诱导公式及基本公式基础练习题

合集下载

三角函数诱导公式练习题-带答案

三角函数诱导公式练习题-带答案

三角函数的诱导公式(1)一、选择题1.如果|cos x |=cos (x +π),则x 的取值集合是( )A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k π C . 2π+2k π≤x ≤2π3+2k π D .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z ) 2.sin (-6π19)的值是( ) A . 21 B .-21 C .23 D .-23 3.下列三角函数:①sin (n π+3π4);②cos (2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π]; ⑤sin [(2n +1)π-3π](n ∈Z ). 其中函数值与sin3π的值相同的是( ) A .①② B .①③④ C .②③⑤ D .①③⑤4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为( ) A .-36 B .36 C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( )A .cos (A +B )=cosC B .sin (A +B )=sin C C .tan (A +B )=tan CD .sin2A B +=sin 2C 6.函数f (x )=cos3πx (x ∈Z )的值域为( ) A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1} D .{-1,-23,23,1} 二、填空题7.若α.8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________.三、解答题9.求值:sin (-660°)cos420°-tan330°cot (-690°).11..12、求证:tan(2π)sin(2π)cos(6π)cos(π)sin(5π)q q qq q-----+=tanθ.三角函数的诱导公式(2)一、选择题:1.已知sin(4π+α)=23,则sin(43π-α)值为( ) A. 21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A. 23 B. 21 C. 23± D. —23 3.化简:)2cos()2sin(21-•-+ππ得( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2)4.已知α和β的终边关于x 轴对称,则下列各式中正确的是( )A.sinα=sinβB. sin(α-π2) =sinβC.cosα=cosβD. cos(π2-α) =-cosβ5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于( ), A. 51(4+5) B. 51(4-5) C. 51(4±5) D. 51(5-4) 二、填空题:6.cos(π-x)= 23,x ∈(-π,π),则x 的值为 . 7.tanα=m ,则=+-+++)cos(-sin()cos(3sin(απα)απ)απ . 8.|sinα|=sin (-π+α),则α的取值范围是 .三、解答题:9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos 2(65π-x )的值.11. 求下列三角函数值:(1)sin3π7;(2)cos 4π17;(3)tan (-6π23);12. 求下列三角函数值:(1)sin 3π4·cos 6π25·tan 4π5; (2)sin [(2n +1)π-3π2].13.设f (θ)=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3π)的值.。

(完整版)三角函数诱导公式练习题__答案(最新整理)

(完整版)三角函数诱导公式练习题__答案(最新整理)

13.证明:左边=
tan( ) sin( ) cos( ) ( cos )( sin )
( tan )( sin ) cos cos sin
=tanθ=右边,
∴原等式成立.
14 证明:(1)sin( 3π -α)=sin[π+( π -α)]=-sin( π -α)=-cosα.
2
2
2
(2)cos( 3π +α)=cos[π+( π +α)]=-cos( π +α)=sinα.
22 22 22
8
3
4
6
12. 求下列三角函数值:
(1)sin 4π ·cos 25π ·tan 5π ;
3
6
4
(2)sin[(2n+1)π- 2π ]. 3
13.设
f(θ)=
2 cos3 2
sin2 (2π ) sin(π 2
2cos2 (π ) cos( )
)
3
,求
f( π 3
)的值.
4
参考答案 1
8.sin21°+sin22°+sin23°+…+sin289°=_________. 三、解答题 9.求值:sin(-660°)cos420°-tan330°cot(-690°).
1
10.证明:
2sin(π ) cos 1 2 sin2
1
tan(9π ) 1 tan(π ) 1

11.已知 cosα= 1 ,cos(α+β)=1,求证:cos(2α+β)= 1 .
2
π tan( +α)=-cotα
2
3π sin( -α)=-cosα

高一数学诱导公式1-4练习含答案

高一数学诱导公式1-4练习含答案

高一数学诱导公式1-4学校:___________姓名:___________班级:___________考号:___________1.sin 120°cos 210°的值为( )A .-34B.34 C .-32 D.14解析:由诱导公式可得,sin 120°cos 210°=sin 60°×(-cos 30°)=-32×32=-34,故选A.答案:A2.若α+β=π,则下列各等式不成立的是( )A .sin α=sin βB .cos α+cos β=0C .tan α+tan β=0D .sin α=cos β 解析:sin α=sin(π-β)=sin β,A 成立;cos α=cos(π-β)=-cos β,∴cos α+cos β=0,B 成立;tan α=tan(π-β)=-tan β,∴tan α+tan β=0,C 成立;sin α=sin β≠cos β,∴D 不成立.答案:D3.已知α为第二象限角,且sin α=35,则tan(π+α)的值是( ) A.43B.34 C .-43D .-34 解析:因为α为第二象限角,所以cos α=- 1-⎝ ⎛⎭⎪⎫352=-45,所以tan(π+α)=tan α=sin αcos α=-34. 答案:D4.已知sin(θ+π)<0,cos(θ-π)>0,则θ是第________象限角( )A .一B .二C .三D .四解析:由sin(θ+π)=-sin θ<0⇒sin θ>0,cos(θ-π)=-cos θ>0⇒cos θ<0,由⎩⎨⎧sin θ>0cos θ<0,可知θ是第二象限角,故选B.答案:B5.若角α和β的终边关于y 轴对称,则下列各式中正确的是( )A .sin α=sin βB .cos α=cos βC .tan α=tan βD .cos (2π-α)=cos β 解析:∵α和β的终边关于y 轴对称,∴不妨取α=π-β,∴sin α=sin (π-β)=sin β.答案:A6.计算sin(-1 560°)cos(-930°)-cos(-1 380°)· sin 1 410°等于________.解析:sin(-1 560°)cos(-930°)-cos(-1 380°)·sin 1 410 °=sin(-4×360°-120°)cos(-3×360°+150°)-cos(-4×360°+60°)sin(4×360 °-30°)=sin(-120°)cos 150°-cos 60°sin (-30°) =-32×(-32)+12×12=34+14=1. 答案:17.若tan(5π+α)=m ,则sin α-3π +cos π-αsin -α-cos π+α的值为________. 解析:由tan(5π+α)=m ,得tan α=m .于是原式=-sin α-cos α-sin α+cos α=tan α+1tan α-1=m +1m -1. 答案:m +1m -18.已知sin(125°-α)=13,则sin(55°+α)的值为________. 解析:因为(125°-α)+(55°+α)=180°,所以sin(55°+α)=sin[180°-(125°-α)]=sin(125°-α)=13. 答案:139.已知cos(α-75°)=-13,且α为第四象限角,求sin(105°+α)的值. 解析:∵cos(α-75°)=-13<0,且α为第四象限角, ∴α-75°是第三象限角,∴sin(α-75°)=-1-cos 2α-75°=-1--132=-223. ∴sin(105°+α)=sin[180°+(α-75°)]=-sin(α-75°)=223. 10.设f (θ)=cos 4π+θ·cos 2π+θ·sin 23π+θsin θ-4π·sin 5π+θ·cos 2-π+θ. (1)化简f (θ);(2)若θ=660°,求f (θ)的值.解析:(1)原式=cos θ·cos 2θ·sin 2θsin θ·sin π+θ·cos 2θ=cos 3θ·sin 2θsin θ-sin θ·cos 2θ=-cos θ. (2)因为θ=660°,所以f (θ)=f (660°)=-cos 660°=-cos(720°-60°)=-cos(-60°)=-cos 60°=-12.。

诱导公式基本公式基础练习题

诱导公式基本公式基础练习题

诱导公式及基本公式学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)1.已知角α的终边过点(8,3)P m ,且4cos 5α=-,则m 的值为( )A .12-B .12C ..2.tan 690的值为( )A .-. 3.若角600的终边上有一点(4,)a -,则a 的值是( )A ..-.±.04 )A .2±.2 C .2- D .125.已知角α的终边过点()m m P 34,-()0m <,则ααcos sin 2+的值是( ) A .1 B .52 C .52- D .-16.已知()P y 为角β的终边上的一点,且sin 13β=,则y 的值为( ) A .12±B .12C .12- D .2± 7.已知3cos 25πα⎛⎫+= ⎪⎝⎭,且3,22ππα⎛⎫∈ ⎪⎝⎭,则tan α=( ) A .43 B .43- C .34± D .348.已知一个扇形的周长是6cm ,该扇形的中心角是1弧度,则该扇形的面积为( )2cm .A .2B .4C .6D .7 9.在单位圆中,面积为1的扇形所对的圆心角的弧度数为( ) A.1 B.2 C.3 D.4二、填空题(题型注释)10.已知扇形的圆心角为60,其弧长为2π,则此扇形的面积为 .三、解答题(题型注释) 11.已知3tan 2α=-,α为第二象限角. (1)求3sin()cos()tan()22tan()sin()παπαπααππα--+-----的值; (212.已知α为第三象限角,()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=----. (1)化简()fα;(2)若31cos()25πα-=,求()f α的值. 13.3sin(3)cos(2)sin()2()cos()sin()f αππααπαπαπα---+=----. (1)化简()f α; (2)若313απ=-,求()f α的值. 14.已知3sin 5x =,其中02x π≤≤.(1)求cos x ,tan x 的值;(2)求sin()cos()cos(2)2x x x ππ--+-的值.15.根据条件计算(Ⅰ)已知第二象限角α满足1sin 3α=,求cos α的值; (Ⅱ)已知tan 2α=,求4cos sin 3cos 2sin αααα+-的值。

诱导公式练习题

诱导公式练习题

诱导公式练习题一、基本概念题1. 写出三角函数的诱导公式:正弦、余弦、正切函数的周期性公式。

2. 利用诱导公式,将sin(π α)转换为基本三角函数的形式。

3. 将cos(3π/2 + β)用基本三角函数表示。

4. 利用诱导公式,将tan(2π + γ)简化。

5. 已知sinθ = 1/2,求cos(π/2 θ)的值。

二、化简题6. 化简表达式:sin(π + α) cos(π/2 α)。

7. 化简表达式:tan(2π β) + tan(π + β)。

8. 化简表达式:sin^2(π/2 γ) + cos^2(π/2 γ)。

9. 化简表达式:cos(2π 2θ) sin(2π + 2θ)。

10. 化简表达式:tan(π 3α) tan(π + 3α)。

三、应用题11. 已知sinα = 3/5,求cos(π/2 α)的值。

12. 已知cosβ = 4/5,求sin(π β)的值。

13. 已知tanγ = 1,求tan(π + γ)的值。

14. 已知sinθ = √3/2,求cos(2π + θ)的值。

15. 已知cosφ = √2/2,求sin(π/2 φ)的值。

四、综合题16. 已知sinα + cosα = 1,求sin(π/2 α)的值。

17. 已知sinβ cosβ = 0,求cos(π β)的值。

18. 已知tanγ = tan(π/4 γ),求sin(2π + γ)的值。

19. 已知sinθ = cos(π/2 θ),求tan(2π θ)的值。

20. 已知cosφ = sin(π/2 φ),求sin(π + φ)的值。

五、拓展题21. 利用诱导公式证明:sin^2α + cos^2α = 1。

22. 利用诱导公式证明:tan(π + α) = tanα。

23. 利用诱导公式证明:sin(π 2α) = sin2α。

24. 利用诱导公式证明:cos(2π 2β) = cos2β。

25. 利用诱导公式证明:tan(π/2 γ) = cotγ。

诱导公式练习题答案

诱导公式练习题答案

诱导公式练习题答案诱导公式是三角函数中常用的公式,主要用于将正弦、余弦等三角函数的角转换为锐角,从而简化计算。

以下是一些诱导公式的练习题及其答案。

# 练习题1:求 \(\sin(90^\circ - x)\) 的值。

答案:根据诱导公式,我们知道 \(\sin(90^\circ - x) = \cos(x)\)。

# 练习题2:计算 \(\cos(180^\circ - x)\)。

答案:根据诱导公式,\(\cos(180^\circ - x) = -\cos(x)\)。

# 练习题3:给出 \(\tan(270^\circ - x)\) 的表达式。

答案:\(\tan(270^\circ - x) = -\cot(x)\)。

# 练习题4:求 \(\sin(360^\circ - x)\) 的值。

答案:\(\sin(360^\circ - x) = -\sin(x)\)。

# 练习题5:计算 \(\cos(90^\circ + x)\)。

答案:\(\cos(90^\circ + x) = -\sin(x)\)。

# 练习题6:给出 \(\tan(180^\circ + x)\) 的表达式。

答案:\(\tan(180^\circ + x) = \tan(x)\)。

# 练习题7:求 \(\sin(270^\circ + x)\) 的值。

答案:\(\sin(270^\circ + x) = -\cos(x)\)。

# 练习题8:计算 \(\cos(360^\circ + x)\)。

答案:\(\cos(360^\circ + x) = \cos(x)\)。

这些练习题涵盖了诱导公式的基本应用,通过这些练习,学生可以更好地理解和掌握诱导公式,提高解决三角函数问题的能力。

《三角函数的诱导公式》基础训练

《三角函数的诱导公式》基础训练

《三角函数的诱导公式》基础训练题组一利用诱导公式求值l600︒的值是()A12CD1-222022重庆一中高一上期末, 数学运算)()AC-3D33若, 则()A23B2-3D4记()cos 80k ︒-=,那么tan100︒等于()A 2BD5求值:()()()sin 1200cos1290cos 1020sin 1050tan855︒︒︒︒︒-⨯+-⨯-+ 6已知, 求的值题组二利用诱导公式化简、证明7下列选项中, 与最接近的数是()B 2CD 2-822222sin 1sin 2sin 45sin 88sin 89_____.︒︒︒︒︒++++=()()cos 585sin 585sin 570︒︒︒-+-112022山东师大附中高_期末, 数学运算)1计算: ;2化简()()()()3tan cos 2sin 2.cos sin ππαπααπαπα⎛⎫--- ⎪⎝⎭--+12设8tan .7a πα⎛⎫+= ⎪⎝⎭求证:题组三诱导公式的综合运用13设, 则的值为() A 11m m +- B 11m m -+14(2022安徽六安一中高一下期中检测,逻辑推理)若角的终边上有一点, 则的值是()AB ±C -15现有下列三角函数式: ①()4sin 3n n Z ππ⎛⎫+∈ ⎪⎝⎭; ②()sin 23n n Z ππ⎛⎫+∈ ⎪⎝⎭;③()()sin 216n n Z ππ⎡⎤+-∈⎢⎥⎣⎦; ④()()sin 213n n Z ππ⎡⎤+-∈⎢⎥⎣⎦ 其中值与sin 3π的值相同的是() A ①②B ②④C ①③D ①②④16若, 且, 则的值是_____17已知333sin cos ,225θππθ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭求333sin cos 22ππθθ⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭的值18在中, 若求的三个内角的度数参考答案1答案: C解析:2答案: A解析: 故选A3答案: A解析:因为, 所以 所以32sin cos .23παα⎛⎫--== ⎪⎝⎭4答案: B解析:tan 80tan100tan 80︒︒︒∴=∴=-= 5答案: 见解析解析:原式()()()sin 1203360cos 2103360cos 3002360︒︒︒︒︒︒=-+⨯⨯+⨯++⨯()()sin 3302360tan 1352360︒︒︒︒⎡⎤⨯-+⨯++⨯⎣⎦sin120cos 210cos300sin330tan135︒︒︒︒︒=-⨯-⨯+()()()()()sin 18060cos 18030cos 36060sin 36030tan 18045︒︒︒︒︒︒︒︒︒︒=--⨯+--⨯-+-sin 60cos30cos 60sin 30tan 4511133220.︒︒︒︒︒=⨯+⨯-=+⨯-=6答案: 见解析解析:当时,7答案: C解析: 故选C8答案: 见解析解析: 原式9答案: 见解析解析: 原式10答案: 见解析解析:11答案: 见解析解析: 1212答案: 见解析解析:证明:设, 则13答案: A解析:14答案: C解析:由题意, 得,则()4tan 6004tan 540604tan 60a ︒︒︒︒=-⋅=-+=-=-15答案: B解析: ①②)sin 2sin 33n n Z πππ⎛⎫+==∈ ⎪⎝⎭; ③()()51sin 21sin 662n n Z πππ⎡⎤+-==∈⎢⎥⎣⎦;④())2sin 21sin .332n n Z πππ⎡⎤+-==∈⎢⎥⎣⎦ 又, 故②④中式子的值与的值相同16答案: 见解析解析: 因为所以()cos 2cos 3παα-=== 17答案: 见解析解析:18答案: 见解析解析: 由已知得由, 得当时,是三角形的内角,当时,是三角形的内角, , 与三角形内角和为矛盾, 故舍去 综上可知,。

三角函数诱导公式练习题__答案

三角函数诱导公式练习题__答案

三角函数的诱导公式一、选择题1.如果|cos x |=cos (x +π),则x 的取值集合是( )A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k π C . 2π+2k π≤x ≤2π3+2k π D .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z ) 2.sin (-6π19)的值是( ) A . 21 B .-21 C .23 D .-23 3.下列三角函数:①sin (n π+3π4);②cos (2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π]; ⑤sin [(2n +1)π-3π](n ∈Z ). 其中函数值与sin3π的值相同的是( ) A .①② B .①③④ C .②③⑤ D .①③⑤4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为( ) A .-36 B .36 C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( )A .cos (A +B )=cosC B .sin (A +B )=sin C C .tan (A +B )=tan CD .sin2B A +=sin 2C 6.函数f (x )=cos3πx (x ∈Z )的值域为( ) A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1} D .{-1,-23,23,1} 二、填空题7.若α是第三象限角,则)πcos()πsin(21αα---=_________.8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________.三、解答题9.求值:sin (-660°)cos420°-tan330°cot (-690°).10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.已知cos α=31,cos (α+β)=1,求证:cos (2α+β)=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:(1)sin (2π3-α)=-cos α; (2)cos (2π3+α)=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B二、填空题7.-sin α-cos α 8.289 三、解答题9.43+1. 10.证明:左边=θθθθ22sin cos cos sin 2-1-- =-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++, 右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.11.证明:∵cos (α+β)=1,∴α+β=2k π.∴cos (2α+β)=cos (α+α+β)=cos (α+2k π)=cos α=31. 12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21 =)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+ =︒-︒︒︒-70sin 70cos 70cos 70sin 21 =︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1. 13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边,∴原等式成立.14证明:(1)sin (2π3-α)=sin [π+(2π-α)]=-sin (2π-α)=-cos α. (2)cos (2π3+α)=cos [π+(2π+α)]=-cos (2π+α)=sin α.三角函数的诱导公式2一、选择题:1.已知sin(4π+α)=23,则sin(43π-α)值为( ) A. 21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A. 23 B. 21 C. 23± D. —23 3.化简:)2cos()2sin(21-∙-+ππ得( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2)4.已知α和β的终边关于x 轴对称,则下列各式中正确的是( )A.sinα=sinβB. sin(α-π2) =sinβC.cosα=cosβD. cos(π2-α) =-cosβ5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于( ), A. 51(4+5) B. 51(4-5) C. 51(4±5) D. 51(5-4) 二、填空题:6.cos(π-x)= 23,x ∈(-π,π),则x 的值为 . 7.tanα=m ,则=+-+++)cos(-sin()cos(3sin(απα)απ)απ . 8.|sinα|=sin (-π+α),则α的取值范围是 .三、解答题:9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos 2(65π-x )的值.11. 求下列三角函数值:(1)sin3π7;(2)cos 4π17;(3)tan (-6π23);12. 求下列三角函数值:(1)sin 3π4·cos 6π25·tan 4π5; (2)sin [(2n +1)π-3π2].13.设f (θ)=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3π)的值.参考答案21.C 2.A 3.C 4.C 5.A6.±65π 7.11-+m m 8.[(2k-1) π,2k π] 9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.1611 11.解:(1)sin3π7=sin (2π+3π)=sin 3π=23. (2)cos 4π17=cos (4π+4π)=cos 4π=22. (3)tan (-6π23)=cos (-4π+6π)=cos 6π=23. (4)sin (-765°)=sin [360°×(-2)-45°]=sin (-45°)=-sin45°=-22. 注:利用公式(1)、公式(2)可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:(1)sin3π4·cos 6π25·tan 4π5=sin (π+3π)·cos (4π+6π)·tan (π+4π) =(-sin 3π)·cos 6π·tan 4π=(-23)·23·1=-43.(2)sin [(2n +1)π-3π2]=sin (π-3π2)=sin 3π=23. 13.解:f (θ)=θθθθθcos cos 223cos sin cos 2223++-++ =θθθθθcos cos 223cos cos 1cos 2223++-+-+ =θθθθθcos cos 22)cos (cos 2cos 2223++--- =θθθθθcos cos 22)1(cos cos )1(cos 223++--- =θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++- =θθθθθcos cos 22)2cos cos 2)(1(cos 22++++- =cos θ-1,∴f (3π)=cos 3π-1=21-1=-21.三角函数公式1. 同角三角函数基本关系式sin 2α+cos 2α=1sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=sin α sin(π+α)=-sin αcos(π-α)=-cos α cos(π+α)=-cos αtan(π-α)=-tan α tan(π+α)=tan αsin(2π-α)=-sin α sin(2π+α)=sin αcos(2π-α)=cos α cos(2π+α)=cos αtan(2π-α)=-tan α tan(2π+α)=tan α(二) sin(π2 -α)=cos α sin(π2 +α)=cos αcos(π2 -α)=sin α cos(π2+α)=- sin α tan(π2 -α)=cot α tan(π2+α)=-cot α sin(3π2 -α)=-cos α sin(3π2+α)=-cos α cos(3π2 -α)=-sin α cos(3π2+α)=sin α tan(3π2 -α)=cot α tan(3π2+α)=-cot α sin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin βcos(α-β)=cos αcos β+sin αsin βsin (α+β)=sin αcos β+cos αsin βsin (α-β)=sin αcos β-cos αsin βtan(α+β)= tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β 4. 二倍角公式sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2αtan2α=2tan α1-tan 2α5. 公式的变形(1) 升幂公式:1+cos2α=2cos 2α 1—cos2α=2sin 2α(2)降幂公式:cos2α=1+cos2α2sin2α=1-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)(1-tanαtanβ)tanα-tanβ=tan(α-β)(1+tanαtanβ) (4)万能公式(用tanα表示其他三角函数值)sin2α=2tanα1+tan2αcos2α=1-tan2α1+tan2αtan2α=2tanα1-tan2α6.插入辅助角公式asinx+bcosx=a2+b2sin(x+φ) (tanφ= b a)特殊地:sinx±cosx= 2 sin(x±π4)7.熟悉形式的变形(如何变形)1±sinx±cosx 1±sinx 1±cosx tanx+cotx1-tanα1+tanα1+tanα1-tanα若A、B是锐角,A+B=π4,则(1+tanA)(1+tanB)=28.在三角形中的结论若:A+B+C=π, A+B+C2=π2则有tanA+tanB+tanC=tanAtanBtanCtan A2tanB2+tanB2tanC2+tanC2tanA2=1。

专题5.3 诱导公式(解析版)

专题5.3 诱导公式(解析版)

专题5.3诱导公式一、单选题1.函数3()3x f x a -=+(0a >,且1a ≠)的图象恒过定点A ,点A 在角θ终边上,则3cos π2θ⎛⎫-= ⎪⎝⎭()A .35-B .35C .45-D .45【答案】C【解析】3()3x f x a -=+(0a >,且1a ≠)恒过点()3,4A ,因为点A 在角θ终边上,所以4sin 5θ=,则34cos πsin 25θθ⎛⎫-=-=- ⎪⎝⎭故选:C2.若4π5cos 513α⎛⎫+=- ⎪⎝⎭,则7πsin 10α⎛⎫-=⎪⎝⎭()A .513-B .1213-C .513D .1213【答案】C【解析】7π7π4π3π4π5sin sin sin cos 101052513αααα⎛⎫⎛⎫⎛⎫⎛⎫-=--=-+-=-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:C3.若1sin ,63a π⎛⎫+= ⎪⎝⎭则2cos 3a π⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【答案】B【解析】:因为1sin 63a π⎛⎫+= ⎪⎝⎭,所以21cos cos sin 32663ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=++=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故选:B.4.已知角,02πα⎛⎫∈- ⎪⎝⎭,且22tan 3tan sin 4sin 0αααα--=,则()sin 2021απ+=()A B .14C .34-D .【答案】A【解析】解:因为22tan 3tan sin 4sin 0αααα--=,所以()()tan 4sin tan sin 0αααα-+=,因为,02πα⎛⎫∈- ⎪⎝⎭,所以tan 0α<且sin 0α<,所以tan 4sin 0αα-=,即sin 4sin cos ααα=,所以1cos 4α=,所以sin 4α==-,所以()()()sin 2021sin 10102sin sin 4απαππαπα+=++⨯=+=-=;故选:A5.已知3cos 34πα⎛⎫+=- ⎪⎝⎭,则sin 6πα⎛⎫-= ⎪⎝⎭()A .35B .35-C .34D .34-【答案】C【解析】因为362πππαα⎛⎫⎛⎫+--= ⎪ ⎪⎝⎭⎝⎭,所以632πππαα⎛⎫⎛⎫-=+- ⎪ ⎝⎭⎝⎭,所以3sin sincos 63234ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=+-=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:C 6.已知()cos ,1,1,,2k k πααπ⎛⎫=∈-∈ ⎪⎝⎭,则()sin πα+=()A.BC.D .1k-【答案】A【解析】解:因为()cos ,1,1,,2k k πααπ⎛⎫=∈-∈ ⎪⎝⎭,所以sin α==所以()sin sin παα+=-=A7.已知()()()sin cos 5sin sin 22αππαπαπα++-=⎛⎫-+- ⎪⎝⎭,则tan α=()A .34B .43C .32-D .32【答案】D【解析】()()()sin cos sin cos 5cos sin sin sin 22αππαααπαααπα++---==-⎛⎫-+- ⎪⎝⎭,可得()sin cos 5cos sin αααα--=-,即4sin 6cos αα=,故3tan 2α=.故选:D.8.已知71sin 123πα⎛⎫+=- ⎪⎝⎭,5sin 12πα⎛⎫-= ⎪⎝⎭()A .13-B.3-C .13D.3【答案】C【解析】由题意,5571sin sin sin 1212123πππαπαα⎡⎤⎛⎫⎛⎫⎛⎫-=-+-=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:C.9.已知角α终边上一点P 的坐标为4sin ,cos55ππ⎛⎫⎪⎝⎭,则角α的一个可能值为()A .5πB .310π-C .5π-D .45π【答案】B 【解析】πsin 05>,4πcos 05<,因此α是第四象限角,2222π4πππsin cos sin cos 15555+=+=,因此πππ3π3πcos sin cos()cos cos()5251010α==-==-,所以3π2π,10k k Z α=±∈,只有B 符合.故选:B .10)A .sin 4cos4-B .sin 4cos4--C .cos 4sin 4-D .sin 4cos4+【答案】C【解析】=,cos 4sin 4=-,故选:C11.若33sin 25πα⎛⎫+= ⎪⎝⎭,且α是第三象限角,则2021cos 2πα⎛⎫+= ⎪⎝⎭()A .35B .35-C .45D .45-【答案】C【解析】33sin cos 25παα⎛⎫+=-= ⎪⎝⎭,3cos 5α∴=-,又α是第三象限角,4sin 5α∴==-,20214cos sin 25παα⎛⎫∴+=-= ⎪⎝⎭.故选:C.12.若()sin cos 12232sin sin 2ππααππαα⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭=⎛⎫-+- ⎪⎝⎭,则22sin sin cos 3cos αααα--=()A .110B .310C .910D .32【答案】C【解析】解:()sin cos cos sin 1tan 1223sin cos tan 12sin sin 2ππαααααπαααπαα⎛⎫⎛⎫++- ⎪ ⎪++⎝⎭⎝⎭===--⎛⎫-+- ⎪⎝⎭,解得tan 3α=-,则222222sin sin cos 3cos sin sin cos 3cos sin cos αααααααααα----=+22tan tan 39339tan 19110ααα--+-===++.故选:C.13.已知角α终边上点A 的坐标为34,55⎛⎫- ⎪⎝⎭,则()3cos cos 2ππαα⎛⎫-+-+= ⎪⎝⎭()A .75B .75-C .65-D .15-【答案】D【解析】∵角α终边上点A 的坐标为34,55⎛⎫- ⎪⎝⎭,35x ∴=-,45y =,1r OA ==.4sin 5α∴==y r ,cos 53x r α==-,()3341cos cos cos sin 2555ππαααα⎛⎫⎛⎫∴-+-+=--=---=- ⎪ ⎪⎝⎭⎝⎭.故选:D14.已知角,02πα⎛⎫∈- ⎪⎝⎭,且22tan 3tan sin 4sin 0αααα--=,则()cos 2021απ+=()A .14-B.4-C .14D.4【答案】A【解析】因为22tan 3tan sin 4sin 0αααα--=,所以()()tan 4sin tan sin 0αααα-+=,因为,02πα⎛⎫∈- ⎪⎝⎭,所以tan 0<α且sin 0α<,所以tan 4sin 0αα-=,即sin 4sin cos ααα=,所以1cos 4α=,所以()()()1cos 2021cos 10102cos cos 4+=++⨯=+=-=-απαππαπα;故选:A15.若()tan π3α-=,则sin 2cos sin cos αααα-=+()A .52B .52-C .14-D .14【答案】D 【解析】由()tan π3α-=可得,tan 3α=,故sin 2cos tan 2321sin cos tan 1314αααααα---===+++,故选:D二、填空题16.已知1sin 62πα⎛⎫-= ⎪⎝⎭,那么2cos 3πα⎛⎫-=⎪⎝⎭______.【答案】12-或0.5-【解析】:因为2362πππαα⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭,所以2326πππαα⎛⎫⎛⎫-=+- ⎪ ⎪⎝⎭⎝⎭所以21cos cos sin 32662ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=+-=--=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:12-17__________.【答案】1【解析】原式=sin 20cos 201cos 20sin160sin 20cos 20+==++.故答案为:1.18.若sin θcos(π)cos(2π)3ππ3πcos [sin()1]cos(π)sin()sin()222θθθθθθθ--+--++-+的值_______【答案】6【解析】原式=cos cos (cos 1)θθθ---+cos cos cos cos θθθθ-⋅+11cos 11cos θθ=++-1cos 1cos (1cos )(1cos )θθθθ-++=+-221cos θ=-22sin θ=,因为sin θ=,所以22261sin 3θ==.所以cos(π)cos(2π)63ππ3πcos [sin()1]cos(π)sin()sin()222θθθθθθθ--+=--++-+.故答案为:6.19.若角α的终边落在直线y x =上,则co 3si 22n s παπα⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭-_____.或【解析】因为角α的终边落在直线y x =上,所以角α为第一或第三象限角,3sin cos cos sin 22ππαααα⎛⎫⎛⎫⎪ ⎪-++=--⎝⎭⎝⎭,当角α为第一象限角时,cos sin 2αα==,cos sin 22αα--=--=当角α为第三象限角时,cos sin 2αα==,cos sin 22αα--=+=20.已知π3cos 64α⎛⎫+=- ⎪⎝⎭,则5ππcos sin 63αα⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭______.【答案】32或1.5【解析】因为π3cos 64α⎛⎫+=- ⎪⎝⎭,所以5ππcos sin 63αα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭5ππcos sin 63αα⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭cos sin 626ππππαα⎡⎤⎡⎤⎛⎫⎛⎫=-+--+ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦cos cos 66ππαα⎛⎫⎛⎫=-+-+ ⎪ ⎪⎝⎭⎝⎭332cos 2642πα⎛⎫⎛⎫=-+=-⨯= ⎪ ⎪⎝⎭⎝⎭,故答案为:32三、解答题21.已知()()()()sin cos 2sin cos 2f πθπθθπθπθ--=⎛⎫-+ ⎪⎝⎭.(1)化简()f θ,并求83f π⎛⎫⎪⎝⎭的值;(2)若()3f θ=,求22sin 3sin cos θθθ-的值.【答案】(1)()tan f θθ=,83f π⎛⎫=⎪⎝⎭(2)910【解析】(1)()()()()sin cos 2sin()cos 2f πθπθθπθπθ--=-+sin cos()sin (cos )2θθπθθ-=⎛⎫--- ⎪⎝⎭sin cos cos (cos )θθθθ=--tan θ=则83f π⎛⎫⎪⎝⎭8tan 3π⎛⎫= ⎪⎝⎭2tan 3π⎛⎫= ⎪⎝⎭tan 3π⎛⎫=- ⎪⎝⎭=(2)由(1)知,tan 3θ=.则22sin 3sin cos θθθ-2222sin 3sin cos sin cos θθθθθ-=+222222sin 3sin cos cos sin cos cos θθθθθθθ-=+222tan 3tan tan 1θθθ-=+22233331⨯-⨯=+9.10=22.(1)若α是第二象限角,且π1cos 23α⎛⎫+=- ⎪⎝⎭,求tan α的值;(2)已知()()()()()3πsin 3πcos 2πsin 2cos πsin πf αααααα⎛⎫--- ⎪⎝⎭=---,化简()f α,在(1)的条件下,求()f α的值.【答案】(1)4-(2)3-【解析】(1)π1cos sin 23αα⎛⎫+=-=- ⎪⎝⎭,1sin 3α=,α是第二象限角,cos 3α∴==-,则sin 2tan cos 4ααα==-.(2)()()()()()()()3πsin 3πcos 2πsin sin cos cos 2cos cos πsin πcos sin f αααααααααααα⎛⎫--- ⎪-⎝⎭===----,由(1)知:cos 3α=-,则()cos 3f αα==-.23.已知函数()()3sin sin 2cos 3tan x x f x x x ππ⎛⎫⋅- ⎪⎝⎭=--⋅.(1)求353f π⎛⎫- ⎪⎝⎭;(2)若()1332f f πθθ⎛⎫=-- ⎪⎝⎭,求2cos 2sin 10sin 2cos sin θθθθθ++-的值.【答案】(1)12-(2)2【解析】(1)()()3sin sin sin cos 2cos cos 3tan cos tan x x x x f x x x x x x ππ⎛⎫⋅- ⎪⋅⎝⎭===---⋅-⋅,35351cos cos 3332f πππ⎛⎫⎛⎫⎛⎫-=--=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(2)由()1332f f πθθ⎛⎫=-- ⎪⎝⎭得1cos sin 3θθ=,tan 3θ=,所以222cos 2sin 12tan 10tan 10sin 7922cos sin 2tan 1tan θθθθθθθθθ+++=+=-+=--+.24.已知cos sin 22333sin()sin 2ππααππαα⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫-++ ⎪⎝⎭.(1)求tan()πα+的值;(2)求2sin cos cos ααα+的值.【答案】(1)12(2)65【解析】(1)由cos sin 22333sin()sin 2ππααππαα⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫-++ ⎪⎝⎭,可得sin cos 33sin cos αααα+=-,所以8sin 4cos αα=,解得1tan 2α=,所以1tan()tan 2παα+==.(2)由(1)知1tan 2α=,所以22222sin cos cos tan 16sin cos cos sin cos tan 15αααααααααα+++===++.。

三角函数诱导公式练习题含答案

三角函数诱导公式练习题含答案

三角函数的诱导公式1一、选择题1.如果|cos x |=cos (x +π),则x 的取值集合是( ) A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k πC .2π+2k π≤x ≤2π3+2k π D .(2k +1)π≤x ≤2(k +1)π(以上k ∈Z )2.sin (-6π19)的值是( ) A .21 B .-21 C .23 D .-23 3.下列三角函数:①sin (n π+3π4);②cos (2n π+6π);③sin (2n π+3π);④cos [(2n +1)π-6π]; ⑤sin [(2n +1)π-3π](n ∈Z ). 其中函数值与sin 3π的值相同的是( ) A .①②B .①③④C .②③⑤D .①③⑤4.若cos (π+α)=-510,且α∈(-2π,0),则tan (2π3+α)的值为( ) A .-36 B .36 C .-26D .26 5.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( )A .cos (A +B )=cosC B .sin (A +B )=sin C C .tan (A +B )=tan CD .sin 2B A +=sin 2C6.函数f (x )=cos 3πx(x ∈Z )的值域为( ) A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1}D .{-1,-23,23,1} 二、填空题7.若α是第三象限角,则)πcos()πsin(21αα---=_________. 8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________. 三、解答题9.求值:sin (-660°)cos420°-tan330°cot (-690°).10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.已知cos α=31,cos (α+β)=1,求证:cos (2α+β)=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:(1)sin (2π3-α)=-cos α; (2)cos (2π3+α)=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B 二、填空题7.-sin α-cos α 8.289 三、解答题 9.43+1. 10.证明:左边=θθθθ22sin cos cos sin 2-1--=-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++,右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.11.证明:∵cos (α+β)=1,∴α+β=2k π.∴cos (2α+β)=cos (α+α+β)=cos (α+2k π)=cos α=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21=︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边, ∴原等式成立.14证明:(1)sin (2π3-α)=sin [π+(2π-α)]=-sin (2π-α)=-cos α. (2)cos (2π3+α)=cos [π+(2π+α)]=-cos (2π+α)=sin α.三角函数的诱导公式2一、选择题: 1.已知sin(4π+α)=23,则sin(43π-α)值为( )A.21 B. —21C. 23D. —232.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为( ) A.23 B. 21C. 23±D. —23 3.化简:)2cos()2sin(21-•-+ππ得( )A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2) 4.已知α和β的终边关于x 轴对称,则下列各式中正确的是( )A.sin α=sin βB. sin(α-π2) =sin βC.cos α=cos βD. cos(π2-α) =-cos β 5.设tan θ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于( ), A. 51(4+5) B. 51(4-5) C. 51(4±5) D. 51(5-4)二、填空题: 6.cos(π-x)=23,x ∈(-π,π),则x 的值为 . 7.tan α=m ,则=+-+++)cos(-sin()cos(3sin(απα)απ)απ .8.|sin α|=sin (-π+α),则α的取值范围是 . 三、解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.已知:sin (x+6π)=41,求sin ()67x +π+cos 2(65π-x )的值.11. 求下列三角函数值:(1)sin 3π7;(2)cos 4π17;(3)tan (-6π23);12. 求下列三角函数值:(1)sin3π4·cos 6π25·tan 4π5;(2)sin [(2n +1)π-3π2].13.设f (θ)=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f (3π)的值.参考答案21.C 2.A 3.C 4.C 5.A 6.±65π7.11-+m m 8.[(2k-1) π,2k π]9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sin α 10.161111.解:(1)sin 3π7=sin (2π+3π)=sin 3π=23.(2)cos4π17=cos (4π+4π)=cos 4π=22.(3)tan (-6π23)=cos (-4π+6π)=cos 6π=23.(4)sin (-765°)=sin [360°×(-2)-45°]=sin (-45°)=-sin45°=-22. 注:利用公式(1)、公式(2)可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:(1)sin 3π4·cos 6π25·tan 4π5=sin (π+3π)·cos (4π+6π)·tan (π+4π)=(-sin3π)·cos 6π·tan 4π=(-23)·23·1=-43.(2)sin [(2n +1)π-3π2]=sin (π-3π2)=sin 3π=23.13.解:f (θ)=θθθθθcos cos 223cos sin cos 2223++-++=θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++--- =θθθθθcos cos 22)1(cos cos )1(cos 223++---=θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++-=θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cos θ-1, ∴f (3π)=cos 3π-1=21-1=-21.三角函数公式1. 同角三角函数基本关系式sin 2α+cos 2α=1 sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=sin α sin(π+α)=-sin αcos(π-α)=-cos α cos(π+α)=-cos α tan(π-α)=-tan α tan(π+α)=tan α sin(2π-α)=-sin α sin(2π+α)=sin α cos(2π-α)=cos α cos(2π+α)=cos α tan(2π-α)=-tan α tan(2π+α)=tan α (二) sin(π2 -α)=cos α sin(π2+α)=cos αcos(π2 -α)=sin α cos(π2 +α)=- sin αtan(π2 -α)=cot α tan(π2 +α)=-cot αsin(3π2 -α)=-cos α sin(3π2 +α)=-cos αcos(3π2 -α)=-sin α cos(3π2 +α)=sin αtan(3π2 -α)=cot α tan(3π2+α)=-cot αsin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α3. 两角和与差的三角函数 cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsin β sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin βtan(α+β)= tan α+tan β1-tan αtan β。

特别推荐之诱导公式基础练习(带答案)

特别推荐之诱导公式基础练习(带答案)

诱导公式基础练习(带答案)一、选择题1. 已知扇形面积为83π,半径是1,则扇形的圆心角是 ( ) A.163π B.83π C.43π D.23π4.sin585°的值为( )A .-22 B.22 C .-32 D.325.sin(-236π)的值是( )A.12 B .-12 C.32 D .-32 6.cos(-225°)+sin(-225°)等于( )A.22 B .-22 C .0 D. 2 2.600sin 的值为( )A . 21B . 21- C .23 D . 23-3.⎪⎭⎫⎝⎛-π619sin 的值等于( )A . 21B . 21-C .23 D . 23-11. 若cos 0,sin 20θθ><,则角θ的终边位于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 12. 在区间[0, 2π]上满足21sin ≥x 的x 的取值范围是 A .⎥⎦⎤⎢⎣⎡6,0πB .⎥⎦⎤⎢⎣⎡65,6ππC .⎥⎦⎤⎢⎣⎡32,6ππD .⎥⎦⎤⎢⎣⎡ππ,657.cos2010°=( )A .-12B .-32 C.12 D.328.若(),2,53cos παππα<≤=+则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 54-9.已知cos(3π2+α)=-35,且α是第四象限角,则cos(-3π+α)( )A.45 B .-45 C .±45 D.3510.如果 ,且 ,则 可以是( ).A .B .C .D .15.已知()()()()29cos sin 4cos sin 3=+---++απαααπ,则αtan = .13.若P (-4,3)是角α终边上一点,则cos(α-3π)·tan(α-2π)sin 2(π-α)的值为________. 14. 已知α的终边经过点(39,2)a a -+,且sin 0,cos 0αα>≤,则a 的取值范围是三、解答题16..已知f (α)=cos (π2+α)·cos (2π-α)·sin (-α+3π2)sin (-π-α)·sin (3π2+α). (15分)(1)化简f (α);(2)若α是第三象限角,且cos(α-3π2)=15,求f (α)的值.17已知方程sin(α - 3π) = 2cos(α - 4π),求)sin()23sin(2)2cos(5)sin(ααπαπαπ----+-的值。

高一三角函数公式及诱导公式习题(附答案)

高一三角函数公式及诱导公式习题(附答案)

三角函数公式1. 同角三角函数根本关系式 sin 2α+cos 2α=1 sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=sin α sin(π+α)=-sin αcos(π-α)=-cos α cos(π+α)=-cos α tan(π-α)=-tan α tan(π+α)=tan α sin(2π-α)=-sin α sin(2π+α)=sin α cos(2π-α)=cos α cos(2π+α)=cos α tan(2π-α)=-tan α tan(2π+α)=tan α 〔二〕 sin(π2 -α)=cos α sin(π2+α)=cos αcos(π2 -α)=sin α cos(π2 +α)=- sin αtan(π2 -α)=cot α tan(π2 +α)=-cot αsin(3π2 -α)=-cos α sin(3π2 +α)=-cos αcos(3π2 -α)=-sin α cos(3π2 +α)=sin αtan(3π2 -α)=cot α tan(3π2+α)=-cot αsin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsin β sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin β tan(α+β)=tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β4. 二倍角公式 sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α tan2α=2tan α1-tan 2α5.公式的变形(1)升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α(2)降幂公式:cos2α=1+cos2α2sin2α=1-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)〔1-tanαtanβ〕tanα-tanβ=tan(α-β)〔1+tanαtanβ) (4)万能公式〔用tanα表示其他三角函数值〕sin2α=2tanα1+tan2αcos2α=1-tan2α1+tan2αtan2α=2tanα1-tan2α6.插入辅助角公式asinx+bcosx=a2+b2sin(x+φ) (tanφ= b a)特殊地:sinx±cosx= 2 sin(x±π4)7.熟悉形式的变形〔如何变形〕1±sinx±cosx 1±sinx 1±cosx tanx+cotx1-tanα1+tanα1+tanα1-tanα假设A、B是锐角,A+B=π4,那么〔1+tanA〕(1+tanB)=28.在三角形中的结论假设:A+B+C=π, A+B+C2=π2那么有tanA+tanB+tanC=tanAtanBtanCtan A2tanB2+tanB2tanC2+tanC2tanA2=1三角函数的诱导公式1一、选择题1.如果|cos x |=cos 〔x +π〕,那么x 的取值集合是〔 〕 A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k πC .2π+2k π≤x ≤2π3+2k π D .〔2k +1〕π≤x ≤2〔k +1〕π〔以上k ∈Z 〕2.sin 〔-6π19〕的值是〔 〕 A .21 B .-21 C .23 D .-23 3.以下三角函数:①sin 〔n π+3π4〕;②cos 〔2n π+6π〕;③sin 〔2n π+3π〕;④cos [〔2n +1〕π-6π];⑤sin [〔2n +1〕π-3π]〔n ∈Z 〕.其中函数值与sin 3π的值相同的是〔 〕 A .①② B .①③④ C .②③⑤ D .①③⑤4.假设cos 〔π+α〕=-510,且α∈〔-2π,0〕,那么tan 〔2π3+α〕的值为〔 〕 A .-36B .36C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,以下关系恒成立的是〔 〕 A .cos 〔A +B 〕=cos C B .sin 〔A +B 〕=sin C C .tan 〔A +B 〕=tan CD .sin2B A +=sin 2C6.函数f 〔x 〕=cos 3πx〔x ∈Z 〕的值域为〔 〕 A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1}D .{-1,-23,23,1} 二、填空题7.假设α是第三象限角,那么)πcos()πsin(21αα---=_________. 8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________. 三、解答题9.求值:sin 〔-660°〕cos420°-tan330°cot 〔-690°〕.10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.cos α=31,cos 〔α+β〕=1,求证:cos 〔2α+β〕=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:〔1〕sin 〔2π3-α〕=-cos α; 〔2〕cos 〔2π3+α〕=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B 二、填空题7.-sin α-cos α 8.289 三、解答题 9.43+1. 10.证明:左边=θθθθ22sin cos cos sin 2-1--=-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++,右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.11.证明:∵cos 〔α+β〕=1,∴α+β=2k π.∴cos 〔2α+β〕=cos 〔α+α+β〕=cos 〔α+2k π〕=cos α=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21=︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边,∴原等式成立.14证明:〔1〕sin 〔2π3-α〕=sin [π+〔2π-α〕]=-sin 〔2π-α〕=-cos α. 〔2〕cos 〔2π3+α〕=cos [π+〔2π+α〕]=-cos 〔2π+α〕=sin α.三角函数的诱导公式2一、选择题: 1.sin(4π+α)=23,那么sin(43π-α)值为〔 〕 A.21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为〔 〕 A.23 B. 21 C. 23± D. —233.化简:)2cos()2sin(21-•-+ππ得〔 〕A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2) 4.α和β的终边关于x 轴对称,那么以下各式中正确的选项是〔 〕 A.sinα=sinβ B. sin(α-π2) =sinβ C.cosα=cosβ D. cos(π2-α) =-cosβ 5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于〔 〕, A. 51〔4+5〕 B. 51〔4-5〕 C. 51〔4±5〕 D. 51〔5-4〕二、填空题: 6.cos(π-x)=23,x ∈〔-π,π〕,那么x 的值为 . 7.tanα=m ,那么=+-+++)cos(-sin()cos(3sin(απα)απ)απ .8.|sinα|=sin 〔-π+α〕,那么α的取值范围是 . 三、解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.:sin 〔x+6π〕=41,求sin 〔)67x +π+cos 2〔65π-x 〕的值.11. 求以下三角函数值: 〔1〕sin 3π7;〔2〕cos 4π17;〔3〕tan 〔-6π23〕;12. 求以下三角函数值:〔1〕sin3π4·cos 6π25·tan 4π5; 〔2〕sin [〔2n +1〕π-3π2].13.设f 〔θ〕=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f 〔3π〕的值.参考答案21.C 2.A 3.C 4.C 5.A 6.±65π7.11-+m m 8.[(2k-1) π,2k π]9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.161111.解:〔1〕sin 3π7=sin 〔2π+3π〕=sin 3π=23.〔2〕cos4π17=cos 〔4π+4π〕=cos 4π=22.〔3〕tan 〔-6π23〕=cos 〔-4π+6π〕=cos 6π=23.〔4〕sin 〔-765°〕=sin [360°×〔-2〕-45°]=sin 〔-45°〕=-sin45°=-22. 注:利用公式〔1〕、公式〔2〕可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:〔1〕sin 3π4·cos 6π25·tan 4π5=sin 〔π+3π〕·cos 〔4π+6π〕·tan 〔π+4π〕 =〔-sin3π〕·cos 6π·tan 4π=〔-23〕·23·1=-43.〔2〕sin [〔2n +1〕π-3π2]=sin 〔π-3π2〕=sin 3π=23.13.解:f 〔θ〕=θθθθθcos cos 223cos sin cos 2223++-++=θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++---=θθθθθcos cos 22)1(cos cos )1(cos 223++---=θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++-=θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cos θ-1, ∴f 〔3π〕=cos 3π-1=21-1=-21.。

诱导公式练习题及参考答案

诱导公式练习题及参考答案

《诱导公式》练习一、选择题1、下列各式不正确的是 ( B )A . sin (α+180°)=-sin αB .cos (-α+β)=-cos (α-β)C . sin (-α-360°)=-sin αD .cos (-α-β)=cos (α+β) 2、若sin (π+α)+sin (-α)=-m ,则sin (3π+α)+2sin (2π-α)等于( ) A .-23 m B .-32 m C .23 m D .32 m3、⎪⎭⎫⎝⎛-π619sin 的值等于( ) A .21B . 21-C .23 D . 23-4、如果).cos(|cos |π+-=x x 则x 的取值范围是( C )A .)(]22,22[Z k k k ∈++-ππππB .)()223,22(Z k k k ∈++ππππC .)(]223,22[Z k k k ∈++ππππD .)()2,2(Z k k k ∈++-ππππ5.已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( )A .5B .-5C .6D .-66、sin34π·cos 625π·tan 45π的值是A .-43B .43C .-43D .437.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为 ( )A .211aa ++ B .-211aa ++ C .211aa +-D .211aa +-8.若)cos()2sin(απαπ-=+,则α的取值集合为( )A .}42|{Z k k ∈+=ππαα B .}42|{Z k k ∈-=ππααC .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα二、填空题1、求值:sin160°cos160°(tan340°+cot340°)= .2、若sin (125°-α)=1213,则sin (α+55°)= .3、cos π7 +cos 2π7 +cos 3π7 +cos 4π7 +cos 5π7 +cos 6π7 = .4、已知,1)sin(=+βα则=+++)32sin()2sin(βαβα .三、解答题1、已知 3)tan(=+απ, 求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.2、若cos α=23,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.3、设sin ,(0)()(1)1,(0)x x f x f x x π<⎧=⎨-+≥⎩和1cos ,()2()1(1)1,()2x x g x g x x π⎧<⎪⎪=⎨⎪-+≥⎪⎩求)43()65()31()41(f g f g +++的值.4.设)(x f 满足)2|(|cos sin 4)(sin 3)sin (π≤⋅=+-x xx x f x f ,(1) 求)(x f 的表达式;(2)求)(x f 的最大值.《诱导公式》参考答案一、选择题ABAC BABC二、填空题1、1.2、1312. 3、0. 4、0三、解答题1、7.2、25.3、22)41(=g ,512()1,()sin()1,633g f π=+=-+ 1)4sin()43(+-=πf , 故原式=3.4、解析:(1)由已知等式(sin )3(sin )4sin cos f x f x x x -+=⋅ ①得x x x f x f cos sin 4)sin (3)(sin -=-+ ② 由3⨯①-②,得8x x x f cos sin 16)(sin ⋅=,故212)(x x x f -=.(2)对01x ≤≤,将函数212)(x x x f -=的解析式变形,得()f x ==当2x =时,max 1.f =七年级英语期末考试质量分析一、试卷分析:本次试卷的难易程度定位在面向大多数学生。

诱导公式训练(精选题)(含答案)

诱导公式训练(精选题)(含答案)

诱导公式练习(精选题)一、选择题.(每题5分)1,则()()sin 15cos 105αα-︒+︒-的值是( )2A .3B .-3 C.0 D 解答过程书写:3)A二、填空题.(每题5分)4解答过程书写:5.设f(sin α+cos α)=sin α•cos α,则的值为______. 解答过程书写:67.已知函数3sin )(-+=x x x f π, 为 .解答过程书写:8.已知tan()2θπ-=,则22sin sin cos 2cos 3θθθθ+-+的值为三、解答题(每题10分)9.10.实数,x y 满足22sin()1,x x xy =-求200820075(sin )x y +⋅的值.参考答案1.D 【解析】()()()()sin 15cos 105sin 7590cos 18075αααα-︒+︒-=︒+-︒+︒-︒+⎡⎤⎡⎤⎣⎦⎣⎦()()()()sin 9075cos 75cos 75cos 75αααα=-︒-︒+-︒+=-︒+-︒+⎡⎤⎣⎦考点:利用诱导公式求值.2.A 【解析】 试题分析:设()=x F ()x b x a x f tan sin 2-=-,为奇函数,()()1211-=--=-f F ,那么()()1211=-=f F ,所以()31=f ,故选A .考点:奇函数 3.【答案】C,可得tan 3θ=, 而考点:利用诱导公式求值.4.1-.【解析】试题分析:根据诱导公式可知,故填:1-.考点:诱导公式.5.-38 【解析】略 6考点:诱导公式 7.8058-【解析】43)]2(sin[23sin )2()(-=--+-+-+=-+x x x x x f xf ππ ,【解析】 ,则考点:1、诱导公式;2、同角三角函数基本关系式. 9,即22tan 5tan 20,αα-+=解得或tan 2α=,当tan 2α=时,原式 考点:利用诱导公式化简、求值.10.6【解析】222222222sin()12sin()(sin cos )2sin()sin cos 0(sin )cos 0sin sin 1cos 06x x xy x xy xy xy x x xy xy xy x xy xy x xy x xy xy =-=-+⇒-++=⇒-+==⎧⇒⇒==±⎨=⎩⇒=原式。

(完整版)三角函数诱导公式专项练习(含答案)

(完整版)三角函数诱导公式专项练习(含答案)

三角函数 诱导公式专项练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.()sin (‒600∘)=A . B . C .D .‒32‒1212322.的值为( )cos 11π3A . B .C .D .‒32‒1232123.已知,则cos (60°–α)的值为sin(30°+α)=3A . B .12‒12C .D . –32324.已知,且 ,则()cos(π2+α)=‒35α∈(π2,π)tan (α‒π)=A .B .C .D .‒34‒4334435.已知sin(π-α)=-,且α∈(-,0),则tan(2π-α)的值为( )23π2A .B . -C . ±D .255255255526.已知,则=( )cos (π4‒α)=24sin(α+π4)A .B .C .D .‒3414241447.已知,,则()sinα=35π2<α<3π2sin (7π2‒α)=A .B .C .D .35‒3545‒458.已知 ,则( )tanx =‒125,x ∈(π2,π)cos⁡(‒x +3π2)=A .B .-C .D .-513513121312139.如果,那么cos(π+A)=‒12sin (π2+A)=A .-B .C . 1D . -1121210.已知,则( )cos(π2‒α)‒3cosαsinα‒cos (π+α)=2tanα=A .B .C .D . 15‒2312‒5∘A .B .C .D .12‒1232‒3212.的值是( )cos (‒585°)A .B .C .D .2232‒32‒2213.已知角的终边经过点,则的值等于 αP(‒5,‒12)sin (3π2+α)()A .B .C .D .‒513‒1213513121314.已知,则( )cos (π+α)=23tanα=A .B .C .D .52255±52±25515.已知的值为( )cosα=15,‒π2<α<0,则cos (π2+α)tan(α+π)cos (‒α)tanαA .B .C .D . 26‒26‒61261216.已知则 ()sinα=13,α∈(π2,π)cos (‒α)=A .B .C .D .13‒13223‒22317.已知,且是第四象限角,则的值是( )sin(π+α)=45αcos(α‒2π)A .B .C .D .‒3535±354518.已知sin =,则cos =( )A .B .C . -D . -19.已知cos α=k ,k∈R,α∈,则sin(π+α)=( )A . -B .C . ±D . -k20.=( )A . sin 2-cos 2B . sin 2+cos 2C . ±(sin 2-cos 2)D . cos 2-sin 221.的值为sin 585∘A .B .C .D .22‒2232‒3222.( )sin (‒1020°)=1‒13‒323.若,,则的值为( )α∈(0,π)sin(π‒α)+cosα=23sinα‒cosαA .B .C .D .23‒2343‒4324.已知且,则( )α∈(π2,π)sin (π+α)=‒35tan α=A .B .C .D .‒344334‒4325.已知,则()sin(π2+θ)+3cos (π‒θ)=sin (‒θ)sinθcosθ+cos 2θ=A . B . C . D .1525355526.若,且,则( )sinθ‒cosθ=43θ∈(34π,π)sin(π‒θ)‒cos(π‒θ)=A .B .C .D .‒2323‒434327.已知,则( )sin(π2+θ)+3cos (π‒θ)=sin (‒θ)sinθcosθ+cos 2θ=A . B . C . D .1525355528.已知,则的值为( )sin (2015π2+α)=13cos (π‒2α)A .B .C .D .13-1379‒7929.若,,则的值为( )α∈(0,π)sin(π‒α)+cosα=23sinα‒cosαA .B .C .D .23‒2343‒4330.已知,则的大小关系是( )a =tan (‒π6),b =cos (‒23π4),c =sin25π3a,b,c A .B .C .D . b >a >c a >b >c c >b >a a >c >b31.cos 7500=A .B .C .D .3212‒32‒1232.的值等于( )sin (‒236π)A .B .C .D .32‒1212‒3233.的值的( )sin 300°+tan 600°+cos (‒210°)A . B .C .D .‒30‒12+3212+3234.已知,,则等于().α∈(π2,3π2)tan(α‒π)=‒34sinα+cosαA .B .C .D .±15‒1515‒75A .B .C .D . a ‒a 1‒a 2‒1‒a236.点在直角坐标平面上位于( )A (cos 2018∘,tan 2018∘)A . 第一象限 B . 第二象限C . 第三象限D . 第四象限37.如果,那么等于( )sin (π‒α)=13sin (π+α)‒cos (π2‒α)A .B .C .D .‒2323223‒22338.已知角的终边过点,若,则实数α(a,‒2)tan (π+α)=3a =A . B .C .D .6‒23‒62339.cos (2π+α)tan (π+α)sin (π‒α)cos (π2‒α)cos (‒α)=A .B .C .D . 1‒1tan α‒tan α40.已知,则的值为( )sin (‒α)=-53cos (π2+α)A .B .C .D .53‒5323‒23参考答案1.D 【解析】【分析】直接运用诱导公式,转化为特殊角的三角函数值求解。

诱导公式基础练习题(含详细答案)

诱导公式基础练习题(含详细答案)

数学诱导公式作业1.3,2παπ⎛⎫∈ ⎪⎝⎭,sin 10α=-,tan α=______. 2.已知点()1,2P -为角θ终边上一点,则2sin cos sin cos θθθθ-=+______. 3.已知1sin cos 3αα+=,则sin cos αα的值为________. 4.若3sin cos 0αα+=,则21cos sin 2αα+的值为_ 5.已知02πα-<<,且5cos 13α=.则2cos()3sin()4cos()sin(2)παπααπα--+-+-的值为_____. 6.已知1tan()2πα-=-,则cos()+22cos sin cos παααα+-的值是______. 7.已知3sin 25πα⎛⎫-= ⎪⎝⎭,则cos()πα+的值为________. 8.sin 315=________.9.计算:1125sin tan 33ππ⎛⎫+-= ⎪⎝⎭________ 10.sin 30︒=__________,11cos4π=_________.11.已知角α终边上有一点()1,P y,且sin α=(1)求tan α的值; (2)求()()sin sin 2sin cos 2ππαααπα⎛⎫-++ ⎪⎝⎭--的值.12.已知()()()π3π=cos cos 2πsin 223πsin πsin 2f a ααααα⎛⎫⎛⎫+⋅-⋅-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫--⋅+ ⎪⎝⎭. (1)化简()f a ;(2)若α 是第三象限角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f a 的值.13.已知02πα<<,且513sin α=. ()1求tan α的值;()2求()222222sin sin sin cos sin απααπαα--⎛⎫++ ⎪⎝⎭的值.14.化简或求值: (1)sin()cos()sin()cos()222cos()sin()πππααπααπαπα+--++++; (2)6sin(90)3sin08sin 27012cos180-+-+.15.已知角α的终边与单位圆交于点P(45,35).(1)写出sin αααtan ,cos ,值; (2)求)cos(2)2sin(2)sin(απαπαπ--++的值.16.已知角α的终边经过点P (m ,4),且35cos α=-, (1)求m 的值; (2)求()()()2sin sin cos sin παπααπα⎛⎫-++ ⎪⎝⎭-+-的值. 17.已知sin α=α是第一象限角. (1)求cos α的值. (2)求()()3sin 2tan cos πααππα⎛⎫- ⎪⎝⎭++-的值. 18.已知sin 1sin cos ααα=-- (1)求tan α的值,(2)求222sin 2sin cos 3sin cos ααααα++的值.参考答案1.13【解析】【分析】先计算cos α=,再根据sin tan cos ααα=计算得到答案. 【详解】3,2παπ⎛⎫∈ ⎪⎝⎭,sin 1sin cos tan cos 3ααααα==== 故答案为:13【点睛】 本题考查了同角三角函数关系,意在考查学生的计算能力.2.5【解析】【分析】首先求tan θ,再化简2sin cos 2tan 1sin cos tan 1θθθθθθ--=++,求值. 【详解】 由题意可知2tan 21θ==-- 2sin cos 2tan 15sin cos tan 1θθθθθθ--==++ . 故答案为:5【点睛】本题考查三角函数的定义和关于sin ,cos θθ的齐次分式求值,意在考查基本化简和计算. 3.49- 【解析】 ∵1sin cos 3αα+=, ∴2221(sin cos )sin cos 2sin cos 12sin cos 9αααααααα+=++=+=,解得4sin cos 9αα=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

诱导公式及基本公式学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)1.已知角α的终边过点(8,3)P m ,且4cos 5α=-,则m 的值为( )A .12-B .12C ..2.tan 690的值为( )A .-. 3.若角600的终边上有一点(4,)a -,则a 的值是( )A ..-.±.04 )A .2±.2 C .2- D .125.已知角α的终边过点()m m P 34,-()0m <,则ααcos sin 2+的值是( ) A .1 B .52 C .52- D .-16.已知()P y 为角β的终边上的一点,且sin 13β=,则y 的值为( ) A .12±B .12C .12- D .2± 7.已知3cos 25πα⎛⎫+= ⎪⎝⎭,且3,22ππα⎛⎫∈ ⎪⎝⎭,则tan α=( ) A .43 B .43- C .34± D .348.已知一个扇形的周长是6cm ,该扇形的中心角是1弧度,则该扇形的面积为( )2cm .A .2B .4C .6D .7 9.在单位圆中,面积为1的扇形所对的圆心角的弧度数为( ) A.1 B.2 C.3 D.4二、填空题(题型注释)10.已知扇形的圆心角为60,其弧长为2π,则此扇形的面积为 .三、解答题(题型注释) 11.已知3tan 2α=-,α为第二象限角. (1)求3sin()cos()tan()22tan()sin()παπαπααππα--+-----的值; (212.已知α为第三象限角,()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=----. (1)化简()fα;(2)若31cos()25πα-=,求()f α的值. 13.3sin(3)cos(2)sin()2()cos()sin()f αππααπαπαπα---+=----. (1)化简()f α; (2)若313απ=-,求()f α的值. 14.已知3sin 5x =,其中02x π≤≤.(1)求cos x ,tan x 的值;(2)求sin()cos()cos(2)2x x x ππ--+-的值.15.根据条件计算(Ⅰ)已知第二象限角α满足1sin 3α=,求cos α的值; (Ⅱ)已知tan 2α=,求4cos sin 3cos 2sin αααα+-的值。

参考答案1.A 【解析】试题分析:由题设549648cos 2-=+=m mα可得21±=m ,经检验21-=m 成立,应选A.考点:三角函数的定义. 2.C 【解析】试题分析:因=-=-=030tan )30720tan(690tan ,故应选C. 考点:诱导公式及运用. 3.B 【解析】试题分析:由题意得tan 6004tan 60434aa =-⇒=-=- B.考点:三角函数定义【方法点睛】利用三角函数的定义,求一个角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x ,纵坐标y ,该点到原点的距离r.若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同). 4.B 【解析】0sin120=2,选B.考点:特殊角三角函数值 5.C 【解析】试题分析:因m m m r 591622-=+=,故54cos ,53sin =-=αα,所以52cos sin 2-=+αα,故选C.考点:三角函数的定义. 6.B 【解析】试题分析:13133sin 2=+=y y β,解得21=y ,故选B. 考点:三角函数的定义7.D 【解析】试题分析:因为3cos sin 25παα⎛⎫+=-=⎪⎝⎭,所以3sin 5α=-;又3,22ππα⎛⎫∈ ⎪⎝⎭,所以4cos 5α==-,3sin 35tan 4cos 45ααα-===-.故选D.考点:三角函数的基本关系式. 8.A 【解析】试题分析:由题意r r l r +=+=226,解得2=r ,所以扇形的面积221212=⨯⨯=S .故选A.考点:扇形的面积公式. 9.B 【解析】试题分析:根据扇形面积公式212S r α=,1s r ==,可得2α=,选B . 考点:扇形的面积.【思路点晴】本题主要考查的是弧度制下扇形的面积公式的应用,属于容易题,本题利用弧度制下扇形的面积公式212S r α=确定已知中包含的条件有:1,1r S ==,将两者代入面积公式即可解出.在本题中要熟悉两个点:第一,单位圆中的半径为1;第二,弧度制下的扇形的面积公式:21122S lr r α==,做题过程中注意应用那个公式.10.6π【解析】试题分析:由题设可知扇形的半径632==ππr ,故其面积ππ62621=⨯⨯=S .故应填6π. 考点:扇形的弧长公式与面积公式的运用. 11.(1)13132;(2)2. 【解析】 试题分析:(1)借助题设条件运用诱导公式求解;(2)借助题设条件运用同角三角函数的关系求解.试题解析: 由3tan 2α=-,α为第二象限角,解得cos =α……………………2分(1)原式=(cos )sin (tan )cos (tan )sin αααααα--=--, 故原式=cos α-= …………………7分 (2)原式=1sin 1sin 112tan =2cos cos ααααα+--++=--- ……………………12分考点:同角三角函数的关系和诱导公式. 12.(1)αcos -;(2)562. 【解析】 试题分析:(1)借助题设直接运用诱导公式化简求解;(2)借助题设条件和诱导公式及同角关系求解. 试题解析: (1)(cos )(sin )(tan )()cos (tan )sin f ααααααα--==--;(2)∵31cos()25πα-=, ∴1sin 5α-=即1sin 5α=-,又α为第三象限角∴cos 5α==-, ∴()f α=562.考点:诱导公式同角三角函数的关系. 13.(1)()ααcos -=f ;(2)()21-=αf . 【解析】试题分析:(1)根据诱导公式化简,()()απαπαsin sin 3sin -=+=-,()ααπcos 2cos =-,ααπcos 23sin -=⎪⎭⎫⎝⎛-,()()ααπαπcos cos cos -=+=--,()()ααπαπsin sin sin =-=--,(2)直接带入(1)的结果,再用诱导公式化简.试题解析:(1)()()αααααααcos sin cos cos cos sin -=---=f ; (2)31311()cos()cos()cos(10)cos 33332f ππππαπ=--=-=-+=-=-.考点:诱导公式【易错点睛】本题主要考察了诱导公式,属于基础题型,诱导公式题型容易出错,诱导公式的原则是“奇变偶不变,符号看象限”,απαππαα±+2--,,,这类型的诱导公式等号两侧的三角函数名称不变,απαπ±±232,的诱导公式的左右两侧的三角函数名称改变,假设α为锐角,左边的三角函数的符号是什么右边三角函数前面就是什么符号,如果所给的形式不是标准的诱导公式,需要用两次变为标准形式,比如()()ααπαπsin sin sin =+-=--,或是()()()ααππαπαπsin sin 2sin sin =-=+--=--.14.(1)43cos ,tan 54x == (2)37- 【解析】试题分析:(1)由题为三角函数的求值问题,已知3sin 5x =,及02x π≤≤,可运用同角三角函数的平方关系及商数关系求值;注意:(角所在的象限与取值的正负)。

(2)由(1)题已知三角函数的值,可对所求的式子利用诱导公式进行化简,然后代入可得。

试题解析:(1)∵sinx=35,0≤x≤2π,∴cosx==45,sin 3tan cos 4x x x ==(2)∵sinx=35,cosx=45, ∴原式=sin sin cos x x x -+=353455-+=37-考点:(1)同角三角函数的求值。

(2)诱导公式化简求值。

15.(1)223- (2)-6 【解析】试题分析:(1)由题为三角函数的求值问题,已知1sin 3α=,及角所在的象限,可运用同角三角函数的平方关系求值;注意:(角所在的象限与取值的正负)。

(2)由题已知tan 2α=,可对所求的分式进行变形,即运用分式的性质,化弦为切代入可求出。

试题解析:(Ⅰ)221sin ,sin cos 13x x α=+= α第二象限角cos 0α∴< 2122cos 133α⎛⎫∴=--=- ⎪⎝⎭(Ⅱ)tan 2α=4cos sin (4cos sin )cos 4tan 63cos 2sin (3cos 2sin )cos 32tan αααααααααααα++÷+===---÷- 考点:(1)同角三角函数的求值。

(2)三角函数的化简求值。

相关文档
最新文档