积表达式进行证明; (2)拼梯形图: 运用梯形面积表达式进行证明。
例1、我方侦察员小王在距离东西向公路400米处侦察,发 现一辆敌方汽车在公路上疾驶。他赶紧拿出红外测距仪, 测得汽车与他相距400米,10秒后,汽车与他相距500米, 你能帮助小王计算敌方汽车的速度吗?
诊断练习
1、如图,Rt△ABC的边AC=5cm,BC=6cm, 求以AB为边的正方形面积。
A
C
B
2、如图,马路边一根高为5.4m的电线杆,被一 辆卡车从离地面1.5m处撞断裂,倒下的电线杆顶 部是否会落在离它的底部A处4m的快车道上?
C
B
A
C`
我们是怎样发现“勾股定理”的?
数格子法
用“数格子法”发现: “两直角边的平方和 等于斜边的平方”。
“勾股定理”图
如图,强大的台风使得一根旗杆在离地面9米 处折断,旗杆顶部落在离旗杆底部12米处。旗杆 之前有多高?
想一想: (1) 你需要哪些线段的长度? (2) 这些线段的长度确定吗?
(1) 在纸上作出若干个直角三角形,分别测量它们的三 条边长,看看三边长的平方之间有什么样的关系?
测量法 三边长的平方之间的关系:
一、用“内嵌法”拼图:
将直角三角形按图拼在大正方形内部
c2 (b a)2 1 ab 4 2
b2 2ab a2 2ab
b-a
bc a
b2 a2
c2 a2 b2
拓展阅读
2002年的数学家大会(ICM-2002)在北京召开,这届大 会会标 的中央图案正是经过艺术处理的弦图,这既标志着中 国古代的数学成就 ,又像一只转动的风车,欢迎来自世界各 地的数学家们!
两直角边的平方和等于斜边的平方
(2) 如图,直角三角形三边的平方分别是多少,它们 满足上面所猜想的数量关系?你是如何计算的?
数格子法
ⅰ、三边的平方分别是 各正方形的面积;
ⅱ、满足“两直角边的平 方和等于斜边的平方”。
(3) 如图,直角三角形三边的平方分别是多少,它们 满足上面所猜想的数量关系?你是如何计算的?
1、如图,从电线杆离地面6米处向地面拉一条长 10米的缆绳,这条缆绳在地面的固定点距离电线 杆底部有多远?
已知两边求第三边 6米
10米
2、如图是某沿江地区交通图,为了加快经济发展, 该地区拟修建一条连接M,O,Q三城市的沿江高速, 已知沿江高速的建设成本是100万元/千米,该沿江高 速的造价预计是多少?
y
6
x
5
13
8
先明确斜边
3、小明妈妈买了一部29英寸(74厘米)的电视机。 小明量了电视机的屏幕后,发现屏幕只有58厘 米长和46厘米宽,他觉得一定是售货员搞错了。 你同意他的想法吗?你能解释这是为什么吗?
4、求斜边长17厘米、一条直角边长15厘米的直角 三角形的面积。
5、如图,所有的四边形都是正方形,所有的三 角形都是直角三角形,请在图中找出若干个图 形,使它们的面积之和恰好等于最大的正方形 面积,尝试给出两种以上的方案。
第一章 勾股定理
1.1 探索勾股定理(2)
目录
Contents
01 复习旧知
02 新知探究
03 问题解决
04 巩固练习
05 课堂小结
勾股定理: (1)文字语言:直角三角形两直角边的平方和等于 斜边的平方。
(2)符号语言:
C 90 (已知)
B
a2 b2 c2 (勾股定理)
a
c
C
b
A
“勾股定理”的应用: 已知直角三角形两边,求第三边。
c2 a2 b2
ab
新知归纳
“勾股定理”的验证方法: 1、数形结合法: (1)拼正方形图: 运用正方形面积表达式进行证明;
数学理解
如图是美国总统伽菲尔德(Garfield)于1876年给出 的一种验证勾股定理的办法,你能利用它验证勾股定 理吗?说一说这个方法和本节的探索方法的联系。
“总统证明法”
相关文档
最新文档