信号系统非正弦周期信号的分解与合成实验报告

合集下载

非正弦信号的分解与合成设计报告

非正弦信号的分解与合成设计报告

非正弦周期信号的分解与合成设计报告杨磊(渭南师范学院物理与电气工程学院电子信息科学与技术2008级2班)摘要:本作品主要用于非正弦信号的分解与合成实验验证,电路主要由滤波电路模块、放大器模块、移相器模块和加法电路模块组成。

将50Hz方波接至带通滤波器模块的输入端,再将各带通滤波器的输出信号接至示波器,观察各次谐波的频率和幅值,然后再将基波和各次谐波分量接至加法器进行合成,记录合成后的波形。

关键字:函数信号发生器带通滤波器加法器分解合成前言本设计的任务是使我们获得信号与系统分析方面的基本理论、基本知识和基本技能,培养我们分析问题和解决问题的能力,为深入学习通信、电子信息类专业有关课程及以后从事专业工作打下良好的基础。

如何把抽象的数学语言和具体的物理概念与实际应用联系起来,也是学习中要解决的重要问题。

让我们有机会尽早接触正弦波、方波等周期信号以及调幅波、调频波等调制信号,通过多观察、多测试、多分析,理论联系实际,举一反三,融会贯通,掌握观察、测试和分析信号与系统的基本方法,培养使用基本分析工具的能力。

为此我们引入信号的分解与合成来解决这样的问题。

从而有了我们这次的课题——信号波形合成。

1 方案的设计和论证通过控制系统的要求可知,本系统是由函数信号发生器、带通滤波器、移相电路和加法电路四大模块组成。

其中方函数信号发生器由据的采集用高精度的MAX038来实现,带通滤波器由LC并联谐振电路来实现,移相电路由RC移相电路实现,加法电路由高度集成运放TI公司生产的低噪声高精度运算放大器OP07来设计。

系统结构框图如下:图1 系统框图1.1 方波信号发生器的设计方案1:采用AT89S52的时钟信号,采用软件编程输出50Hz的方波信号。

AT89S52是一种低功耗、高性能CMOS 8位微控制器,具有8K 在系统可编程Flash 存储器。

使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。

信系统非正弦周期信的分解与合成实验报告

信系统非正弦周期信的分解与合成实验报告

非正弦周期信号的分解与合成一、实验目的1.用同时分析法观测50Hz 非正弦周期信号的频谱,并与其傅利叶级数各项的频率与系数作比较。

2.观测基波和其谐波的合成。

二、实验设备1、THBCC-1型信号与系统控制理论及计算机控制技术实验平台2、PC机(含“THBCC-1”软件)三、实验原理1.一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、?、n 等倍数分别称二次、三次、四次、?、n 次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。

不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。

2.实验装置的结构图3、各次不同波形及其傅氏级数表达式 方波矩形波的傅立叶频谱)7sin 715sin 513sin 31(sin 4)(Λ+ω+ω+ω+ωπ=t t t t A t f ,其中的T π=ω2三角波三角波的傅立叶频谱)7cos4915sin 2513sin 91(sin 8)(2Λ+ω-ω+ω-ωπ=t t t t A t f ,其中的T π=ω2半波半波的傅立叶频谱正弦整流全波f (t ) At O 0.5T TA km 4A/2π 4A/3π4A/35π 4ω 8ω2ω 6ω 4A/63π ω 4A/15π正弦全波整流形波的傅立叶频谱)8cos 6316cos 3514cos 1512cos 3121(4)(Λ-ω-ω-ω-ω-π=t t t A t f ,其中T π=ω2矩形波矩形波形波的傅立叶频谱四、实验内容及步骤1.将50Hz 信号源接至信号分解实验模块BPF 的输入端。

2.将各带通滤波器的输出(注意各种不同信号所包含的频谱)分别接至示波器,观测各次谐波的频率和幅值,画出波形并列表记录频率和幅值。

F ( j ? ) U ? ?2? / ? 4 ? / ? 6? / ?f ( t )U ? tO方波和基波方波和二次谐波方波和三次谐波方波和四次谐波方波和五次谐波方波和六次谐波3.将方波分解所得的基波、三次谐波分别接至加法器的相应输入端,观测加法器的输出波形,并记录。

实验五 非正弦周期信号的分解和合成

实验五 非正弦周期信号的分解和合成

实验五非正弦周期信号的分解和合成一、实验要求1、观察正弦波,矩形波和三角波信号的频谱,并进行分析;2、设计以一个BPF1-BPF6的带通滤波器,加法器。

滤波器调谐在基波和各次谐波上,然后用加法器对各次谐波进行合成,观察合成信号与原信号的区别;3、分别对单相正弦波、矩形波和三角波的输出信号进行分解和合成,观测基波及各次谐波频率和幅度,加法器的输出波形。

二、实验内容:(1)用频谱仪和FOURIER分析法观测非正弦周期信号的频谱,分别观测50HZ单相正弦波,方波,矩形波和三角波信号的频谱记录之.A)50hz单相正弦波单相正弦波的产生:产生的波形图如下:对应的频谱图:B)50HZ方波Fourier分析法观测的频谱:C)50HZ矩形波对应的频谱:(2)设计BPF1-BPF6带通滤波器,加法器.滤波器调谐在基波和各次谐波上的带通滤波器,加法器用于信号的合成.将50HZ的方波信号其接至各带通滤波器的输入端,将各带通滤波器的输出分别接至示波器,观测各次谐波的频率和幅值.并记录之本实验不是采用带通滤波器进行实现,而是通过谐振回路对相应的谐波进行提取,实现的电路图如下:基波和二次谐波的电路如下:三次谐波和四次谐波如下:九次谐波的波形如下:(4)将方波分解所得的基波和三次谐波加到加法器的响应输入端,观测加法器的输出波形,并记录之.电路图:合成后的波形:(5)在4的基础上,再将五次谐波分量加到加法器的输入端,观测相加后的波形,记录之,并分析讨论将一三五谐振回路进行串联得到的信号,可见,效果相对上图比较好些(6)分别将50HZ单相正弦波,矩形波和三角波的输出信号接至50HZ电信号分解与合成模块输入端、观测基波和各次谐波的频率和幅度,求和器的输出波形。

最后我们来看看六次谐波叠加的效果:可以看到信号恢复的已经比较不错了,由于在合成信号时会有吉布斯效应,所以会有一个约9%的小凸起。

上面是观察方波信号的,当然我们也可以对三角波信号进行同样的观察,可以预见的是,三角波信号的3,,5次谐波能量将会更小,基波能量将非常集中,因此合成出来的结果应该会更加完美。

周期信号的合成与分解实验报告

周期信号的合成与分解实验报告

周期信号的合成与分解实验报告武汉大学教学实验报告电子信息学院 通信工程 专业 2017 年 9 月 14 日 实验名称 周期信号的合成与分解 指导教师姓名 年级 学号 成绩 一、 预习部分1. 实验目的2. 实验基本原理3. 主要仪器设备(含必要的元器件、工具)一、实验目的1.在理论学习的基础上,通过实验深刻领会周期信号傅里叶级数分解的物理意义。

2.理解实际应用中通常采用有限项级数来逼近无限项级数,此时方均误差随项数的增加而减小。

3.观察并初步了解 Gibbs 现象。

4.深入理解周期信号的频谱特点,比较不同周期信号频谱的差异。

二、实验基本原理满足 Dirichlet 条件的周期信号 f(t)可以分解成三角函数形式的傅里叶级数,表达式为:∑∞=+++=+++++=11101111110)]sin()cos([...)sin()cos(...)sin()cos()(n n n n n t n b t n a a t n b t n a t b t a a t f ωωωωωω式中n 为正整数;角频率ω1由周期T 1决定:112T πω=。

该式表明:任何满足Dirichlet 条件的周期信号都可以分解成直流分量及许多正弦、余弦分量。

这些正弦、余弦分量的频率必定是基频111T f =的整数倍。

通常把频率为的分1f量称为基波,频率为n1f的分量成为n次谐波。

周期信号的频谱只会出现在0,ω1,2ω1,…,nω1,…等离散的频率点上,这种频谱称为离散谱,是周期信号频谱的主要特点。

f(t)波形变化越剧烈,所包含的高频分量的比重就越大;变化越平缓,所包含的低频分量的比重就越大。

一般来说,将周期信号分解得到的三角函数形式的傅里叶级数的项数是无限的。

也就是说,通常只有无穷项的傅里叶级数才能与原函数精确相等。

但在实际应用中,显然无法取至无穷多项,而只能采用有限项级数来逼近无穷项级数。

而且,所取项数越多,有限项级数就越逼近原函数,原函数与有限项级数间的方均误差就越小,而且低次谐波分量的系数不会因为所取项数的增加而变化。

信号与系统实验指导书含设计(2014版)分解

信号与系统实验指导书含设计(2014版)分解

实验一:50Hz 非正弦周期信号的分解与合成一、实验目的1、掌握周期信号傅里叶级数的概念和意义。

2、观测非正弦周期信号的分解与合成。

二、实验仪器THKSS -A 型信号与系统实验箱,双踪示波器,函数信号发生器。

三、实验原理一个非正弦周期信号可以用一系列幅度、初相不同,频率成整数倍的正弦信号来表示,其中与非正弦信号具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、…、n 等倍数分别称二次、三次、四次、…、n 次谐波,其幅度将随谐波次数的增加而趋于减小。

反过来,幅度和初相不同的各次谐波(含直流)可以合成一个非正弦周期信号。

非正弦周期信号可用傅里叶级数来表示,各项系数与频率之间的关系叫频谱,不同的非正弦周期信号具有不同的频谱图。

方波周期信号的傅里叶级数表达式为)7sin 715sin 513sin 31(sin 4)(⋅⋅⋅++++=t t t t u t u mωωωωπ,信号波形和相对频谱如图1.1所示。

图1.1 方波信号波形和相对频谱图各种不同信号的波形如图1.2所示,其傅氏级数表达式对应如下。

图1.2 各种不同信号的波形图各种不同信号的傅里叶级数表达式:1、方波)7sin 715sin 513sin 31(sin 4)(⋅⋅⋅++++=t t t t u t u mωωωωπ 2、三角波)5sin 2513sin 91(sin 8)(2⋅⋅⋅++-=t t t U t u m ωωωπ3、半波 )4cos 1512cos 31cos 421(2)(⋅⋅⋅+--+=t t t U t u m ωωωππ 4、全波 )6cos 3514cos 1512cos 3121(4)(⋅⋅⋅+---=t t t U t u m ωωωπ5、矩形波)3cos 3sin 312cos 2sin 21cos (sin 2)(⋅⋅⋅++++=t Tt T t T U T U t u m m ωτπωτπωτππτ四、实验内容和步骤实验装置的结构如图1.3所示。

谐波实验报告

谐波实验报告

实验一 谐波分析实验一、实验目的1)了解分解、合成非正弦周期信号的物理过程2)观察合成某一确定的周期信号时,所必须保持的合理的频率结构,正确的幅值比例和初始相位关系。

二、实验原理本实验主要运用傅立叶分解的方式对方波、锯齿波以及三角波进行分解与合成。

下面就对这三种波形的傅立叶分解原理进行介绍。

傅立叶分解原理对某一个非正弦周期信号X(t)(在有限区间上满足狄里赫利条件的函数),若其周期为T 、频率为f ,则可以分解为无穷项谐波之和。

即010100122()(cos sin )22sin()2sin(2)2n n n n n n n n n a n n x t a t b t T T a n A t T a A f t πππφπφ∞=∞=∞==++ =++ =++∑∑∑ 上式表明,各次谐波的频率分别是基波频率0f 的整数倍。

只要选择符合要求的不同频率成分和相应幅值比例及相位关系的谐波,便可近似地合成相应的方波、三角波等非正弦周期波形,以及任何在有限区间上满足狄里赫利条件的函数。

三、实验内容(一)方波1)方波的谐波分析,右图的一个方波(),022()0,2()()E T x t t T x t t T x t nT x t ⎧=≤≤⎪⎪⎪= ≤≤ ⎨⎪+=⎪⎪⎩进行谐波分析可知:00n a a ==/20/22()sin (1cos )2,1,3,5...0,2,4,6...T n T b x t n tdt T En n En n n ωπππ-= =-⎧ =⎪ =⎨⎪ =⎩⎰ 所以 000211()(sin sin 3sin 5...)35Ex t t t t ωωωπ=+++ 根据实验要求取基波的幅值为1,即212E E ππ=⇒=为了方便,可以取01ω=即方波可以展开成傅立叶级数为:11()(sin sin 3sin 5...)35x t t t t =+++2)合成方波根据讲义的讲解,编写以下程序实现功能要求 a 、一次谐波、三次谐波合成 x=0:4*pi/100:4*pi; y1=sin(x); y2=sin(3*x)/3;plot(x,y1,x,y2,x,y1+y2); grid onb 、一次谐波、三次谐波、五次谐波合成 x=0:4*pi/100:4*pi;y1=sin(x);y2=sin(3*x)/3;y3=sin(5*x)/5;plot(x,y1,x,y2,x,y3,x,y1+y2+y3);grid on之后的谐波合成类似,省略程序,得到的合成方波分别如图所示一次谐波、三次谐波、五次谐波、七次谐波合成方波一次谐波、三次谐波、五次谐波、七次谐波、九次谐波合成方波总结:方波可以通过谐波的叠加得到,叠加的谐波级次越高,方波的失真越小。

信号的分解与合成实验报告总结

信号的分解与合成实验报告总结

信号的分解与合成实验报告总结
一、实验目的
本次实验的目的是:
1. 掌握信号的分解与合成原理;
2. 了解信号的合成生成方法;
3. 掌握合成信号的基本特性。

二、实验内容
本次实验的内容包括:
1. 利用MATLAB编程实现信号合成程序;
2. 信号合成程序的调试;
3. 利用合成信号产生平坦的信号;
4. 利用合成信号产生任意波形;
5. 记录下合成信号的波形并作出比较;
6. 对合成信号的结果进行分析与评价。

三、实验结果
1. 利用MATLAB编程实现信号合成程序:通过本次实验,我们可以用MATLAB编程实现一个信号合成程序,以满足任意一种信号的所需。

2. 平坦信号:利用本次实验,通过对直线段和曲线段的组合,我们可以得到一个看上去是弧形的信号,它是一个平坦信号,我们可以通过改变曲线段的个数来调整这个信号的过程。

3. 任意波形:在本次实验中,我们可以利用合成信号来得到任
意波形。

通过改变曲线段的弯曲度和曲线段的个数,我们可以得到不同波形。

4. 记录下合成信号的波形:在本次实验中,我们可以将波形记录下来,并作出比较,以确认合成出的波形的情况。

5. 对合成信号的结果进行分析与评价:本次实验中,我们可以对合成的信号进行分析与评价,以看出是否符合要求,并能够作出准确评价。

四、总结
本次实验主要是学习信号的分解和合成,及其相关原理。

信号的分解和合成主要是通过程序来实现的,在程序的帮助下,可以很容易地实现信号的分解和合成。

本次实验通过实现信号合成程序的调试,发现、记录合成的信号并作出评价的方法,让我们能够更好地了解信号的分解和合成。

实验1.6 信号的分解与合成

实验1.6  信号的分解与合成

实验1.6 信号的分解与合成————————————————————————————————作者:————————————————————————————————日期:实验1。

6 信号的分解与合成【实验内容】设计制作一个电路或装置,能够从方波或锯齿波中分离出主要谐波,并将这些谐波再合成为原始信号。

【项目背景】本实验项目的设计内容及要求涉及电子电路、信号处理电路的基本设计和测试、滤波器设计。

其基本内容可使学生掌握一般电子产品的设计制作方法及步骤。

【实验目的】通过一个系统功能可感知电路的设计和实现的较完整过程,达到对电路原理实验课中基本测量、基本设计以及基本研究能力培养的要求。

该实验不仅包含了传统电路原理实验中的基本内容(如已基本掌握的不同功能单元电路的设计、安装和调试方法,在单元电路设计的基础上,设计出具有实用价值和一定工程意义的电子电路。

深化所学理论知识,培养综合知识运用能力和处理实际工程问题的能力,增强独立分析与解决问题的能力。

【实验要求】1.基本要求给定一个非正弦周期信号,比如说周期一定的方波或锯齿波,设计电路满足下述要求:1)提取出基波、3次、5次和7次谐波.设计合适的滤波器将指定的谐波从非正弦周期信号中提取出来;2)调整各次谐波的幅度和相位.用提取出的各次谐波分量,按照傅里叶级数分解的原理,设计比例放大和移相电路调整各幅值和相位;3)构造一个加法器电路,将1、3、5、7次谐波信号相加,将合成后的信号与原始信号比较,要求波纹、顶宽和上升时间满足一定要求;4)学会用示波器检查各高次谐波与基波之间初始相位差是否为零的测试方法;5)通过实际观察合成某一确定周期信号时,必须保持合理的频率结构,正确的幅值比例和初始相位关系,如果破坏了其中任何一条,都会导致波形失真,从而加深理解信号检测与传输中确保不失真条件的重要性。

2.提高要求设计并实现能够产生指定要求的周期非正弦信号的电路。

【实验方案】非正弦周期信号可以通过fourier分解成直流、基波以及与基波成自然倍数的高次谐波的叠加。

实验四、信号的分解与合成实验实验报告(报告人09光信2)

实验四、信号的分解与合成实验实验报告(报告人09光信2)

实验四、信号的分解与合成实验实验报告(报告⼈09光信2)实验四信号的分解与合成实验报告⼀、实验⽬的1、进⼀步掌握周期信号的傅⾥叶级数。

2、⽤同时分析法观测锯齿波的频谱。

3、全⾯了解信号分解与合成的原理。

4、掌握带通滤波器的有关特性测试⽅法及其选频作⽤。

5、掌握不同频率的正弦波相位差是否为零的鉴别和测试⽅法(李沙育图形法)。

⼆、实验原理任何电信号都是由各种不同频率、幅度和初相的正弦波叠加⽽成的。

对周期信号由它的傅⾥叶级数展开式可知,各次谐波为基波频率的整数倍。

⽽⾮周期信号包含了从零到⽆穷⼤的所有频率成分,每⼀频率成分的幅度均趋向⽆限⼩,但其相对⼤⼩是不同的。

通过⼀个选频⽹络可以将信号中所包含的某⼀频率成分提取出来。

对周期信号的分解,可以采⽤性能较佳的有源带通滤波器作为选频⽹络。

若周期信号的⾓频率0w ,则⽤作选频⽹络的N种有源带通滤波器的输出频率分别是0w 、02w 、03w 、04w 、05w ....0N w ,从每⼀有源带通滤波器的输出端可以⽤⽰波器观察到相应谐波频率的正弦波,这些正弦波即为周期信号的各次谐波。

把分离出来的各次谐波重新加在⼀起,这个过程称为信号的合成。

因此对周期信号分解与合成的实验⽅案如图2-7-1所⽰。

本实验中,将被测锯齿波信号加到分别调谐于其基波和各次谐波频率的⼀系列有源带通滤波器电路上。

从每⼀有源带通滤波器的输出端可以⽤⽰波器观察到相应频率的正弦波。

本实验所⽤的被测周期信号是100Hz的锯齿波,⽽⽤作选频⽹络的7种有源带通滤波器的输出频率分别是100Hz、200Hz 、300Hz 、400Hz 、500Hz 、600Hz 、700Hz ,因⽽能从各有源带通滤波器的两端观察到基波和各次谐波。

按照锯齿波的傅⾥叶级数展开式如下所⽰:111111211111f(t)=[sin()sin(2)sin(3)sin(4)sin(5)sin(6)....]23456w t w t w t w t w t w t -+-+-+∏可知,锯齿波的1~7次谐波的幅度⽐应为 1111111::::::234567。

信号的分解与合成实验报告

信号的分解与合成实验报告

信号的分解与合成实验报告信号的分解与合成实验报告引言:信号是信息传递的基本单位,它在各个领域中发挥着重要的作用。

在本次实验中,我们将探索信号的分解与合成,以更深入地理解信号的特性和应用。

通过实验,我们希望能够掌握信号的分解与合成方法,并了解其在通信、音频处理等领域中的实际应用。

一、实验目的本次实验的主要目的是通过信号的分解与合成,掌握信号的基本特性和处理方法。

具体目标包括:1. 了解信号的基本概念和分类;2. 掌握信号的分解方法,如傅里叶级数分解;3. 掌握信号的合成方法,如傅里叶级数合成;4. 理解信号的频谱特性和时域特性。

二、实验原理1. 信号的基本概念和分类信号是随时间变化的物理量,可以用数学函数描述。

根据信号的特性,信号可以分为连续信号和离散信号。

连续信号在时间和幅度上都是连续变化的,而离散信号在时间和幅度上都是离散的。

2. 傅里叶级数分解傅里叶级数分解是将周期信号分解为多个正弦和余弦函数的和。

通过傅里叶级数分解,我们可以得到信号的频谱特性,即信号在频域上的分布情况。

傅里叶级数分解的公式为:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))3. 傅里叶级数合成傅里叶级数合成是将多个正弦和余弦函数按照一定比例合成为一个周期信号。

通过傅里叶级数合成,我们可以根据信号的频谱特性合成出原始信号。

傅里叶级数合成的公式为:f(t) = Σ(cn*cos(nωt) + dn*sin(nωt))三、实验步骤1. 选择一个周期信号作为实验对象,记录信号的周期和幅度;2. 对信号进行采样,得到离散信号;3. 对离散信号进行傅里叶级数分解,得到信号的频谱特性;4. 根据信号的频谱特性,选择合适的正弦和余弦函数进行傅里叶级数合成;5. 比较合成信号与原始信号的相似性,并分析合成误差的原因。

四、实验结果与分析在实验中,我们选择了一个周期为T的正弦信号作为实验对象。

通过采样和傅里叶级数分解,我们得到了信号的频谱特性,发现信号主要由基频和谐波组成。

信系统非正弦周期信的分解与合成实验报告

信系统非正弦周期信的分解与合成实验报告

信系统非正弦周期信的分解与合成实验报告实验报告:信号系统的非正弦周期信号的分解与合成一、实验目的:1.理解周期信号的概念和特点;2.学习如何分解一个非正弦周期信号的频谱成分;3.学习如何合成一个非正弦周期信号。

二、实验原理:1.傅里叶级数展开:任何周期信号都可以由一系列谐波分量叠加而成;2.傅里叶级数中的谐波分量:频率是整数倍的基频信号,基频信号频率为信号周期的倒数。

三、实验仪器:1.计算机;2. 数字信号处理软件(如MATLAB、Python等);3.数字音频信号采集卡(可选);4.电脑音箱或音频耳机。

四、实验步骤:1.将采集卡连接至计算机(若使用);2.打开信号处理软件,并导入需要处理的非正弦周期信号的音频文件;3.将音频信号从时域转换到频域,得到信号的频谱;4.分析频谱,找出频率成分较高的谐波分量;5.根据谐波分量的频率、振幅和初相位,计算每个谐波分量的波形;6.对所有谐波分量进行叠加,得到合成后的信号。

五、实验结果与讨论:1.实验结果:可以得到信号的频谱,并分析出频率较高的谐波分量;2.讨论:根据实验结果可以探讨信号的频谱结构、谐波的产生原理等,以及分析不同谐波分量对信号特性的影响;3.实验中还可以根据实际情况进行合理的参数选择,例如选择合适的采样率、截断频率等。

六、实验总结:通过本次实验,我们学会了如何分解一个非正弦周期信号的频谱成分,并根据谐波分量的频率、振幅和初相位计算每个谐波分量的波形。

同时,我们也学会了如何合成一个非正弦周期信号。

实验结果表明,通过傅里叶级数展开,我们可以准确地分解和合成周期信号,这对于理解信号的频谱结构、谐波的产生原理等有着重要的意义。

希望通过本次实验,同学们能对非正弦周期信号的分解与合成有更深刻的理解,并能够运用所学知识解决实际问题。

信号的分解与合成实验报告

信号的分解与合成实验报告

信号的分解与合成实验报告信号的分解与合成实验报告引言:信号是信息传递的基本单位,它在我们日常生活中无处不在。

了解信号的特性和处理方法对于电子通信、信号处理等领域有着重要的意义。

本实验旨在通过信号的分解与合成实验,深入探究信号的本质和处理技术。

一、实验目的本实验旨在通过实际操作,了解信号的分解与合成原理,并通过实验数据分析,探究不同信号类型的特点。

二、实验器材与方法1. 实验器材:示波器、信号发生器、电阻、电容、电感等。

2. 实验方法:a. 信号的分解:将复杂信号通过滤波器进行分解,观察信号的频谱特征。

b. 信号的合成:通过不同信号的叠加,合成新的信号,并观察合成信号的波形和频谱。

三、实验过程与结果1. 信号的分解a. 实验步骤:(1) 将信号发生器输出正弦波信号。

(2) 将正弦波信号输入到滤波器中。

(3) 调节滤波器的参数,观察输出信号的变化。

b. 实验结果:通过调节滤波器的参数,我们可以观察到输出信号的频率范围发生变化。

当滤波器的截止频率与输入信号的频率相等时,输出信号的幅值最大。

这说明滤波器可以将特定频率范围内的信号分离出来。

2. 信号的合成a. 实验步骤:(1) 将信号发生器输出两个不同频率的正弦波信号。

(2) 将两个正弦波信号通过电阻、电容、电感等元件进行叠加。

(3) 观察合成信号的波形和频谱。

b. 实验结果:通过调节叠加信号的幅值和相位差,我们可以观察到合成信号的波形和频谱发生变化。

当两个信号的频率相近且相位差为零时,合成信号的幅值最大。

这说明信号的合成是通过叠加各个频率分量得到的。

四、实验讨论与分析通过本实验,我们深入了解了信号的分解与合成原理,并通过实验数据分析,得出以下结论:1. 信号的分解可以通过滤波器将特定频率范围内的信号分离出来。

这为信号处理提供了重要的基础。

2. 信号的合成是通过叠加各个频率分量得到的,通过调节叠加信号的幅值和相位差,可以得到不同形态的合成信号。

3. 信号的频谱特征对于信号的分解与合成具有重要影响,通过观察频谱可以更好地理解信号的特性。

周期信号的合成与分解实验报告

周期信号的合成与分解实验报告
y=sishu*sin(100*pi*t);
subplot(221)
plot(t,y);
axis([0,0.05,-4,4]);
xlabel('time');
ylabel('前1 项有限级数');
y=0;
for i=1:10
y=y+sishu*(sin((2*i-1)*100*pi*t)/(2*i-1));
选取奇对称周期方波的周期T=0.02s,幅度E=6,请采用有限项级数替代无限项级数来逼近该函数。分别取前 1、10、50和200 项有限级数来近似,编写程序并把结果显示在一幅图中,观察它们逼近方波的过程。
MATLAB 程序如下:
%奇对称方波合成
t=0:0.00001:0.1;
sishu=12/pi;
1.实验目的
2.实验基本原理
3.主要仪器设备(含必要的元器件、工具)
一、实验目的
1.在理论学习的基础上,通过实验深刻领会周期信号傅里叶级数分解的物理意义。
2.理解实际应用中通常采用有限项级数来逼近无限项级数,此时方均误差随项数的增加而减小。
3.观察并初步了解 Gibbs 现象。
4.深入理解周期信号的频谱特点,比较不同周期信号频谱的差异。
周期信号的合成与分解实验报告
———————————————————————————————— 作者:
———————————————————————————————— 日期:

武汉大学教学实验报告
电子信息学院通信工程专业2017年9月14日
实验名称周期信号的合成与分解指导教师
姓名年级学号成绩
一、预习部分
y=0;
for i=1:10
y=y+sishu*(sin((2*i-1)*100*pi*t)/(2*i-1));

实验四--信号的产生、分解与合成

实验四--信号的产生、分解与合成

实验四信号的产生、分解与合成【实验内容】设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。

1.基本要求(1)设计一个方波发生器,要求其频率为1kHz,幅度为5V;(2)设计合适的滤波器,从方波中提取出基波和3次谐波;(3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。

2.提高要求设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。

3. 其他部分用类似方式合成其他周期信号,如三角波、锯齿波等。

【实验目的】1.掌握方波信号产生的基本原理和基本分析方法,电路参数的计算方法,各参数对电路性能的影响;2. 掌握滤波器的基本原理、设计方法及参数选择;3. 了解实验过程:学习、设计、实现、分析、总结。

4. 系统、综合地应用已学到的电路、电子电路基础等知识,在单元电路设计的基础上,利用multisim 和FilterPro 等软件工具设计出具有一定工程意义和实用价值的电子电路。

5. 掌握多级电路的安装调试技巧,掌握常用的频率测量方法。

6. 本实验三人一组,每人完成一个功能电路,发挥团队合作优势,完成实验要求。

【报告要求】1. 根据实验内容、技术指标及实验室现有条件,自选方案设计出原理图,分析工作原理,计算元件参数。

(写出理论推导,不能只有图) 非正弦周期信号可以通过Fourier 分解成直流、基波以及与基波成自然倍数的高次谐波的叠加。

本实验需要设计一个高精度的带通滤波器和移相器,组成选频网络,实现方波Fourier 分解的原理性实验,实现方波合成的原理性实验。

简易波形分解与合成由下述四个部分功能电路—周期信号产生电路、波形分解电路(滤波器)、相位调节、幅值调节与合成电路组成。

1. 非正弦周期信号的分解与合成对某非正弦周期信号()f t ,其周期为T ,频率为f ,则可以分解为无穷项谐波之和,即:000112()sin()sin(2)n n n n n n nf t c c t c c f t T πϕπϕ∞∞===++=++∑∑上式表明,各次谐波的频率分别是基波频率0f 的整数倍。

信号的合成与分解实验报告

信号的合成与分解实验报告

信号的合成与分解实验报告
《信号的合成与分解实验报告》
实验目的:通过合成和分解信号的实验,掌握信号的合成和分解原理,加深对信号处理的理解。

实验材料:
1. 信号合成器
2. 示波器
3. 信号分解器
4. 信号处理器
实验步骤:
1. 将信号合成器连接到示波器,调节合成器的频率和幅度,观察示波器上显示的波形变化。

2. 使用信号分解器将合成的信号分解为不同的频率成分,观察分解后的波形变化。

3. 将分解后的信号输入到信号处理器中,对不同频率成分进行处理,观察处理后的波形变化。

实验结果:
通过实验观察和数据分析,我们发现当不同频率和幅度的信号合成时,示波器上显示的波形会随之变化,呈现出复杂的波形图案。

而当合成信号经过分解器分解后,可以得到不同频率成分的波形,通过信号处理器的处理,可以对不同频率成分进行单独处理,实现对信号的精细控制。

实验结论:
通过这次实验,我们深入理解了信号的合成和分解原理,了解了信号处理的基本方法和技术,对信号处理有了更深入的认识。

同时,我们也认识到了信号处理在通信、音频、视频等领域的重要应用,对未来的研究和实践有了更清晰的方向。

总结:
通过这次实验,我们不仅掌握了信号的合成和分解原理,还加深了对信号处理的理解,为今后的学习和研究奠定了坚实的基础。

希望通过这次实验,能够激发更多同学对信号处理领域的兴趣,为科学技术的发展贡献自己的力量。

信系统非正弦周期信的分解与合成实验报告

信系统非正弦周期信的分解与合成实验报告

非正弦周期信号的分解与合成一、实验目的1.用同时分析法观测50Hz 非正弦周期信号的频谱,并与其傅利叶级数各项的频率与系数作比较。

2.观测基波和其谐波的合成。

二、实验设备1、THBCC-1型信号与系统控制理论及计算机控制技术实验平台2、PC机(含“THBCC-1”软件)三、实验原理1.一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、?、n 等倍数分别称二次、三次、四次、?、n 次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。

不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。

2.实验装置的结构图3、各次不同波形及其傅氏级数表达式 方波矩形波的傅立叶频谱)7sin 715sin 513sin 31(sin 4)(Λ+ω+ω+ω+ωπ=t t t t A t f ,其中的T π=ω2三角波三角波的傅立叶频谱)7cos4915sin 2513sin 91(sin 8)(2Λ+ω-ω+ω-ωπ=t t t t A t f ,其中的T π=ω2半波半波的傅立叶频谱正弦整流全波f (t ) At O 0.5T TA km 4A/2π 4A/3π4A/35π 4ω 8ω2ω 6ω 4A/63π ω 4A/15π正弦全波整流形波的傅立叶频谱)8cos 6316cos 3514cos 1512cos 3121(4)(Λ-ω-ω-ω-ω-π=t t t A t f ,其中T π=ω2矩形波矩形波形波的傅立叶频谱四、实验内容及步骤1.将50Hz 信号源接至信号分解实验模块BPF 的输入端。

2.将各带通滤波器的输出(注意各种不同信号所包含的频谱)分别接至示波器,观测各次谐波的频率和幅值,画出波形并列表记录频率和幅值。

F ( j ? ) U ? ?2? / ? 4 ? / ? 6? / ?f ( t )U ? tO方波和基波方波和二次谐波方波和三次谐波方波和四次谐波方波和五次谐波方波和六次谐波3.将方波分解所得的基波、三次谐波分别接至加法器的相应输入端,观测加法器的输出波形,并记录。

信号与系统实验报告

信号与系统实验报告

《信号与系统》实验报告湖南工业大学电气与信息工程学院实验一用同时分析法观测50Hz非正弦周期信号的分解与合成一、实验目的1、用同时分析法观测50Hz非正弦周期信号的频谱,并与傅立叶级数各项的频率与系数作比较。

2、观测基波和其谐波的合成。

二、实验设备1、信号与系统实验箱:TKSS -A型或TKSS -B 型TKSS -C 型;2、双踪示波器三、实验原理1、 一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其他成分则根据其频率为基波频率的2、3、4、…、n 等倍数分别称为二次、三次、四次、…、n 次谐波,其幅度将随着谐波次数的增加而减小,直至无穷小。

2、 不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分,3、 一个非正弦周期函数可以用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表2-1,方波频谱图如图2-1表示Um1351/91/51/71/3790ωωωωωω图1-1 方波频谱图表2-1 各种不同波形的傅立叶级数表达式UmtTU 2τ方波UmTU 2τ正弦整流全波UmTU 2τ三角波Um0T2τ正弦整流半波t tUm0tT U 2τ矩形波U1、方波 ())7sin 715sin 513sin 31(sin 4 ++++=t t t t u t u m ωωωωπ 2、三角波())5sin 2513sin 91(sin 82++-=t t t u t u mωωωπ3、半波())4cos 1512cos 31sin 421(2 +--+=t t t u t u m ωωωππ 4、全波 ())6cos 3514cos 1512cos 3121(4 +---=t t t u t u m ωωωπ5、 矩形波())3cos 3sin 312cos 2sin 21cos (sin 2 ++++=t T t T t T U T U t u m m ωτπωτπωτππτ实验装置的结构如图1-2所示DC20f f f f f f 3456图1-2信号分解于合成实验装置结构框图图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。

实验四--信号的产生、分解与合成

实验四--信号的产生、分解与合成

实验四信号的产生、分解与合成【实验内容】设计并安装一个电路使之能够产生方波,并从方波中分离出主要谐波,再将这些谐波合成为原始信号或其他周期信号。

1.基本要求(1)设计一个方波发生器,要求其频率为1kHz,幅度为5V;(2)设计合适的滤波器,从方波中提取出基波和3次谐波;(3)设计一个加法器电路,将基波和3次谐波信号按一定规律相加,将合成后的信号与原始信号比较,分析它们的区别及原因。

2.提高要求设计5次谐波滤波器或设计移相电路,调整各次谐波的幅度和相位,将合成后的信号与原始信号比较,并与基本要求部分作对比,分析它们的区别及原因。

3. 其他部分用类似方式合成其他周期信号,如三角波、锯齿波等。

【实验目的】1.掌握方波信号产生的基本原理和基本分析方法,电路参数的计算方法,各参数对电路性能的影响;2. 掌握滤波器的基本原理、设计方法及参数选择;3. 了解实验过程:学习、设计、实现、分析、总结。

4. 系统、综合地应用已学到的电路、电子电路基础等知识,在单元电路设计的基础上,利用multisim 和FilterPro 等软件工具设计出具有一定工程意义和实用价值的电子电路。

5. 掌握多级电路的安装调试技巧,掌握常用的频率测量方法。

6. 本实验三人一组,每人完成一个功能电路,发挥团队合作优势,完成实验要求。

【报告要求】1. 根据实验内容、技术指标及实验室现有条件,自选方案设计出原理图,分析工作原理,计算元件参数。

(写出理论推导,不能只有图) 非正弦周期信号可以通过Fourier 分解成直流、基波以及与基波成自然倍数的高次谐波的叠加。

本实验需要设计一个高精度的带通滤波器和移相器,组成选频网络,实现方波Fourier 分解的原理性实验,实现方波合成的原理性实验。

简易波形分解与合成由下述四个部分功能电路—周期信号产生电路、波形分解电路(滤波器)、相位调节、幅值调节与合成电路组成。

1. 非正弦周期信号的分解与合成对某非正弦周期信号()f t ,其周期为T ,频率为f ,则可以分解为无穷项谐波之和,即:000112()sin()sin(2)n n n n n n nf t c c t c c f t T πϕπϕ∞∞===++=++∑∑上式表明,各次谐波的频率分别是基波频率0f 的整数倍。

周期信号的合成与分解以及在matlab上的实现

周期信号的合成与分解以及在matlab上的实现

广东工业大学实验报告信息工程学院 成绩评定_______学号: 姓名: 教师签名_______实验4题目:周期信号的合成与分解 第7周 星期3第 8、9 节一、实验目的1.熟悉信号的合成、分解原理,加深对傅立叶级数的理解;2.了解和认识吉布斯现象(Gibbs )。

一、 实验原理信号可以分解为一个直流分量和许多不同频率的正弦分量之和。

主要表现各频率的正弦分量在信号所占比重大小的不同。

根据周期信号的傅立叶级数展开式可知,任何非正弦周期信号,只要满足狄里赫利条件都可以分解为一直流分量和由基波及各次谐波(基波的整数倍)分量的叠加。

同样,由基波及各次谐波分量也可以叠加出一个周期方波信号。

至于叠加出来的信号与原信号的误差,则取决于傅立叶级数的项数。

根据傅立叶的原理,任何周期信号都可以分解为用一组三角函数{sin (t nf 02π),cos (t nf 02π)}的组合表示。

合成波形所包含的谐波分量越多,除间断点附近外,它越接近于原方波信号,在间短点附近,随着所含谐波次数增高,合成波形的尖峰越靠近间断点,但尖峰幅度并未明显减小,即当合成波形包含的谐波次数∞→n ,在间断点附近仍有9%的偏差,这种现象称为吉布斯现象(Gibbs )。

二、 验证性实验1、信号的合成、分解方法一:clear allclcx0=-pi:0.01:pi;sum=0.0;for(n0=1:1:5)p0=4*sin(n0*pi/2)*cos(n0*x0)/(n0*pi);sum=sum+p0;endplot(x0,sum,'b')text(2.1,-1.2,'n=5')hold on;x1=-pi:0.01:pi;sum=0.0;for(n1=1:1:20)p1=4*sin(n1*pi/2)*cos(n1*x1)/(n1*pi);sum=sum+p1;endplot(x1,sum,'r')text(3.1,-1.2,'n=20')hold on;x2=-pi:0.01:pi;sum=0.0;for(n2=1:1:150)p2=4*sin(n2*pi/2)*cos(n2*x2)/(n2*pi);sum=sum+p2;endplot(x2,sum,'y')text(1.6,1.3,'n=150')hold on;x3=-pi:0.01:pi;sum=0.0;for(n3=1)p3=4*sin(n3*pi/2)*cos(n3*x3)/(n3*pi);sum=sum+p3;endplot(x3,sum,'g')text(2,-0.5,'n=1')hold on;x4=-pi:0.01:pi/2;y1=-1;plot(x4,y1,'g')hold onx5=-pi/2:0.01:pi/2;y2=2;plot(x5,y2,'g')hold onx6=pi/2:0.01:pi;y3=-1;plot(x6,y3,'g')hold ony4=-1:0.01:1;plot(x7,y4,'g')hold onx8=pi/2;plot(x8,y4,'g');xlabel('x');ylabel('y');2、信号的合成、分解方法二:clear allclcT=2;w0=2*pi/T;fw=3;t=-fw:0.001:fw;N=input('Number Of Harmonics:'); a0=0;An=a0*ones(1,length(t));for n=1:2:NAn=An+4/n/pi*sin(n*w0*t); endplot(t,An);ylim([-1.5 1.5]);plot(t,zeros(1,length(t)));hold offclear allclcT=2;w0=2*pi/T;fw=3;t=-fw:0.001:fw;N=input('Number Of Harmonics:');F0=0;Fn=F0*ones(1,length(t));for n=1:2:NFn=Fn+2/pi/j*((exp(j*n*w0*t)-exp(-j*n*w0*t))/n); endplot(t,Fn);ylim([-1.5 1.5]);hold onplot(t,zeros(1,length(t)));hold off三、程序设计实验:clear allclcT=0.02;w0=2*pi/T;fw=0.03;t=-fw:0.001:fw;N=9;a0=0;An=a0*ones(1,length(t));for n=1:2:N;An=An+3*(4/n/pi*sin(n*w0*t)); endplot(t,An);ylim([-5 5]);hold onplot(t,zeros(1,length(t)));hold off五、思考与讨论设计一个三角波合成实验,写出实验步骤和程序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非正弦周期信号的分解与合成
一、实验目的
1.用同时分析法观测50Hz 非正弦周期信号的频谱,并与其傅利叶级数各项的频率与 系数作比较。

2.观测基波和其谐波的合成。

二、实验设备
1、THBCC-1型信号与系统 控制理论及计算机控制技术实验平台
2、PC 机(含“THBCC-1”软件)
三、实验原理
1.一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦 具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、⋯、 n 等倍数分别称二次、三次、四次、⋯、n 次谐波,其幅度将随谐波次数的增加而减小,直 至无穷小。

不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。

2.实验装置的结构图
3、各次不同波形及其傅氏级数表达式 方波
)
7sin 7
15sin 5
13sin 3
1(sin 4)( +ω+
ω+
ω+
ωπ
=
t t t t A t f ,其中的T
π=
ω2
三角波
)
7
cos
49
1
5
sin
25
1
3
sin
9
1
(sin
8
)
(
2
+
ω
-
ω
+
ω
-
ω
π
=t
t
t
t
A
t
f
,其中的T
π
=
ω
2
半波
半波的傅立叶频谱
正弦整流全波
正弦全波整流形波的傅立叶频谱
)
8
cos
63
1
6
cos
35
1
4
cos
15
1
2
cos
3
1
2
1
(
4
)
(
-
ω
-
ω
-
ω
-
ω
-
π
=t
t
t
A
t
f
,其中T
π
=
ω
2矩形波
矩形波形波的傅立叶频谱
四、实验内容及步骤
1.将50Hz 信号源接至信号分解实验模块BPF 的输入端。

2.将各带通滤波器的输出(注意各种不同信号所包含的频谱)分别接至示波器,观测各次谐波的频率和幅值,画出波形并列表记录频率和幅值。

方波和基波方波和二次谐波
方波和三次谐波方波和四次谐波
方波和五次谐波方波和六次谐波
3.将方波分解所得的基波、三次谐波分别接至加法器的相应输入端,观测加法器的输出波形,并记录。

基波和三次谐波
4.在步骤3 的基础上,再将五次谐波分量加到加法器的输入端,观测相加后的合成波形,并记录。

五次波和基三次波合成
5.分别将50Hz 正弦半波、全波、矩形波和三角波的输出信号接至50Hz 电信号分解与合成模块的输入端,观测基波及各次谐波的频率和幅度,并记录。

6.将50Hz 单相正弦半波、全波、矩形波和三角波的基波和谐波分量接至加法器相应
的输入端,观测求和器的输出波形,并记录。

基波和三五次谐波合成三次波和三五次谐波合成
五次谐波和三五次谐波合成
六、实验思考题
1. 什么样的周期性函数没有直流分量和余弦项?
答:原周期函数必须是奇函数。

奇函数傅立叶展开后仍然保持是奇函数,因此只有正弦项,没有直流和余弦项。

2.分析理论合成的波形与实验观测到的合成波形之间误差产生的原因。

答:理论合成是由无限个波形合成的,而实验合成是由有限个波形合成的。

相关文档
最新文档