单像空间后方交会共17页文档

合集下载

第五讲 单片空间后方交会

第五讲 单片空间后方交会

x12 − f (1 + 2 ) f xy − 1 1 f
2 x2 − f (1 + 2 ) f

x1 y1 f
y12 − f (1 + 2 ) f − x2 y2 f
x y − 2 2 f
2 x3 − f (1 + 2 ) f
2 y2 − f (1 + 2 ) f

x3 y3 f
xy − 3 3 f
Y B
A
C X
利用航摄像片上三个以上像点坐标和对应像 点坐标和对应地面点坐标,计算像片外方位元 素的工作,称为单张像片的空间后方交会。 进行空间后方交会运算,常用的一个基本公 式是前面提到的共线方程。式中的未知数,是 六个外方位元素。由于一个已知点可列出两个 方程式,如有三个不在一条直线上的已知点, 就可列出六个独立的方程式,解求六个外方位 元素。由于共线条件方程的严密关系式是非线 性函数,不便于计算机迭代计算。为此,要由 严密公式推导出一次项近似公式,即变为线性 函数。
(5) 用所取未知数的初始值和控制点的地面坐标,代入共线方程式,逐 ) 用所取未知数的初始值和控制点的地面坐标,代入共线方程式, 点计算像点坐标的近似值 ( x), ( y ) 并计算 lx , l y a ( X − X S ) + b1 (Y − YS ) + c1 ( Z − Z S ) x=−f 1 a3 ( X − X S ) + b3 (Y − YS ) + c3 ( Z − Z S ) a ( X − X S ) + b2 (Y − YS ) + c2 ( Z − Z S ) y=−f 2 a3 ( X − X S ) + b3 (Y − YS ) + c3 ( Z − Z S ) (6) 组成误差方程式。 ) 组成误差方程式。 7) 计算法方程式的系数矩阵与常数项,组成法方程式。 (7) 计算法方程式的系数矩阵与常数项,组成法方程式。 (8) 解算法方程,迭代求得未知数的改正数。 ) 解算法方程,迭代求得未知数的改正数。

单像空间后方交会

单像空间后方交会
坐标轴与像平面坐标轴平行。
像空间辅助坐标系(u,v,w)
坐标原点位于S,但坐标轴不一定与像平 面坐标轴平行,按需要定义。
像空坐标系与像空辅助坐标系之关系
物方坐标系
地面测量坐标系(Xt,Yt,Zt)
义。
地面摄影测量坐标系(X,Y,Z,)
原点位于地面某一已知点,坐标轴按需要定
地面测量坐标系与摄影测量坐标系之关系
确定像片相对S 的位置。 --焦距 --像主点 在像平面坐标系中 的坐标 例
外方位元素
1、确定S在物方空 间坐标系中位置的元 素(直线元素)。 Xs,Ys,Zs 例 Xs=1140.2m Ys=2003.5m Zs=1035.7m
பைடு நூலகம்2、确定像片在
物方空间坐标系中 位置的元素(角 元素)。 1) 角元素
像方坐标系与物方 坐标系之关系
共线方程线性化:
前式具体化:
即有
'
2
'
2
(5-9a)具体化:
写成

综合上述推导,有共线方程的线性形式:
式中
二.解算中的具体公式
利用(a)式解求外方位元素时,有6个未知数,须用像 片及地面3个点的3对已知的(X,Y,Z)、(x,y)组6个 方程.实用中为提高精度常取多余点多余观测,为此要按 最小二乘平差计算.则平差算式如下:
分)
单像空间后方交会(第五章部
根据单张航测像片上一定数量的已 知点(像片坐标和地面坐标已知),计算该 像片的外方位元素(摄影中心S的坐标 Xs,Ys,Zs,像片的角元素 ).
知道外方位 元素,可用来恢 复像片在摄影时 的空间位置,重 建像片与被摄地 面之间的相互关 系
内方位元素
( X1 , Y1 , Z1 )

单像空间后方交会

单像空间后方交会

Xs0,Ys0,Zs0, 0,ω0,κ0为未知数的初始近似

(x),(y)为未知数的近似值代入共线条件方程
求出的像点坐标值
第五章 影像解析基础 3、单像空间后方交会误差方程与法方程
根据间接平差的误差方程形式,按泰勒公式展开后 的误差方程为: vx(x )
y y y y y y vy y) -y △ Xs △Ys △Zs △f △w △k ( Xs Ys Zs f w k -x x x x x x x △Ys △f △w △k △ Xs △Zs Xs Ys Zs f w k
X ,Y , Z
x f f y
X Z Y Z
关键推求 X , Y , Z 对角元素的偏导数
X X XS T R T T Y Rk Rw Y YS Z Z ZS
T
X T Rw Rk Rw Rk Y w Z
T
0 0 sin k
0 0 cosk
sin k X cosk Y 0 Z
第五章 影像解析基础
X X XS T Rk T T Rw R Y YS Y k k Z Z Z S X X XS T Rk Rk T T T ( Rk Rk ) Rw R Y YS Rk Y k Z Z Z k S Y X 0
A •计算: T PA •计算: T PL A A •答解法方程: T PAX APL •计算外方位元素的改正数:
dX S , dYS , dZS , d , dw , dk

摄影测量学教案(第10讲后方交会).doc

摄影测量学教案(第10讲后方交会).doc
(9) 式中, k 迭代次数。这是因为所用线性化共线条件方程是近似的,故需 要有一个迭代过程,知道像片外方位元素的改正数都小于规定的限差为止。 2、计算过程 利用空间后方交会求解外方位元素的基本过程如下: (一)读入原始数据 原始数据包括像点的观测坐标、像片的内方位元素、控制点在地辅系中 的坐标。 (二)确定外方位元素的初值 1、确定摄站坐标的初值 取控制点平面坐标的平均值作为摄站平面位置的初值,即:
三、概述
1、 单像空间后方交会 利用地面控制点及其在像片上的像点,确定一张像片外方位元素的方法。 2、单像空间后方交会的基本方法 a. 角锥体法
S
c a b
角锥体法介绍大 体思路
b. 利用共线条件方程解算像片的外方位元素
x f y f
a1 ( X X S ) b1 ( Y YS ) c1 ( Z Z S ) a3 ( X X S ) b3 ( Y YS ) c3 ( Z Z S ) a2 ( X X S ) b2 ( Y YS ) c2 ( Z Z S ) a3 ( X X S ) b3 ( Y YS ) c3 ( Z Z S )
a1 ( X X S ) b1 ( Y YS ) c1 ( Z Z S ) a3 ( X X S ) b3 ( Y YS ) c3 ( Z Z S ) a2 ( X X S ) b2 ( Y YS ) c2 ( Z Z S ) a3 ( X X S ) b3 ( Y YS ) c3 ( Z Z S )
lx x x计
ly y y计
(7)
而 Z 和 x计 , y 计 分别按如下方法计算:
X a1 Y b1 c1 Z

五上、数字摄影测量学单片空间后方交会

五上、数字摄影测量学单片空间后方交会

总误差方程
法方程
V Ax L
x (AT A) 1 (AT L)
X s Ys V1 A1 l1 Z V2 A2 l2 s V , A , L , x , Vn An ln T T li xi ( xi ) yi ( yi ) , Vi v xi v yi a11 a12 a13 a14 a15 a16 Ai a21 a22 a23 a24 a25 a26
已知点必须多余点, 数据处理方法采用 最小二乘法!
这是所有测量的一个统一的基本原则! 摄影测量也不例外。
二、误差方程与法方程



已知值 x0 , y0 , f ,m, X, Y, Z 观测值 x , y 相应改正数 vx,vy 未知数 Xs, Ys, Zs, , , 泰勒级数展开
四、空间后方交会的精度
求解各未知数的精度可以通过法方程系数矩阵 求逆的方法,解出相应的权倒数 Qii
mi m0 Qii 按下式计算第i未知数的中误差:
式中,m0为单位权中误差,计算公式 为: m [VV ] 0 2n 6 ,其中n为控制点的点数。
空间后方交会用到的已知点越多,空间后方交会 的精度越高,此外空点的分布也空间后方交会计算 的精度。空间后方交会使用的控制点应当避免位于 一个圆柱面上,否则,会出现解不唯一的情况。
偏导数 1
x f X Z 2 ( Z X) X s Z X s X s f 2 ( a1Z a3 X ) Z 1 X (a1 f f a3 ) Z Z 1 (a1 f a3 x) Z
偏导数 2
x f X Z 2 ( Z X) Z

单像空间后方交会

单像空间后方交会

(x)、(y)——函数x、y在展开点(未知数近 似值处)的近似值; ——外方位元素(未知数)的改正数。 dX s ......, dκ
返回目录
第三章 单张航摄像片解析
§3-7 单像空间后方交会
• • • • • 每次迭代计算过程中,给定未知数(即外 方位元 素)的近似值后,即可计算得到展开式中未知数的 dX s ......, dκ 偏导系数值,从而组成线性方程组解算 。 偏导系数表达示例: X x = − f Z 设
V = ∂y dX + ∂y dY + ∂y dZ + ∂y dφ + ∂y dω + ∂y dκ −[ y − ( y)] •y s s s ∂Xs ∂Ys ∂Zs ∂φ ∂ω ∂κ
返回目录
第三章 单张航摄像片解析
§3-7 单像空间后方交会
• 也可写成(设有n个控制点) + d dφ + e dω + f dκ −l Vx1 = a11dXs + b11dYs + c11dZs 11 11§3-7 单像空间后方交会
• 一、空间后方交会的基本公式 空间后方交会的基本公式 后方交会
x = − f y = − f a1 ( X − X s ) + b (Y − Ys ) + c1 (Z − ZS ) 1 a3 ( X − X s ) + b3 (Y − Ys ) + c3 (Z − Zs ) a2 ( X − X s ) + b2 (Y − Ys ) + c2 (Z − Zs ) a3 ( X − X s ) + b3 (Y − Ys ) + c3 (Z − Zs )
y = − f Y Z

单像空间后方交会原理

单像空间后方交会原理

单像空间后方交会原理你知道单像空间后方交会吗?这可是摄影测量里一个超有趣的概念呢!咱们先来说说啥是单像空间后方交会。

想象一下,你拿着相机拍了一张照片,这张照片里有好多好多的景物。

那单像空间后方交会呢,就是通过这一张照片里的信息,去算出拍摄这张照片的时候,相机在空间里的位置和姿态。

比如说,照片里有一座山,还有一条河,还有几棵大树。

那咱们怎么通过这些东西来知道相机当时在哪,朝哪个方向呢?这就用到单像空间后方交会啦!这当中有几个关键的东西哦。

一个是控制点,就好像是我们的“小帮手”。

这些控制点是我们事先知道它们在空间里准确位置的点。

比如说,有个特别明显的大石头,我们知道它在地球上的坐标是多少。

然后呢,还有像片的内方位元素。

这就像是相机的“小秘密”,比如说相机的焦距啦等等。

那怎么通过这些来算出相机的位置和姿态呢?这就像是一个解谜的过程!咱们得先把照片上控制点的像点坐标找出来,这就像是在照片里给这些控制点“定位”。

然后呢,根据一些数学公式和算法,把这些坐标啊、内方位元素啊、控制点的空间坐标啊等等都放到一起,就像是把一堆拼图的碎片拼起来。

这个过程可不容易哦,得算好多好多的数学式子。

但是别担心,咱们聪明的科学家们早就想出了办法,有各种软件和工具能帮咱们完成这些复杂的计算。

你可能会想,这有啥用啊?用处可大啦!比如说,我们要做地图,要对一个地方进行测量,单像空间后方交会就能帮我们得到相机的位置和姿态,这样就能更准确地知道照片里的东西在实际空间里的位置啦。

而且哦,现在科技越来越发达,单像空间后方交会的精度也越来越高。

这就像是我们的眼睛越来越厉害,能看得更清楚,更准确!想象一下,如果没有单像空间后方交会,那我们看到的照片就只是一张好看的图片,没办法知道那么多背后的信息。

但是有了它,一张照片就像是一个装满了秘密的宝盒,我们可以一点点地解开,发现更多有趣的东西。

怎么样,是不是觉得单像空间后方交会很神奇很有趣呀?希望我讲得能让你明白这个有点复杂但又超级酷的原理!。

(完整word版)单像空间后方交会程序报告

(完整word版)单像空间后方交会程序报告

单像空间后方交会程序报告指导老师:刘老师班级:测绘 101姓名:尚锋学号:19号1、应用程序的主进口部分的代码:using System;using System.Collections.Generic;using System.Linq;using System.Windows.Forms;namespace 单像空间后方交会{static class Program{///<summary>///应用程序的主进口点。

///</summary>[ STAThread]static void Main(){Application .EnableVisualStyles();Application .SetCompatibleTextRenderingDefault( false );Application .Run( new Form1());}}}2、方法解算类(通用)部分的代码:using System;using System.Collections.Generic;using System.Linq;using System.Text;namespace 单像空间后方交会{class Tongyong{struct image_point // 一个像点结构,包括像点坐标和地面点坐标{public double x;public double y;public double X;public double Y;public double Z; }private private private private private private private private private private private private private publicdouble f;// 主距double u;//u 为外方向元素,下边 5个同样double w;double k;double Xs;double Ys;double Zs;image_point [] p = new image_point [4];// 四个控制点double [] R = new double [9]; // 旋转矩阵double [] a = new double [8];// 像点坐标近似值double [,] A =new double [8, 6];// 偏差方程式系数double [] L = new double [8];// 偏差方程式常数项int count = 0;// 统计代次数Tongyong( double g, double [] q)// 结构函数,初始化各变量 , 单位 m{f = g;for ( int i = 0; i < 4; i++){int j = i * 5;p[i].x = q[j];p[i].y = q[j + 1];p[i].X = q[j + 2];p[i].Y = q[j + 3];p[i].Z = q[j + 4];}double ave = 0, sum = 0;for ( int i = 0; i < 3; i++)// 求比率尺分母{for ( int j = i + 1; j < 4; j++){sum += Math.Pow(p[i].Y - p[j].Y, 2)) / + Math.Pow(p[i].y - p[j].y, 2));} Math.Sqrt(Math.Pow(p[i].X - p[j].X, 2) + Math.Sqrt( Math.Pow(p[i].x - p[j].x, 2)}ave = sum / 6;u = 0;// 给定外方向元素的初始值w = 0;k = 0;Xs = (p[0].X + p[1].X + p[2].X + p[3].X) / 4; , 角度均设置为0//Xs 为四个控制点 X的均匀值,Ys近似Ys = (p[0].Y + p[1].Y + p[2].Y + p[3].Y) / 4;Zs = (p[0].Z + p[1].Z + p[2].Z + p[3].Z) / 4 + ave * f;}private double sin( double m) // 正弦,为简化而写 , 下同{return Math.Sin(m);}private double cos( double m){return Math.Cos(m);}private void calcos()// 计算旋转矩阵{R[0] = cos(u) * cos(k) - sin(u) * sin(w) * sin(k);R[1] = -cos(u) * sin(k) - sin(u) * sin(w) * cos(k);R[2] = -sin(u) * cos(w);R[3] = cos(w) * sin(k);R[4] = cos(w) * cos(k);R[5] = -sin(w);R[6] = sin(u) * cos(k) + cos(u) * sin(w) * sin(k);R[7] = cos(u) * sin(w) * cos(k) - sin(u) * sin(k);R[8] = cos(u) * cos(w);}private void calabout() // 像点坐标的近似值{int i;for (i = 0; i < 4; i++){a[2 * i] = -f * (R[0] * (p[i].X - Xs) + R[3] * (p[i].Y-Ys) + R[6] * (p[i].Z - Zs)) / (R[2] * (p[i].X - Xs) + R[5] * (p[i].Y-Ys) + R[8] * (p[i].Z - Zs));a[2* i + 1] = -f * (R[1] * (p[i].X - Xs) + R[4] * (p[i].Y -Ys) + R[7] * (p[i].Z - Zs)) / (R[2] * (p[i].X - Xs) + R[5] * (p[i].Y-Ys) + R[8] * (p[i].Z - Zs));}}private void calxx() // 偏差方程式的系数和常数项{int for i;(i = 0; i < 4; i++) // 系数{double z = R[2] * (p[i].X - Xs) + R[5] * (p[i].Y - Ys) + R[8] * (p[i].Z - Zs);int n = i * 2;A[n, 0] = (R[0] * f + R[2] * p[i].x) / z;A[n, 1] = (R[3] * f + R[5] * p[i].x) / z;A[n, 2] = (R[6] * f + R[8] * p[i].x) / z;A[n, 3] = p[i].y * sin(w) - f * cos(w) * cos(k) - p[i].x/f * (p[i].x * cos(w) * cos(k) - p[i].y * cos(w) * sin(k)); A[n,4] = -f * sin(k) - p[i].x / f * (p[i].x * sin(k) +p[i].y * cos(k));A[n, 5] = p[i].y;A[n + 1, 0] = (R[1] * f + R[2] * p[i].y) / z;A[n + 1, 1] = (R[4] * f + R[5] * p[i].y) / z;A[n + 1, 2] = (R[7] * f + R[8] * p[i].y) / z;A[n + 1, 3] = -p[i].x * sin(w) + f * cos(w) * sin(k) -p[i].x / f * (p[i].x * cos(w) * cos(k) - p[i].y * sin(k) * cos(w));A[n + 1, 4] = -f * cos(k) - p[i].y / f * (p[i].x * sin(k) + p[i].y * cos(k));A[n + 1, 5] = -p[i].x;}for (i = 0; i < 4; i++)// 常数项{L[2 * i] = p[i].x - a[2 * i];L[2 * i + 1] = p[i].y - a[2 * i + 1];}}private double calAdd(){double [,] temp =new double [6, 6];//A 的转置与 A相乘的积double [,] ANew = new double [6, 8];//A 的转置double [] t =new double [6];//A 的转置与 L相乘的积double [] X = new double [6];// 更正数int i, j, n;for (i = 0; i < 8; i++)// 求A的转置 ANew{for (j = 0; j < 6; j++){ANew[j, i] = A[i, j];}}for (i = 0; i < 6; i++)// 求A的转置与 A相乘的积 temp {for (j = 0; j < 6; j++){temp[i, j] = 0;for (n = 0; n < 8; n++){temp[i, j] += ANew[i, n] * A[n, j];}}}MATINV(temp);//temp for (i = 0; i < 6; i++) 的逆,保留在自己矩阵中// 求A的转置与 L的乘积 t{t[i] = 0;for (j = 0; j < 8; j++){t[i] += ANew[i, j] * L[j];}}for (i = 0; i < 6; i++)// 求更正数 X{X[i] = 0;for (j = 0; j < 6; j++){X[i] += temp[i, j] * t[j];}}Xs += X[0];// 外方向元素初始值加上更正数Ys += X[1];Zs += X[2];u += X[3];w += X[4];k += X[5];return maxone(X);// 返回判断条件 , 最大的更正数的值}public void makeSure() // 计算流程控制函数{calcos();calabout();calxx();double VALUE = calAdd();count++;while (VALUE > 0.00001)// 迭代至最大更正数为止{calcos();calabout();calxx();VALUE = calAdd();count++;}}private void MATINV(double [,] c) // 求6阶矩阵的逆{int i, j, h, m;const int n = 6;double l;double [,] q = new double [n, 12];for (i = 0; i < n; i++) // 结构高斯矩阵{for (j = 0; j < n; j++){q[i, j] = c[i, j];}}for (i = 0; i < n; i++) // 单位矩阵{{for (j = n; j < 12; j++)if (i + 6 == j)q[i, j] = 1;elseq[i, j] = 0;}}for (h = 0, m = 0; m < n - 1; m++, h++)// 消去对角线以下的数据{for (i = m + 1; i < n; i++){if(q[i, h] == 0d)continue ;l = q[m, h] / q[i, h];for (j = 0; j < 12; j++){q[i, j] *= l;q[i, j] -= q[m, j];}}}for (h = n - 1, m = n - 1; m > 0; m--, h--)//消去对角线以上的数据{for (i = m - 1; i >= 0; i--){if(q[i, h] == 0d)continue ;l = q[m, h] / q[i, h];for (j = 0; j < 12; j++){q[i, j] *= l;q[i, j] -= q[m, j];}}}for (i = 0; i < n; i++)// 将对角线上数据化为 1{l = 1.0 / q[i, i];for (j = 0; j < 12; j++){q[i, j] *= l;}}for (i = 0; i < n; i++)// 提取逆矩阵{for (j = 0; j < n; j++){c[i, j] = q[i, j + 6];}}}private double maxone(double [] Arr)// 返回六个元素中的最大值{double [] ARR =new double [6];for ( int i = 0; i < 6; i++){ARR[i] = Arr[i];if (ARR[i] < 0d)// 取正ARR[i] = -ARR[i];}Array .Sort(ARR, 0, 6);return ARR[5];}public int COUNT{get{return count;}}public double U {get{return u;}}public double W {get{return w;}}public double K {get{return k;}}public double XS {get{return Xs;}}public double YS {get{return Ys;}}public double ZS {get{return Zs;}}}3、窗体一部分的代码:using System;using System.Collections.Generic;using ponentModel;using System.Data;using System.Drawing;using System.Linq;using System.Text;using System.Windows.Forms;using System.Diagnostics;using System.Data.OleDb;using System.IO;namespace 单像空间后方交会{public partial class Form1 : Form {private private double [] data= double f = 0;new double [20];// 主距// 保留表中的数据public Form1(){InitializeComponent();}private void Form1_Load( object sender, EventArgs e) {//TODO: 这行代码将数据加载到表“ database1DataSet1.data ”中。

后方交会实验文档

后方交会实验文档

单向空间后方交会实验报告潘志富20152211081300081.实验目的以单幅影像为基础,从该影像所覆盖地面范围内若干控制点的已知地面坐标和相应点的像坐标量测值出发,根据共线条件方程,解求该影像在航空摄影时刻的六个外方位元素,确定被摄物体与航摄影像的关系。

2.实验数据摄影机主距f=153.24mm,x0=0.01mm,y0=0.02mm, 像片比例尺为1:40000,有四对点的像点坐标与相应的地面坐标如下表。

3. 算法流程(1)获取已知数据。

从航摄资料中差取平均航高与摄影机主距;获取控制点的地面测量坐标并转换为地面摄影坐标。

(2)量测控制点的像点坐标并作系统误差改正。

(3)确定未知数的初始值。

在竖直摄影且地面控制点大体对称分布的情况下,按如下方法确定初始值,即n X X S ∑=0,n Y Y S ∑=0,∑+=Z nmf Z S 100000===κωϕ(4)用三个角元素的初始值按下式,计算各个方向余弦值,组成旋转矩阵R ωϕκωϕκϕκωϕκϕωκωκωωϕκωϕκϕκωϕκϕcos cos cos sin cos sin sin sin sin cos cos sin sin cos cos sin cos cos sin cos sin sin sin cos sin sin sin cos cos 321321321=+-=+=-===-=--=-=c c c b b b a a a(5)逐点计算像点坐标的近似值。

利用未知数的近似值和控制点的地面坐标;带入共线方程式,逐点近似像点坐标的近似值(x )、(y )。

(6)逐点计算误差方程式的系数和常数项,组成误差方程式。

(7)计算法方程的系数矩阵A A T 和常数项L A L ,组成法方程式。

(8) 解法方程,求得外方位元素的改正数κωϕd d d d d d 、、、、、S S S Z Y X 。

(9)用前次迭代取得的近似值,加本次迭代的改正数,计算外方位元素的新值。

单片空间后方交会16页PPT

单片空间后方交会16页PPT

《摄影测量学》(上)第四章
单片空间后方交会
武汉大学
遥感信息工程学院 摄影测量教研室
主要内容
一、定义 二、误差方程和法方程 三、计算过程
一、定义
z y
x s(Xs, Ys, Zs)
Z a
bc
Y
A
C
B
根据影像覆盖范 围内一定数量的 分布合理的地面 控制点(已知其 像点和地面点的 坐标),利用共 线条件方程求解 像片外方位元素
共线条件方程
xx0
f
a1(XXs)b1(YYs)c1(ZZs) f a3(XXs)b3(YYs)c3(ZZs)
X Z
yy0f
a2(XXs)b2(YYs)c2(ZZs)f a3(XXs)b3(YYs)c3(ZZs)
Y Z
Y Z Xa a a1 3 2
b1 b2 b3
c1XXs XXs c c3 2Z Y Y ZssR1Z Y Y Zss
f H
sin
a 12
f H
cos
a 13
y y0 H
a 14
(x
x 0 )( y f
y0 )
cos
(f
(y
y0)2 f
) sin
a 15
(
f
(y
y 0 ) 2 ) cos f
(x
x 0 )( y f
y 0 ) sin
a16 ( x x 0 )
外方位元素的计算
当一张像片上至少有三个控制点时,误差方程矩阵形式
偏导数 1
x
f X
Z
( Z X)
X s
Z 2 X s
X s
f Z2
( a1Z
a3X

单张像片空间后方交会

单张像片空间后方交会

外方位元素的计算
当一张像片上至少有三个控制点时, 当一张像片上至少有三个控制点时,误差方程矩阵形式
V = Ax − l
x = ( A T A ) −1 ( A T l )
x , l = y a 14 a 15 a 24 a 25
σ
0
=
V TV 2n − 6
∆ X s ∆Ys ∆Z vx V = x = ∆ ϕs , v y ∆ω ∆κ a 12 a 13 a A = 11 a 22 a 23 a 21
X X −Xs Y = R−1 Y −Y s Z −Z Z s
a 1 a1 a 2 b1 a 3 c1
0 = a 2 c1 − a1 c 2 a c − a c 1 3 3 1 0 = b3 − b 2 − b3 0 b1
在竖直摄影情况 误差方程系 数的近似值
f a11 = − , H
ϕ =ω =κ = 0
Z − Z
s
= H
x a12 = 0, a13 = − H f y a21 = 0, a22 = − , a23 = − H H 2 x xy a14 = − f (1+ 2 ), a15 = − , a16 = y f f xy y2 a24 = − , a25 = − f (1+ 2 ), a26 = −x f f
已知值 x0 , y0 , f , m, X, Y, Z 观测值 x,y 未知数 Xs, Ys, Zs, ϕ, ω, κ , 泰勒级数展开
按泰勒级数展开,取小值一次项
∂x ∂x ∂x ∂x x = (x) + ΔX + ∆Y + ∆Z + ∆ϕ ∂X ∂Y ∂Z ∂ϕ ∂x ∂x + ∆ω + ∆κ ∂ω ∂κ ∂y ∂y ∂y ∂y y = ( y) + ∆X + ∆Y + ∆Z + ∆ϕ ∂X ∂Y ∂Z ∂ϕ ∂y ∂y + ∆ω + ∆κ ∂ω ∂κ

(完整word版)单像空间后方交会

(完整word版)单像空间后方交会

单像空间后方交会测绘学院 成晓倩1 概述1.1 定义利用一定数量的地面控制点和对应像点坐标求解单张像片外方位元素的方法称为空间后方交会。

1.2 所需控制点个数与分布共线条件方程的一般形式为:⎪⎪⎩⎪⎪⎨⎧-+-+--+-+--=--+-+--+-+--=-)()()()()()()()()()()()(33322203331110S S S S S S S S S S S S Z Z c Y Y b X X a Z Z c Y Y b X X a f y y Z Z c Y Y b X X a Z Z c Y Y b X X a f x x (1)式中包含有六个外方位元素,即κωϕ、、、、、S S S Z Y X ,只有确定了这六个外方位元素的值,才能利用共线条件方程真正确定一张像片的任一像点与对应地面点的坐标关系。

个数:对任一控制点,我们已知其地面坐标)(i i i Z Y X 、、和对应像点坐标)(i i y x 、,代入共线条件方程可以列出两个方程式,因此,只少需要3个控制点才能解算出六个外方位元素。

在实际应用中,为了避免粗差,应有多余检查点,因此,一般需要4~6个控制点。

分布:为了最有效地控制整张像片,控制点应均匀分布于像片边缘,如下图所示。

由于共线条件方程是非线性的,直接答解十分困难,所以首先将共线方程改化为线性形式,然后再答解最为简单的线性方程组。

2 空间后方交会的基本思路分布合理 分布合理 分布不合理2.1 共线条件方程线性化的基本思路在共线条件方程中,令)()()()()()()()()(333222111S S S S S S S S S Z Z c Y Y b X X a Z Z Z c Y Y b X X a Y Z Z c Y Y b X X a X -+-+-=-+-+-=-+-+-= (2) 则共线方程变为⎪⎪⎩⎪⎪⎨⎧-=--=-ZY fy y Z Xf x x 00 (3) 对上式两侧同乘Z ,并移至方程同侧,则有⎩⎨⎧=-+=-+0)(0)(00Z y y Y f Z x x X f (4) 令⎩⎨⎧-+=-+=Z y y Y f Fy Zx x X f Fx )()(00 (5) 由于上式是共线方程的变形,因此,Fy Fx 、是κωϕ、、、、、S S S Z Y X 的函数。

9-空间后方交会

9-空间后方交会

a11 a12 Ai a21 a22
a13 a23
a14 a24
a15 a25
a16 a26
T
X dXS
dYS
dZS
d d d
li l x

ly

T
vi vx

vy

T
把所有像控点的误差方程列出后,构成总 误差方程,根据最小二乘间接评差原理可 列出法方程式:
五、空间后方交会实践
如何获取像片的六个外方位元素?
1)利用雷达;全球定位系统GPS;惯性导航系统.
2)空间后方交会:利用一定数量的地面控制点, 根据共线方程,反求像片的外方位元素。(已知 像片的内方位元素,至少三个地面点坐标并测出 相应的像点坐标)
计算要点:
1)计算的数学模型:共线方程按泰勒级数展开, 取一次项(线性化)。
2)在像片的四角选取四个或更多地面控制点,利 用最小二乘法平差计算。
计算步骤: 1)获取已知数据:比例尺1/m;H;内定向;控制点 地面坐标。
2)测量控制点的像点坐标。标刺,测量像框坐 标;像主点改正。 3)确定未知参数的初始值:竖直摄影时,角元 素初始值为零;线元素中,Zs0=H=mf; Xs0,Ys0取 控制点坐标的均值。
投 影 中 心 的 系 数
二、线性化-续
X Y Z
x xs 1 1 R R R y y s z zs
1 1
其中,R
R R R
1
1
1
把各偏导数代入整理得
f XX b2 Z Z ZZ x XX f sin XY f cos a 15 fsin ZZ ZZ x Yf a 16 Z fX f b1 YY f b2 XY y b 3 a 24 f b1 Z ZZ ZZ y XY f sin YY f cos a 25 fcos ZZ ZZ y X f a 26 Z x a 14 f Yf

单像空间后方交会

单像空间后方交会

摄影测量学实习报告遥感07011班吴倩200732590254一、实习目的1.掌握空间后方交会的定义和实现算法(1)定义:空间后方交会是以单幅影像为基础,从该影像所覆盖地面范围内若干控制点的已知地面坐标和相应点的像坐标量测值出发,根据共线条件方程,解求该影像在航空摄影时刻的外方位元素Xs,Ys,Zs,φ,ω,κ。

(2)算法:由于每一对像方和物方共轭点可列出2个方程,因此若有3个已知地面坐标的控制点,则可列出6个方程,解求6个外方位元素的改正数△Xs,△Ys,△Zs,△φ,△ω,△κ。

实际应用中为了提高解算精度,常有多余观测方程,通常是在影像的四个角上选取4个或均匀地选择更多的地面控制点,因而要用最小二乘平差方法进行计算。

2.了解摄影测量平差的基本过程(1)获取已知数据。

从摄影资料中查取影像比例尺1/m,平均摄影距离(航空摄影的航高)、内方位元素x0,y0,f;获取控制点的空间坐标Xt,Yt,Zt。

(2)量测控制点的像点坐标并进行必要的影像坐标系统误差改正,得到像点坐标。

(3)确定未知数的初始值。

单像空间后方交会必须给出待定参数的初始值,在竖直航空摄影且地面控制点大体对称分布的情况下,Xs0和Ys0为均值,Zs0为航高,φ、ω、κ的初值都设为0。

或者κ的初值可在航迹图上找出或根据控制点坐标通过坐标正反变换求出。

(4)计算旋转矩阵R。

利用角元素近似值计算方向余弦值,组成R阵。

(5)逐点计算像点坐标的近似值。

利用未知数的近似值按共线条件式计算控制点像点坐标的近似值(x),(y)。

(6)逐点计算误差方程式的系数和常数项,组成误差方程式。

(7)计算法方程的系数矩阵ATA与常数项ATL,组成法方程式。

(8)解求外方位元素。

根据法方程,解求外方位元素改正数,并与相应的近似值求和,得到外方位元素新的近似值。

(9)检查计算是否收敛。

将所求得的外方位元素的改正数与规定的限差比较,通常对φ,ω,κ的改正数△φ,△ω,△κ给予限差,通常为0.1′,当3个改正数均小于0.1′时,迭代结束。

(空间后方交会的计算过程)空间后方交会 PPT

(空间后方交会的计算过程)空间后方交会 PPT

大家好
11
计算中,通常将地面控制点的坐标认为是真值,而把相应的像点 坐标认为是观测值,加入相应的改正数 V x ,V y ,得 xVx,y,Vy 列
出如下的每个点的误差方程式为:
V x X xSdS X Y x SdSY Z xSdSZ xd xd k xd k(x)x V y X ySdS X Y y SdSY Z ySdSZ yd yd k yd k(y)y
式中,x,y为像点坐标的观测值,(x),(y)为用控制点的物方坐标及 外方位元素的近似值大家代好入中心投影方程求得的像点坐标近12似值。
舍弃二次项,使之线性化得:
x y ((xy)) X X xySSd dX S X S Y Y xySSd dSS Y Y Z Z xySSd dS Z S Z x yd d xyd d k xk yd dkk
式中,(x),(y)为函数的近似值。
k
f
sin
k)
f
sin
k ] cos
a25
f
cos k
y f
(x sin k
y cos k
a26 x
当竖直投影时,角元素都是小角(小于3度),此时可近似认为
k 0 ,Z A Z S H ,各个系数的表达式可以得到简化。
大家好
10
空间后方交会计算中的误差方程和法方程
由于有六个未知数,所以至少需要知道三个 已知的地面控制点,为了能够平差,通常在 像片的四个角选取四个或更多的地面控制点。
第三章 单张航摄像片解析
大家好
1
单张像片的空间后方交会
如果我们有每张像片的六个外方位元素,就 能恢复航摄像片与被摄地面之间的几何关系, 重建地面的立体模型。

05单片空间后方交会

05单片空间后方交会

m, x0 , y0 , f , Xtp, Ytp, Ztp
量测控制点像点坐标 x,y
确定未知数初值
Xs0, Ys0, Zs0, 0, 0, 0
组成误差方程式并法化
解求外方位元素改正数
检查迭代是否收敛
本讲参考资料 教材
张剑清,潘励,王树根 编著,《摄影测量学》,武汉大学出版社
内定向问题需要借助影像的框标来解决
内定向通常采用多项式变换公式,形式为:
X AX' t
其中: X’为量测的像点仪器坐标或扫描坐 标, X为变换后的像点坐标,A为变换矩阵, t为变换参数。
一、影像内定向
常用的变换公式有:
x
线性正形变换公式(4参数) y

a0 b0

a1x' a2 x'
Z s
x0
x
vy

y



y



y



y X s
X s

y Ys
Ys

y Z s
Z s

y0

y
若用 a11, a12...... 表示各项系数,则上式可写成:
vx a11X s a12Ys a13Zs a14s a15s a16s lx vy a21X s a22Ys a23Zs a24s a25s a26s ly
Ys ) c2 (Z Zs ) Ys ) c3 (Z Zs )

f
Y Z
X YZ


a1 aa32
b1 b2 b3
c1 X X s

单片空间后方交会共16页PPT

单片空间后方交会共16页PPT
来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯

29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
单片空间后方交会
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档