煤矿深部巷道锚杆支护技术
煤矿掘进巷道锚杆支护技术

煤矿掘进巷道锚杆支护技术摘要:煤矿掘进巷道内部条件复杂,施工面强度大、危险度高,需要加强防护工作。
为防止掘进安全事故的出现,需要采取有效的超前支护措施,保障人员安全的同时,提高煤矿掘进效率。
锚杆支护是使用高强度的锚索对开采的围岩区域进行注浆加固,控制开采区域的形变量,降低岩体破碎和脱落风险。
锚杆支护能形成一个防护支架,保障机械设备和施工人员的安全,促进煤矿掘进有序地进行。
关键词:煤矿掘进巷道;锚杆支护;技术1煤矿掘进巷道锚杆支护技术概述在实施该技术的过程中,可以以螺丝钢铁为主要材质,保证支撑力。
在开展技术施工前,施工人员应根据地下环境的具体情况,选择不同类型的锚棒。
如果周围岩石稳定,可以选择直径较小的锚带。
如果周围岩石不稳定,可以选择直径较大的锚棒。
如果施工区域内的煤矿比较柔软,则选择较长的锚带施工。
但是,该技术后期的维护保修和检修工作比较麻烦,在具体应用过程中,事故无法预断,地形条件非常复杂的坑道存在较多的安全风险。
另外,在实施这项技术时,对设计人员和施工人员的技能水平要求很高,只有结合工程的实际需要,设计出合理的施工设计图,才能保证施工人员的顺利施工,充分发挥锚带的支撑作用。
传统煤矿开采时,施工人员使用不同类型的金属支架支撑坑道,但这种形式由于参与人员过多,工程人力成本上升,工程整体经济效益下降。
同时,该支承方式的安全性得不到良好的保障,不符合现代煤矿生产环境的需要。
通过锚支承技术的应用,可以有效地提高坑道的安全可靠性,减少工程费用,提高工程效率。
应用这一技术时,施工人员会根据坑道的天花板合理排列锚带的距离。
在固定力的影响下,每个主播周围都会形成压缩区,施工人员将这一区域连接起来形成压缩区,防止周围岩石松动或脱落。
该技术可以促进螺栓的顶棚力发挥合成洑的作用,提高坑道的支撑力,还可以有效避免坑道屋顶的岩石崩塌,增强生产安全性。
2具体应用措施2.1综合机械化掘进技术应用综合机械化掘进技术是现阶段被广泛应用于煤矿巷道开展掘进作业的高效化技术措施。
锚杆支护技术规范(正式版本)

杆支技范锚护术规<正式>第一章 总则严执矿规业术,确保正确为贯彻产针,格行《煤安全程》和煤炭工技政策1安全第一的生方进锚护术发,特制定进锚护设计质,促煤巷杆支技的健康展地行杆支和施工量规本范。
国内锚护须进设计锚护设计现场调查研,吸取外2杆支巷道施工必行。
杆支要注重究积极术艺锚护设计监测进经验,采用新技、新工、新杆支、施工和方面的先术进经济材料,做到技先、合理、安全可靠。
进础数并进锚护试验,杆支要锚护设计区锚护时,要行基据收集行杆支工作新采采用杆支并报团备有位组织关单会审,集公司案。
对应锚护关员员术员员,都必须进3 在煤巷用杆支的有人〔管理人、工程技人及操作人术训行技培。
须矿压监测设计须设计设矿4 在用杆支的巷道中应锚护,必有及安全。
在施工中必按置并专负责监测及安全装置压监测,有人。
围稳类第二章 巷道岩的定性分为导锚护设计须对围稳进类,指杆支、施工锚护术,必巷道岩定性行分5 采用煤巷杆支技与管理提供依据。
类颁发缓倾倾层围稳类执。
6巷道分按原煤炭部的《斜、斜煤回采巷道岩定性分方案》行7 煤岩分指以斜、斜薄煤及中厚煤回采巷道分指基本分层围类标缓倾倾层层类标为类指。
其件下的煤巷〔如煤上山定性分指标它条层稳类标,可根据具体情况对分指行相替代类标进应,表详见1和表2。
斜、斜薄及中厚煤回采巷道分指缓倾倾层类标表1分指类标明说板强度〔指抗强度顶单项压M p a,下同取巷道度宽1.5倍范板强度的加平均围内顶权值煤强度层σc c取巷煤强度加平均帮层权值底板强度σc f取巷道度底板强度的加平均宽内权值巷道埋深H〔m巷道所在位置至地表的垂直距离巷煤柱度护宽X〔m 一煤柱的度侧实际宽,其中:沿空掘巷〔无煤柱时X=0;巷道均体煤两侧为实时X=100采影系动响数N 只因工作面回采引起的超前支撑力的影压响N=直接厚度顶/采高〔当N>4时,取N=4岩定性指围稳数D指岩理裂隙、理的影程度围节层响,以非杆支工锚护作面直接初次跨落步距代替顶煤上、下山分指层类标表2分指类标明代替方法说与板强度说顶明同表1说煤强度层明同表1说底板强度明同表1H取上、下山端埋深的平均两值说X明同表1为响数,W=1-X/L。
深部巷道锚杆支护技术

07 5 ) ./ ( 2 g 惫 ¥
.
() 2
v 00 5 【—— o= .0 6 e 移量 ,m; c t —时 间 , ; — d
一1 】
式中: 、 ——顶板 、 两帮在掘进后 t 时间内的位
般关 系如下 J :
q、——顶板、 d。 q 网帮怍 白 豉架 匕勺叻 , n; 白曰 k 2 r y ——岩石容重 ,N m ; k/ 巷道所处 的深度 , m; 尺 ——岩石单轴抗压强度 ,P ; ka R —— 寻求 常 数 时 引 入 的 单 轴 抗 压 强 度 , 。
长。( )巷道围岩变形和维护费用随开采深度的增 3 长 的幅度 , 巷 道 围岩 性 质 有 密 切关 系 , 与 围岩 愈 松
软, 巷道变 形随采 深增 长愈 快 , 之 , 反 围岩愈稳 定 , 巷 道变形 随 采深增长 愈慢 。( )巷 道 围岩 变形 和 维护 4
费用的增长率还与巷道所处位置及护巷方式有关 , 开采深度对卸压内的巷道影响最小 , 对位于煤体 内 巷道及位于煤体 一 煤柱 内巷道 的影响次之 , 对两侧 均 已采 空 的巷道影 响最 大 。
一
2 开采深度 与巷道 围岩 的变形关 系
2 1 中国的研 究 .
一
1 ) . 02 (q  ̄d
Hale Waihona Puke () 1 U, 0 0 e a= . 1 —1r_ 一l 】
一
开采深度对巷道围岩的影响十分复杂 , 除与巷 道的围岩性质密切相关外 , 如受采动影响的巷道 , 则 与护巷方式和周围采动状况等也有密切关 系。根据 我国的研究成果 , 可得开采深度 与巷道维护之 间的
锚 固力 改善 了围岩 的 力学 性 质 , 而 有 效地 控 制 巷 进
煤矿巷道锚杆支护技术

煤矿巷道锚杆支护技术1. 引言煤矿巷道的安全与稳定性对矿井的正常生产至关重要。
巷道支护技术是矿井设计和运营过程中的重要环节,其中锚杆支护技术被广泛应用于煤矿巷道的支护工程中。
本文将介绍煤矿巷道锚杆支护技术的基本概念、原理、应用及其优缺点。
2. 锚杆支护技术的基本概念2.1 锚杆的定义锚杆是一种通过紧固在巷道周围岩体中来支护和稳定巷道的装置。
锚杆由钢管、锚固材料和锚杆头组成。
锚固材料常用的有水泥浆、注浆材料等。
2.2 锚杆支护技术的原理巷道锚杆支护技术是通过将锚杆安装在巷道周围岩体中,使岩体与锚杆形成一个整体,从而增加岩体的稳定性。
锚杆对巷道岩体的支护作用有以下几个方面: - 锚杆能够抵抗巷道周围岩体的变形和位移,增加巷道的稳定性; - 锚杆能够有效分散巷道周围岩体的应力,避免应力集中,减少巷道岩体的破裂和崩落; - 锚杆能够提高巷道的抗震性能,减少地震造成的巷道破坏。
3. 锚杆支护技术的应用3.1 锚杆的选择与计算在进行巷道锚杆支护工程之前,需要进行锚杆的选择和计算。
锚杆的选择应根据巷道的岩性、巷道的尺寸、巷道的设计要求等因素进行综合考虑。
锚杆的计算要考虑岩体的强度、巷道周围岩体的应力特征等因素,以确定合适的锚杆长度和间距。
3.2 锚杆的施工过程巷道锚杆支护技术的施工过程包括以下几个步骤: 1. 巷道预处理:清理巷道周围的杂物,保证施工区域的整洁。
2. 锚孔钻进:使用钻机钻进锚孔,根据设计要求确定锚孔的位置和数量。
3. 锚杆安装:将锚杆插入锚孔中,用锚固材料固定锚杆和巷道岩体。
4. 锚杆张拉:根据设计要求,使用张拉设备对锚杆进行张拉。
5. 锚杆固化:等待锚固材料固化,使锚杆与巷道岩体形成牢固的连接。
6. 巷道支护检查:检查锚杆支护的质量和效果,进行必要的调整。
3.3 锚杆支护技术的优缺点3.3.1 优点•锚杆支护技术施工周期短,能够快速提高巷道的稳定性;•锚杆支护技术施工简便,不需要大量的材料和设备;•锚杆支护技术适用范围广,可适用于各种巷道类型和岩性。
煤矿巷道锚杆支护技术

l 棚式支护等待围岩变形、破碎后支撑,承载。 l 锚杆支护利用锚固剂、杆体、托板及各种构件或喷层,给围
岩一定的支护强度,与围岩共同组成支护体系,并且随围岩 变形,支护力不断增加。
(3)减少巷道维修量
l 锚杆支护能及时加固围岩,减少围岩变形,防止顶板早期离 层和片帮。
l 我国煤矿开采深度以8~12m/a的速度增加。新汶、淄博、开滦、 徐州等矿区的开采深度已超过1000m,出现了一批千米深井。 煤炭开采技术的进步促进了高产高效矿井的发展,进一步加速 了矿井深度的增加。预计在未来20年我国很多煤矿将进入 1000m~1500m的开采深度。深部开采将带来一系列高地应力巷 道支护难题,如冲击矿压、围岩大变形、强烈底鼓等浅部巷道 没有的支护问题。
1.1 锚杆支护的优越性
与棚式支架相比,锚杆支护具有显著的优越性。
(1)可显著提高巷道支护效果
l 锚杆与岩体粘结在一起,提高了岩体的整体性。 l 对不稳定岩层起着悬吊作用。
由于预紧力的作用,形成压缩岩梁,阻止了层状岩体的 离层作用,增大了岩层间的摩擦力,与锚杆本身的抗剪作用 一起,阻止岩层间产生相对滑动,提高了岩层的承载能力。 l 改变了巷道表面岩体的受力状态,由二向受力状态转化为三 向受力状态,提高了岩体的承载力。
随着巷道支护技术的发展与支护水平的提高,岩巷布置已 逐步转变为煤巷布置。特别是现代化矿井,岩巷占的比例 已经很少。大量使用煤巷虽然增加了巷道支护难度,但带 来了很多优点:显著降低了巷道掘进费用,大大提高了施 工速度,缩短了矿井建设周期,巷道掘进出煤,增加了经 济效益,减少了矸石排出量。
(2)岩石顶板煤巷向煤层顶板巷道和全煤巷道发展
煤矿锚杆支护技术规范(新)

煤矿锚杆支护技术规范一、术语和定义1、煤巷:断面中煤层面积占4/5或4/5以上的巷道。
2、半煤岩巷:断面中岩石面积(含夹石层)大于1/5到小于4/5的巷道。
3、锚杆支护:以锚杆为基本支护形式的支护方式。
4、锚杆杆体破断力:锚杆杆体能承受的极限拉力。
5、锚杆拉拔力:锚杆锚固后,拉拔试验时,锚杆破断或失效时的极限拉力。
6、锚固力:锚杆的锚固部分或杆体在拉拔试验时,所能承受的极限载荷。
7、设计锚固力:设计时给定的锚杆应能承受的锚固力。
8、树脂锚杆:以树脂锚固剂配以各种材质杆体及托盘(托板)、螺母与减磨垫圈等构件组成的锚杆。
9、树脂锚固剂:起黏结锚固作用的材料称锚固剂,树脂锚固剂由树脂胶泥与固化剂两部分分隔包装成卷形。
混合后能使杆体与被锚固体煤岩黏接在一起。
10、锚固长度:锚杆的锚固剂或锚固装置与钻孔孔壁的有效结合长度。
11、端头锚固:锚杆的锚固长度不大于钻孔长度的1/3。
12、全长锚固:锚杆的锚固长度不小于钻孔长度的90%。
13、加长锚固:锚杆的锚固长度介于端头锚固与全长锚固之间。
14、拉拔试验:测试锚杆拉拔力的试验。
15、搅拌时间:安装树脂锚杆时,从开始搅拌树脂锚固剂到停止搅拌所用的时间。
16、等待时间:安装锚杆时,搅拌停止后到可以上紧螺母托板的时间。
17、预紧力:安装锚杆(锚索)时,通过拧紧螺母或采用张拉方法施加在锚杆(锚索)上的拉力。
18、预紧力矩:拧紧螺母使锚杆达到设计预紧力时,施加到螺母上的力矩。
19、锚杆快速安装:使用锚杆钻机连续完成搅拌树脂锚固剂、拧紧螺母的全过程。
20、初始设计:根据已有资料提出的巷道支护形式与参数。
21、信息反馈:对支护监测信息进行解释,并据此对支护设计进行验证和修改的过程。
22、正式设计:根据监测信息,对初始设计进行验证或修改,在技术性、经济性以及安全性等方面均能满足生产要求的支护设计。
23、巷道顶板离层临界值:支护设计或工程实践分析确定的巷道顶板允许的最大离层值。
煤巷锚杆支护技术规范

煤巷锚杆支护技术规范1. 引言煤矿是我国能源工业的重要组成部分,煤巷的稳定性对保障生产安全至关重要。
煤巷锚杆支护技术是一种常用的支护方式,其能够有效地提高煤巷的稳定性和安全性。
为了规范煤巷锚杆支护技术的应用,保证煤矿生产的安全和高效性,制定本技术规范。
2. 术语和定义2.1 煤巷锚杆:指用于支撑煤巷围岩的金属杆件。
2.2 预应力锚杆:指在锚杆安装完成后对其施加一定的预应力的锚杆。
2.3 水平锚杆:指在水平方向上安装的锚杆。
2.4 垂直锚杆:指在垂直方向上安装的锚杆。
3. 材料要求3.1 锚杆材料应符合国家标准,具备良好的抗拉强度和耐腐蚀性能。
3.2 锚杆直径应根据煤巷围岩的岩性、倾角和围压等情况确定,确保锚杆足够强度和刚度。
3.3 预应力锚杆应采用高强度钢材,预应力锚杆的预应力应合理控制,确保煤巷的稳定性。
4. 锚杆支护设计4.1 锚杆支护设计应根据煤巷围岩的岩性、倾角、围压和断层等情况进行。
4.2 煤巷锚杆的布置应均匀、合理,保证煤巷围岩的稳定性。
4.3 锚杆的埋置长度应根据煤巷围岩的岩性和围压等情况确定,确保锚杆支护的有效性。
5. 锚杆施工要求5.1 锚杆的固定应采用专用的固定方法和设备,保证锚杆安装的牢固性。
5.2 预应力锚杆的预应力过程应严格控制,避免超过设计要求。
5.3 锚杆施工过程中应注意保证现场作业人员的安全。
6. 锚杆支护质量检验6.1 锚杆支护质量检验应包括锚杆的尺寸、质量和固定效果等内容。
6.2 对于预应力锚杆,还应进行预应力的测试和检查。
6.3 锚杆支护质量检验应按照规范和相关标准进行。
7. 锚杆支护的维护与管理7.1 锚杆支护应定期检查和维护,确保其正常运行。
7.2 对于老化和损坏的锚杆支护,应及时更换和修复。
7.3 锚杆支护设备和相关设施的管理应严格,确保其安全可靠性。
8. 应急处理8.1 对于突发情况和紧急情况,应制定相应的应急处理方案。
8.2 应急处理人员应接受专门培训,熟悉应急设备和操作程序。
我国煤矿锚杆支护应用前景及发展技术途径

我国煤矿锚杆支护应用前景及发展技术途径煤矿锚杆支护是地下煤矿开采中重要的支护工艺之一,用于加固煤矿巷道和开采空间,保护矿工安全。
随着煤矿安全和生产效率的要求日益提高,煤矿锚杆支护的应用前景广阔,同时也对其发展技术提出了更高的要求。
本文将就我国煤矿锚杆支护的应用前景和发展技术途径展开讨论,并提出一些建议。
首先,煤矿锚杆支护的应用前景广阔。
随着煤炭资源的逐渐枯竭,煤炭开采逐渐向深部、斜层和复杂地质条件发展。
这些条件给煤矿锚杆支护提出了更高的要求,需要研发和应用更先进的技术。
同时,我国煤矿事故频发,尤其是顶板事故和煤与瓦斯突出事故,煤矿锚杆支护可以提高巷道和开采空间的稳定性,从而减少事故发生的可能性。
另外,随着煤矿开采规模的不断扩大和效益的提高,煤矿锚杆支护的应用也将更加广泛。
其次,煤矿锚杆支护的发展技术途径。
当前,国内外在煤矿锚杆支护方面的研究取得了一些成果,例如高强度锚杆的开发和应用、新型锚杆材料的研究、支护结构的优化设计等。
然而,煤矿锚杆支护仍然存在着一些问题,如锚杆粘结强度低、支护结构不够稳定等。
因此,需要进一步加大煤矿锚杆支护技术的研发力度,提高锚杆的强度和稳定性,同时开发新型的支护结构和材料,提高锚杆的粘结强度。
此外,还可以通过加强煤矿锚杆支护技术的推广应用来促进其发展。
当前,虽然我国的煤矿锚杆支护技术已经取得了一些成果,但在实际应用中,仍然存在着一定的局限性。
一方面,部分煤矿企业在选用锚杆支护技术时存在误区,未能充分考虑矿井特点和工程条件,导致支护效果不佳。
另一方面,一些中小型煤矿由于人力和资金的限制,无法引进先进的锚杆支护设备和技术,直接影响到矿工的安全和生产效率。
因此,需要加强对煤矿锚杆支护技术的推广,提供技术支持和培训,促使矿山企业更好地应用锚杆支护技术。
综上所述,我国煤矿锚杆支护应用前景广阔,但也面临一些技术挑战。
因此,需要加大煤矿锚杆支护技术的研发力度,提高锚杆的强度和稳定性,同时开发新型的支护结构和材料。
GBT35056-2018煤矿巷道锚杆支护技术规范PPT幻灯片课件

地质构造
巷道周围地质构造的分布情况,由工作面地质说明书给出
水文地质条件
巷道涌水量、水质等参照工作面地质说明书;水对围岩物 理力学性质的影响通过实验确定
巷道埋深
地表到巷道地板的垂直距离
技术要求
2 技术要求 2.1 现场调查与巷道围岩地质力学评估
2.1.1 锚杆支护设计前应进行现场调查与巷道围岩地质力学评估。巷道围岩地质力学评估基
煤矿巷道锚杆支护技术规范
中华人民共和国国家标准 GB/T 35056—2018
目录
CONTENTS
1 适用范围 2 技术要求 3 质量检测
4 支护监测 5附 录 6 参考文献
PART ONE
适用 范围
本标准规定了煤矿巷道锚杆支护技术的 术语和定义、技术要求、锚杆支护施工 质量及锚杆支护监测
本标准适用于煤矿岩巷、煤巷及半煤岩 巷的锚杆支护
1)工程类比法:根据已经支护巷道的实践经验,通过类比,直接提出锚杆支护初始设计。应 保证设计巷道与已支护巷道在地质与生产条件、围岩物理力学性质、原岩应力等方而相似。也可 根据巷道围岩稳定性分类结果进行锚杆支护初始设计;
2.1.11 在现场调查与巷道围岩地质力学参数测试完成后进行巷道围岩地质力学评估。首先确定 评估区域,铺杆支护设计应限定在该区域内,并分析巷道服务期间影响锚杆支护性能其他因素。
2.1.12 根据巷道围岩地质力学评估结果进行巷道围岩稳定性分类,确定评估区域的巷道是否适 合采用锚杆支护。
2.1.13 在一个地点获取的地质力学参数用于同一层位的其他地点时,应进行充分的现场周研和 分析、评估。
础参数见表 1。
续上表
表 1 巷道围岩地质力学评估基础参数
序号 10
11
煤矿锚杆支护技术参数

煤矿锚杆支护技术参数
一、锚杆材料参数
1.锚杆材质:锚杆一般采用高强度合金钢材作为材料,具有良好的抗拉强度和耐腐蚀性能。
2. 锚杆直径:根据不同巷道的条件和需要,锚杆直径一般为20mm到32mm之间。
3.锚杆长度:锚杆长度根据巷道的高度进行设计,一般为2m到5m之间。
二、锚杆布置参数
1.锚杆布置密度:锚杆的布置密度根据巷道围岩的稳定性要求进行设计,通常为每平方米布置6到8根锚杆。
2.锚杆锚固长度:锚杆的锚固长度一般为1.5m到2m之间,确保能够有效地抵抗巷道围岩的变形和压力。
3.锚杆锚固间距:锚杆的锚固间距根据不同巷道的岩层条件和压力进行设计,一般为1m到1.5m之间。
三、锚杆支护参数
1.锚杆预应力:锚杆的预应力根据巷道围岩的变形和压力进行调整,一般为6kN到10kN之间。
2.锚杆支护力:锚杆支护力在施工过程中要经过相关计算确定,一般为10kN到20kN之间。
3.锚杆锚固力:锚杆的锚固力需要根据巷道围岩的变形和压力进行计算,确保能够有效地支撑巷道围岩。
四、锚杆支护施工参数
1.锚杆支护施工速度:锚杆支护施工速度一般为每班次30根到50根
之间,具体根据巷道的长度和条件进行安排。
2.锚杆灌浆压力:锚杆灌浆压力应根据巷道围岩的密实程度进行调整,一般为10MPa到20MPa之间。
3.锚杆支护施工质量:锚杆支护施工质量应符合相关技术标准,确保
锚杆支护效果和巷道的安全性。
以上就是煤矿锚杆支护技术参数的一些基本介绍,通过合理的参数设
计和施工操作,可以有效地提高煤矿巷道的稳定性和安全性。
当然,实际
应用中还需要根据具体的矿井条件和需求进行调整和优化。
煤矿巷道锚杆支护技术

锚杆支护技术可以根据巷道的实际情况进 行调整,适应不同的围岩条件和采掘要求 ,具有较强的灵活性和适用性。
成本较低
环保节能
锚杆支护材料成本较低,且易于加工和运 输,可以大幅度降低采煤成本。
锚杆支护技术可以减少对传统木材和钢材 的需求,降低资源消耗和环境污染,符合 绿色采煤的理念。
锚杆支护技术的缺点
技术要求高
将锚杆杆体插入钻孔,用锚固 剂或树脂等粘结剂进行锚固。
张拉与固定
根据设计要求,对锚杆进行张 拉,使其对围岩产生足够的预 紧力,然后进行固定和连接。
04
锚杆支护技术的优缺点
锚杆支护技术的优点
高效稳定
灵活适用
锚杆支护技术能够有效地提高巷道的稳定 性,减少围岩变形和破坏的风险,保证采 煤作业的安全进行。
02
锚杆支护技术的原理
锚杆支护的基本原理
锚杆支护是通过在巷道围岩中打入锚 杆,利用锚杆的拉力和锚固力将不稳 定的围岩锚固在稳定的岩层中,以保 持巷道的稳定性和安全性。
锚杆支护技术具有施工简便、快速、 安全可靠等优点,因此在煤矿巷道支 护中得到了广泛应用。
锚杆的受力分析
01
锚杆受力主要包括拉拔力和剪切力,其中拉拔力是 锚杆的主要受力形式。
02
锚杆的拉拔力应满足设计要求,并应进行必要的试 验验证,以确保锚杆的可靠性。
03
剪切力主要发生在锚杆中间部位,对锚杆的稳定性 有一定影响,但一般较小。
锚杆支护的力学性能
01
锚杆支护的力学性能主要包括抗拉拔力、抗剪切力和
抗弯矩等。
02
抗拉拔力是评价锚杆性能的重要指标,要求满足设计
要求,并具有良好的长期稳定性。
对于一些高边坡工程,锚杆支护技术可以有效地提高边坡的稳
煤矿井下掘进过程中巷道锚杆支护技术郝伟

煤矿井下掘进过程中巷道锚杆支护技术郝伟发布时间:2023-06-21T12:12:45.055Z 来源:《中国建设信息化》2023年7期作者:郝伟[导读] 传统锚杆支护通常应用到组合梁、加固拱、悬吊等相关装置,在提高稳定性、保证支护效果方面有突出的作用,但也存在局限性。
针对复杂度较高的巷道,为了更为合理地开展支护工作,采用到预应力、强力支护理论,其考虑的内容具有全面性,于巷道围岩变形而言,则主要体现在两个方面,一是结构面滑动、新裂缝产生等,即各类形式的不连续变形;二是峰值强度前的塑性变形、锚固变形等,统一将此类形式归为连续变形。
具体至巷道施工中,结构面的强度偏低,开挖有扰动作用,此时先显现出不连续变形,而后再出现某些形式的连续变形。
作为一套可行性较高的巷道支护方式,其需要具备提高支护系统稳定性的能力,例如保证初期支护的刚度和强度,也需要加强对围岩的控制,以免出现不连续变形,此外,支护系统的延伸率也需满足要求。
针对深部以及条件更为复杂的巷道,较为合适的是采取“先刚后柔、先抗后让”的方法,在此前提下,有效保证围岩的稳定性和完整性,避免强度降低、局部破碎的问题。
国电建投内蒙古能源有限公司内蒙古自治区鄂尔多斯市 017000摘要:传统锚杆支护通常应用到组合梁、加固拱、悬吊等相关装置,在提高稳定性、保证支护效果方面有突出的作用,但也存在局限性。
针对复杂度较高的巷道,为了更为合理地开展支护工作,采用到预应力、强力支护理论,其考虑的内容具有全面性,于巷道围岩变形而言,则主要体现在两个方面,一是结构面滑动、新裂缝产生等,即各类形式的不连续变形;二是峰值强度前的塑性变形、锚固变形等,统一将此类形式归为连续变形。
具体至巷道施工中,结构面的强度偏低,开挖有扰动作用,此时先显现出不连续变形,而后再出现某些形式的连续变形。
作为一套可行性较高的巷道支护方式,其需要具备提高支护系统稳定性的能力,例如保证初期支护的刚度和强度,也需要加强对围岩的控制,以免出现不连续变形,此外,支护系统的延伸率也需满足要求。
煤矿锚杆支护技术规范

煤矿锚杆支护技术规范煤矿锚杆是一种重要的支护材料,用于加固煤矿巷道和工作面的岩石。
锚杆支护技术规范是指在煤矿锚杆支护工程中应当遵守的相关技术规定和操作要求。
下面是一份典型的煤矿锚杆支护技术规范,供参考:一、锚杆支护的基本原则1.1 安全至上:在锚杆支护过程中,应始终以安全为第一原则,严格遵守相关的安全规定和操作规程。
1.2 适应实际情况:根据巷道和工作面的具体情况,选择适合的锚杆材质、长度和安装方式。
1.3 统筹规划:在设定锚杆支护方案时,应充分考虑与其他支护措施的配合,形成综合的支护体系。
二、锚杆支护的基本要求2.1 锚杆材质要求:锚杆应具有足够的强度和刚度,能够承受地压力和锚杆自身重量的作用,常用的材质有钢、玻璃钢和复合材料等。
2.2 锚杆的安装密度要求:锚杆的安装密度应根据不同巷道和工作面的地质条件进行合理确定,一般应满足安装间距不大于锚杆长度的2倍。
2.3 锚杆的固定效果要求:安装后的锚杆应能够牢固地固定在岩石中,能够承受锚杆预压力和地压力的作用。
2.4 锚杆的防腐要求:要对锚杆进行防腐处理,以延长其使用寿命。
三、锚杆支护的施工工艺3.1 工艺准备:根据设计要求准备所需的锚杆和配件,并对施工现场进行安全排查和标识。
3.2 钻孔准备:根据锚杆的布置方案,进行钻孔工作,保证钻孔的位置和角度符合设计要求。
3.3 锚杆安装:将钻孔中的碎石清理干净,用打孔机将锚杆插入孔内,并进行预压力的施加。
3.4 固化固结:等待预定的固化时间,使锚杆与周围的岩石形成牢固的连接。
3.5 检测验收:对已完成的锚杆支护进行检测和验收,确保施工质量符合要求。
四、锚杆支护的质量控制4.1 施工前的检验:在进行锚杆支护之前,对锚杆及配件进行检验,确保其质量符合要求。
4.2 施工过程的监测:在施工过程中,对锚杆的安装情况和预压力进行监测,发现问题及时进行调整和处理。
4.3 施工后的检测:对已施工完成的锚杆支护进行检测,检查其固定效果和牢固性。
煤矿巷道锚杆支护技术规范

煤矿巷道锚杆支护技术规范1范围本标准规左了煤矿巷道锚杆支护技术的术语和泄义、技术要求、锚杆支护施工质量检测及锚杆支护监测。
本标准适用于煤矿岩巷、煤巷及半煤岩巷的锚杆支护。
2规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB 175-2007硅酸盐水泥、普通硅酸盐水泥GB/T 22&1-2010金属材料拉伸试验第1部分:室温试验方法GB/T 23561.1-2009煤和岩石物理力学性质测泄方法第1部分:采样一般规泄GB 50086岩土锚固与喷射混凝土支护工程技术规范GB/T 50266-2013工程岩体试验方法标准MT 146.1-2011树脂锚杆第1部分:锚固剂MT 146.2-2011树脂锚杆第2部分:金属杆体及苴附件MT 285缝管锚杆MT/T 861 W型钢带MT/T 1061-2008树脂锚杆玻璃纤维增强塑料杆体及英附件3术语和定义GB/T 228.1-2010、MT 146.1-2011、MT 285界定的以及下列术语和定义适用于本文件。
3. 1巷道roadv/ay为煤矿提升、运输、通风、排水、行人、动力供应等而掘进的通道。
3.2煤巷coa I roadway断而中煤层而积占4/5或4/5以上的巷道。
3.3岩巷rock roadway断而中岩石而积占4/5或4/5以上的巷逍。
3.4半煤岩巷coal-rock roadway 断而中岩石而积(含夹石层)大于1/5到小于4/5的巷道。
3.5锚杆rock bolt安装在用岩中,对用岩实施锚固的杆件系统。
一般由杆体、托盘、螺母、垫圈、锚固剂或锚固构件组成。
3.6预应力锚杆pretensioned rock bolt在安装过程中施加一左预拉力的锚杆。
3.7无预应力锚杆non-pre tensioned rock bolt在安装过程中不施加预拉力的锚杆。
锚杆支护技术规范(参考Word)

锚杆支护技术规范一、总则1、为使巷道锚杆支护工程的设计符合技术先进、经济合理、安全可靠、确保施工质量的要求,促进锚杆支护技术健康发展,特制定本规范。
2、锚杆支护的设计与施工,必须详细地收集有关地质资料,积极采用新技术、新工艺和新材料,按照地质力学评估——初始设计——监测与信息反馈——修改设计四项原则,因地制宜,正确有效地加固围岩,充分发挥围岩的自承能力。
3、使用锚杆支护单位的有关人员(管理人员、工程技术人员及操作人员)必须进行技术培训。
4、对压力大、顶板破碎的巷道,不但要使用高强度锚杆支护,还必须加打锚索加强支护。
5、锚杆支护巷道必须进行安全监测,内容包括顶板离层、两帮移近量,顶板下沉量及下沉速度。
6、对永久巷道进行锚杆支护设计时,要进行基础数据收集和试验工作,并将修改后的设计图纸及作业规程送集团公司生产处审批。
7、新上的锚杆支护材料必须经生产处审核批准或组织有关单位鉴定后方可使用。
二、锚杆支护设计1、锚杆支护技术的设计必须以原煤炭部颁发的《缓倾斜、倾斜煤层回采巷道围岩稳定性分类方案》为依据,煤层上、下山稳定性分类,可根据具体情况对分类指标进行相应替代,详见下表。
分类指标说明顶板强度(指单向抗压强度,Mpa,下同) 取巷道宽度15倍范围内顶板强度的加权平均值煤层强度取巷帮煤岩层强度加权平均值底板强度取巷道宽度范围内底板强度的加权平均值巷道埋深H(m) 巷道所在位置至地表的垂直距离护巷煤柱宽度X(m) 一侧煤柱的实际宽度。
其中,沿空掘巷(无煤柱)时,X=0;巷道两侧均为实体煤时,X=100采动影响系数N 指因工作面回采引起的超前支护支承压力的影响,N=直接顶厚度+厚度(当N>4时,取N=4)围岩完整性指数D 指围岩节理裂隙、层理的影响速度,以直接顶初次垮落布距(m)代替2、锚杆支护设计的基础资料见下表,根据下表进行初步设计,在监测信息反馈的基础上对设计进行验证或修改。
序号原始资料说明与测取1 一般取1.5倍巷道宽度范围内顶板岩石层层数与厚度(m) 由地质柱状图或钻孔资料确定2 各层节理裂隙间距D1(m) 指沿结构面法线方向上的平均间距,在巷道内(或类似条件巷道内)测取,或由下表查得3 岩层的分层厚度D2(m) 指分层厚度的平均值,或由表三查得4 岩层的单向抗压强度(MPa) 在井下直接测取,或在实验室内利用岩样测定5 煤层厚度Hc(m) 指被巷道切割的煤层厚度6 煤层倾角a(°) 由地质报告给出,或在井下直接量取7 煤层单向抗压强度(MPa) 在井下直接测取,或在实验室内测定8 巷道埋深H(m) 地表到巷道的垂直距离9 指应力方向与大小一般在井下实测10 地质构造情况11 水文情况描述12 煤柱宽度X(m) 煤柱的实际宽度13 锚杆在顶板岩层中拉拔力Pr(KN)14 锚杆在煤层中拉拔力Pr(KN)15 巷道几何形状与尺寸宜选用的梯形、矩形与拱形3、巷道围岩分类为Ⅰ、Ⅱ、Ⅲ类时,顶板锚杆可以采用端锚或半长锚固,设计锚固力≥64KN。
GBT35056-2018煤矿巷道锚杆支护技术规范

14 煤(岩)柱宽度 15 采动应力 16 粘结强度
煤(岩)柱的实际宽度
巷道与周围其他巷道、回采工作面的空间与时间 关系, 采动影响范围与大小 在井下短锚固拉拔试验中,锚杆在不同岩层、煤层中的 粘结强度
技术要求
2.1.2 现场调查内容:
(1)巷道工程地质条件; (2)生产条件。
2.1.3 巷道工程地质条件:
地质构造
巷道周围地质构造的分布情况,由工作面地质说明书给出
水文地质条件
巷道涌水量、水质等参照工作面地质说明书;水对围岩物 理力学性质的影响通过实验确定
巷道埋深
地表到巷道地板的垂直距离
技术要求
2 技术要求 2.1 现场调查与巷道围岩地质力学评估
2.1.1 锚杆支护设计前应进行现场调查与巷道围岩地质力学评估。巷道围岩地质力学评估基
(3)巷道掘进方式; (1)巷道用途与服务年限;
(6)煤(岩)柱尺寸。 (4)巷道周围采掘工程分布状况; (2)巷道断面形状及尺寸;
技术要求
2.1.5 巷道围岩地质力学评估内容: (1)围岩物理力学参数测定; (2)围岩结构测量与力学性质测定; (3)围岩应力测量。
2.1.6 巷道围岩地质力学参数测试要求: (1)应根据矿井开拓部署和采区划分合理安排测试; (2)测点应具有代表性; (3)应能最大程度地反映整个井田或采区的实际情况。
2.1.7 (1)围岩物理力学参数通过实验室岩样实验获得,其参数为: 围岩真密度、视密度、孔隙率、单轴抗拉强度、单轴抗压强度、变形模量、
泊松比、粘聚力、内摩擦角和水理件质等。 (2)井下岩样的采取、包装应符合GB/T 23561.1-2009的规定; (3)单轴抗压强度、变形模量等可采用井下原位测量方法获得。
煤矿掘进巷道锚杆支护技术探讨

煤矿掘进巷道锚杆支护技术探讨一、锚杆支护技术的原理锚杆支护技术是一种通过在巷道围岩中埋设锚杆,并利用锚杆与巷道围岩相互作用的力学原理来增强巷道的稳定性的支护方法。
其原理主要包括两个方面:一是利用锚杆对巷道围岩进行约束,增强其抗拉强度,二是利用锚杆与围岩之间的摩擦力提高巷道围岩的抗剪强度。
具体来说,通过在巷道围岩中埋设锚杆,可以有效地将巷道围岩进行约束,形成一个整体的支撑结构。
当巷道围岩受到外部荷载作用时,锚杆能够承担一部分荷载,从而减轻围岩本身的受力情况。
由于锚杆与围岩之间产生了摩擦力,这种摩擦力可以有效地提高围岩的抗剪能力,从而增强了巷道的整体稳定性。
1. 锚杆的选择在进行锚杆支护工作时,首先需要选择合适的锚杆。
一般来说,常见的锚杆材料有钢筋、钢管等,这些材料通常具有较高的抗拉强度和抗腐蚀能力,能够满足巷道支护的要求。
在选择锚杆时还需要考虑其长度和直径等参数,这些参数需要根据具体的巷道情况和支护要求进行合理的选择。
在选择好合适的锚杆后,需要进行锚杆的埋设工作。
通常情况下,埋设锚杆的深度需要根据巷道的围岩情况和设计要求来确定。
在进行锚杆埋设时,需要将锚杆按照一定的间距和深度埋入围岩中,并确保锚杆的埋设深度和间距能够满足巷道支护的要求。
在进行锚杆支护工作时,锚杆的固定是非常重要的一环。
一般来说,常见的锚杆固定方式有化学固化和机械固定两种。
化学固化是指在锚杆埋设完毕后,在孔道中注入特定的化学固化材料,通过与锚杆表面的摩擦力来加固锚杆。
而机械固定则是通过在锚杆的末端安装特定的固定件,将锚杆与围岩形成一个整体的支护结构。
1. 巷道掘进:在煤矿巷道的掘进过程中,锚杆支护技术可以有效地提高巷道的稳定性,减少巷道围岩的变形和破坏,保障矿工的安全。
2. 巷道加固:对于已经开采完成的巷道,如果存在一定的围岩松动和变形情况,可通过锚杆支护技术进行加固,提高巷道的承载能力和稳定性。
3. 矿井支护:在煤矿井下开采过程中,井壁的支护是非常重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.概念 1.3 锚杆预紧力:
在锚杆安装过程中,对锚杆杆体施加的轴向力,单位: kN
1.3.1 锚杆预紧力的作用: 1.3.1.1发挥锚杆主动支护作用,特别是在层状岩层、破 碎围岩条件下,增大预紧力能够改变围岩性质,防止围岩 破坏,保持围岩稳定,有利于对围岩支护。
1.概念
1.3.1 锚杆预紧力的作用: 对顶板稳定性具有决定性的作用。当预紧力大到一
1.概念 1.4 锚杆的预紧扭矩:
在锚杆安装过程中,对锚杆螺母施加的力矩,单位N•m; M=F*L,M为扭矩,F为力(N),L为距离(m)
1.4.1 锚杆预应力:
在锚杆安装过程中,对锚杆杆体施加的轴向拉应力,等 于锚杆预紧力与杆体横截面积的比值,单位MPa。
2.几种易混淆的力之间的关系 2.1 锚固力与拉拔力区别:
380
61
75
91
96.7 119.4 144.5
BHRB335 335
490
85
105
127 124.7 153.9 186.3
BHRB500 500
670
127
157
190 170.5 210.5 254.7
BHRB600 600
800
152
188
228 203.6 251.3 304.1
例如:王楼煤矿现用φ22mm高强度螺纹钢锚杆(Q500)施 工过程中对锚杆施加预紧扭矩为350N•m,则
1.概念 1.2 .1 拉拔力检测标准:
锚索合格条件为: 首先锚索支护材料要符合施工措施的规 定, 且最小锚固长度要≥1.5 米; 分级张拉,分级方式为 0―30 千牛―60 千牛―90 千牛―130 千牛。 测试要求: ASTMA419-98(1*7 × 15.24mm) 单根钢绞线,抗拔力大 于 120KN。
围岩硬度越高,岩石强度越大。在巷道顶板安装锚杆就 相当于给顶板提供围压。对于中等强度以上岩石(单轴抗压 强度大于30MPa,变形模量大于100MPa),增加的围压很 小,因此锚杆支护在岩石破坏前对其强度影响不大。因为煤 层强度较低,特别是中等强度以下的煤层(煤层单轴抗压强 度小于15MPa),锚杆在煤体破坏前对其强度有比较明显的 影响。
2.1.1锚固力是锚杆对围岩产生的约束力,是限制围岩变 形,起支护作用的力。锚杆拉拔力是锚杆锚固后拉拔实验时, 所能承受的极限载荷,反映的是杆体、锚固剂、岩石粘结到 一起后,锚杆破断或失效的最大拉力。
2.几种易混淆的力之间的关系 2.1 锚固力与拉拔力区别:
2.1.2锚固力随着被支护围岩变形、围岩的膨胀而增大, 因此锚固力是一个动态发展并不断变化的力。锚杆拉拔力是 一个固定值,不随围岩变形和锚杆受力而改变。如果围岩不 发生变形且不考虑杆体的松驰效应,锚固力等于初锚力。
围岩变形:不连续、不 协调扩容变形;连续、 整体变形。锚杆主要对 前者起作用;
锚杆支护系统刚度非常 重要,及时支护、施加 合理的预应力,并有效 扩散到围岩是关键,可 抑制围岩扩容变形。
巷道掘进工作面空间布置
2、锚杆实际受力状态
锚杆井下受力状态复杂 巷道表面凹凸不平及施工原因,井下锚杆与巷道表面不垂
MT/T 1104—2009《煤巷锚杆支护技术规范》中明确要 求,锚杆的锚固力应不小于锚杆杆体屈服强度的1.2倍。
例如:Ф22×2800mm高强度螺纹钢锚杆(Q500)屈服强度 190kN,故锚固力应不小于228kN。现场使用锚杆拉力计做拉 拔试验,一般规定达到20MPa,即72.4KN(7.4t)后即认为 锚杆施工质量合格,只达到了锚固力的31.2%。
28
101.3
10.3
29
104.9
10.7
30
108.6
11.1
31
112.2
11.4
32
115.8
11.8
33
119.4
12.2
34
123.0
12.5
35
126.6
12.9
36
130.3
13.3
37
133.9
13.7
38
137.5
14.0
P
F
MPa
KN
t
39
141.1
14.4
40
144.7
14.8
直,不处于理想拉伸状态,而是处于受拉、弯、扭、剪切的 复合应力状态。
施加预应力前
施加预应力后
锚固剂
杆体
钻孔
托盘 球垫 螺母
(a) 树脂锚固锚杆结构
锚杆受拉伸、弯 曲、扭转引起的 复合应力。
l C
l1
(b) 锚杆受力状态
P
AB
T
Mt
R
树脂锚固锚杆力学模型
1.锚杆支护的加固作用 1.1 锚杆提供的支护强度:
41
148.4
15.1
42
152.0
15.5
43
155.6
15.9
44
159.2
16.2
45
162.8
16.6
46
166.4
17.0
47
170.0
17.3
48
173.7
17.7
49
177.3
18.0
50
180.9
18.5
51
184.5
18.8
52
188.2
19.2
53
191.8
19.6
54
195.4
1.1 锚杆强度-抗破坏能力 ✓ 拉伸:屈服强度(力)、拉伸强度(力) 、延伸率等; ✓ 剪切:剪切强度(力)。
锚杆杆体拉伸应力-应变曲线
1.2 刚度-抗变形能力
K
AE L
A–锚杆杆体截面积; E–锚杆弹性模量; L–锚杆长度。
支 架 载 荷
位移
支架载荷与位移关系曲线
✓ 安装时间:锚杆安装越及时,锚固体刚度越大; ✓ 预应力:锚杆预应力越高,锚固体刚度越大; ✓ 锚固方式:全长锚固刚度大。
2.几种易混淆的力之间的关系 2.3 预紧力与预紧应力区别:
锚杆预紧力:在锚杆安装过程中,对锚杆杆体施加的轴 向拉力。
锚杆预应力:锚杆预紧力与杆体横截面积的比值。
2.几种易混淆的力之间的关系 2.2 预紧力和预紧扭矩的关系:
2.2.4锚杆施工设计要求的是预紧力,而不是预紧扭矩。 但在实际施工中,由于预紧扭矩测读方便而预紧力测量相对 复杂,且预紧力随着预紧扭矩增大而增大,为了检测方便, 通过直接检测预紧扭矩而达到间接检测锚杆的预紧力的目的。 因此,锚杆安装时通常检测预紧扭矩,而不检测预紧力。
12
43.4
4.4
13
47.0
4.8Βιβλιοθήκη 1450.75.2
15
54.3
5.5
16
57.9
5.9
17
61.5
6.3
18
65.1
6.6
19
68.7
7.0
P
F
MPa
KN
t
20
72.4
7.4
21
76.0
7.8
22
79.6
8.1
23
83.2
8.5
24
86.8
8.9
25
90.5
9.2
26
94.1
9.6
27
97.7
10.0
19.9
55
199.0
20.3
56
202.6
20.7
计算公式:F=S×P。其中:F为锚固力(KN);S为活塞面积;P为拉力指示 表读数(MPa)。
1.锚杆支护作用的新认识 控制围岩离层、滑动及新裂纹等不连续、不协调扩容变形, 保持围岩完整性和自承能力,减小围岩强度降低。
拉伸-阻止岩层离层
剪切-阻止岩层滑动
1.概念 1.1.1 锚固力的作用:锚杆的锚固作用体现为径向和切向
锚固力的作用。径向锚固力对围岩施加围压,将围岩由单 向、双向受力状态转化为双向、三向受力状态,提高围岩 的稳定性。锚杆贯穿同一岩层中的弱面,切向锚固力改善 了弱面的力学性质,从而改善了围岩的力学性质。因此锚 杆是兼有支护和加固两种作用的较完美的支护形式。径向 锚固力主要起着支护作用,切向锚固力主要起着加固作用。 而在煤巷围岩中,主要是径向锚固力起作用,起到支护作 用。
锚杆预紧力: F=M/(DK)=350N•m/(0.022m*0.39)=40792N≈40KN
锚杆预应力: P=F/S=40792N/380*10-6m2=107MPa
F:锚杆预紧力 N M:预紧扭矩 N•m D:锚杆直径 mm P :锚杆预应力 MPa K :系数 S:锚杆截面积 m2
1KN=0.98吨
2.几种易混淆的力之间的关系 2.1 锚固力与拉拔力区别:
2.1.4检查锚杆施工质量时,一般检查锚杆拉拔力。监测 分析锚杆工作情况时,测锚固力。测量锚固力是为了验证支 护的可靠性,为以后修改支护设计提供依据。设计和施工时, 必须保证锚杆拉拔力大于杆体破断力这一基本原则,即锚杆 杆体受力超过其破断力后,锚杆可能被拉断,但锚杆不能被 拉出。常见错误是设计的锚杆拉拔力小于杆体破断力。
2.几种易混淆的力之间的关系 2.2 预紧力和预紧扭矩的关系:
2.几种易混淆的力之间的关系 2.2 预紧力和预紧扭矩的关系:
常见锚杆钢材强度比较
牌号 屈服强度 抗拉强度
屈服力/KN
拉断载荷/KN
Mpa
Mpa φ18mm φ20mm φ22mm φ18mm φ20mm φ22mm
Q235
240
巷道开挖后,应力重新分布。通过锚杆给围岩施加一定 的压应力,改善围岩应力状态。对于受拉区域,可抵消部分 拉应力,提高围岩抗拉能力;对于受剪区域,通过压应力区 域,通过压应力产生的摩擦力,提高围岩的抗剪能力。