(完整)七年级数学整式单元测试题

合集下载

七年级数学-整式的加减单元测试题及答案

七年级数学-整式的加减单元测试题及答案

七年级数学-整式的加减单元测试题及答案七年级数学-整式的加减单元测试题一、选择题(每小题2分,共20分)1.在代数式中,x2-5,-1,x2-3x+2,π,5/x,x2+1/x+1,-3π整式有()A。

3个 B。

4个 C。

5个 D。

6个2.单项式-3πxy2z2的系数和次数分别是()A。

-π,5 B。

-1,6 C。

-3π,6 D。

-3,73.下面计算正确的是()A。

3x2-x2=3 B。

3a2+2a3=5a5 C。

3+x=3x D。

-0.25ab+1/4ab=04.多项式-x2-1/2x-1的各项分别是()A。

-x2,1/2x,1 B。

-x2,-1/2x,-1 C。

-x2,1/2x,-1 D。

x2,-1/2x,-15.已知2x3y2和-3x3my2是同类项,则式子4m-24的值是()A。

20 B。

-20 C。

28 D。

-286.下面各题去括号错误的是()A。

x-(6y-1/2)=x-6y+1/2B。

2m+(-n+1/3a-b)=2m-n+1/3a-bC。

-1/2(4x-6y+3)=-2x+3y+3D。

(a+1/2b)-(-1/3c+2/7)=a+1/2b+1/3c-2/77.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元。

A。

4m+7n B。

28mn C。

7m+4n D。

11mn8.减去-4x等于3x2-2x-1的代数式是()A。

3x2-6x-1 B。

5x2-1 C。

3x2+6x-1 D。

3x2+2x-19.已知下列一组数,用代数式表示第n个数:1、3/4、5/9、7/16、9/25……则第n个数为()A。

2n-1/n B。

n2-4/n C。

2n-1/n2 D。

2n+1/n210.如果a-b=1/2,那么-3(b-a)的值时()A。

-3/5 B。

2/3 C。

3/2 D。

1/6二、填空题(每小题3分,共30分)11.在代数式中,xy,-3,-1/4x2+1,x-y,-m2n,1/x,4-x2,ab2,2/x+3单项式有5个,多项式有3个。

初一数学整式的运算单元测试题及答案

初一数学整式的运算单元测试题及答案

初一数学整式的运算单元测试题及答案第七章整式的运算一、选择题。

1、以下判别中不正确的选项是( )①单项式m的次数是0 ②单项式y的系数是1③ ,-2a都是单项式④ +1是二次三项式2、假设一个多项式的次数是6次,那么这个多项式任何一项的次数( )A、都小于6B、都等于6C、都不小于6D、都不大于63、以下各式中,运算正确的选项是( )A、 B、C、 D、4、以下多项式的乘法中,可以用平方差公式计算的有 ( )A、 B、C、 D、5、在代数式中,以下结论正确的选项是( )A、有3个单项式,2个多项式B、有4个单项式,2个多项式C、有5个单项式,3个多项式D、有7个整式6、关于计算正确的选项是( )A、0B、1C、-1D、27、多项式中,最高次项的系数和常数项区分为( )A、2和8B、4和-8C、6和8D、-2和-88、假定关于的积中常数项为14,那么的值为( )A、2B、-2C、7D、-79、,那么的值是( )A、9B、49C、47D、110、假定,那么的值为( )A、-5B、5C、-2D、2二、填空题11、 =_________。

12、假定,那么。

13、假定是关于的完全平方式,那么。

14、多项多项式除以多项式A得商式为,余式为,那么多项式A为________________。

15、把代数式的共同点写在横线上_______________。

16、应用_____公式可以对停止简便运算,运算进程为:原式=_________________。

17、。

18、,那么P=______, =______。

三、解答题19、计算:(1)(2)(3)20、解方程:21、先化简后求值:,其中。

参考答案一、选择题1、B2、D3、D4、B5、A6、B7、D8、B9、C 10、C 二填空题11、 12、2;4 13、或7 14、15、(1)都是单项式 (2)都含有字母、 ;(3)次数相反16、平方差;17、 18、 ;三、解答题19、(1)1 (2) (3)20、21、34。

(完整)七年级数学整式单元测试题

(完整)七年级数学整式单元测试题

(完整)七年级数学整式单元测试题本文为《七年级数学整式单元测试题》。

第一节选择题(共10小题,每小题2分,共计20分)1. 若a = -3,b = 5,则ab的值为()。

A. 8B. -8C. 15D. -152. 已知整式 f(x) = 2x² - 3x + 4 ,则 f(-1)的值为()。

A. -1B. 9C. 7D. -93. 若整式 P(x) = 3x³ - 2x² + 5x + 1 ,则 P(0)的值为()。

A. 1B. 0C. -1D. -54. 若 m = 2 ,则整式 2m² - 3m - 1 的值为()。

A. 1B. -1C. 5D. -55. 设整式 f(x) = 2x³ + 4x² - x + 1 ,则 f(1) + f(-1)的值为()。

A. 1B. 4C. 0D. -26. 若整式 \(g(x) = 4x^4 - 3x^2 + 7\),则 g(-1)的值为()。

A. -14B. 4C. 14D. -47. 已知整式 P(x) = x³ - 2x² - x + 4 ,则 P(3)的值为()。

A. -2B. 2C. 4D. 88. 若整式 \(f(x) = 2x^3 - 4\),则 f(2)的值为()。

A. 2B. 0C. 8D. -49. 设整式 \(P(x) = 3x^3 + 2x^2 - 5x - 2\),则 P(-1)的值为()。

A. -8B. 0C. 8D. 210. 若 a = -1 ,b = 2 ,则 \(ab^2\)的值为()。

A. -2B. -4C. 4D. 8第二节填空题(共5小题,每小题4分,共计20分)11. 设整式 \(f(x) = 3x^3 + 4x^2 - 2x + 1\) ,则 \(f(-2)\)的值为\underline{~~~~-3~~~~}。

12. 若 \(m = -2\) ,则整式 \(3m^2 + 4m + 1\) 的值为\underline{~~~~-3~~~~}。

七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)一.选择题(共8小题,满分40分)1.已知a+b﹣2=0,则3a•3b的值是()A.6 B.9 C.D.﹣92.若8x=21,2y=3,则23x﹣y的值是()A.7 B.18 C.24 D.633.如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19 B.﹣19 C.69 D.﹣694.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3 B.6 C.7 D.85.已知4x2+mx+9是完全平方式,则m的值是()A.8 B.±6 C.±12 D.±166.若x+y=3,xy=1,则(1﹣2x)(1﹣2y)的值是()A.1 B.﹣1 C.2 D.﹣27.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10 D.a2b2=c28.若(mx+3)(x2﹣x﹣n)的运算结果中不含x2项和常数项,则m,n的值分别为()A.m=0,n=0 B.m=0,n=3 C.m=3,n=1 D.m=3,n=0二.填空题(共8小题,满分40分)9.若(x+m)(x﹣3)=x2+nx﹣12,则n=.10.直接写出计算结果:(﹣3x2y3)4(﹣xy2)2=.11.当a=时,多项式x2﹣2(a﹣1)x+25是一个完全平方式.12.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.13.计算:(﹣)2022×(﹣1)2021=.14.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.15.已知(x+3)2﹣x=1,则x的值可能是.16.如图,小颖用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若a=2b,则S1、S2之间存在的数量关系是.三.解答题(共5小题,满分40分)17.计算:(x﹣2y+3)(x+2y﹣3).18.计算(1)(﹣5x)2﹣(3x+5)(5x﹣3);(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4);他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n;∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.阅读、理解、应用.例:计算:20223﹣2021×2022×2023.解:设2022=x,则原式=x3﹣(x﹣1)•x•(x+1)=x3﹣x(x2﹣1)=x=2022.请你利用上述方法解答下列问题:(1)计算:1232﹣124×122;(2)若M=123456789×123456786,N=123456788×123456787,请比较M,N的大小;(3)计算:.参考答案与解析一.选择题(共8小题,满分40分)1.【答案】解:∵a+b﹣2=0;∴a+b=2;∴3a•3b=3a+b=32=9.故选:B.2.【答案】解:∵8x=21,2y=3;∴23x=21;∴23x﹣y=23x÷2y=21÷3=7.故选:A.3.【答案】解:∵2(5﹣a)(6+a)=100;∴﹣a2+5a﹣6a+30=50;∴a2+a=﹣20;∴a2+a+1=﹣20+1=﹣19.故选:B.4.【答案】解:∵25a•52b=56,4b÷4c=4;∴52a•52b=56,4b﹣c=4;∴2a+2b=6,b﹣c=1;即a+b=3,b﹣1=c;∴a2+ab+3c=a(a+b)+3(b﹣1)=3a+3b﹣3=3(a+b)﹣3=3×3﹣3=9﹣3=6.故选:B.5.【答案】解:∵(2x±3)2=4x2±12x+9;∴m=±12;故选:C.6.【答案】解:原式=1﹣2y﹣2x+4xy =1﹣2(x+y)+4xy;当x+y=3,xy=1时;原式=1﹣2×3+4=1﹣6+4=﹣1;故选:B.7.【答案】解:∵5×10=50;∴2a•2b=2c;∴2a+b=2c;∴a+b=c;故选:B.8.【答案】解:(mx+3)(x2﹣x﹣n)=mx3﹣mx2﹣nmx+3x2﹣3x﹣3n=mx3+(﹣m+3)x2+(﹣nm﹣3)x﹣3n;∵(mx+3)(x2﹣x﹣n)的乘积中不含x2项和常数项;∴﹣m+3=0,﹣3n=0;解得:m=3,n=0;故选:D.二.填空题(共8小题,满分40分)9.【答案】解:(x+m)(x﹣3)=x2﹣3x+mx﹣3m=x2+(m﹣3)x﹣3m;∴m﹣3=n,3m=12;解得:m=4,n=1;故答案为:1.10.【答案】解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.11.【答案】解:因为x2﹣2(a﹣1)x+25=x2﹣2(a﹣1)x+52是完全平方式;属于﹣2(a﹣1)x=±2•x•5;解得:a=﹣4或6.故答案为:﹣4或6.12.【答案】解:∵(x+y)2=2,(x﹣y)2=8;∴x2+2xy+y2=2①,x2﹣2xy+y2=8②;①+②得:2(x2+y2)=10;∴x2+y2=5.故答案为:5.13.【答案】解:原式=[(﹣)×(﹣)]2021×(﹣)=12021×(﹣)=1×(﹣)=﹣;故答案为:﹣.14.【答案】解:(1)∵x+y=4,xy=3;∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17;∴x2+y2+2xy﹣(x2+y2)=8;∴xy=4;∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12;∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12;∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12;∴(x﹣2021)2=5.故答案为:5.15.【答案】解:当x+3=1时;解得:x=﹣2;故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时;解得:x=﹣4;故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时;解得:x=2;故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.16.【答案】解:S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2;S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2;∵a=2b;∴S1=a2+2b2=6b2,S2=2ab﹣b2=3b2∴S1=2S2.故答案为:S1=2S2.三.解答题(共5小题,满分40分)17.【答案】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.18.【答案】解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)=25x2﹣15x2+9x﹣25x+15=10x2﹣16x+15;(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)=4x2﹣12xy+9y2﹣9y2+x2=5x2﹣12xy;(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)=(x2y2﹣2x2y)÷(﹣2xy)=﹣xy+x;把,y=3代入得:﹣xy+x=﹣×(﹣)×3+(﹣)=﹣=.19.【答案】解:(1)∵43=64,(﹣2)2=4,(﹣)﹣3=﹣8;∴(4,64)=3,(﹣2,4)=2,(﹣,﹣8)=﹣3.故答案为:3,2,﹣3.(2)设(4,5)=x,(4,6)=y,(4,30)=z;则4x=5,4y=6,4z=30;∴4x×4y=5×6=30;∴4x×4y=4z;∴x+y=z,即(4,5)+(4,6)=(4,30).(3)设(3,20)=a,(3,5)=b;∴3a=20,3b=5;∵(3,9)=2;∴(3,9)×(3,20)﹣(3,5)=2a﹣b;∵32a﹣b=(3a)2÷3b=202÷5=80;∴2a﹣b=(3,80),即(3,9)×(3,20)﹣(3,5)=(3,80).20.【答案】解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=;∴m+n=5,m2+n2=20时;mn===;(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023;可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022);由(2)题结论a2+b2=(a+b)2﹣2ab可得;(a+b)2=a2+2ab+b2;又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4;且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30;∴(x﹣2022)2=()2====16.21.【答案】解:(1)设123=x;∴1232﹣124×122=x2﹣(x+1)(x﹣1)=x2﹣x2+1=1;(2)设123456786=x;∴M=123456789×123456786=(x+3)•x=x2+3x;N=123456788×123456787=(x+2)(x+1)=x2+3x+2;∴M<N;(3)设++...+=x;∴=(x+)(1+x)﹣(1+x+)•x=x+x2++x﹣x﹣x2﹣x =.。

七年级数学整式单元测试卷

七年级数学整式单元测试卷

七年级数学整式单元测试卷一、选择题(每题3分,共30分)1. 下列式子中,整式为()A. (1)/(x)B. x + yC. √(x)D. (1)/(x + y)2. 单项式-3xy^2的系数和次数分别是()A. -3,3B. -3,2C. 3,3D. 3,2.3. 多项式2x^2-3x + 1的次数是()A. 2B. 3C. 1D. 0.4. 下列运算中,正确的是()A. x^2+x^3=x^5B. x^3· x^2=x^6C. (x^2)^3=x^6D. x^6÷ x^2=x^35. 化简-2a + 3a的结果是()A. -aB. aC. 5aD. -5a.6. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3B. -x^2+x - 1C. x^2-5x + 3D. x^2-x + 17. 若单项式3x^my^3与-2x^2y^n是同类项,则m + n的值为()A. 5B. 4C. 3D. 2.8. 计算(a - 2b)(a + 2b)的结果是()A. a^2-4b^2B. a^2+4b^2C. a^2-2b^2D. a^2+2b^29. 当 a = -2时,代数式a^2-2a + 1的值为()A. 9B. 1C. -1D. -9.10. 已知 A = 2x^2+3xy - 2x - 1,B=-x^2+xy - 1,则 A - 3B等于()A. 5x^2+10xy - 2x - 4B. 5x^2+10xy - 2x + 2C. 5x^2-10xy - 2x - 4D.5x^2-10xy - 2x + 2二、填空题(每题3分,共15分)11. 单项式(2)/(3)π r^2的系数是___。

12. 多项式3x^2y - 5xy^2+y - 2x是___次___项式。

13. 若x^2+mx + 9是一个完全平方式,则m =___。

初一数学整式练习题精选(含答案)

初一数学整式练习题精选(含答案)

初一数学整式练习题精选(含答案) 以下是初一数学第三单元整式练题精选,含答案。

一、判断题1.x+1是关于x的一次两项式。

(错误,应为一次一项式)2.-3不是单项式。

(正确)3.单项式xy的系数是1.(正确)4.x3+y3是6次多项式。

(错误,应为3次多项式)5.多项式是整式。

(正确)二、选择题1.在下列代数式中,多项式有4个。

(选项不全,无法判断正确答案)2.多项式-23m-n2是三次二项式。

(错误,应为二次二项式)3.下列说法正确的是3x-2x+5的项是3x,2x,5.(正确)4.2-与2x-2xy-5都是多项式。

(正确)5.一个多项式的次数是6,则这个多项式中只有一项的次数是4.(错误,应为6)6.下列多项式中,是二次多项式的是3x+1.(正确)7.x减去y的平方的差,用代数式表示正确的是x-y2.(正确)8.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。

已知该楼梯长S米,同学上楼速度是a米/分,下楼速度是b米/分,则他的平均速度是sab/(s+a+b)米/分。

(正确)9.下列单项式次数为3的是3abc。

(错误,应为3次单项式)10.下列代数式中整式有2x+y,a2b,3x4x。

(正确)11.下列整式中,单项式是2x-y。

(正确)12.下列各项式中,+1.(正确)13.x(x+a)是单项式。

(错误,应为一次二项式)14.在多项式x3-xy2+25中,最高次项是x3.(正确)24.单项式的系数是系数,次数是次数。

25.多项式x2y+xy-xy2-53中的三次项是-xy2.26.当a=1时,整式x2+a-1是单项式。

27.多项式xy-1是一次二项式。

28.当x=-3时,多项式-x3+x2-1的值等于-31.29.如果整式(m-2n)x2ym+n-5是关于x和y的五次单项式,则m+n=7.30.一个n次多项式,它的任何一项的次数都是小于等于n 的。

31.系数是-3,且只含有字母x和y的四次单项式共有4个,分别是-3x2y,3xy2,-x2y2,xy3.32.组成多项式1-x2+xy-y2-xy3的单项式分别是1,-x2,xy,-y2,-xy3.四、列代数式1.5/a+3/22.m2+n23.1/(x+y)4.(x-y)2/(a+b)五、求代数式的值1.当x=-2时,代数式x-3x-1的值为-17.2.当a=21,b=-3时,代数式|b-a|的值为5.3.当x=0时,代数式2x2-11/x3的值不存在。

人教版初一数学第二章整式的运算单元测验题(3套)

人教版初一数学第二章整式的运算单元测验题(3套)

人教版七年级数学整式的运算单元测验(一)班别:初一( )班 学号: 姓名: 评分:一、填空题(每空2分,本题共40分)1、单项式22b a -的系数是 。

2、多项式123243-+-x x x 有 项,其中次数最高的项是 。

3、去括号:=---)2675(2b a x 。

4、=⨯1221010 ,=-⨯-32)3()3( ,=-⨯32)5(5 ,=⨯-3255 。

5、=32)4( ,=-32)4( ,=-32)]4[( ,=-23)4( 。

6、=÷5877 ,=-÷-n m )7()7( ,=÷-5877 ,=-÷58)7(7 。

7、=-32 ,=--2)2( ,=⎪⎭⎫ ⎝⎛-221 , =⨯-1010100 。

二、选择题(每小题3分,本题共18分)1、单项式7243xy -的次数是 【 】 A 、8次 B 、3次 C 、4次 D 、5次2、下列多项式次数为3的是 【 】A 、1652-+-x xB 、12-+x x πC 、22b ab b a ++D 、1222--xy y x3、下列整式加减正确的是 【 】A 、2x -(x 2+2x )= x 2B 、2x -(x 2-2x )= x 2C 、2x +(y +2x )= yD 、2x -(x 2-2x )= x 24、减去x 2-后,等于4x 2-3x -5的代数式是 【 】A 、4x 2-5x -5B 、-4x 2+5x +5C 、4x 2-x -5D 、4x 2-55、下列运算正确的是 【 】A 、954a a a =+B 、954632a a a =⨯C 、33333a a a a =⨯⨯D 、743)(a a =-6、下列计算结果错误的是 【 】A 、437)()()(ab ab ab =÷B 、x x x =÷2332)()(C 、224323232⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-m m m D 、24625)5()5(a a a =-÷三、解答题(每小题5分,共25分)1、)()(n m q p -++- 2、)264()27(22x x x x ---+-3、2332)()(a a +-4、y xy y x ⋅-+-⋅-232)()2()(5、)103()106(58⨯÷⨯四、求x 3与x x 3472++的差,并求当21-=x 时差的值。

七年级上册数学整式的加减单元测试卷(含答案)

七年级上册数学整式的加减单元测试卷(含答案)

七年级上册数学整式的加减单元测试卷(含答案)整式的加减试卷满分:100分,考试时间:90分钟第Ⅰ卷一、选择题(本小题共10个小题,每小题3分,共30分)1.下列说法正确的是()。

A。

xyz与xy是同类项;B。

99x2与23是同类项;C。

0.5xy与xy是同类项;D。

5mn与2是同类项。

2.去括号是我们要掌握的最基础的运算法则,下列去括号计算正确的是()。

A。

x(3y2)x3y2;B。

m(n a b)m n a b;C。

(4x6y3)4x6y3;D。

(a b)(c2)a b c 2.3.下列计算正确的是()。

A。

4x7x6x3x;B。

2a22(a1);C。

x5x3x3(x21);D。

4.目前我校正在开展篮球运动会,已知买一块毛巾需要x 元,买2个篮球需要y元,七年级3班购买了4块毛巾,6个篮球,需要的费用是()。

A。

4x6y;B。

4x3y;C。

3x4y;D。

6x4y。

5.两个4次多项式的和的次数是()。

A。

八次;B。

四次;C。

不低于四次;D。

不高于四次。

6.计算:6a25a3与5a22a1的差,结果正确的是()。

A。

a23a4;B。

a23a2;C。

a27a2;D。

a27a 4.7.在一次数学考试中,不听劝告的___同学使用了钢笔作答,这不!他不小心将一滴墨水滴在了试卷上面:(x23xy0.5y2)(0.5x24xy y2)0.5x2xy y2.那么被墨水遮住的部分应该是()。

A。

xy;B。

xy;C。

7xy;D。

7xy。

8.x2+ax-2y+7-(bx2-2x+9y-1)的值与x的取值无关,则a+b的值为()。

A。

-1;B。

1;C。

-2;D。

2.9.如果m-n=5,那么-3m+3n-7的值是()。

A。

22;B。

-8;C。

8;D。

-22.10.下列图形都是由同样大小的五角星按一定的规律组成,其中第1个图形一共有2个五角星,第2个图形一共有8个五角星,第3个图形一共有18个五角星,第4个图形中有32个五角星,…,则第12个图形中五角星的个数为()。

初一数学整式练习题精选(含答案)

初一数学整式练习题精选(含答案)

初一数学整式练习题精选(含答案) 初一数学第三单元整式练题精选(含答案)一、判断题1.x+1是关于x的一次两项式。

(正确)2.-3不是单项式。

(正确)3.单项式xy的系数是1.(错误,应该是1,因为单项式xy 的系数是1)4.x^3+y^3是6次多项式。

(错误,应该是3次多项式)5.多项式是整式。

(正确)二、选择题1.在下列代数式:1a+b/32.2ab。

ab^2+b+1.x^3+x-3中,多项式有()(选B,3个)A。

2个B。

3个C。

4个D。

5个2.多项式-23m-n^2是()(选B,三次二项式)A。

二次二项式B。

三次二项式C。

四次二项式D。

五次二项式3.下列说法正确的是()(选A,3x-2x+5的项是3x,2x,5)A。

3x-2x+5的项是3x,2x,5B。

22/2-与2x-2xy-5都是多项式C。

多项式-2x+4xy的次数是3D。

一个多项式的次数是6,则这个多项式中只有一项的次数是64.下列说法正确的是()(选D,整式2x+1是一次二项式)A。

3x-2x+5的项是3x,2x,5B。

22/2-与2x-2xy-5都是多项式C。

多项式-2x+4xy的次数是3D。

整式2x+1是一次二项式5.下列代数式中,不是整式的是()(选D,-2005)A。

整式abc没有系数B。

6/75xC。

23/4xD。

-20056.下列多项式中,是二次多项式的是()(选A,3x+1)A。

3x+1B。

x^2+2x+1C。

3xy-1D。

3x-5/227.x减去y的平方的差,用代数式表示正确的是()(选C,3xy-1)A。

(x-y)^2B。

x-y^2/2C。

3xy-1D。

3x-5/228.某同学爬一楼梯,从楼下爬到楼顶后立刻返回楼下。

已知该楼梯长S米,同学上楼速度是a米/分,下楼速度是b米/分,则他的平均速度是()米/分。

(选A,(a+b)/2)A。

(a+b)/2B。

s/(a+b)XXX(2s)D。

s/(ab+b)9.下列单项式次数为3的是() (选A,3abc)A。

2024-2025学年北师大版七年级数学上册第三章+整式的加减+单元测试题+

2024-2025学年北师大版七年级数学上册第三章+整式的加减+单元测试题+

第三章 整式的加减 单元测试题 2024-2025学年北师大版七年级数学上册A 卷( 共 100 分)第Ⅰ卷(选择题,共 32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,请将答案写在答题表格内)1 . 下列代数式书写规范的是( )A . x12B . x ÷ yC . a(x + y )D . 121xy 2 . 用代数式表示“x 与y 的2倍的和”,正确的是( )A . x + 2yB . 2x + yC . 2x + 2yD . x 2 + y 23 . 在代数式:- π ,0 ,a , 65,1,3ab x y x -- 中,单项式有( ) A . 2 个 B . 3 个 C .4 个 D .5 个4 . 多项式a 3 - 4 a 2 b 2+ 3 ab - 1的项数和次数分别是( )A . 3 和4B . 4 和4C . 3 和3D . 4 和35 . 一个三位数,百位上的数字为x,十位上的数字比百位上的数字少3,个位上的数字是百位上的数字的2倍,这个三位数用含x 的代数式表示为( )A . 112x - 30B . 100x - 30C . 112x + 30D . 102x + 306 . 某产品原价为a 元,提价10% 后又降价了10% ,则现在的价格是( )A . 0 . 9 a 元B . 1 . 1 a 元C . a 元D . 0 . 99 a 元7 . 已知a 2 + 2a - 3 = 0 ,则代数式2a 2+ 4 a - 3 的值是( )A . - 3B . 0C . 3D . 68. 按如图所示的方式摆放圆和三角形,观察图形,则第10 个图形中圆有( )A . 36 个B . 38 个C . 40 个D . 42 个第Ⅱ 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20 分)9 . 去括号:+ ( a - b ) = _______ , - ( a + b) = ________.10 . 单项式-2 πab 2 的系数是________,次数是_________.11 . 若单项式3x m y 与-2x 6 y 是同类项,则m =________.12 . 已知一个多项式与多项式3x 2 + x 的和等于3x 2 + 4x - 1,则这个多项式是________.13 . 已知a 1 = 23-,a 2=55,a 3=107-,a 4 =179,a 5=2611- ,则a 8=_______. . 三、解答题(本大题共5个小题,共48分)14 .(本小题满分12 分,每题3分)计算:( 1 )5 m 2 - 5 m + 7 - 6 m 2- 5 m - 10 ; (2 ) ( 8a - 7 b ) - (4 a - 5 b ) ;(3 )5 (a 2 b - 3 ab 2 ) - 2 (a 2 b - 7 ab 2 ) ; (4 )5 abc - { 2a 2 b - [ 3 abc - (4 ab 2- ab 2 ) ] } .15 .(本小题满分9分)列代数式,并化为最简形式.(1)一个三位数,它的个位数字是m,十位数字比个位数字大1,百位数字比个位数字小2, 用 含m 的代数式表示这个三位数;(2)东方红电影院第一排有15 个座位,后面每排比前一排多2 个座位,用含n 的代数式表示 第n 排的座位数;(3 ) 如图,将长为4m 的长方形沿图中虚线裁剪成四个形状、大小完全相同的小长方形,用含m 的代数式表示每个小长方形的周长.16 .(本小题满分8分)先化简,再求值:(7x + 4y + xy) - 6 (xy x y -+65),其中x-y = 5 , - xy = 3 .17 .(本小题满分9分) 先化简,再求值:a 2 - 10ab -5a 2 + 12ac - c 2+ 3 ab - 8ac + 4a 2 , 其中a 是平方等于它本身倒数的数,且|b + 2|+ (3a + c +21 )2 = 0 .18 .(本小题满分10 分)某商家销售一款定价1200 元的空调和300 元的电扇.“五一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一台空调送一台电扇;方案二:空调和电扇都按定价的90%付款.现某客户要到该商场购买空调6 台,电扇x 台(x > 6).(1)若该客户按方案一购买,则需付款_____元;若该客户按方案二购买,则需付款_________元;(用含x 的代数式表示)(2)当x= 10 时,通过计算说明此时按哪种方案购买较为合算?(3)若两种优惠方案可同时使用,当x=10时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案并计算需付款多少元.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19 . 一辆公交车原有a 名乘客,到某站后,下去一半乘客,又上来b 名乘客,此时公交车上乘客的人数为_________.20 . 一组按规律排列的式子:,......,,,41138252ab a b a b a b -- 第n 个式子是________(n 为正整数).21 . 若b a b a +-2 = 5,则代数式 b a b a +-)2(2+ ba b a -+2)(3的值为_______ . 22 . 有理数a 、b 、c 在数轴上对应的点的位置如图所示,试化简:|a + c|-|a - b - c| -|b - a| +|b + c|=__________. .23 . 观察下列等式:第一个等式:a 1=22213⨯⨯=211⨯-2221⨯; 第二个等式:a 2=32324⨯⨯=2221⨯-3231⨯; 第三个等式:a 3=22435⨯⨯=3231⨯-4241⨯; 第四个等式:a 4=52546⨯⨯=4221⨯-5251⨯……, 按上述规律,回答以下问题:(1 )用含n 的代数式表示第n 个等式:a n =___________.(2)计算:a 1+ a 2+ a 3+ …+a 20=_________.二、解答题(本大题共3个小题,共30 分)24 .(本小题满分8分)已知代数式2x 2 + ax - y + 6 - bx 2 + 3 x - 5 y - 1 的值与x 的取值无关,且A = 4a 2 - ab + 4b 2,B = 3a 2 - ab + 3b 2,求3A -2(3A - 2B )- 3(4A - 3 B )的值.25 .(本小题满分10 分)(1)探索规律并填空:1 + 2 =2)21(2+⨯;1 + 2 + 3 =2)31(3+⨯;1 + 2 + 3 + 4 =2)41(4+⨯; 则1 + 2 + 3 + …+20 =_________,1 + 2 + 3 + …+ n =__________.(2)将火柴棒按如图所示的方式搭图形.① 填表:②照这样的规律搭下去:(i)第n 个图形的大三角形周长的火柴棒是几根?(ii)第n 个图形的小三角形有几个?第100 个图形的小三角形有几个?(iii)第n 个图形需要多少根火柴棒?26 .(本小题满分12 分)为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费标准如表:(注:水费按月份结算,m3表示立方米)例:若某户居民1月份用水8m3,应交水费2 × 6 + 4 ×(8 - 6)= 20元. 请根据表中信息解答下列问题:(1)若该户居民2月份用水4m3,则应交水费多少元?(2)若该户居民3 月份用水am 3(其中6 < a < 10),则应交水费多少元?(用含a 的代数式表示)(3)若该户居民4、5 两个月共用水15 m3(5 月份用水量超过了4月份),设4月份用水xm 3,求该户居民4、5 两个月共交水费多少元?(用含x的代数式表示)。

七年级数学上册--第三章-整式及其加减---单元测试卷

七年级数学上册--第三章-整式及其加减---单元测试卷

七年级数学上册第三章 《整式及其加减》 单元测试题一、选择题:1.下列代数式中222331,3,,,,3,22m n b ab x y ab c x +-+-中,单项式共有( )A .6个B .5个C .4个D .3个2.下列各组式子中,不是同类项的是( ) A .312x y 和312y x - B .2a -和18a C .2025和5-D .32a y -和352ya -3.下列合并同类项的结果中,正确的是( ) A .330ab ab --= B .2233a a -= C .336235m m m += D .32y y y -=-4.下列添括号正确的是( ) A .()a b c a b c -+=-+ B .()a b c a b c -+=--- C .()a b c a b c -+=-- D .()a b c a b c -+=--+5.下列说法正确的是( ) A .219x π-的系数是19- B .23xy 的次数是2 C .20.5x 与25x -不是同类项D .2431x x +-是二次三项式6.若关于x 的多项式()21472x mx x ⎛⎫++- ⎪⎝⎭中不含一次项,则m 的值是( )A .4B .2C .4-D .4或4-7.若a ﹣5=6b ,则(a +2b )﹣2(a ﹣2b )的值为( ) A .5B .﹣5C .10D .﹣108.设A =x 2﹣5x ﹣3,B =2x 2﹣5x +1,则A 与B 的大小关系是( ) A .A =BB .A >BC .A <BD .无法比较9.已知M =a 2﹣3b 2+5,N =a 2﹣4b 2﹣6,则M 与N 的大小关系是( ) A .M ≥NB .M >NC .M ≤ND .M <N10.甲、乙、丙三家超市为了促销一种定价为m 元的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客购买这种商品最合算的超市是 ( )A.甲B.乙C.丙D.一样11.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有( )10.A .145个B .146个C .180个D .181个12. 在解决数学问题时,常常需要建立数学模型,如图,用大小相同的圆点摆成的图案,按照这样的规律摆放,则第7个图案中共有圆点的个数是( )A .37B .49C .50D .51二、填空题:13.单项式 2325x y - 的系数与次数的乘积为 .14.若27m n a b -+与443a b -是同类项,则m n -的值为15.写出一个含有,x y 的五次三项式 ,其中最高次项的系数为2-,常数项为6.16.若多项式72222346n x y x y x y +-+-是按字母x 降幂排列的,则整数n 的值可以是 (写出一个即可)17.a 是不为2的有理数,我们把22a-称为a 的“哈利数”.如:3的哈利数”是2223=--,2-的“哈利数”是21222=--(),已知13a =,2a 是1a 的“哈利数”,3a 是2a 的“哈利数”,4a 是3a 的“哈利数”,…,依此类推,则2024a = .18.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为cm y ,宽为cm x )的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 cm .(用含x 或y 的代数式来表示)三、解答题: 19.化简:(1)22368p pq p pq +--+; (2)()()223246x xy x xy --+-.20.先化简,再求值:22212232233x x xy y xy ⎡⎤⎛⎫-----+ ⎪⎢⎥⎝⎭⎣⎦,其中21102x y ⎛⎫-++= ⎪⎝⎭.21.化简()()222212132a b a b ab ⎡⎤----+⎣⎦,下面是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是 ;乙同学解法的依据是 ;(填序号)①加法结合律; ②加法分配律; ③乘法分配律; ④乘法交换律. (2)请选择一种解法,写出完整的解答过程:22.如果两个关于x 、y 的单项式122a mx y +与324nx y -是同类项(其中0xy ≠). (1)求a 的值.(2)如果这两个单项式的和为零,求()202121m n --的值.23. 已知2231A x xy y =++-,2B x xy =-. (1)化简2A B -;(2)若24A B -的值与y 的值无关,求x 的值.24.如图,公园有一块长为()21a -米,宽为a 米的长方形土地(一边靠着墙),现将三面留出宽都是b 米的小路,余下部分设计成花圃ABCD ,并用篱笆把花圃不靠墙的三边围起来.(1)花圃的宽AB 为______米,花圃的长BC 为______米;(用含a b ,的式子表示) (2)求篱笆的总长度;(用含a b ,的式子表示)(3)若305a b ==,,篱笆的单价为60元/米,请计算篱笆的总价.。

七年级数学上册《整式的加减》单元测试卷及答案

七年级数学上册《整式的加减》单元测试卷及答案

人教新版七年级上册《第2章整式的加减》单元测试(1)一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4 3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣44.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.46.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.17.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣109.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣411.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+112.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为.15.当k=时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=.17.已知a2+a﹣3=0,则2024﹣a2﹣a=.18.x2﹣2x+y=x2﹣().19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?人教新版七年级上册《第2章整式的加减》单元测试卷(1)参考答案与试题解析一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个【考点】整式.【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有﹣mn,m,8,x2+2x+6,,,故选:C.2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数与次数分别为,4,故选:D.3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣4【考点】合并同类项.【分析】根据合并同类项的法则判断即可得结论.【解答】解:﹣2x﹣2x=(﹣2﹣2)x=﹣4x.故选:B.4.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy【考点】同类项.【分析】根据同类项的概念逐一判断即可得.【解答】解:A.﹣a2b和ab2相同字母的指数不相同,不是同类项;B.a2和22所含字母不相同,不是同类项;C.﹣ab2和2b2a所含字母相同,且相同字母的指数也相同,是同类项;D.2ab与2xy所含字母不相同,不是同类项;故选:C.5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.4【考点】同类项.【分析】根据同类项的概念求出x、y的值,再代入所求式子计算即可.【解答】解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.6.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.1【考点】合并同类项.【分析】直接利用两式可以合并进而得出m=n+2,即可得出答案.【解答】解:∵﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m﹣n=2.故选:A.7.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定【考点】整式的加减.【分析】直接利用整式的加减运算法则计算进而得出答案.【解答】解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10【考点】代数式求值.【分析】根据相反数的定义得:﹣2a﹣3b=﹣4,首先化简﹣4a﹣6b+1,然后把﹣2a﹣3b =﹣4代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a+3b=4,∴﹣2a﹣3b=﹣4,∴﹣4a﹣6b+1=2(﹣2a﹣3b)+1=﹣8+1=﹣7,故选:C.9.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1【考点】代数式求值;有理数的混合运算.【分析】根据题意一一计算即可判断.【解答】解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣4【考点】多项式.【分析】根据多项式的定义即可求解.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.11.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+1【考点】多项式.【分析】字母b的最高次数为3,然后按照字母b的指数从高到低进行排列即可.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.12.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较【考点】整式的加减.【分析】首先计算两个整式的差,再通过分析差的正负性可得答案.【解答】解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>0,则B>A,故选:A.13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式【考点】多项式.【分析】根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.【解答】解:多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.故选:B.二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为2或1.【考点】多项式.【分析】根据多项式的次数定义和n是正整数得出4+n=6或4+n=5,求出n的值即可.【解答】解:∵x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,又∵n是正整数,∴4+n=6或4+n=5,∴n=2或n=1;故答案为:2或1.15.当k=2时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.【考点】合并同类项;多项式.【分析】根据多项式的概念即可求出答案.【解答】解:∵多项式x2+kxy﹣2xy﹣6中不含xy项,∴原式=x2+(k﹣2)xy﹣6令k﹣2=0,∴k=2故答案为:2.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=2.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.【解答】解:由单项式2x m y3与﹣3xy3n是同类项,得m=1,3n=3,解得m=1,n=1.∴m+n=1+1=2.故答案为:2.17.已知a2+a﹣3=0,则2024﹣a2﹣a=2021.【考点】代数式求值.【分析】由a2+a﹣3=0可得a2+a=3,再将a2+a=3整体代入要求的式子即可.【解答】解:∵a2+a﹣3=0,∴a2+a=3,∴2024﹣a2﹣a=2024﹣(a2+a)=2024﹣3=2021,故答案为:2021.18.x2﹣2x+y=x2﹣(2x﹣y).【考点】去括号与添括号.【分析】本题添了1个括号,且所添的括号前为负号,括号内各项改变符号.【解答】解:根据添括号的法则可知,x2﹣2x+y=x2﹣(2x﹣y),故答案为:2x﹣y.19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值14.【考点】整式的加减.【分析】先将代数式(5x+2)﹣(3xy﹣5y)化简为:5(x+y)﹣3xy+2,然后把x+y=3,xy=1代入求解即可.【解答】解:∵x+y=3,xy=1,∴(5x+2)﹣(3xy﹣5y)=5x+2﹣3xy+5y=5(x+y)﹣3xy+2=5×3﹣3×1+2=14.故答案为:14.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.【考点】合并同类项.【分析】这个式子的运算是合并同类项的问题.根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(3x2﹣3x2)+(2xy﹣3xy)+(4y2﹣4y2)=﹣xy.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.【考点】整式的加减—化简求值.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:原式=12a2+6a﹣2a2﹣3a+5=10a2+3a+5.当a=﹣2时,原式=10×(﹣2)2+3×(﹣2)+5=40﹣6+5=39.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.【考点】整式的加减—化简求值.【分析】(1)先去掉括号,再合并同类项即可得出答案;(2)先去掉括号,再合并同类项即可;(3)先把给出的式子进行化简,再代入x,y的值进行计算即可;(4)根据题意先列出算式,再合并同类项,最后把x,y的值进行计算即可.【解答】解:(1)(5a+4c+7b)+(5c﹣3b﹣6a)=5a+4c+7b+5c﹣3b﹣6a=5a﹣6a+7b﹣3b+4c+5c=﹣a+4b+9c;(2)(2a2b﹣ab2)﹣2(ab2+3a2b)=2a2b﹣ab2﹣2ab2﹣6a2b=2a2b﹣6a2b﹣ab2﹣2ab2=﹣4a2b﹣3ab2;(3)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=1,y=﹣2时原式=(﹣2)2+5×1×(﹣2)=4﹣10=﹣6;(4)2A﹣B=2(4x2y﹣5xy2)﹣(3x2y﹣4y2)=8x2y﹣10xy2﹣3x2y+4y2=5x2y﹣10xy2+4y2当x=﹣2,y=1时,原式=5×(﹣2)2×1﹣10×(﹣2)×12+4×12=5×4×1﹣(﹣20)×1+4=20+20+4=44.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.【考点】合并同类项;多项式;绝对值;代数式求值.【分析】(1)先把多项式合并同类项,再令含x项的系数等于0,求出m、n的值即可;(2)先把多项式合并同类项,然后根据多项式不含二次项,得到关于m、n的一次方程,求出m、n的值,再代入计算即可.(3)根据四次三项式的概念,得关于k的方程,求解即可.【解答】解:(1)原式=(m﹣1)x2+(3+n)xy﹣2y2﹣2y+6.∵原式的值与x的值无关,∴m﹣1=0,3+n=0,∴m=1,n=﹣3,∴(m+n)3=(1﹣3)3=﹣8,(2)原式=(6m﹣1)x2+(4n+2)xy+2x+y+4,∵多项式不含二次项,∴6m﹣1=0,4n+2=0.∴.∴.(3)由题意得:|k|+1+2=4,∴k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?【考点】列代数式.【分析】(1)先表示出第二车间的人数,再表示出第三车间的人数即可;(2)把表示三个车间的人数的代数式相加即可得到答案;(3)先表示出调动后第一车间的人数,再用调动后第一车间的人数减去第三车间的人数即可.【解答】解:(1)∵第二车间的人数比第一车间人数的少20人,即人,而第三车间人数是第二车间人数的多10人,∴第三车间的人数为:人;(2)三个车间共有:人;(3)(x+10)﹣(x﹣15)=25(人),答:原第三车间人数比调动后的第一车间人数少25人.。

七年级数学整式的加减单元测试题(含答案)

七年级数学整式的加减单元测试题(含答案)

七年级数学整式的加减单元测试题(含答案)份报纸,若他获得了10元的利润,则a与b的关系式为a=。

b=。

16、将多项式3x3-2x2+5x+1与多项式2x3+4x2-3x+2相减,得到的结果多项式的次数是。

17、已知多项式P(x)=x3-3x2+2x-5,求P(2)的值。

18、将多项式4x3-5x2+3x-2分解因式,得到的结果是。

19、将多项式x4-2x3+3x2-4x+5除以x-2,商式为。

余式为。

20、将多项式2x4-5x3+3x2-7x+4乘以3x-2,得到的结果是。

第八章整式的加减单元测试一、选择题(每小题3分,共30分)1.在下列代数式a+1a+b13,4xy,a,2009,a2bc,-mn中,单项式的个数是()A.3B.4C.5D.62、在下列代数式ab,22xy,a2b3c4中,多项式有()A.2个B.3个C.4个D.5个3、单项式的系数和次数分别是()A.1,9B.0,9C.3,9D.3,244、下列各组单项式中,不是同类项的是()A.12ay与2ya3B.6a2mb与-a2bmC.23与32D.x3y与-xy35、多项式-23m2-n2是()A.二次二项式B.三次二项式C.四次二项式D.五次二项式6、若A和B都是4次多项式,则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式7、一个多项式A与多项式B=2x2-3xy-y2的和是多项式C=x2+xy+y2,则A等于()A.x2-4xy-2y2B.-x2+4xy+2y2C.3x2-2xy-2y2D.3x2-2xy8、在多项式x3-xy2+25中,最高次项是()A.x3B.x3,xy2C.x3,-xy2D.259、下列各项中,去括号正确的是()A.x2-2(2x-y+2)=x2-4x-2y+4B.-3(m+n)-mn=-3m+3n-mnC.-(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2D.ab-5(-a+3)=ab+5a-310.系数为-且只含有x、y的四次单项式,可以写出()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共30分)11、多项式-x4+3x3y-6x2y2-2y4的次数是4.12、某厂今年的产值a万元,若年平均增长率为x,则两年后的产值是a(1+2x)万元。

人教版七年级数学上册第2章《整式的加减》单元测试题1(含答案)

人教版七年级数学上册第2章《整式的加减》单元测试题1(含答案)

人教版七年级数学上册第2章《整式的加减》单元测试题测试范围:§2.1 整式 参考时间:60分钟(答案附卷后)一、选择题(每小题3分,共30分) 1.单项式-4a 的系数是( )A. 4B. -4C. 1D. a 2.单项式43a 2b 4的次数是( )A. 9B. 8C. 7D. 6 3.用代数式表示“a 的5倍与b 的差”,正确的是( )A. 5a -bB. 5a +bC. a -5bD. 5(a -b) 4.若多项式x 2-5x -2与3x 2+4x -n 的常数项相同,则n -1n的值是( )A. 0B. 1.5C.-2D. 25.多项式21145x -的最高次项的系数为( )A. 2B. 15C. -15D. -120 6. 某商品打七折后价格为a 元,则原价为( )A. 0.7a 元B. 107a 元 C. 1.2a 元 D. (a +0.2)元7.某种股票原价为a 元,连续两天上涨,每次涨幅为10%,则该股票两天后的价格为( )A. 1.21a 元B. 1.1a 元C.1.2a 元D. (a +0.2)元 8.已知代数式3x 2-4x +6的值为15,则9x 2-12x -7的值是( )A. 10B. 15C. 18D. 20 9.多项式3x |m |y 3+(m -3)x -1是关于x 、y 的六次三项式,则m 的值为( )A. -3B. 3C. ±3D. ±110. 一列单项式:-x ,3x 2,-5x 3,7x 4,…,-37x 19,39x 20,…,若第n 个单项式的系数为b , 则下列算式结果为1的是( )A. |b |-2nB. 2n -|b |C. 3n -|b |D. 以上都不对二、填空题(每小题3分,共18分) 11.下列各式:①3xy ; ②-4; ③5x; ④26x +; ⑤23m n+; ⑥x 2-y 2-1. 其中单项式有_________, 多项式有___________,整式有_______________. (填序号)12. 为了帮助洪水灾区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中6名教师人均 捐款a 元,则该班学生共捐款_______________元(用含a 的代数式表示). 13. 任意写出一个含有字母x 、y 的四次三项式,其中最高次项的系数为-2, 一次项系数为1,常数项为-5,你写出的多项式是________________. 14. 按下面程序计算:输入x =-4,则输出的结果是____________.15. 已知当x =-1时,ax 3+bx +1的值为5,则当x =1时,ax 3+bx -1的值为__________. 16. 如图,两个正方形面积分别为9和4. 两个阴影部分面积分别为S 1、S 2(S 1>S 2),则S 1-S 2的值为__________.第16题三、解答题(共8题,共72分)17.(8分)关于x 的多项式x 4+(a +2)x 3+5x 2-(b +4)x -1不含x 3项和x 项,求a -b 的值.18. (8分)若多项式(a -2b )x 3-x 2+x -b 是关于x 的二次三项式,常数项为3,求a 2-b 2的值.19.(8分)若332|b |a x y --是关于x 、y 的单项式,且系数是5,次数是5,求a 、b 的值.20. (8分)已知(m +3)2+|n -1|=0,求式子5m 2n 3+4(m -n )2的值.21.(8分)已知整式A =10x 9+9x 8+8x 7+7x 6+6x 5+5x 4+4x 3+3x 2+2x +1. (1)当x =1时,求整式A 的值; (2)当x =-1时,求整式A 的值;(3)小明同学做此题第(2)题时,由于将整式中某一项前的“+”号看成“-”号,误求得 整式的值为7,问小明同学看错了哪一项前的符号?22. (10分)甲、乙两家文具店出售同样的毛笔和宣纸,毛笔每支18元,宣纸每张2元. 甲店优惠方法为:买一支毛笔送两张宜纸;乙店优惠方法为:按总价的九折优惠. 小丽想购买5支毛笔,宣纸x 张(x ≥10). (1) 若到甲店购买,应付______________元(用代数式表示);(2) 若到乙店购买,应付______________元(用代数式表示); (3) 若小丽要买宣纸10张,应选择那家商店? 若买100张呢?23. (10分)某人买了50元的乘车公交卡,若此人乘车的次数用m表示,则记录他每次乘车后的余额如下表:(1) 写出此人乘车的次数m表示余额的式子;(2)若m为多项式2x3y4z+32x3y4-5的次数,计算乘了m次后还剩下多少元?24. (12分)观察下列三行数:-3,9,-27,81,-243,……①-6,6,-30,78,-246,……②-1,3,-9,27,-81,……③(1) 第一行数按什么规律排列?(2) 第二行、第三行的数与第一行数分别有什么关系?(3) 设x、y、z分别是这①②③行的第n、n-1、n-2个数,若x+y-az与n无关,求a的值.答 案一、选择题(每小题3分,共30分)题号1 2 3 4 5 6 7 8 9 10 答案BDABCBADAB第10题:b =(-1)n (2n -1),|b |=2n -1,故选B .二、填空题(每小题3分,共18分)11. ①②,⑤⑥,①②⑤⑥; 12. (3200-6a ); 13. -2x 3y +x -5(不唯一); 14. -30; 15. -5; 16. 5.三、解答题(共8题,共72分) 17. a =-2,b =-4,a -b =2. 18. a =-6,b =-3,a 2-b 2=27. 19. a =-10,b =5或1.20. m =-3,n =1,原式=109.21. (1)当x =1时,A =10+9+8+7+6+5+4+3+2+1=55;(2)当x =-1时,A =-10+9-8+7-6+5-4+3-2+1=-5;(3) ∵7-(-5)=12,12÷2=6,系数为6,故看错了5次项前的符号. 22. (1)5×18+2(x -10)=2x +70,填(2x +70);(2)0.9(5×18+2x )=1.8x +81,填(1.8x +81);(3)当x =10时,甲店费用为2x +70=90(元),乙店费用为1.8x +81=99(元),应选甲店; 当x =100时,甲店费用为2x +70=270(元),乙店费用为1.8x +81=261(元),应选乙店. 23. (1)(50-0.8m )(元);(2)当m =8时,50-0.8m =43.6(元). 24. (1)第一行的第n 个数为:(-3)n ;(2)第二行的数为第一行的相应数减去3,即第二行的第n 个数为:(-3)n -3; 第三行的数为第一行的相应数除以3,即第三行的第n 个数为:13×(-3)n ; (3)由题设得:x =(-3)n ,y =(-3)n -1-3,z =13×(-3)n -2, ∴x +y -az =(-3)n +[(-3)n -1-3]-13a (-3)n -2=(-3)n -2[(-3)2+(-3)-13a ]-3=(-3)n -2(6-13a )-3, 令6-13a =0,得a =18.。

七年级数学整式的加减测试卷含答案

七年级数学整式的加减测试卷含答案

七年级数学整式的加减测试卷含答案整式的加减单元测试题一、填空题:(每小题3分,共24分)1.代数式-7,x,-m,xy,21x y23, -5abc,中,单项式有______个,其中系数为1的有y2_____.系数为-1的有_____,次数是1的有________.2.把4xy,-3xy,2x,-7y,5这几个单项式按次数由高到低的顺序写出是_________.3.当5-│x+1│取得最大值时,x=_____,这时的最大值是_______.4.不改变2-xy+3xy-4xy的值,把前面两项放在前面带有“+”号的括号里,后面两项放在前面带有“-”号的括号里,得_______.5.五个连续奇数中,中间的一个为2n+1,则这五个数的和是_________.6.某音像社对外出租光盘的收费方法是:每张光盘在租出后的头两天每天收0. 8元,以后每天收0.5元,那么一张光盘在租出的第n天(n是大于2的自然数),应收租金______元.7.如果m-n=50,则n-m=_____,5-m+n=______,70+2m-2n=________.8.设M=3a-10a-5,N=-2a+5-10a,P=7-5a-2a,那么M+2n-3P=_________.M-3N+2P=_______.二、选择题:(每小题3分,共24分)9.下列判断中,正确的个数是( )①在等式x+8=8+x中,x可以是任何数;②在代数式3232221中,x可以是任何数;x8③代数式x+8的值一定大于8;④代数式x+8的相反数是x-8A.0个B.1个C.2个D.3个10.一种商品单价为a元,先按原价提高5%,再按新价降低5%,得到单价b元,则a、b的大小关系为( )A.a>bB.a=bC.a<bD.无法确定11.若x<y<z,则│x-y│+│y-z│+│z-x│的值为( )A.2x-2zB.0C.2x-2yD.2z-2x12.对于单项式-2xyz的系数、次数说法正确的是( )A.系数为-2,次数为8B.系数为-8,次数为5C.系数为-2,次数为4D.系数为-2,次数为713.下列说法正确的有( )①-1999与2000是同类项②4ab与-ba不是同类项③-5x与-6x是同类项④-3(a-b)与(b-a)可以看作同类项A.1个B.2个C.3个D.4个14.x是两数,y是一名数,那末把y放在x的左侧所得的三位数是( )A.yx B.x+y C.10y+x D.100y+x15.如果m是三次多项式,n是三次多项式,则m+n一定是( )A.六次多项式B.次数不高于三的整式C.三次多项式D.次数不低于三的多项式16.若2ax-26522223322b2x+2=-4x-x+2对任何x都建立,则a+b的值为( )3A.-2B.-1C.0D.1三、解答题:(共52分)17.假如单项式2mxy与5nx(1)求(7a22)aa2a3y是关于x、y的单项式,且它们是同类项.2002的值.2a3(2)若2mxy5nxy=0,且xy≠0,求(2m5n)2003的值.(8分)18.先化简再求值(12分)(1)5x-{2y-3x+[5x-2(y-2x)+3y]},其中x=(2)A=x+4x-7,B=-211,XXX.2612x-3x+5,计算3A-2B.22222(3)m+3mn=5,求5m-[+5m-(2m-mn)-7mn-5]的值.232(4)若3x-x=1,求6x+7x-5x+1994的值.219.某同学做一道数学题,误将求“A-B”看成求“A+B”,结果求出的答案是3x-2x+5.已2知A=4x-3x-6,请正确求出A-B.(8分)20.探索规律(8分)88____55____1212____(1)计较并窥察以下每组算式:,,79____46____1113____(2)25×25=625,那末24×26=__________.(3)从以上的进程中,你发觉了甚么纪律,你能用言语叙说这个纪律吗?你能用代数式表示设这个规律吗?21.(8分)有理数a、b、c在数轴上对应点为A、B、C,其位置如图所示,试去掉绝对值符号并合并同类项:│c│-│c+b│+│a-c│+│b+a│.22.某XXX开设了两种通讯业务:“全球通”使用者缴50元月租费,然后每通话1分钟再付话费0.4元;“快捷通”不缴月租费,每通话1分钟,付话费0,6元(本题的通话均指市内通话).若一个月内通话x分钟,两种体式格局的用度划分为y1元和y2元.(8分)(1)用含x的代数式划分透露表现y1和y2,则y1=________,y2=________.(2)或人估量一个月内通话300分钟,应挑选哪类挪动通信合算些?第3章单位测试题谜底一、1.5;x,xy;-m;x,-m 2.-3xy,4xy,-7y,2x,5 3.-1,5224.(2-xy)-(-3xy+4xy) 5.10n+5 6.(0.5n+0.6) 7.-50,-45,170 .-a-4a-5a-16,9a-14a+20a-62、9.B 10.A 11.D 12.B 13.B 14.D 15.B 16.D三、17.(1)先求a=3,(7a-22)=1 (2)a=3时,2mxy-5nxy=0,又xy≠得2m-5n=0则原式=0218.(1)原式=-x-3y值为1 (2)4x+18x-312(3)原式=2(m+3mn)+5,值为15322(4)原式=6x-2x+9x-3x-2x+1994。

2024-2025学年人教新版七年级上册数学《第4章 整式的加减》单元测试卷(有答案)

2024-2025学年人教新版七年级上册数学《第4章 整式的加减》单元测试卷(有答案)

2024-2025学年人教新版七年级上册数学《第4章整式的加减》单元测试卷一.选择题(共8小题,满分24分)1.代数式x2+5,﹣1,x2﹣8x+2,π,,中,整式有()A.3个B.4个C.5个D.6个2.已知﹣2x6y与5x2m y n是同类项,则()A.m=2,n=1B.m=3,n=1C.m=,n=1D.m=3,n=03.下列计算正确的是()A.5a﹣2a=3B.2a2+6a2=8a4C.x2y﹣2xy2=﹣xy2D.3mn﹣2mn=mn4.在等式1﹣a2+2ab﹣b2=1﹣()中,括号里应填()A.a2﹣2ab+b2B.a2﹣2ab﹣b2C.﹣a2﹣2ab+b2D.﹣a2+2ab﹣b25.若a<0,则|a﹣(﹣a)|等于()A.﹣a B.0C.2a D.﹣2a6.如图是小明完成的线上作业,他的得分是()判断题(每小题2分,共10分)①1是单项式.(×)②非负有理数不包括零.(×)③绝对值不相等的两个数的和一定不为零.(√)④单项式﹣a的系数与次数都是1.(√)⑤将34.945精确到十分位为34.95.(×)A.4分B.6分C.8分D.10分7.在下列各整式中,次数为5的是()A.8x3y B.m+n2+q2C.52c3D.x2y38.若代数式2(mx2+x﹣1)﹣(x2﹣nx+1)的值与x的取值无关,则m2023n2025的值为()A.﹣4B.4C.D.二.填空题(共8小题,满分24分)9.有一道题:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+□,“□”的地方被墨水弄污了,你认为“□”内应填写.10.已知关于x的整式x3﹣x2+x a﹣2x﹣2bx中不含有x的一次项和二次项,则a+b=.11.若关于x,y,z的单项式﹣mx3y n与单项式的次数相同,系数互为倒数,则该单项式是.12.多项式x2+x+1的次数是.13.若2a m+1b2与﹣3a3b n是同类项,则m+n的值为.14.若一个四位自然数M各个数位上的数字均不为0,且前两位数字之和为5,后两位数字之和为8,则称M为“幸福数”.把四位数M的前两位数字和后两位数字整体交换得到新的四位自然数N.规定.例如:M=2344,∵2+3=5,4+4=8,∴2344是“幸福数”,则.若P是最大的“幸福数”,则F(P)=;若S是“幸福数”,且F(S)恰好能被8整除,则所有满足题意的S的值共有个.15.如果a2﹣3a﹣7=0,那么代数式(a﹣1)2+a(a﹣4)﹣2的值为.16.设x、y互为相反数,且xy≠0.m的绝对值为8,则的值为.三.解答题(共6小题,满分52分)17.已知单项式﹣3xy2的系数和次数分别是a,b,求ab+a b的值.18.已知A=3x2+xy+y,B=2x2﹣xy+2y.(1)化简2A﹣3B.(2)当x=2,y=﹣3,求2A﹣3B的值.19.【问题呈现】(1)已知代数式mx﹣y﹣3x+4y﹣1的值与x的值无关,求m的值;【类比应用】(2)将7张长为a,宽为b的小长方形纸片(如图①),按如图②的方式不重叠地放在长方形ABCD 内,未被覆盖的两部分的面积分别记为S1,S2,当AB的长度变化时,S1﹣S2的值始终不变,求a与b 的数量关系.20.已知多项式A=(m﹣3)2﹣(2﹣m)(2+m)+6m.(1)化简多项式A;(2)若m2﹣4=5,求多项式A的值.21.类比同类项的概念,我们规定:所含字母相同,并且相同字母的指数之差的绝对值等于0或1的项是“强同类项”,例如:﹣x3y4与2x4y3是“强同类项”.(1)给出下列四个单项式:①5x2y5,②﹣x5y5,③4x4y4,④﹣2x3y6.其中与x4y5是“强同类项”的是(填写序号);(2)若x3y4z m﹣2与﹣2x2y3z6是“强同类项”,求m的值;(3)若C为关于x、y的多项式,C=(n﹣5)x5y6+3x4y5﹣7x4y n,当C的任意两项都是“强同类项”,求n的值;(4)已知2a2b s、3a t b4均为关于a,b的单项式,其中s=|x﹣1|+k,t=2k,如果2a2b s、3a t b4是“强同类项”,那么x的最大值是,最小值是.22.定义:若非零实数a,b,c满足,则称c是a和b的“协调数”.如4是3和6的“协调数”.(1)问:是不是﹣2和﹣3的“协调数”?(2)若2m是p和q的“协调数”,用m,q的代数式表示q.参考答案与试题解析一.选择题(共8小题,满分24分)1.B2.B3.D4.A5.D6.B7.D8.A二.填空题(共8小题,满分24分)9.3x.10.1.11.﹣3x3y2.12.2.13.4.14.30,3.15.13.16.16或﹣16.三.解答题(共6小题,满分52分)17.﹣36.18.解:(1)2A﹣3B=2(3x2+xy+y)﹣3(2x2﹣xy+2y)=6x2+2xy+2y﹣6x2+3xy﹣6y=5xy﹣4y;(2)当x=2,y=﹣3时,2A﹣3B=5xy﹣4y=5×2×(﹣3)﹣4×(﹣3)=﹣18.19.(1)3;(2)a﹣2b=0.20.(1)2m2+5;(2)23.21.(1)②③④;(2)m=7,8,9;(3)n=5或n=6;(4),.22.(1)是;(2).。

七年级上学期数学《整式的运算》章节测试题附详细答案

七年级上学期数学《整式的运算》章节测试题附详细答案

七年级上学期数学《整式的运算》章节测试题(时间:90分钟 满分:100分)一、选择题(每题3分,共30分)1.下列计算:①a 3·a 3=2a 6;②m 2+m 3=2m 5;③(−2a 2)2=−4a 4;④x 8÷x 4= x 2;⑤a 2·(a 10÷a 4)=a 8;⑥(a −b)2÷(b −a)2=1;⑦m+a 2n+a 2=m n 。

其中正确的个数为( )。

A.4个B.3个C.2个D.1个2.若单项式8a k+m b n 与a k+2b 2的和是一个单项式,且k 为非负整数,则满足条件的k 值有( )。

A.1组B.2组C.3组D.无数组3.若M+N=x 2−3,M=3x −3,则N 是( )。

A.x 2+3x −6B.−x 2+3xC.x 2−3x −6D.x 2−3x4.代数式2a 2−3a+1的值是6,则4a 2−6a+5的值是( )。

A.17B.15C.20D.255.若a 3·a 4·a n =a 9,则n=( )。

A.1B.2C.3D.46.若a ≠0,下面各式中错误的是( )。

A.a -n =(1a )nB.a -m =1a mC.a -p =−1a pD.a -8=1a 8 7.( 34)-2、( 65)2、(76)0三个数中,最大的是( )。

A.(34)-2 B.(65)2 C.(76)0 D.无法确定 8.若a+b=0,ab=11,则a 2−ab+b 2的值为( )。

A.11B.−11C.−33D.339.代数式(y −1)(y+1)(y 2+1)−(y 4+1)的值是( )。

A.0B.2C.−2D.不确定10.若a −b=2,a −c=1,则(2a −b −c)2+(c −a)2=( )。

A.9B.10C.2D.1二、填空题(每题3分,共30分)11.多项式4x −23x 2y 2−x 3y+5y 3−7按x 的降幂排列是____________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天完成.
二、选择题.(每小题 3 分,共 30 分)
9.方程 2m+x=1 和 3x-1=2x+1 有相同的解,则 m 的值为( ).
A.0
B.1
C.-2
D.-
10.方程│3x│=18 的解的情况是( ).
A.有一个解是 6
B.有两个解,是±6
C.无解
D.有无数个解
11.若方程 2ax-3=5x+b 无解,则 a,b 应满足( ).
5.在方程 4x+3y=1 中,用 x 的代数式表示 y,则 y=________.
6.某商品的进价为 300 元,按标价的六折销售时,利润率为 5%,则商品的标价为____元.
7.已知三个连续的偶数的和为 60,则这三个数是________.
8.一件工作,甲单独做需 6 天完成,乙单独做需 12 天完成,若甲、乙一起做,•则需________
A. x2+3x-6 B.-x2+3x
C. x2-3x-6
D.x2-3x
7、下列各式错误的是│a-b│+│a+b│的结果是( )。
A. -(a-b) = b-a
B. (a-b)2= (b-a)2
C. │a-b│=│b-a│
D. a-b = b-a
8、代数式 2a2-3a+1 的值是 6,则 4a2-6a+5 的值是( )。
≥3)分钟时所需费用是
元。
8.若 n 表示 3 个连续偶数中的最小一个,则这三个连续偶数的和为

9.化简:
(1)-2x-5x=__________;(2)-2x+5x=_________;(3)3m2-m2=__________;
(4)mn + nm =________;(5)-k-2k=__________;(6)-p2-p2-p2=________;
请你将猜想到的规律用自然数 n(n≥1)表示出来______________________。
2、 用拖拉机耕地,第一天耕了这块地的 1 还多 2 公顷,第二天耕了剩下的 1 ,若这块地为 x 公顷,求两天后还
4
2
剩多少地未耕?
一元一次方程练习题
一、填空题.(每小题 3 分,共 24 分)
(7)6a-2(a-2b)=_________;(8) -(-6x2) +4x2 +(-9x2 )=_____________。
三.计算题(1、2、3、4、5 每题 6 分,6、7 题每题 7 分,共 44 分)
1、 3x – 2 (2 + x )
2、 2x - (x+3y) - (-x-y) + (x-y)
某校初一甲、乙两班共 103 人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班 为单位分别购票,则一共需付 486 元.
(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱? (2)两班各有多少名学生?(提示:本题应分情况讨论)
【知能点分类训练】 知能点 1 合并与移项 1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正. (1)从 3x-8=2,得到 3x=2-8; (2)从 3x=x-6,得到 3x-x=6.
是( ).
A.从甲组调 12 人去乙组 B.从乙组调 4 人去甲组
C.从乙组调 12 人去甲组
D.从甲组调 12 人去乙组,或从乙组调 4 人去甲组
17.足球比赛的规则为胜一场得 3 分,平一场得 1 分,负一场是 0 分,•一个队打了 14 场比赛,
负了 5 场,共得 19 分,那么这个队胜了( )场.
A.3
B.4
C.5
D.6
18.如图所示,在甲图中的左盘上将 2 个物品取下一个,则在乙图中右盘上取下几个砝码才能使
天平仍然平衡?( )
A.3 个
B.4 个
C.5 个
D.6 个
三、解答题.(19,20 题每题 6 分,21,22 题每题 7 分,23,24 题每题 10 分,共 46 分
20.解方程: (x-1)- (3x+2)= - (x-1).
2.下列变形中: ①由方程 =2去分母,得 x-12=10; ②由方程 x= 两边同除以 ,得 x=1; ③由方程 6x-4=x+4移项,得 7x=0; ④由方程 2- 两边同乘以 6,得 12-x-5=3(x+3). 错误变形的个数是( )个. A.4 B.3 C.2 D.1 3.若式子 5x-7 与 4x+9 的值相等,则 x 的值等于( ). A.2 B.16 C. D. 4.合并下列式子,把结果写在横线上. (1)x-2x+4x=__________; (2)5y+3y-4y=_________; (3)4y-2.5y-3.5y=__________.
减少了 10%,则三月份的销售额比一月份的销售额( ).
A.增加 10%
B.减少 10% C.不增也不减 D.减少 1%
15.在梯形面积公式S= (a+b)h 中,已知 h=6 厘米,a=3 厘米,S=24 平方厘米,则 b=( •)
厘米.
A.1
B.5
C.3
D.4
16.已知甲组有 28 人,乙组有 20 人,则下列调配方法中,能使一组人数为另一组人数的一半的
5.解下列方程. (1)6x=3x-7 (2)5=7+2x
(3)y- = y-2 (4)7y+6=4y-3
6.根据下列条件求 x 的值: (1)25 与 x 的差是-8. (2)x 的 与 8 的和是 2.
7.如果方程 3x+4=0 与方程 3x+4k=8 是同解方程,则 k=________. 8.如果关于 y 的方程 3y+4=4a 和 y-5=a 有相同解,则 a 的值是________. 知能点 2 用一元一次方程分析和解决实际问题 9.一桶色拉油毛重8 千克,从桶中取出一半油后,毛重4.5 千克,•桶中原有油多少千克?
4、下列式子是二次三项式的是( )。
A. 0.5x2-3x+5 B. -x2+5 C. xn+2-7x n+1+12x n
D. 2x2-x3-9
5、多项式 4xy+ 2 xy2-5x3y2+5x4-3y2-7 中最高次项系数是 ( )。 3
A.4
B. 2
3
C.-5
D.5
6、若 M+N=x2-3,M=3x-3,则 N 是( ) 。
3
是______________

4.若 2xm y3 和-7xy2n-1 是同类项,则 m=
, n=

5.2a-b+c-2d = 2a - (
)。
6. 结 合 日 常 生 活 实 际 , 用 语 言 解 释 代 数 式 2(a+b) 的 意 义 是
______________________

7.已知从甲地向乙地打电话,前 3 分钟收费 2.4 元,3 分钟后每分钟加收费 1 元,则通话时间 t(3
单元测试题
班级:__________ 姓名:____________ 学号:______________ 得分:_____________
一、选择题。(每题 3 分,共 24 分)
1、代数式-0.5、-x2y、2x2-3x+1、- 2 、 x 1 、 x 中,单项式共有( )。
a33
A.2 个
B.3 个
3、5a2b – [ 2ab2- 3(ab2 - a2b)]
4、 4(2x2-3x+1) – 10( 2 x2 - 7 +2) 5 10
5、先化简再求值:2x2 + y2 +(2 y2-3x2 ) – 2( y2 - 2x2 ),其中 x=-1,y=2 .
6、已知:A=2x2-3xy+2y2,B=2x2+xy-3y2,求 A-(B-2A)。
7、当│x +5│+(y-2) 2 = 0 时,求代数式(4x-2y2)-[ 5x - (x - y2) ]-x 的值。
附加题。(共 10 分,每题 5 分) 1、观察下列式子:
13 + 23 = 33, 13 + 23 + 33 = 63,13 + 23 + 33 + 43 = 103 ,
......
10.如图所示,天平的两个盘内分别盛有 50 克,45 克盐,问应该从盘 A 内拿出多少盐放到盘 B 内, 才能使两盘内所盛盐的质量相等.
11.小明每天早上 7:50 从家出发,到距家 1000 米的学校上学,•每天的行走速度为 80 米/分.一 天小明从家出发 5 分后,爸爸以 180 米/分的速度去追小明,•并且在途中追上了他. (1)爸爸追上小明用了多长时间? (2)追上小明时距离学校有多远?
A.a≠ ,b≠3 B.a= ,b=-3
C.a≠ ,b=-3 D.a= ,b≠-3
13.在800米跑道上有两人练中长跑,甲每分钟跑 300 米,乙每分钟跑 260 米,•两人同地、同时、
同向起跑,t 分钟后第一次相遇,t 等于( ).
A.10 分
B.15 分
C.20 分
D.30 分
14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了 10%,三月份比二月份
22.一个三位数,百位上的数字比十位上的数大 1,个位上的数字比十位上数字的 3 倍少 2.若将 三个数字顺序颠倒后,所得的三位数与原三位数的和是 1171,求这个三位数.
24.某公园的门票价格规定如下表: 购票人数 1~50 人 51~100 人 100 人以上 票 价 5 元 4.5 元 4 元
A.17
相关文档
最新文档