大学物理授课教案 第十章 电磁感应
大学物理电磁感应-PPT课件精选全文完整版
的磁场在其周围空间激发一种电场提供的。这
种电场叫感生电场(涡旋电场)
感生电场 E i
感生电场力 qEi
感生电场为非静 电性场强,故:
e E i dld dm t
Maxwell:磁场变化时,不仅在导体回路中 ,而且在其周围空间任一点激发电场,感生 电场沿任何闭合回路的线积分都满足下述关 系:
E id l d d m t d ds B td S d B t d S
线
形
状
电力线为闭合曲线
E感
dB 0 dt
电 场 的
为保守场作功与路径无关
Edl 0
为e非i 保守E 场感作d功l与路径dd有mt关
性
静电场为有源场
质
EdS
e0
q
感生电场为无源场
E感dS0
➢感生电动势的计算
方法一,由 eLE感dl
需先算E感
方法二, 由 e d
di
(有时需设计一个闭合回路)
2.感生电场的计算
Ei
dl
dm dt
L
当 E具i 有某种对称
性才有可能计算出来
例:空间均匀的磁场被限制在圆柱体内,磁感
强度方向平行柱轴,如长直螺线管内部的场。
磁场随时间变化,且设dB/dt=C >0,求圆柱
内外的感生电场。
则感生电场具有柱对称分布
Bt
此 E i 特点:同心圆环上各点大小相同,方向
磁通量 的变化
感应电流的 磁场方向
感应电流 的方向
电动势 的方向
➢ 楞次定律的另一种表述:
“感应电流的效果总是反抗引起感应电流的原因”
“原因”即磁通变化的原因,“效果”即感应电流的 场
电磁感应教学设计【优秀5篇】
电磁感应教学设计【优秀5篇】作为一名教职工,总归要编写教案,借助教案可以提高教学质量,收到预期的教学效果。
教案应当怎么写呢?下面是我辛苦为大家带来的电磁感应教学设计【优秀5篇】,盼望可以启发、关心到大家。
电磁感应篇一(一)教学目的1.知道现象及其产生的条件。
2.知道感应电流的方向与哪些因素有关。
3.培育同学观看试验的力量和从试验事实中归纳、概括物理概念与规律的力量。
(二)教具蹄形磁铁4~6块,漆包线,演示用电流计,导线若干,开关一只。
(三)教学过程1.由试验引入新课重做奥斯特试验,请同学们观看后回答:此试验称为什么试验?它揭示了一个什么现象?(奥斯特试验。
说明电流四周能产生磁场)进一步启发引入新课:奥斯特试验揭示了电和磁之间的联系,说明电可以生磁,那么,我们可不行以反过来进行逆向思考:磁能否生电呢?怎样才能使磁生电呢?下面我们就沿着这个猜想来设计试验,进行探究讨论。
2.进行新课(1)通过试验讨论现象板书:〈一、试验目的:探究磁能否生电,怎样使磁生电。
〉提问:依据试验目的,本试验应选择哪些试验器材?为什么?师生争论认同:依据讨论的对象,需要有磁体和导线;检验电路中是否有电流需要有电流表;掌握电路必需有开关。
老师展现以上试验器材,留意让同学弄清蹄形磁铁的N、S极和磁感线的方向,然后按课本图12—1的装置安装好(直导线先不要放在磁场内)。
进一步提问:如何做试验?其步骤又怎样呢?我们先做如下设想:电能生磁,反过来,我们可以把导体放在磁场里观看是否产生电流。
那么导体应怎样放在磁场中呢?是平放?竖放?斜放?导体在磁场中是静止?还是运动?怎样运动?磁场的强弱对试验有没有影响?下面我们依次对这几种状况逐一进行试验,探究在什么条件下导体在磁场中产生电流。
用小黑板或幻灯出示观看演示试验的记录表格。
老师按试验步骤进行演示,同学认真观看,每完成一个试验步骤后,请同学将观看结果填写在上面表格里。
试验完毕,提出下列问题让同学思索:上述试验说明磁能生电吗?(能)在什么条件下才能产生磁生电现象?(当闭合电路的一部分导体在磁场中左右或斜着运动时)为什么导体在磁场中左右、斜着运动时能产生感应电流呢?(师生争论分析:左右、斜着运动时切割磁感线。
《大学物理下教学课件》电磁感应课件
答案与解析
2.【答案】法拉第电磁感应定律:当磁场发生变化时 ,会在导体中产生电动势。楞次定律:闭合电路中感 应电流的方向总是阻碍引起感应电流的磁通量的变化 。
1.【答案】电磁感应是指当磁场发生变化时,会在导 体中产生电动势,从而产生电流的现象。基本原理是 英国物理学家迈克尔·法拉第发现的法拉第电磁感应 定律,即变化的磁场会产生电场,从而在导体中产生 电动势。
答案与解析
5.【答案】实验步骤
将线圈连接到电流计 上。
准备一个线圈、一个 磁铁和一个电流计。
答案与解析
1
将磁铁快速插入线圈中,观察电流计的读数变化。
2
将磁铁缓慢插入线圈中,观察电流计的读数变化。
3
根据观察到的电流计读数变化,可以验证法拉第 电磁感应定律。
THANK YOU
感谢聆听
Байду номын сангаас
02
01
03
电磁感应实验装置
包括磁场线圈、导轨、滑线电刷、测量仪表等。
电源
提供稳定的直流电源或可调交流电源。
测量仪表
电流表、电压表、功率表等。
实验步骤与注意事项
实验步骤 1. 连接实验设备,确保电源连接正确,测量仪表调整至零位。
2. 打开电源,调整磁场线圈的电流,观察感应电动势的变化。
实验步骤与注意事项
《大学物理下教学课件》电磁 感应课件
目
CONTENCT
录
• 引言 • 电磁感应的基本原理 • 电磁感应的应用 • 实验:电磁感应现象的观察 • 习题与解答
01
引言
课程简介
课程名称
《大学物理下教学课件》
适用对象
大学物理专业学生
教学目标
通过学习电磁感应,使学生掌握电磁感应的基本原理、 定律及其应用。
大学物理电磁感应教案
课程名称:大学物理授课班级:XX年级XX班授课教师:XX教学时间:2课时教学目标:1. 理解电磁感应现象,掌握法拉第电磁感应定律。
2. 掌握楞次定律,能够判断感应电流的方向。
3. 了解动生电动势和感生电动势,理解两种电场的区别。
4. 掌握自感和互感的概念,理解磁能和互感线圈的能量关系。
5. 能够运用电磁感应知识解决实际问题。
教学重点:1. 法拉第电磁感应定律2. 楞次定律3. 自感和互感教学难点:1. 感应电流方向的判断2. 自感和互感的计算教学过程:第一课时一、导入1. 回顾电磁学的基本概念,如电场、磁场等。
2. 引入电磁感应现象,提出问题:当磁场发生变化时,会产生什么现象?二、讲授新课1. 电磁感应现象- 通过实验展示电磁感应现象,如闭合电路中的导体在磁场中运动产生感应电流。
- 讲解法拉第电磁感应定律,公式:E = -dΦ/dt,其中E为感应电动势,Φ为磁通量。
2. 楞次定律- 介绍楞次定律,闭合回路中感应电流的方向,总是使它所产生的磁场去阻碍原磁通量的变化。
- 通过实例说明楞次定律的应用。
3. 动生电动势和感生电动势- 介绍动生电动势和感生电动势的概念,分别解释两种电场的产生原因。
三、课堂练习1. 根据法拉第电磁感应定律,计算感应电动势的大小。
2. 根据楞次定律,判断感应电流的方向。
四、小结1. 总结本节课所学内容,强调法拉第电磁感应定律、楞次定律、动生电动势和感生电动势等概念。
2. 提出课后思考题,引导学生深入理解电磁感应现象。
第二课时一、复习1. 回顾上节课所学内容,提问学生法拉第电磁感应定律、楞次定律等概念。
2. 检查学生课堂练习完成情况,解答学生疑问。
二、讲授新课1. 自感和互感- 介绍自感和互感的概念,解释自感电动势和互感电动势的计算方法。
- 讲解自感和互感线圈的能量关系,如磁能、互感磁能等。
2. 位移电流和全电流- 介绍位移电流的概念,解释位移电流与传导电流的关系。
- 讲解全电流的概念,即传导电流与位移电流之和。
大学物理教案:电磁感应与电动势
大学物理教案:电磁感应与电动势1. 引言1.1 概述在物理学中,电磁感应和电动势是电磁学的重要概念。
它们与现实生活密切相关,涉及到我们日常所使用的许多电器设备和技术原理。
了解和掌握电磁感应和电动势对于进一步深入探索电磁学的知识具有重要意义。
1.2 文章结构本文将以大学物理教案的形式来介绍电磁感应和电动势的相关内容。
文章将包括以下几个部分:引言、电磁感应、电动势、感应电流与楞次定律以及应用与拓展等章节。
通过这些章节的阐述,读者将能够全面了解这两个概念的定义、原理以及在实际中的应用。
1.3 目的本文旨在为大学物理课程设计合适的教案,帮助教师和学生更好地理解和掌握电磁感应和电动势这两个重要概念。
通过详细讲解各个知识点并配以实例分析,读者将能够更深入地理解其背后的物理原理,并能够运用所学知识解决实际问题。
此外,本文还将介绍一些拓展应用和课外活动,以便读者能够进一步拓宽知识面,并培养创新设计和科普宣传的能力。
2. 电磁感应:2.1 现象介绍:电磁感应是指当导体处于磁场中时,会产生感应电流和感应电动势的现象。
这一现象最早由法拉第在19世纪中期发现并总结为法拉第电磁感应定律。
2.2 法拉第电磁感应定律:法拉第电磁感应定律是描述导体中感生起的电流大小与改变磁通量的速率相关的物理规律。
根据该定律,当导体的回路内发生磁通量的变化时,会在回路中产生感应电动势。
具体来说,当导体与磁场之间相对运动或者外部磁场发生变化时,将会引起导体内部自由电子运动,并产生感应电流。
2.3 应用与实例:电磁感应在日常生活和工业领域有许多重要应用。
其中一个典型例子是交流发电机的工作原理。
交流发电机通过旋转线圈在恒定磁场中产生交变的磁通量,从而使得线圈中不断变化的磁通量导致再一次地引起了反向变化的感应电动势。
这样就能够通过导线上的感应电流来产生电能。
另一个重要的应用是变压器。
变压器利用互感作用,将输入线圈中的交变电压变换成相应大小的输出线圈电压。
大学物理电磁感应定律教案
课程名称:大学物理授课对象:大学本科生课时:2课时教学目标:1. 理解电磁感应现象及其产生的原因。
2. 掌握法拉第电磁感应定律的表述和数学表达式。
3. 能够运用法拉第电磁感应定律解决实际问题。
教学重点:1. 法拉第电磁感应定律的表述和数学表达式。
2. 感应电动势与磁通量变化率的关系。
教学难点:1. 感应电动势与磁通量变化率的关系的理解。
2. 应用法拉第电磁感应定律解决实际问题。
教学过程:第一课时一、导入1. 提问:什么是电磁感应现象?举例说明电磁感应现象在生活中的应用。
2. 回顾电磁学的基本知识,如电流、磁场、磁通量等。
二、新课讲授1. 法拉第电磁感应定律的表述:- 当磁通量Φ通过一个闭合回路时,如果磁通量Φ随时间变化,则在回路中会产生感应电动势ε。
- 感应电动势ε的大小与磁通量Φ的变化率成正比。
- 数学表达式:ε = -dΦ/dt- 其中,ε为感应电动势,Φ为磁通量,t为时间。
2. 法拉第电磁感应定律的应用:- 感应电动势的方向:根据楞次定律,感应电动势的方向总是使感应电流所产生的磁场去阻碍原磁通量的变化。
- 感应电动势的大小:感应电动势的大小与磁通量Φ的变化率成正比。
三、课堂练习1. 分析一个简单的电磁感应现象,如线圈在磁场中转动,引导学生运用法拉第电磁感应定律求解感应电动势。
2. 学生独立完成练习题,教师巡视指导。
第二课时一、复习导入1. 回顾上一节课的内容,提问学生对法拉第电磁感应定律的理解。
2. 分析学生练习题中的错误,讲解解题思路和方法。
二、新课讲授1. 法拉第电磁感应定律的应用拓展:- 电磁感应现象在发电机、变压器、电动机等设备中的应用。
- 电磁感应现象在科研、生产和生活中的应用。
2. 感应电动势与磁通量变化率的关系:- 当磁通量Φ变化时,感应电动势ε的大小与Φ的变化率成正比。
- 当磁通量Φ的变化率增大时,感应电动势ε的大小也增大。
三、课堂练习1. 分析一个复杂的电磁感应现象,如线圈在交变磁场中运动,引导学生运用法拉第电磁感应定律求解感应电动势。
大学物理教学设计:电磁感应
课堂教学设计10:电磁感应【授课内容】:法拉第电磁感应定律及感应电动势【所在章节】:第9章:电磁感应9.1节:法拉第电磁感应定律9.2 自感和互感【授课对象】:2018级大数据学院(软件工程)智能工程学院(电子专业、通信专业)【教学学时】:2学时一、学情分析(一)教材内容分析法拉第电磁感应定律是电磁学的核心内容。
从知识发展来看,它既与电场、磁场和稳恒电流有紧密联系,又是后面学习交流电、电磁振荡和电磁波的基础。
它既是本章的教学重点,也是教学难点。
法拉第电磁感应定律的建立后,通过感应电动势的产生机制,进而给出动生电动势与感生电动势定义,尤其重点讲解感应电动势的计算和方向判断方法。
(二)学生学习基础分析在学习本节内容之前,学生已经掌握了恒定电流、磁通量的相关知识,并结合高中所学楞次定律,可以深入研究感应电动势的的计算。
教学中可适度结合工程和生活中的电磁感应现象,加深学生印象。
二、教学目标设计(一)知识与技能1、理解法拉第电磁感应定律;2、根据产生条件不同把感应电动势进行分类;3、能计算感生电动势和动手电动势。
4、通过学生对实验的操作、观察、分析,找出规律,培养学生的动手操作能力。
(二)过程与方法1、利用类比方法,引入感应电动势,指导学生观察分析,总结规律;2、学生积极思考认真比较,理解感应电动势的存在及计算。
(三)情感与价值观1、联系感应电动势的生活应用,体会物理学的实际意义、体会物理对基础工业的支撑作用。
2、学生通过参与理论分析过程,提升自身思维的发散度和归结性,针对自身在工作和学习中遇到的复杂问题,提高把握共性、攫取个性的能力。
三、教学内容设计(一)内容纲要1、法拉第电磁感应定律;2、动生电动势和感生电动势产生的原因及其计算;(二)教学重点1、法拉第电磁感应定律;2、感应电动势的分类。
(三)教学难点动生电动势和感生电动势产生的计算。
四、教学策略分析(一)教学方法1、类比法将动生电动势和感生电动势类比,强调磁通量变化方式不同产生的电动势不同。
物理电磁感应教案
物理电磁感应教案物理电磁感应教案作为一名辛苦耕耘的教育工作者,编写教案是必不可少的,借助教案可以有效提升自己的教学能力。
那么问题来了,教案应该怎么写?以下是小编整理的物理电磁感应教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
物理电磁感应教案1一、教学任务分析电磁感应现象是在初中学过的电磁现象和高中学过的电场、磁场的基础上,进一步学习电与磁的关系,也为后面学习电磁波打下基础。
以实验创设情景,通过对问题的讨论,引入学习电磁感应现象,通过学生实验探究,找出产生感应电流的条件。
用现代技术手段“DIS 实验”来测定微弱的地磁场磁通量变化产生的感应电流,使学生感受现代技术的重要作用。
通过“历史回眸”,介绍法拉第发现电磁感应现象的过程,领略科学家的献身精神,懂得学习、继承、创新是科学发展的动力。
在探究感应电流产生的条件时,使学生感受猜想、假设、实验、比较、归纳等科学方法,经历提出问题→猜想假设→设计方案→实验验证的科学探究过程;在学习法拉第发现电磁感应现象的过程时,体验科学家在探究真理过程中的献身精神。
二、教学目标1.知识与技能(1)知道电磁感应现象及其产生的条件。
(2)理解产生感应电流的条件。
(3)学会用感应电流产生的条件解释简单的实际问题。
2.过程与方法通过有关电磁感应的探究实验,感受猜想、假设、实验、比较、归纳等科学方法在得出感应电流产生的条件中的重要作用。
3.情感、态度价值观(1)通过观察和动手操作实验,体验乐于科学探究的情感。
(2)通过介绍法拉第发现电磁感应现象的过程,领略科学家在探究真理过程中的献身精神。
三、教学重点与难点重点和难点:感应电流的产生条件。
四、教学资源1、器材(1)演示实验:①电源、导线、小磁针、投影仪。
②10米左右长的电线、导线、小磁针、投影仪。
(2)学生实验:①条形磁铁、灵敏电流计、线圈。
②灵敏电流计、原线圈、副线圈、电键、滑动变阻器、导线若干。
③DIS实验:微电流传感器、数据采集器、环形实验线圈。
大学物理电磁感应电子教案
一、教学目标1. 理解电磁感应现象的原理,掌握法拉第电磁感应定律和楞次定律。
2. 掌握动生电动势和感生电动势的产生条件及计算方法。
3. 理解自感、互感及磁能的概念,并能进行简单的计算。
4. 通过实验,加深对电磁感应现象的理解,提高学生的实验操作能力。
二、教学内容1. 电磁感应现象2. 法拉第电磁感应定律3. 楞次定律4. 动生电动势5. 感生电动势6. 自感、互感及磁能三、教学重点与难点1. 重点:法拉第电磁感应定律、楞次定律、动生电动势和感生电动势的产生条件及计算方法。
2. 难点:动生电动势和感生电动势的计算,自感、互感及磁能的计算。
四、教学过程(一)导入1. 提问:什么是电磁感应现象?举例说明电磁感应现象在生活中的应用。
2. 通过实验演示电磁感应现象,激发学生的学习兴趣。
(二)电磁感应现象1. 介绍电磁感应现象的原理,讲解法拉第电磁感应定律。
2. 讲解楞次定律,说明感应电流方向与磁通量变化的关系。
(三)动生电动势1. 介绍动生电动势的产生条件,讲解动生电动势的计算方法。
2. 通过实例分析动生电动势的计算过程。
(四)感生电动势1. 介绍感生电动势的产生条件,讲解感生电动势的计算方法。
2. 通过实例分析感生电动势的计算过程。
(五)自感、互感及磁能1. 介绍自感、互感及磁能的概念,讲解它们的计算方法。
2. 通过实例分析自感、互感及磁能的计算过程。
(六)实验1. 实验目的:验证法拉第电磁感应定律,观察动生电动势和感生电动势的产生。
2. 实验原理:利用交变电流产生的磁场,通过电磁感应现象,产生感应电动势。
3. 实验步骤:a. 准备实验器材:交变电流电源、线圈、电流表、开关等。
b. 按照电路图连接电路。
c. 打开开关,观察电流表指针的变化,记录数据。
d. 分析实验结果,验证法拉第电磁感应定律。
(七)总结1. 总结本节课所学内容,强调重点和难点。
2. 布置课后作业,巩固所学知识。
五、教学反思1. 通过本节课的教学,学生对电磁感应现象有了更深入的了解。
大学物理电磁学第十章电磁感应PPT课件
dI在圆心处产生的磁场
16
dB20R dI120 dR
由于整个带电园盘旋转,在圆心产生的B为
BR2d R1
B 1 20( R2R 1)
穿过导体小环的磁通
R2
Bd 1 2 S 0( R 2R 1)r2
r R1
R
导体小环中的感生电动势
d d t1 20 (R 2R 1)r2d d t
本质 :能量守恒定律在电磁感应现象上的具体体现
影响感生电流的因素 dm i
6
相对运动
dt R
B
切割磁力线
磁通量m变化
m变化的数量和方向 m变化的快慢
I感
I
•
v
感生电流
3. 电动势
Q
-Q
7
(1)电源
++ ++
仅靠静电力不能维持稳恒电流。
+ +
+ +
维持稳恒电流需要非静电力。
++ ++
F非
____________
r nˆ
B
o
d0
x
13
这是一个磁场非均匀且
随时间变化的题目。
h
r nˆ
1、求通过矩形线圈磁通 o
B
dBd cso s2 0rIbdx rx
d0
x
d d 0 0 a 2 a 2Bc do s sd d 0 0 a 2 a 22 0Ibx2 x h d 2 x
0Ibln 4
例1 有一水平的无限长直导线,线中通有交变电流 12
II0cost,导线距地面高为 h,D点在通电导线的
大学物理-电磁感应教案
教学对象:大学物理专业学生教学目标:1. 理解电磁感应现象的产生原理,掌握法拉第电磁感应定律和楞次定律。
2. 能够运用电磁感应定律解决实际问题,如计算感应电动势、感应电流等。
3. 通过实验探究,培养学生的观察、分析、推理和实验操作能力。
教学重点:1. 电磁感应现象的产生原理。
2. 法拉第电磁感应定律和楞次定律。
3. 电磁感应现象在实际问题中的应用。
教学难点:1. 法拉第电磁感应定律和楞次定律的理解和应用。
2. 电磁感应现象在实际问题中的计算和分析。
教学过程:一、导入1. 通过展示电磁感应现象的图片或视频,激发学生的兴趣。
2. 提问:什么是电磁感应?电磁感应现象是如何产生的?二、新课讲授1. 电磁感应现象的产生原理:- 磁通量的变化率产生感应电动势。
- 感应电动势的方向与磁通量变化率的方向有关。
- 感应电动势的大小与磁通量变化率成正比。
2. 法拉第电磁感应定律:- 感应电动势E与磁通量变化率ΔΦ/t成正比。
- 数学表达式:E = -ΔΦ/t。
3. 楞次定律:- 感应电流的方向总是使它所产生的磁场阻碍原磁通量的变化。
- 数学表达式:E = -nΔΦ/t,其中n为线圈匝数。
三、实验探究1. 实验目的:验证法拉第电磁感应定律和楞次定律。
2. 实验器材:感应线圈、条形磁铁、滑动变阻器、灵敏电流计、导线等。
3. 实验步骤:- 将感应线圈连接到灵敏电流计上,形成闭合回路。
- 缓慢移动条形磁铁,观察灵敏电流计的指针偏转。
- 改变磁铁移动的速度,观察灵敏电流计的指针偏转。
- 记录实验数据,分析感应电动势与磁通量变化率的关系。
四、课堂小结1. 回顾本节课所学内容,强调电磁感应现象的产生原理、法拉第电磁感应定律和楞次定律。
2. 总结电磁感应现象在实际问题中的应用。
五、作业布置1. 完成课后习题,巩固所学知识。
2. 分析一个与电磁感应现象相关的实际案例,如发电机、变压器等。
教学反思:1. 通过本节课的学习,学生能够理解电磁感应现象的产生原理,掌握法拉第电磁感应定律和楞次定律。
《大学物理》教学课件 大学物理 第十章
电磁感应与电磁场
本章导读
电流激发磁场,磁场对电流有力的作用, 这是电与磁相互联系的一方面;另一方面,在 一定条件下磁场也可以激发电场,这就是所谓 的电磁感应现象。
本章主要介绍电磁感应现象的根本规律及 其应用,简要介绍麦克斯韦电磁场理论的根本 概念、麦克斯韦方程组以及电磁波的根底知识 等。
10.1.1 电磁感应现象
几种产生感应电流的典型实验。 〔1〕磁铁与一个闭合曲线做相对运动。在磁铁插入线圈和从线圈中抽出的瞬间,线圈中产生电流。 〔2〕线圈A放在线圈B中,在接通或断开电键K的瞬间,或通电后改变滑动变阻器R的阻值从而改变 线圈A中的电流,在线圈B中都会产生感应电流。 〔3〕处在闭合回路中的一局部导体AB在磁场中运动时,在闭合回路中产生了磁感电流。
动生电动势的大小为 dm Bl dx Blv
dt
dt
当导线 AB 在磁场中以速度 v 平行移动时,导线内每个自由电子都受到洛伦兹力为 fL (e)v B
此时,导体
AB
段中的非静电性场强为
Ek
fL (e)
v
B
根据电动势的定义可得,动生电动势为 动
A
L Ek dl
(v B) dl
当一个回路的电流随时间的变化率一定时,互感系数越大,那么通过互感在另一个回路中引起 的互感电动势也越大。
因此互感系数是说明两个回路相互感应强弱的物理量。
互感的单位与自感的单位相同,都为亨利。
10.4 磁场的能量 , ,
10.4.1 自感线圈储存的能量
设在电流从零增加到稳定值 I 的过程中,在某时刻 t 回路中的电流为 i,电源电动势克服自感电动势所
式中,比例系数 L 称为回路的自感系数,简称自感。
大学物理教案:电磁感应原理实验设计
前言电磁感应原理是物理学的基础理论之一,其应用非常广泛。
在工业、科研和日常生活中,电磁感应原理都扮演着非常重要的角色。
大学物理课程中的电磁感应原理实验设计,是让学生在实践中更好地理解并掌握这个理论的关键环节之一。
本篇文章将围绕着大学物理教案:电磁感应原理实验设计展开讨论,帮助读者更好地理解和掌握相关知识。
正文一、实验目的本实验的目的是帮助学生们更好地理解电磁感应原理,并在实践中掌握使用安培计和伏特计进行电磁感应实验的方法。
二、实验原理电磁感应原理是指在磁场中,导体内部会产生感应电动势的现象。
为了更好地理解这个概念,可以通过以下实验方法进行探究:实验器材:恒磁场、金属圆环、螺线管、安培计、伏特计、开关、热线电阻、电池等。
实验步骤:1.将金属圆环放置在磁场区域内,保持其匀速旋转。
2.用螺线管将金属圆环周围的磁通量变化捕捉下来,将所得数据记录在安培计上。
3.接通热线电阻,通过电池将电流进行通断,使得磁通量随时间而变化。
4.将伏特计连接到金属圆环的两端,测量得到感应电动势的数值。
通过上述实验步骤可以发现,在磁通量随时间变化时,金属圆环内部会产生感应电动势。
而感应电动势的数值与磁通量的变化速率成正比,即:感应电动势=磁通量的变化速率三、实验设计1.实验器材的选择为了保证实验结果的准确性,需要使用比较精准的仪器进行测量。
恒磁场可以使用强力磁场发生器制作,金属圆环和螺线管可以自行制作,而安培计和伏特计则需要购买经过校准的精密仪器。
还需要一些辅助器材,比如开关、热线电阻和电池等,以便在磁通量随时间变化时能够方便地进行通断电流的操作。
2.实验参数的设置在进行实验之前,需要预设一些实验参数,以便在实验过程中进行测量和记录。
比如:磁场的强度、金属圆环的半径和厚度、热线电阻的参数等等。
在记录实验数据时,需要考虑如何减小测量误差,可以采用多次测量的方法,确保得到的数据更加精确可靠。
3.实验结果的分析在实验完成之后,需要对得到的实验结果进行深入的分析和探究。
电磁感应教案示例
电磁感应教案示例一、教学目标1.了解电磁感应的基本原理和相关知识。
2.掌握电磁感应现象的实验方法和步骤。
3.培养学生对电磁感应现象的观察能力和实验能力。
二、教学内容1.电磁感应的基本概念和原理。
2.电磁感应现象的实验验证。
3.电磁感应在生活中的应用。
三、教学方法1.讲授法:通过讲解电磁感应的概念和原理,让学生了解电磁感应的基本知识。
2.实验教学法:通过实验验证电磁感应的存在和原理,让学生亲身体验电磁感应现象。
3.讨论和交流法:通过课堂讨论,让学生充分表达自己的看法和观点,促进学生互相交流和探讨。
四、教学过程1.导入环节通过展示一些与电磁感应相关的图片和视频,引导学生思考电磁感应在生活中的应用,激发学生的兴趣。
2.讲授环节1)电磁感应的概念和原理电磁感应是指导体内部的电子在磁场中发生移动而产生电势,从而在导体两端形成电流的现象。
电磁感应是电动势的一种表现形式。
二者的关系可以用法拉第电磁感应定律来描述,即磁通量变化时,会在电路中引起感应电动势。
2)电磁感应实验的步骤和方法首先,利用实验器材搭建电路,使电路中包含磁铁、导线等物体,然后改变磁场的强度和方向,观察是否发生了感应电动势现象。
3.实验环节通过实验验证电磁感应的存在和原理,让学生亲身体验电磁感应现象。
4.总结环节通过总结和讨论,使学生对电磁感应的概念和原理更加清晰,同时,强化学生的实验能力和观察能力。
五、教学评价本节课主要采用讲授法、实验教学法和讨论和交流法相结合的方式,使学生能够全面了解电磁感应的相关知识和实验方法,同时增强学生实验能力和观察能力。
通过课堂互动和讨论,学生能够更加深入地掌握电磁感应的问题,提高学生的理解能力和实验能力。
六、教学反思本节课使用了多种教学方法,让学生能够在多方面了解电磁感应的相关内容。
在教学过程中,我注意到学生的实践能力和展示能力还需进一步培养。
在今后的教学中,我将更加注重实践环节的设计,通过更多的实践训练,提高学生的实践能力和展示能力。
电磁学大学物理教案
课程目标:1. 理解电磁感应现象的基本概念和原理。
2. 掌握法拉第电磁感应定律及其应用。
3. 能够运用楞次定律判断感应电流的方向。
4. 通过实验加深对电磁感应现象的理解。
教学时间:2课时教学对象:大学物理专业学生教学重点:1. 电磁感应现象的基本概念。
2. 法拉第电磁感应定律。
3. 楞次定律的应用。
教学难点:1. 法拉第电磁感应定律的推导和应用。
2. 楞次定律在复杂情况下的应用。
教学准备:1. 教学课件2. 实验器材:电磁感应装置、条形磁铁、线圈、电流表、电压表、开关等。
教学过程:第一课时一、导入1. 回顾静电学中电荷的运动和电场的基本概念。
2. 引入电磁感应现象,提出问题:当磁通量发生变化时,电路中是否会产生电流?二、电磁感应现象的基本概念1. 介绍电磁感应现象的定义和基本原理。
2. 讲解磁通量、磁通量变化率等基本概念。
三、法拉第电磁感应定律1. 介绍法拉第电磁感应定律的内容。
2. 推导法拉第电磁感应定律的数学表达式。
3. 讲解法拉第电磁感应定律的物理意义。
四、实验演示1. 通过实验演示电磁感应现象,让学生观察并理解电磁感应的基本过程。
2. 讲解实验原理和操作步骤。
第二课时一、楞次定律1. 介绍楞次定律的内容和意义。
2. 讲解楞次定律的应用方法。
二、法拉第电磁感应定律的应用1. 讲解法拉第电磁感应定律在简单电路中的应用。
2. 通过实例分析,让学生掌握法拉第电磁感应定律的应用方法。
三、电磁感应现象在实际中的应用1. 介绍电磁感应现象在发电、变压器等实际应用中的重要性。
2. 讲解电磁感应现象在实际应用中的注意事项。
四、课堂小结1. 回顾本节课的主要内容。
2. 强调法拉第电磁感应定律和楞次定律在电磁学中的重要性。
五、作业布置1. 完成课后习题,巩固所学知识。
2. 查阅相关资料,了解电磁感应现象在生活中的应用。
教学反思:本节课通过理论讲解、实验演示和实际应用分析,使学生了解了电磁感应现象的基本概念、法拉第电磁感应定律和楞次定律,提高了学生对电磁感应现象的认识。
高考物理大一轮复习第10章-电磁感应教学教案
第10章电磁感应第1节电磁感应现象楞次定律一、磁通量:1.概念:磁感应强度B与面积S的乘积.2.计算(1)公式:Φ=BS.(2)适用条件:①匀强磁场;②S是垂直磁场的有效面积.(3)单位:韦伯(Wb),1 Wb=1_T·m2.3.意义:穿过某一面积的磁感线的条数.4.标矢性:磁通量是标量,但有正、负.二、电磁感应1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象.2.产生感应电动势和感应电流的条件(1)产生感应电动势的条件无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,回路中就有感应电动势.产生感应电动势的那部分导体相当于电源.(2)产生感应电流的条件①电路闭合.②磁通量变化.三、感应电流方向的判断1.右手定则:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心垂直进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向.如右图所示.2.楞次定律:内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化.[自我诊断]1.判断正误(1)磁通量虽然是标量,但有正、负之分.( √ )(2)当导体切割磁感线运动时,导体中一定产生感应电流.( × )(3)穿过线圈的磁通量与线圈的匝数无关.( √ )(4)电路中磁通量发生变化时,就一定会产生感应电流.( × )(5)感应电流的磁场总是与原磁场方向相反.( × )(6)楞次定律和右手定则都可以判断感应电流的方向,二者没什么区别.(×)(7)回路不闭合时,穿过回路的磁通量发生变化也会产生“阻碍”作用.(×)2.如图所示,匀强磁场中有一个矩形闭合导线框.在下列四种情况下,线框中会产生感应电流的是( )A.如图甲所示,保持线框平面始终与磁感线平行,线框在磁场中左右运动B.如图乙所示,保持线框平面始终与磁感线平行,线框在磁场中上下运动C.如图丙所示,线框绕位于线框平面内且与磁感线垂直的轴线AB转动D.如图丁所示,线框绕位于线框平面内且与磁感线平行的轴线CD转动解析:选 C.保持线框平面始终与磁感线平行,线框在磁场中左右运动,磁通量一直为零,故磁通量不变,无感应电流,选项A错误;保持线框平面始终与磁感线平行,线框在磁场中上下运动,磁通量一直为零,故磁通量不变,无感应电流,选项B错误;线框绕位于线框平面内且与磁感线垂直的轴线AB转动,磁通量周期性地改变,故一定有感应电流,故选项C正确;线框绕位于线框平面内且与磁感线平行的轴线CD转动,磁通量一直为零,故磁通量不变,无感应电流,选项D错误.3.如图,在一水平、固定的闭合导体圆环上方,有一条形磁铁(N极朝上,S极朝下)由静止开始下落,磁铁从圆环中穿过且不与圆环接触,关于圆环中感应电流的方向(从上向下看),下列说法正确的是( )A.总是顺时针B.总是逆时针C.先顺时针后逆时针D.先逆时针后顺时针解析:选C.磁铁从圆环中穿过且不与圆环接触,则导体环中,先是向上的磁通量增加,磁铁过中间以后,向上的磁通量减少,根据楞次定律,产生的感应电流方向先顺时针后逆时针,选项C正确.4.如图所示,AOC是光滑的金属导轨,电阻不计,AO沿竖直方向,OC沿水平方向;PQ 是金属直杆,电阻为R,几乎竖直斜靠在导轨AO上,由静止开始在重力作用下运动,运动过程中P、Q端始终在金属导轨AOC上;空间存在着垂直纸面向外的匀强磁场,则在PQ杆从开始滑动到P端滑到OC的过程中,PQ中感应电流的方向( )A.始终是由P→QB.始终是由Q→PC.先是由P→Q,后是由Q→PD.先是由Q→P,后是由P→Q解析:选C.在PQ杆滑动的过程中,△POQ的面积先增大后减小,穿过△POQ的磁通量先增加后减少,根据楞次定律可知,感应电流的方向先是由P→Q,后是由Q→P,C正确.考点一电磁感应现象的判断1.穿过闭合电路的磁通量发生变化的四种情况(1)磁感应强度B不变,线圈面积S发生变化.(2)线圈面积S不变,磁感应强度B发生变化.(3)线圈面积S变化,磁感应强度B也变化,它们的乘积BS发生变化.(4)线圈面积S不变,磁感应强度B也不变,但二者之间夹角发生变化.2.判断电磁感应现象能否发生的一般流程:1. 如图所示,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一个磁感应强度为B的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ.在下列各过程中,一定能在轨道回路里产生感应电流的是( )A.ab向右运动,同时使θ减小B.使磁感应强度B减小,θ角同时也减小C.ab向左运动,同时增大磁感应强度BD.ab向右运动,同时增大磁感应强度B和θ角(0°<θ<90°)解析:选 A.本题中引起磁通量变化都有两个方面,面积的变化和夹角改变,向右运动的同时θ减小都会使磁通量变大,所以A项正确.2.现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及开关按如图所示连接.下列说法中正确的是( )A.开关闭合后,线圈A插入或拔出都会引起电流计指针偏转B.线圈A插入线圈B中后,开关闭合和断开的瞬间电流计指针均不会偏转C.开关闭合后,滑动变阻器的滑片P匀速滑动,会使电流计指针静止在中央零刻度D.开关闭合后,只有滑动变阻器的滑片P加速滑动,电流计指针才能偏转解析:选A.只要闭合回路磁通量发生变化就会产生感应电流,故A正确,B错误;开关闭合后,只要滑片P滑动就会产生感应电流,故C、D错误.3.(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是( )A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动解析:选AB.A.当圆盘转动时,圆盘的半径切割磁针产生的磁场的磁感线,产生感应电动势,选项A正确;B.如图所示,铜圆盘上存在许多小的闭合回路,当圆盘转动时,穿过小的闭合回路的磁通量发生变化,回路中产生感应电流,根据楞次定律,感应电流阻碍其相对运动,但抗拒不了相对运动,故磁针会随圆盘一起转动,但略有滞后,选项B正确;C.在圆盘转动过程中,磁针的磁场穿过整个圆盘的磁通量始终为零,选项C错误;D.圆盘中的自由电子随圆盘一起运动形成的电流的磁场方向沿圆盘轴线方向,会使磁针沿轴线方向偏转,选项D错误.确定磁通量变化的两种方法(1)通过对穿过回路磁感线条数的分析和计算,可以确定磁通量是否变化.(2)依据公式Φ=BS sin θ(θ是B与S的夹角)确定磁通量与哪些因素有关.考点二楞次定律的理解及应用1.判断感应电流方向的两种方法方法一用楞次定律判断方法二用右手定则判断该方法适用于切割磁感线产生的感应电流.判断时注意掌心、拇指、四指的方向:(1)掌心——磁感线垂直穿入;(2)拇指——指向导体运动的方向;(3)四指——指向感应电流的方向.2.楞次定律推论的应用楞次定律中“阻碍”的含义可以推广为:感应电流的效果总是阻碍引起感应电流的原因,列表说明如下:内容例证阻碍原磁通量变化——“增反减同”阻碍相对运动——“来拒去留”使回路面积有扩大或缩小的趋势——“增缩减扩”B减小,线圈扩张阻碍原电流的变化——“增反减同”考向1:应用楞次定律判感应电流方向[典例1] 如图所示,在磁感应强度大小为B、方向竖直向上的匀强磁场中,有一质量为m、阻值为R的闭合矩形金属线框abcd用绝缘轻质细杆悬挂在O点,并可绕O点摆动.金属线框从右侧某一位置静止开始释放,在摆动到左侧最高点的过程中,细杆和金属线框平面始终处于同一平面,且垂直纸面.则线框中感应电流的方向是( )A.a→b→c→d→aB.d→c→b→a→dC.先是d→c→b→a→d,后是a→b→c→d→aD.先是a→b→c→d→a,后是d→c→b→a→d解析由楞次定律可知,在线框从右侧摆动到O点正下方的过程中,向上的磁通量在减小,故感应电流的方向沿d→c→b→a→d;同理,线框从O点正下方向左侧摆动的过程中,电流方向沿d→c→b→a→d,B正确.答案 B考向2:右手定则判感应电流的方向[典例2] 如图所示,MN、GH为光滑的水平平行金属导轨,ab、cd为跨在导轨上的两根金属杆,垂直纸面向外的匀强磁场垂直穿过MN、GH所在的平面,则( )A.若固定ab,使cd向右滑动,则abdc回路有电流,电流方向为a→b→d→c→aB.若ab、cd以相同的速度一起向右滑动,则abdc回路有电流,电流方向为a→c→d→b→aC.若ab向左、cd向右同时运动,则abdc回路中的电流为零D.若ab、cd都向右运动,且两杆速度v cd>v ab,则abdc回路有电流,电流方向为a→c→d→b→a解析由右手定则可判断出A项做法使回路产生顺时针方向的电流,故A项错.若ab、cd同向运动且速度大小相同,ab、cd所围面积不变,磁通量不变,故不产生感应电流,故B项错.若ab向左,cd向右,则abdc回路中有顺时针方向的电流,故C项错.若ab、cd 都向右运动,且两杆速度v cd>v ab,则ab、cd所围面积发生变化,磁通量也发生变化,由楞次定律可判断出,abdc回路中产生顺时针方向的电流,故D项正确.答案 D考向3:“阻碍法”的应用[典例3] (2017·东北三省五校联考)如图,圆环形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是( )A.线圈a中将产生俯视顺时针方向的感应电流B.穿过线圈a的磁通量减少C.线圈a有扩张的趋势D.线圈a对水平桌面的压力F N将增大解析当滑片P向下移动时滑动变阻器连入电路的电阻减小,由闭合电路欧姆定律可知通过b的电流增大,从而判断出穿过线圈a的磁通量增加,方向向下,选项B错误;根据楞次定律即可判断出线圈a中感应电流方向俯视应为逆时针,选项A错误;再根据楞次定律“阻碍”含义的推广,线圈a应有收缩或远离b的趋势来阻碍磁通量的增加,所以C错误,D正确.答案 D感应电流方向判断的两点注意(1)楞次定律可应用于磁通量变化引起感应电流的各种情况(包括一部分导体切割磁感线运动的情况).(2)右手定则只适用于一段导体在磁场中做切割磁感线运动的情景,是楞次定律的一种特殊情况.考点三“三定则、一定律”的理解及应用1.“三个定则、一个定律”的应用对比:名称基本现象因果关系应用的定则或定律电流的磁效应运动电荷、电流产生磁场因电生磁安培定则洛伦兹力、安培力磁场对运动电荷、电流有作用力因电受力左手定则电磁感应部分导体做切割磁感线运动因动生电右手定则闭合回路磁通量变化因磁生电楞次定律(1)应用楞次定律时,一般要用到安培定则.(2)研究感应电流受到的安培力,一般先用右手定则确定电流方向,再用左手定则确定安培力的方向,有时也可以直接应用楞次定律的推论确定.1.(多选)如图所示,在匀强磁场中放有平行金属导轨,它与大线圈M 相连接,要使小导线圈N 获得顺时针方向的感应电流,则放在金属导轨上的金属棒ab 的运动情况是(两线圈共面放置)( )A .向右匀速运动B .向左加速运动C .向右减速运动D .向右加速运动解析:选BC.欲使N 产生顺时针方向的感应电流,感应电流的磁场方向垂直纸面向里,由楞次定律可知有两种情况:一是M 中有沿顺时针方向逐渐减小的电流,使其在N 中的磁场方向向里,且磁通量在减小;二是M 中有逆时针方向逐渐增大的电流,使其在N 中的磁场方向向外,且磁通量在增大.因此对前者应使ab 向右减速运动;对于后者,则应使ab 向左加速运动.2.(多选)如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ 、MN ,MN 的左边有一如图所示的闭合电路,当PQ 在一外力的作用下运动时,MN 向右运动,则PQ 所做的运动可能是( )A .向右加速运动B .向左加速运动C .向右减速运动D .向左减速运动解析:选BC.MN 向右运动,说明MN 受到向右的安培力,因为ab 在MN 处的磁场垂直纸面向里――→左手定则MN 中的感应电流由M →N ――→安培定则L 1中感应电流的磁场方向向上――→楞次定律⎩⎪⎨⎪⎧L 2中磁场方向向上减弱L 2中磁场方向向下增强.若L 2中磁场方向向上减弱――→安培定则PQ 中电流为Q →P 且减小――→右手定则向右减速运动;若L 2中磁场方向向下增强――→安培定则PQ 中电流为P →Q 且增大――→右手定则向左加速运动. 3.(多选)如图所示,两个线圈套在同一个铁芯上,线圈的绕向在图中已经标出.左线圈连着平行导轨M 和N ,导轨电阻不计,在导轨垂直方向上放着金属棒ab ,金属棒处在垂直于纸面向外的匀强磁场中.下列说法中正确的是( )A .当金属棒ab 向右匀速运动时,a 点电势高于b 点,c 点电势高于d 点B .当金属棒ab 向右匀速运动时,b 点电势高于a 点,c 点与d 点等电势C .当金属棒ab 向右加速运动时,b 点电势高于a 点,c 点电势高于d 点D .当金属棒ab 向右加速运动时,b 点电势高于a 点,d 点电势高于c 点解析:选BD.当金属棒向右匀速运动而切割磁感线时,金属棒产生恒定感应电动势,由右手定则判断电流方向由a →b .根据电流从电源(ab 相当于电源)正极流出沿外电路回到电源负极的特点,可以判断b 点电势高于a 点.又左线圈中的感应电动势恒定,则感应电流也恒定,所以穿过右线圈的磁通量保持不变,不产生感应电流,A 错误,B 正确.当ab 向右做加速运动时,由右手定则可推断φb >φa ,电流沿逆时针方向.又由E =BLv 可知ab 导体两端的E 不断增大,那么左边电路中的感应电流也不断增大,由安培定则可判断它在铁芯中的磁感线方向是沿逆时针方向的,并且场强不断增强,所以右边电路的线圈中的向上的磁通量不断增加.由楞次定律可判断右边电路的感应电流方向应沿逆时针,而在右线圈组成的电路中,感应电动势仅产生在绕在铁芯上的那部分线圈上.把这个线圈看作电源,由于电流是从c 沿内电路(即右线圈)流向d ,所以d 点电势高于c 点,C 错误,D 正确.左、右手定则区分技巧(1)抓住“因果关系”:“因动而电”——用右手;“因电而动”——用左手.(2)形象记忆:把两个定则简单地总结为“通电受力用左手,运动生电用右手”.“力”的最后一笔“丿”方向向左,用左手;“电”的最后一笔“乚”方向向右,用右手.课时规范训练[基础巩固题组]1.在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( )A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化解析:选D.产生感应电流的条件为:闭合回路内磁通量发生变化.A项中,线圈绕在磁铁上,磁通量未变,不会产生感应电流,A错误.同理B错误.C项中,往线圈中插入条形磁铁的瞬间,线圈中磁通量发生变化,此时线圈中将产生感应电流,但插入后磁通量不再变化,无感应电流,故到相邻房间观察时无示数,C错误.D项中,在线圈通电或断电的瞬间,磁通量发生变化,产生感应电流,D正确.2.如图所示,一个金属圆环水平放置在竖直向上的匀强磁场中,若要使圆环中产生图中箭头方向的瞬时感应电流,下列方法可行的是( )A.使匀强磁场均匀增大B.使圆环绕水平轴ab如图转动30°C.使圆环绕水平轴cd如图转动30°D.保持圆环水平并使其绕过圆心的竖直轴转动解析:选 A.根据右手定则,圆环中感应电流产生的磁场竖直向下与原磁场方向相反,根据楞次定律,说明圆环磁通量在增大.磁场增强则磁通量增大,A正确.使圆环绕水平轴ab或cd转动30°,圆环在垂直磁场方向上的投影面积减小,磁通量减小,只会产生与图示方向相反的感应电流,B、C错误.保持圆环水平并使其绕过圆心的竖直轴转动,圆环仍与磁场垂直,磁通量不变,不会产生感应电流,D错误.3.如图甲所示,在同一平面内有两个相互绝缘的金属圆环A、B,圆环A平分圆环B为面积相等的两部分,当圆环A中的电流如图乙所示变化时,甲图中A环所示的电流方向为正,下列说法正确的是( )A.B中始终没有感应电流B.B中有顺时针方向的感应电流C.B中有逆时针方向的感应电流D.B中先有顺时针方向的感应电流,后有逆时针方向的感应电流解析:选B.由于圆环A中的电流发生了变化,故圆环B中一定有感应电流产生,由楞次定律判定B中有顺时针方向的感应电流,故选项B正确.4.(多选)如图,两同心圆环A、B置于同一水平面上,其中B为均匀带负电绝缘环,A 为导体环.当B绕轴心顺时针转动且转速增大时,下列说法正确的是( )A.A中产生逆时针的感应电流B.A中产生顺时针的感应电流C.A具有收缩的趋势D.A具有扩展的趋势解析:选BD.由图可知,B为均匀带负电绝缘环,B中电流为逆时针方向,由右手螺旋定则可知,电流的磁场垂直纸面向外且逐渐增大;由楞次定律可知,磁场增大时,感应电流的磁场与原磁场的方向相反,所以感应电流的磁场的方向垂直纸面向里,A中感应电流的方向为顺时针方向,故A错误,B正确;B环外的磁场的方向与B环内的磁场的方向相反,当B环内的磁场增强时,A环具有面积扩展的趋势,故C错误,D正确.5.(多选)航母上飞机弹射起飞是利用电磁驱动来实现的.电磁驱动原理如图所示,当固定线圈上突然通过直流电流时,线圈端点的金属环被弹射出去.现在固定线圈左侧同一位置,先后放有分别用横截面积相等的铜和铝导线制成形状、大小相同的两个闭合环,且电阻率ρ铜<ρ铝.闭合开关S的瞬间( )A.从左侧看环中感应电流沿顺时针方向B.铜环受到的安培力大于铝环受到的安培力C.若将环放置在线圈右方,环将向左运动D.电池正负极调换后,金属环不能向左弹射解析:选AB.线圈中电流为右侧流入,磁场方向为向左,在闭合开关的过程中,磁场变强,则由楞次定律可知,环中感应电流由左侧看为顺时针,A正确.由于铜环的电阻较小,故铜环中感应电流较大,故铜环受到的安培力要大于铝环的,B正确.若将环放在线圈右方,根据“来拒去留”可得,环将向右运动,C错误.电池正负极调换后,金属环受力仍向左,故仍将向左弹出,D错误.6.多年来物理学家一直设想用实验证实自然界中存在“磁单极子”.磁单极子是指只有S极或只有N极的磁性物质,其磁感线分布类似于点电荷的电场线分布.如图所示的实验就是用于检测磁单极子的实验之一,abcd为用超导材料围成的闭合回路.设想有一个N极磁单极子沿abcd轴线从左向右穿过超导回路,那么在回路中可能发生的现象是( )A.回路中无感应电流B.回路中形成持续的abcda流向的感应电流C.回路中形成持续的adcba流向的感应电流D.回路中形成先abcda流向后adcba流向的感应电流解析:选C.N极磁单极子的磁感线分布类似于正点电荷的电场线分布,由楞次定律知,回路中形成方向沿adcba流向的感应电流,由于回路为超导材料做成的,电阻为零,故感应电流不会消失,C项正确.[综合应用题组]7.(多选)如图所示,一接有电压表的矩形闭合线圈ABCD向右匀速穿过匀强磁场的过程中,下列说法正确的是( )A.线圈中有感应电动势,有感应电流B.线圈中有感应电动势,无感应电流C.AB边两端有电压,且电压表有示数D.AB边两端有电压,但电压表无示数解析:选BD.由于通过回路的磁通量不变,故回路中无感应电流产生,A项错;由欧姆定律知电压表示数U=IR V=0,C项错;由于AB棒切割磁感线AB两端有电压,B、D项正确.8.如图所示,在载流直导线近旁固定有两平行光滑导轨A、B,导轨与直导线平行且在同一水平面内,在导轨上有两条可自由滑动的导体棒ab和cd,当载流直导线中的电流逐渐增强时,导体棒ab和cd的运动情况是( )A.一起向左运动B.一起向右运动C.ab和cd相向运动,相互靠近D.ab和cd相背运动,相互远离解析:选C.电流增强时,电流在abdc回路中产生的垂直纸面向里的磁场增强,回路中磁通量增大,根据楞次定律可知回路要减小面积以阻碍磁通量的增加,因此,两导体棒要相向运动,相互靠近.选项C正确.9.如图所示,在水平地面下有一条沿东西方向铺设的水平直导线,导线中通有自东向西稳定、强度较大的直流电流.现用一闭合的检测线圈(线圈中串有灵敏电流计,图中未画出)检测此通电直导线的位置,若不考虑地磁场的影响,在检测线圈位于水平面内,从距直导线很远处由北向南沿水平地面通过导线的上方并移至距直导线很远处的过程中,俯视检测线圈,其中感应电流的方向是( )A.先顺时针后逆时针B.先逆时针后顺时针C.先顺时针后逆时针,然后再顺时针D.先逆时针后顺时针,然后再逆时针解析:选 D.如图为地下通电直导线产生的磁场的正视图,当线圈在通电直导线正上方的左侧时由楞次定律知,线圈中感应电流方向为逆时针,同理在右侧也为逆时针,当线圈一部分在左侧一部分在右侧时为顺时针,故D正确.10.(多选)如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动.现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速.在圆盘减速过程中,以下说法正确的是( )A.处于磁场中的圆盘部分,靠近圆心处电势高B.所加磁场越强越易使圆盘停止转动C.若所加磁场反向,圆盘将加速转动D.若所加磁场穿过整个圆盘,圆盘将匀速转动解析:选ABD.设想把金属圆盘切割成无数根导体棒,导体棒切割磁感线产生感应电动势、感应电流,根据右手定则可知,靠近圆心处的电势高,选项A正确;根据E=BLv可知,所加磁场B越强,感应电动势E越大,感应电流越大,因F=BIL,所以安培力也越大,安培力对圆盘的转动阻碍作用越强,选项B正确;若所加磁场反向,根据楞次定律可知安培力阻碍圆盘的转动,故圆盘仍将减速运动,选项C错误;若所加磁场穿过整个圆盘,圆盘的半径切割磁感线,产生感应电动势,但圆盘内没有涡流,故没有安培力,不消耗机械能,所以圆盘匀速转动,选项D正确.11.(多选)如图所示,铁芯上有两个线圈A和B.线圈A跟电源相连,LED(发光二极管,具有单向导电性)M和N并联后接在线圈B两端.图中所有元件均正常,则( )A.S闭合瞬间,A中有感应电动势B.S断开瞬间,A中有感应电动势C.S闭合瞬间,M亮一下,N不亮D.S断开瞬间,M和N二者均不亮解析:选ABC.闭合开关的瞬间,穿过线圈A的磁通量增加,线圈A中将产生自感电动势,故A正确.开关断开的瞬间,穿过线圈A的磁通量减小,线圈A中将产生自感电动势,故B正确.闭合开关的瞬间,穿过线圈A的磁通量增加,根据安培定则可知,A中产生的磁场的方向向上,穿过B的磁通量向上增大时,根据楞次定律可知,B中感应电流的磁场的方向向下,根据安培定则可知B中感应电流的方向向下,所以线圈下端的电势高,电流能通过二极管M,不能通过二极管N,故C正确.结合C的分析可知,S断开瞬间,穿过线圈B的磁通量减小,产生感应电流的方向与C中感应电流的方向相反,所以感应电流能通过二极管。
大学物理电磁学第十章电磁感应.ppt
第10章 电磁感应
本章研究变化的电磁场的基 本规律,从产生磁通的方式和磁 通变化的方式入手,总结感应电 动势的各种表达式。要求会熟练 计算电动势和磁场能量。
2
第10章 电磁感应
一、电磁感应基本定律 二、动生电动势 三、感生电动势 四、自感和互感 五、磁场能量
3
电磁感应
Electromagnetic induction
4. 法拉第电磁感应定律
9
数学表式:
i
dN dt
d dt
N
(N: 磁链,全磁通)
Note: d d B• dS d BcosdS
的变化 i 动生电动势(S或变化) 感生电动势( B变化)
•切忌出现如下错误:
d 10
dt
d B dS B dS
dt dt
dt
电动势的“方向”是电源内从负极到正
____________
____________
电源-提供非静电力的装置。
F静
电源的作用:
使流向低电位的正 电荷回到高电位,维持 两极板的恒定电势差。 (干电池、蓄电池等)
+ + + + + +
+ + + + + +
电 源
F非
F静
____________
____________
(2)电源电动势
把单位正电荷从负极经过
(R2
R1)
r2
d
dt
例3 两个半径分别为r和R的同轴圆形线圈,相 17
距x,且R>>r, x>>R ,若大线圈通有电流I而小线
圈沿x轴方向以速率v运动, 求x=NR 时小线圈中
大学物理授课教案 第十章 电磁感应
第十章电磁感应§10-1法拉第电磁感应定律一、电磁感应现象,感应电动势电磁感应现象可通过两类实验来说明:1.实验1)磁场不变而线圈运动2)磁场随时变化线圈不动2.感应电动势由上两个实验可知:当通过一个闭合导体回路的磁通量变化时,不管这种变化的原因如何(如:线圈运动,变;或不变线圈运动),回路中就有电流产生,这种现象就是电磁感应现象,回路中电流称为感应电流。
3.电动势的数学定义式(10-1)说明:(1)由于非静电力只存在电源内部,电源电动势又可表示为⎰∙=正极负极l dKε表明:电源电动势的大小等于把单位正电荷从负极经电源内部移到正极时,非静电力所做的功。
(2)闭合回路上处处有非静电力时,整个回路都是电源,这时电动势用普遍式表示:()⎰∙=lK l d K :非静电力ε(3)电动势是标量,和电势一样,将它规定一个方向,把从负极经电源内部到正极的方向规定为电动势的方向。
二法拉第电磁感应定律 1、定律表述在一闭合回路上产生的感应电动势与通过回路所围面积的磁通量对时间的变化率成正比。
数学表达式:dtd k i Φ-=ε 在SI 制中,1=k ,(S t V Wb :;:;:εΦ),有(10-2) 上式中“-”号说明方向。
2、i ε方向的确定为确定i ε,首先在回路上取一个绕行方向。
规定回路绕行方向与回路所围面积的正法向满足右手旋不定关系。
在此基础上求出通过回路上所围面积的磁通量,根据dt d i Φ-=ε计算i ε。
,0>Φ00<⇒>Φi dt d ε ,0>Φ00>⇒<Φi dt d ε 沿回路绕行反方向沿回路绕行方向:0:0<>i ε 此外,感应电动势的方向也可用楞次定律来判断。
楞次定律表述:闭合回路感应电流形成的磁场关系抵抗产生电流的磁通量变化。
说明:(1)实际上,法拉第电磁感应定律中的“-”号是楞次定律的数学表述。
第十章 电磁感应 沈阳工业大学 郭连权(教授)(2)楞次定律是能量守恒定律的反映。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 电磁感应§10-1法拉第电磁感应定律一、电磁感应现象,感应电动势电磁感应现象可通过两类实验来说明: 1.实验1)磁场不变而线圈运动 2)磁场随时变化线圈不动2.感应电动势由上两个实验可知:当通过一个闭合导体回路的磁通量变化时,不管这种变化的原因如何(如:线圈运动,变;或不变线圈运动),回路中就有电流产生,这种现象就是电磁感应现象,回路中电流称为感应电流。
3.电动势的数学定义式定义:把单位正电荷绕闭合回路一周时非静电力做的功定义为该回路的电动势,即()⎰•=lK l d K :非静电力ε (10-1)说明:(1)由于非静电力只存在电源内部,电源电动势又可表示为⎰•=正极负极l d Kε表明:电源电动势的大小等于把单位正电荷从负极经电源内部移到正极时,非静电力所做的功。
(2)闭合回路上处处有非静电力时,整个回路都是电源,这时电动势用普遍式表示:()⎰•=lK l d K :非静电力ε(3)电动势是标量,和电势一样,将它规定一个方向,把从负极经电源内部到正极的方向规定为电动势的方向。
二法拉第电磁感应定律 1、定律表述在一闭合回路上产生的感应电动势与通过回路所围面积的磁通量对时间的变化率成正比。
数学表达式:dtd k i Φ-=ε 在SI 制中,1=k ,(S t V Wb :;:;:εΦ),有dt d i Φ-=ε (10-2) 上式中“-”号说明方向。
2、i ε方向的确定为确定i ε,首先在回路上取一个绕行方向。
规定回路绕行方向与回路所围面积的正法向满足右手旋不定关系。
在此基础上求出通过回路上所围面积的磁通量,根据dt d i Φ-=ε计算i ε。
,0>Φ00<⇒>Φi dt d ε ,0>Φ00>⇒<Φi dt d ε 沿回路绕行反方向沿回路绕行方向:0:0<>i ε 此外,感应电动势的方向也可用楞次定律来判断。
楞次定律表述:闭合回路感应电流形成的磁场关系抵抗产生电流的磁通量变化。
说明:(1)实际上,法拉第电磁感应定律中的“-”号是楞次定律的数学表述。
(2)楞次定律是能量守恒定律的反映。
例10-1:设有矩形回路放在匀强磁场中,如图所示,AB 边也可以左右滑动,设以匀速度向右运动,求回路中感应电动势。
解:取回路顺时针绕行,l AB =,x AD =,则通过线圈磁通量为BLx BS 0cos BS S B ===•=Φ由法拉第电磁感应定律有:⎪⎭⎫⎝⎛>=-=-=Φ-=ε0dt dx v Blv dtdxBldt d i “-”说明:i ε与l 绕行方向相反,即逆时针方向。
由楞次定律也能得知,i ε沿逆时针方向。
讨论:(1)如果回路为N 匝,则ϕ=ΦN (ϕ为单匝线圈磁通量)(2)设回路电阻为R (视为常数),感应电流dtd R R I i i Φ-==1ε在1t —2t 内通过回路任一横截面的电量为()()()()[]12t t t t t t i t t R1d R 1dt dtd R 1dtI q 212121ΦΦΦΦΦΦ--=-=-==⎰⎰⎰可知q 与(12ΦΦ-)成正比,与时间间隔无关。
例10-1中,只有一个边切割磁力线,回路中电动势即为上述产生的电动势。
可见该边就是回路电源。
该电源的电动势是如何形成的?或者说产生它的非静电力是什么?从图中可知,运动时,其上自由电子受洛仑兹力作用,从而B 端有过剩的正电荷,A 端有过剩的负电荷,形成了B 端是电源正极,A 端为负极,在洛仑兹力作用下,电子从正极移向负极,或等效地说正电荷从负极移向正极。
可见,洛仑兹力正是产生动生电动势的非静电力。
§10-2动生电动势一、产生动生电动势的非静电力产生动生电动势的非静电力是洛仑兹力。
二.动生电动势i ε公式的导出一个电子受洛仑兹力为(10-3)(正电荷e 受洛仑兹力为-→f )(10-4)由电动势定义,则动生电动势为:→→•K =⎰l d li ε→→→•⨯=⎰l d B v l )(→→→→•⨯==↓⎰ld B v v AB B A )(0边外其他没动,即除动生电动势公式(10-5)说明:(1)i ε的方向为沿)(⨯B v 在l d 上分量的方向。
0>i εi ε沿B A →方向,即点电势高;点比A B0<i ε点电势低。
点比方向,即沿A B A B i →ε(2)用→→→•⨯=⎰l d v li )(B ε可求出运动回路电动势。
用→→→•⨯=⎰l d v B Ai )(B ε可求出非闭合回路运动的动生电动势。
这时,AB 相当一个开路电源,其端电压与i ε在数值上相等,但意义不同:A -U U B 是单位正电荷从B 移到A时静电力作的功,i ε是单位正电荷从A 移到B 时非静电力(洛仑兹力)作的功。
三、动生电动势计算举例例10-2:用 →→→•⨯=⎰l d B v B A i )(εj 解例1解:整个回路的电动势即由AB 运动引起的动生电动势(其他部分)0=→v→l d 段产生的动生电动势为→→→•⨯=l d v d i )(B ε0cos →→→⨯=l d v B0cos sin 2dl v ⎥⎦⎤⎢⎣⎡=→→∏B dl vB 2sin ∏= vBdl =⇒⎰=i i d εε (i ε为标量,标量叠加)⎰=BA vBdl0>=vBl可知,点。
点电势高于方向,即沿A B B →A i ε(vBl i =ε就是中学中常用的公式。
) *如图所示,长为l 的细导体棒在匀强磁场中,绕过A 处垂直于纸面的轴以角速度ω匀速转动。
求?=AB i ε的 解:〈方法一〉:用→→→•⨯=⎰l d B v B Ai )(ε解(→l d 沿→AB 方向)段产生的动生电动势为:→→→•⨯=l d B v d i )(ε已知:→→⨯B v 与→l d 同向。
∴Bldl vBdl d i ωε==AB 棒产生的电动势为 ⎰=i i d εε →→→•⨯=⎰l d B v B A )( ⎰=lBldl 0ω221Bl ω=方向。
沿B →A ∴>i i εε0即B 比A 点电势高。
(→→→⨯l d B v i 在的方向为沿ε上分量方向)〈方法二〉:用dtd i Φ-=ε解设t=0时,AB 位于AB ‘位置,t 时刻转到实线位置,取AB ‘BA 为绕行方向(AB ‘BA 视为回路),则通过此回路所围面积的磁通量为→→•=ΦS B0cos BS =221l t B ω•=⇒dt d i Φ-=ε 221l B ω-=0<i ε, ∴i ε沿A →B →B →A '方向。
回路中只有AB 产生电动势∴ AB 段电动势值为221l B i ωε=i ε沿B →A 方向。
注意:⎝⎛•⎪⎭⎫ ⎝⎛⨯=-=⎰→→B A εΦε可用在非闭合回路上。
是相对回路而言的。
l d B v dt d i i例10-4:如图所示,一无限长载流导线AB ,电流为I ,导体细棒CD 与AB 共面,并互相垂直,CD 长为l ,C 距AB 为a,CD 以匀速度→v 沿B →A 方向运动,求CD 中?=i ε解:段产生的动生电动势为→x d→→→•⨯=x d B v d i )(ε→B 垂直指向纸面 →→⨯∴B v 指向C D →方向, 即与→x d 反向。
→→⨯B v 大小为VB 。
dxxI v vBdxvBdx xd B v d i πμπε2cos 0-=-==•⎪⎭⎫⎝⎛⨯=∴→→→CD 产生的i ε为ala Iv dx xIvd l a aii +-=-==⎰⎰+ln 2200πμπμεε 上投影分量方向。
)在沿点电势高。
(点比即沿→→→⨯→∴<x d B v D C C D i i i εεε,,0 例10-5:如图所示,平面线圈面积为S ,共N 匝,在匀强磁场→B 中绕轴'OO 以速度ω匀速转动。
'OO 轴与→B 垂直。
t=0时,线圈平面法线→n 与→B 同向。
(1) 圈中?=i ε(2) 线圈电阻为R ,求感应电流?=i I解:(1)设t 时刻,→n 与→B 夹角为θ,此时线圈磁通量为:tNBS NBS S B N N ωθϕcos cos ==⎪⎭⎫ ⎝⎛•==Φ→→ 由法拉第电磁感应定律知:)(sin sin max 00i i i i NBS tt NBS dtd εωεωεωωε====Φ-=(2))max 0000(sin sin i i i ii I RNBS RI t I tRR I ======ωεωωεε§10-3 感生电动势 涡旋电场一、产生感生电动势的非静电力导体在磁场中运动时,其内的自由电子也跟随运动,因此受到磁力的作用,我们已经知道,洛仑兹力是动生电动势产生的根源,即是产生动生电动势的非静电力。
对于磁场随时间变化而线圈不动的情况,导体中电子不受洛仑兹力作用,但感生电流和感应电流的出现都是实际事实。
那么感生电动势对应的非静电力是什么呢?麦克斯韦分析了这种情况以后提出了以下假说:变化的磁场在它周围空间产生电场,这种电场与导体无关,即使无导体存在,只要磁场变化,就有这种场存在。
该场称为感生电场或涡旋电场。
涡旋电场对电荷的作用力是产生感生电动势的非静电力。
(涡旋电场已被许多事实所证实,如电子感应加速器等。
)说明:涡旋电场与静电场的异同点。
相同点:二者对电荷均有作用力。
不同点:(1)涡旋电场是变化磁场产生的,电力线是闭合的,为非保守场()0≠•→→⎰l d E l涡。
(2)静电场是由电荷产生的,电力线是闭合的,为保守场()0=•→→⎰l d E l涡。
二、感生电动势计算公式(→→=涡E K ) (10-6)(10-7)说明:法拉第建立的电磁感应定律的原始形式=i ε dtd Φ-只适用于导体构成的闭合回路情形;而麦克斯韦关于感应电场的假设所建立的电磁感应定律=i ε→→•⎰l d El涡=dtd Φ-,则闭合回路是否由导体组成的无关紧要,闭合回路是在真空中还是在介质中都适用。
这就是说,只要通过某一闭合回路的磁通量发生变化,那么感应电场沿此闭合回路的环流总是满足=i ε→→•⎰l d E l 涡 =dtd Φ-。
只不过,对导体回路来说,有电荷定向运动,而形成感应电流;而对于非导体回路虽然无感生电流,但感应电动势还是存在的。
三、涡旋电场强度及感生电动势计算例10-6:如图所示,均匀磁场→B 被局限在半径为R 的圆筒内,→B 与筒轴平行,0>dtdB,求筒内外?涡=→E解:根据磁场分布的对称性,可知,变化磁场产生的涡旋电场,其闭合的电力线是一系列同心圆周,圆心在圆筒的轴线处。
1)筒内P 点?涡=→E取过P 点电力线为闭合回路l ,绕行方向取为顺时针,可知→→•⎰l d E l 涡=dtd Φ- →→•⎰l d El涡=dl E l⎰涡=⎰涡涡dl E=r E π2•涡[]dtdB r BS dt dS B dt d dt d 20cos π==⎥⎦⎤⎢⎣⎡•=Φ→→⇒dtdB r r E 22ππ-=•涡 即 dt dBr E 21-=涡00〈涡E dtdB ∴> 涡→E 方向如上图所示,即电力线与l 绕向相反(实际上,用楞次定律可方便地直接判出电力线的绕行方向)。