第六章_电子光学基础
(集成光电子学导论)第六章常见光波导材料与结构
![(集成光电子学导论)第六章常见光波导材料与结构](https://img.taocdn.com/s3/m/832c793858fafab069dc028d.png)
1 cm = 10 000 微米
1、空气净化
From Intel Museum
三道防线: ✓环境净化(clean room) ✓材料清洗(wafer cleaning) ✓吸杂(gettering)
光电所
• 投资4000万元的光电子学研究所实验大楼坐落在深圳大学文山湖畔。这是 一座设施先进、功能完善、配套齐全、专业化水准高的现代化实验大楼,总 面积8200平方米,其中有1200平方米的百级和万级净化实验室,有电子级超 纯水制备系统、各种特殊气体的供送系统以及相应的安全保障和环保设施等。 投资6000万元购置的先进科研仪器设备,构建了显微分析、光谱分析、超快 诊断技术、光电子材料、生物光子学、等离子体显示、应用光学、电子学等 10多个测试实验室和真空光电子器件、半导体光电子材料与器件、平板显示 器件、有机电致发光材料、纳米光电子材料等10多个工艺实验室。主要大型 仪器设备有:金属有机化合物气相沉积(MOCVD)系统、微波等离子体增 强化学气相沉积(MPECVD)系统、等离子体增强化学气相沉积(PECVD) 系统、磁控溅射系统、反应离子刻蚀机、光刻机、高精度丝网印刷机、大型 高精度点胶机、高精度喷砂机、多功能镀膜机、扫描探针显微镜、扫描电子 显微镜、台阶轮廓测试仪、三维视频显微镜、真空紫外单色仪、紫外/可见/近 红外光谱仪、飞秒激光器、皮秒激光器、荧光光谱测试仪、激光拉曼谱仪、 高分辨X射线衍射仪、变磁场霍尔测试仪、多光子激发荧光显微成像系统、高 速示波器、逻辑分析仪和数字电路开发系统等,以及光学设计分析、多物理 场分析等大型软件。这些硬件条件,为建设一流的光电子学研究所奠定了坚 实的基础。
半导体激光器,探测器,放大器, 电光调制器
目前最好的电光调制器,声光调制 器
第六章_光的吸收、散射和色散
![第六章_光的吸收、散射和色散](https://img.taocdn.com/s3/m/2c57c83531126edb6f1a1063.png)
例如当线偏振光照射某些气体或液体时,从侧面观察 时,散射光变成了部分偏振光(有些情况透射光也变 成了部分偏振光)。这种现象称为退偏振。 以Ix和Iy分别表示散射光沿着x轴和y轴振动的强度, 则散射部分偏振光的偏振度为:
P
Iy Ix Iy Ix
通常又引入退偏振度的概念:
1 P
例如:
I I 0e
( )
为吸收系数,为散射系数,+就称为衰减系数。在 很多情况下,和中一个往往比另一个小很多,因而可 以忽略。
三. 散射光强的角分布和偏振态
实验表明,散射光的强度随光的方向而变化,自然 光入射时,散射光强满足下式:
I I 0 (1 cos )
=( I红
蓝
) 7 .2
度的7.2倍,因此透射光中所含的红光 成分就较多,故带红色。
表面上看起来是纯净均匀的介质,由于分子的热运动 使分子密度有涨落而引起的散射,称为分子散射。分 子散射也满足瑞利散射定律。
用以上的散射理论可以解释许多我们日常熟悉的自 然现象,如天空为什么是蓝的?旭日和夕阳为什么 是红?以及云为什么是白?等等。 首先,白昼天空之所以是亮的,完全是大气散射阳光 的结果。如果没有大气,即使在白昼,人们仰观天空, 将看到光辉夺目的太阳悬挂在漆黑的背景中。这景象 是宇航员司空见惯了的。
§6.3 光的色散
Dispersion of Light
光在介质中的传播速度v 随波长而异的现象,亦即介质 的折射率随着波长而变化,这种现象称为光的色散。 1672年牛顿首先利用三棱镜的色散效应把日光分解为 彩色光带。 为了表征介质折射率随波长的变化快慢程度和趋势,引 入介质色散率的概念。 定义为:介质的折射率对波长的导数,即介质的色散率 为:dn/d
非旋转对称系统
![非旋转对称系统](https://img.taocdn.com/s3/m/9bfced20eefdc8d376ee32eb.png)
6-1静电偏转系统 静电偏转系统的作用: 电子束偏转系统可以改变电子的运动方向 可以实现电子运动轨迹的偏转,或得到电子束形成的扫描光栅,
这样我们可以通过在屏幕上观察到图像,形成扫描场。
图像是电子束轰击荧光屏所产生的微小光斑快速移动形成的。 电子束偏转可以采用静电场也可以采用磁场实现, 静电偏转是由电子束两边安放的电极产生的电场形成的。 静电偏转系统的研究内容包括: 基本公式和静电偏转原理 静电偏转板的设计及计算 偏转后加速系统 静电偏转系统的像差
提高灵敏度; 增大偏转角; 减小偏转像差; 折叠板式静电偏转的设计 但对于平行板来说,在一定的偏转电压和加速电压下,为提高灵敏度 可加长偏转板长度a,或减小板间距离d, 但这正好于增加偏转角相矛盾,
因此解决这个问题需要采取改变偏转板形状的方法,设计弯曲板的方法可以解决 这个问题,(可用多折板近似代替弯曲板) 设计某段斜板水平长度为a, 斜板入口间距为 d i ,出口间距为
di1
加速电压为
Ua
,偏转板间电压为2
U
,电子束入口和出口斜率分别为
tani , tani 1
这时电子轨迹可以表示为下面方程:
d2y e e E y dt 2 m m
其中
2U d di d i i 1 z a
Ey
2U di 1 di di z a
式中:e为电子电荷
在y方向的电场强度由偏转电压形成,假设均匀分布,因此有
Ey
其运动方程为
U 2U y d
( y
2U ) d
z方向的速度:
2U a z
再积分一次可以得到z方向方程:
z 2U a t
将y方向的运动方程积分一次可以得到y方向速度:
电子光学知识点整理
![电子光学知识点整理](https://img.taocdn.com/s3/m/1ee2241e0740be1e650e9afa.png)
变分法关键定理:欧拉方程 费马原理指出:光沿所需时间为极值(极大值、恒值、极小值)的路径传 播。
费马原理的数学表达式: 费马原理的具体表达式——斯涅尔定律: 光学定律的数学表达式 (光的直线传播,反射、折射的内在联系.遵循的一个更普遍的规律) 1\光的直线传播定律——由斯涅尔定律可知:当n为常数时,正弦函数 为常数,即,角度为常数;——光传播路径ds上任何一点的方向相同, 因此为一条直线。 2、折射定律——斯涅尔定律 3、反射定律:令n2=-n1,有ψ2=-ψ1,由于入射角和反射角关于反射法 线对称,因此ψ’=-ψ1 4、互易原理:当光线在两种媒质分界面上反射时,其光线传送互易。 非相对论条件下的电子运动方程: 直角坐标系下的电子运动方程组: 由电子在均匀电磁场中的能量变化方程:积分可得: 电子运动速度可以通过空间电位来表示,下式φ为规范化电位: 电子在均匀静电场内的轨迹方程: 均匀磁场中,电子速度垂直于B, 均匀磁场中,电子速度与B有夹角:,, 电子在复合电磁场中的运动 运动方程(摆线方程)为: 电子运动方程(轮摆线轨迹):
轴对称磁场的力函数, 磁标位的谢尔茨公式为: 轴对称磁场的数学表达式,磁标位的幂级数表达式、
磁感应强度B的幂级数表达式:、
1. 磁标位和Br及Bz的积分表达式:, A的积分表达式:
第四章 电子运动方程 电子轨迹方程 非相对论条件下的电子运动方程: 电子运动方程在直角坐标系下的展开: 电子在均匀电磁场中的能量变化方程: 能量守恒关系式: 关于z的x方向轨迹方程: y方向上分量方程: 圆柱坐标系下,各矢量关系:,,,, 能量守恒关系式: r方向上 角向上 虚/布许(Busch)定理:在旋转对称电、磁场中,电子运动的角动量守 恒。, 光在媒质中的运动遵循费马原理: 费马原理的具体表达式——斯涅尔定律: 比较:拉格朗日方程 拉格朗日方程 牛顿方程 广义动量 广义力 机械能(能量) 当力学系统能量守恒:T+U=E=const,有:L=2T-E,使式为零的表述—— 莫培督(Maupertuis)原理 莫培督原理导出的微分方程为电子轨迹方程。,,其中, 光在媒质中的运动和电子在保守场中的运功具有极大的相似性:, 在广义坐标系(q1,q2,q3)中,广义力Qi可以表示为: Qi代表力在广义坐标系中的分量 电位和磁矢位表示电场和磁场,并考虑电子运动产生的自磁场得:
光电子技术基础与应用习题答案
![光电子技术基础与应用习题答案](https://img.taocdn.com/s3/m/81e09cbd011ca300a7c390ad.png)
7 第七章 光电显示技术(十三、十四、十五讲) 8 第八章 光通信无源器件技术(十六、十七、十八、十九讲) 9 第九章 光盘与光存储技术(二十、二十一、二十二讲) 10 第十章 表面等离子体共振现象与应用的探究(二十三讲) 11 第十一章 连续可调太赫兹超常材料宽带低损超吸收器(二十四讲)
8. 从麦克斯韦通式(2-28)出发,推导波动方程(2-44)。
1. 填空题:
第二章 习题答案(1)
第二章 习题答案(2)
第二章 习题答案(3)
6. 输出波长为=632.8nm的He-Ne激光器中的反射镜是在玻璃上交替涂覆ZnS和 ThF2形成的,这两种材料的折射率系数分别为1.5和2.5。问至少涂覆多少个双层 才能使镜面反射系数大于99.5%?
6. 输出波长为=632.8nm的He-Ne激光器中的反射镜是在玻璃上交替涂覆ZnS和 ThF2形成的,这两种材料的折射率系数分别为1.5和2.5。问至少涂覆多少个双层 才能使镜面反射系数大于99.5%?
7. 有m个相距为d的平行反射平面。一束光以倾角投射至反射面。设每一反射平面 仅反射一小部分光,大部分光仅透射过去;又设各层的反射波幅值相等。证明 当sin=/2d时,合成的反射波强度达到最大值,这一角度称为Bragg角。
第三章复习思考题(13)
4. 简述题 (8)简述光谱线展宽的分类,每类的特点与光谱线线型函数的类型。
第三章复习思考题(14)
4. 简述题 (8)简述光谱线展宽的分类,每类的特点与光谱线线型函数的类型。
4. 简述题
第三章复习思考题(15)
第三章复习思考题(16)
4. 简述题 (10)激光器按激光工作介质来划分可分为几类?各举出一个 典型激光器,并给出其典型波长、转换效率、典型优点。
北师大版八年级物理第六章《常见的光学仪器》知识点+测试试题和答案
![北师大版八年级物理第六章《常见的光学仪器》知识点+测试试题和答案](https://img.taocdn.com/s3/m/e2660a67dd3383c4bb4cd2cb.png)
北师大版物理八年级下册第六章知识点+测试题第六章:常见的光学仪器一.基本知识点归纳:1.凸透镜:有两个虚焦点。
1)外观:表面是球面的一部分,中间厚,边缘薄,由透明材料制成。
2)光学特点:对光线具有会聚作用①正确看待凸透镜对光线的会聚作用:光线经透镜折射后,折射光线相对于入射光线原来的传播方向,更靠近主轴。
②凸透镜越厚,它表面的弯曲程度越大,折光能力越强,其焦距越短。
3)成像规律及应用:①U>2f:f<V<2f,成倒立缩小的实像应用:照相机②U=2f:V=2f,成倒立等大的实像应用:——③2f>U>f:V>2f,成倒立放大的实像应用:幻灯机,投影仪④U<f:成正立放大的虚像应用:放大镜规律简化总结:①一倍焦距分虚实,两倍焦距分大小。
②成实像时:物远像近,物近像远,像近像小,像远像大。
③成虚像时:物远像远,物近像近,像近像小,像远像大。
④成实像时,像与物比较:上下,左右均相反;而成虚像时,像与物上下,左右均相同。
这点与平面镜有所区别!2.光学仪器的操作1)照相机的操作:①若要扩大照相范围,就要让像变小,具体操作方法是:增大照相机与被拍照物体的距离以增大物距,同时缩短暗箱长度以减小相距.②照相机镜头上沾有少量灰尘对成像效果影响不大,灰尘由于距离镜头太近,故它不会通过凸透镜成实像呈现在底片上。
但它会遮挡住部分射到镜头上的光,使像的亮度受到一定的影响。
2)幻灯机的操作:①由于物体通过幻灯机的镜头成的是倒立的像,故幻灯片要倒插。
②若觉得屏幕上的图像太小,则应该减小幻灯片到镜头的距离,同时增大镜头到屏幕的距离。
3)放大镜的操作:①要利用放大镜看到物体正立放大的虚像,必须保证物体到放大镜的距离小于一倍焦距。
若物体到放大镜的距离大于一倍焦距,则我们看到的就是倒立的实像了。
②如果要想将物体的像放大得更多一些,则应该稍稍增大物体到放大镜的距离,但要保证这个距离不能超过一倍焦距。
3.眼睛1)原理:U>2f,成倒立缩小的实像(与照相机相同)眼睛的晶状体相当于照相机的镜头,瞳孔相当于照相机的光圈,眼睑相当于照相机的快门,视网膜相当于照相机的底片。
材料分析方法习题
![材料分析方法习题](https://img.taocdn.com/s3/m/ba78aa3c581b6bd97f19eacd.png)
注: *的多少仅代表该题可能的难易程度。
第一章 X 射线物理学基础1、X 射线有什么性质,本质是什么?波长为多少?与可见光的区别。
(*)2、什么是X 射线管的管电压、管电流?它们通常采用什么单位?数值通常是多少?(*)3、X 射线管的焦点与表观焦点的区别与联系。
(*)4、X 射线有几种?产生不同X 射线的条件分别是什么?产生机理是怎样的?晶体的X 射线衍射分析中采用的是哪种X 射线?(*)5、特征X 射线,连续X 射线与X 射线衍射的关系。
(*)6、什么是同一线系的特征X 射线?不同线系的特征X 射线的波长有什么关系?同一线系的特征X 射线的波长又有什么关系?7、什么是临界激发电压?为什么存在临界激发电压?(**)8、什么是、射线?其强度与波长的关系。
什么是、射线其强度与波长的关系。
(**)αK βK 1αK 2αK 9、为什么我们通常只选用Cr 、Fe 、Co 、Ni 、Mo 、Cu 、W 等作阳极靶,产生特征X 射线的波长与阳极靶的原子序数有什么关系。
10、 什么是相干散射、非相干散射?它们各自还有什么名称?相干散射与X 射线衍射的关系。
(*)11、 短波限,吸收限,激发限如何计算?注意相互之间的区别与联系。
(**)12、 什么是X 射线的真吸收?比较X 射线的散射与各种效应。
(*)13、 什么是二次特征辐射?其与荧光辐射是同一概念吗?与特征辐射的区别是什么?(**)14、 什么是俄吸电子与俄吸效应,及与二次特征辐射的区别。
(**)15、 反冲电子、光电子和俄歇电子有何不同? (**)16、 在X 射线与物质相互作用的信号中,哪些对我们进行晶体分析有益?哪些有害?非相干散射和荧光辐射对X 射线衍射产生哪些不利影响?(**)17、 线吸收系数与质量吸收系数的意义。
并计算空气对CrK α的质量吸收系数和线吸收系数(假如空气中只有质量分数80%的氮和质量分数20%的氧,空气的密度为1.29×10-3g/cm 3)(**)18、 阳极靶与滤波片的选择原则是怎样的?(*)19、 推导出X 射线透过物质时的衰减定律,并指出各参数的物理意义。
第六章光电子材料与器件
![第六章光电子材料与器件](https://img.taocdn.com/s3/m/d7900ccf0912a216157929e0.png)
主要由受激的喇曼散射和布里渊散射引起,且只在强入射光功 率激励下才表现出来
6.2 光纤
传输光纤 光纤色散特性
光纤的色散是由于光纤所传信号的不同频率成分或不同模式 成分的群速度不同而引起传输信号畸变的一种物理现象。
由于脉冲展宽,在光通讯中,为了不造成误码,必须降低脉 冲速率,这就将降低光纤通讯的信息容量和品质。而在光纤 传感方面,在需要考虑信号传输的失真度问题时,光纤的色 散也成为一个重要参数。
1 固体激光器的工作原理
固体激光器是研究最早的一类激光器,它以固体作为工作物 质,包括绝缘晶体和玻璃两大类。工作物质是在基质材料中 掺入激活离子(金属离子或稀土离子)而制成。
固体激光器的工作方 式主要分为脉冲和连 续(CW)两大类。
固体激光器的构成通 常包括工作物质、谐 振腔、泵浦光源这三 个基本组成部分
传输光纤
传输光纤主要用于光通信,对光纤性能有两个方面的要求:传 输损耗要低,光纤色散要小。
传输损耗特性
6.2 光纤
传输损耗特性
图6.7 光纤的总损耗谱
6.2 光纤
传输损耗特性 瑞利散射损耗
由于光纤材料—石英玻璃的密度不均匀和折射率不均匀引起
波导效应散射损耗
由于波导结构不规则,从而导致高阶模的辐射形成损耗
6.4 液晶显示材料与器件
1 液晶材料的物理性质
液晶的发现可追溯到19世纪末,1888年奥地利的植物学家 F·Reinitzer在作加热胆甾醇的苯甲酸脂实验时发现,当加热 使温度升高到一定程度后,结晶的固体开始溶解。但溶化后 不是透明的液体,而是一种呈混浊态的粘稠液体,并发出多 彩而美丽的珍珠光泽。当再进一步升温后,才变成透明的液 体。他把这种粘稠而混浊的液体放到偏光显微镜下观察,发 现这种液体具有双折射性。
电子光学知识点整理
![电子光学知识点整理](https://img.taocdn.com/s3/m/1cd104a1998fcc22bdd10d3b.png)
第一章/n c v εμ==电子波长:h mv V λ==光的折射定律:2112sin sin n n φφ=,1122cn v cn v ==变分法关键定理:欧拉方程F F()0y x y d d ∂∂-='∂∂费马原理指出:光沿所需时间为极值(极大值、恒值、极小值)的路径传播。
t时间1vkii is ==∑费马原理的数学表达式:δδδδ==⇒==⎰⎰22111[]0[]0p p pp t nds L nds c费马原理的具体表达式——斯涅尔定律:1122()sin sin sin sin k kn x n n n φφφφ=L 常数或者:===光学定律的数学表达式(光的直线传播,反射、折射的内在联系.遵循的一个更普遍的规律)1\光的直线传播定律——由斯涅尔定律可知:当n 为常数时,正弦函数为常数,即,角度为常数;——光传播路径ds 上任何一点的方向相同,因此为一条直线。
2、折射定律——斯涅尔定律3、反射定律:令n2=-n1,有ψ2=-ψ1,由于入射角和反射角关于反射法线对称,因此ψ’=-ψ14、互易原理:当光线在两种媒质分界面上反射时,其光线传送互易。
非相对论条件下的电子运动方程:o d m e()dt =-+⨯v E v B直角坐标系下的电子运动方程组:222222()()()x z y y x z z y x d x e dy dz E B B dt m dt dt d y e dz dxE B B dt m dt dt d z e dx dyE B B dt m dt dt =-+-=-+-=-+-由电子在均匀电磁场中的能量变化方程:2()02d mv e dt ϕ-=积分可得:22mv e C ϕ-=电子运动速度可以通过空间电位来表示,下式φ为规范化电位:2 5.93210(/)e v m s m ϕϕ==⨯电子在均匀静电场内的轨迹方程:222o eE y z mv =-均匀磁场中,电子速度垂直于Bη==o o Lmv v R eB B ,ηππ===122o v B f T R均匀磁场中,电子速度与B 有夹角α:sin L v R B αη=,12B f T ηπ==,2cos h v B παη=电子在复合电磁场中的运动222222()()()x z y y x z z y x d x e dy dzE B B dt m dt dt d y e dz dxE B B dt m dt dt d z e dx dyE B B dt m dt dt =-+-=-+-=-+-运动方程(摆线方程)为:220(1cos())sin()x E y Bt B E E z t Bt B B ηηηη⎧⎪=⎪⎪⎪⎪=-⎨⎪⎪⎪⎪=-⎪⎩电子运动方程(轮摆线轨迹):22222()()()E E E y z t B B B ηη-+-=麦克斯韦方程组:BE t∂∇⨯=-∂,D ρ∇⋅=,D E ε=,D H J t ∂∇⨯=+∂,0B ∇⋅=,B H μ=在假设条件下:0E ∇⨯=,0E ∇⋅=,0B ∇⨯=,0B ∇⋅= 矢量公式通用形式2311322131231231[()()()]D h h D h h D h h D h h h q q q ∂∂∂∇⋅=++∂∂∂\22313211231112223331()()()h h h h h h h h h q h q q h q q h q ϕϕϕϕ⎡⎤∂∂∂∂∂∂∇=++⎢⎥∂∂∂∂∂∂⎣⎦直角坐标系下拉氏方程:圆柱坐标系下拉氏方程:0ϕθ∂=∂当时,22222211()00r r r r r r z z r ϕϕϕϕϕ∂∂∂∂∂∂+=⇒++=∂∂∂∂∂∂谢尔茨公式:圆柱坐标系下拉氏方程:贝塞尔微分方程:22221(1)0d d dz z dz z ϖϖνϖ++-=轴对称电场的积分表达式:201(,)(sin )2r z V z ir a daπϕπ=+⎰谢尔茨公式:曲线在点M 的曲率limQ Md k MQds δα→==点M 的曲率半径1ds R k d α==当已知曲线方程为:y=f(x)时,曲线的曲率半径。
第六章透射电子显微镜结构
![第六章透射电子显微镜结构](https://img.taocdn.com/s3/m/776c180865ce0508763213d1.png)
会聚后照射到样品上。 v 照明系统的作用就是提供一束亮度高、照明孔径角小、平行
度好、束流稳定的照明源。
第六章透射电子显微镜结构
1、电子枪
常用的是热阴极三极电子枪,它由(发夹形)钨丝阴极、栅 极和阳极组成。 v 阴极:又称灯丝,一般是由0.03~0.1毫米的钨丝作成V或Y 形状。 v 阳极:加速从阴极发射出的电子。为了安全,一般都是阳极 接地,阴极带有负高压。 v 栅极:控制电子束电流大小,调节象的亮度。 v 阴极、阳极和栅极决定着电子发射的数目及其动能,因此, 人们习惯上把它们通称为“电子枪”,是透射电子显微镜的 电子源。
第六章透射电子显微镜结构
四、真空系统
v 电子显微镜工作时, 整个电子通道从电子枪至照相底板盒都 必须置于真空系统之内,一般真空度为10-4~10-7Pa。
v 真空作用:①保证电子尽可能少地损失能量,获得足够的速 度和穿透能力;②保证只与试样相互作用,不与空气分子发 生碰撞。
v 真空度不好:①高速电子和气体分子相撞而产生随机散射电 子,引起炫光,降低象的衬度;②气体分子被电离而出现放 电现象,使电子束不稳定,成像质量变坏; ③灯丝因真空不 好而被氧化,缩短寿命。
第六章透射电子显微镜结构
v 高性能的透射电镜大都采用5级透镜放大,即中间镜和投影 镜有两级,分第一中间镜和第二中间镜,第一投影镜和第二 投影镜。
光学测试技术-第6章-光学系统成像性能评测1
![光学测试技术-第6章-光学系统成像性能评测1](https://img.taocdn.com/s3/m/6013cef1a26925c52dc5bf3d.png)
武汉大学 电子信息学院
2
§6.1 成像性能评测的基本理论
一、像质评价研究方法
成像光学系统可以看作是一个信息传递或信息转换系统:
PSF(u, v) h(u, v) / h(u, v)dudv
其傅里叶变换即为光学系统的传递函数:
OTF(r,s) PSF(u, v)exp[i2 (ru sv)]dudv
武汉大学 电子信息学院
10
§6.1 成像性能评测的基本理论
定义了光学系统的传递函数后,可以把成像过程在频率域中表 达为:
把物方信息按一定的要求传递或转换至像方。在传递或转换过 程中,伴随着信息的变化及附加的背景或其它衍生信息,因此 输出像与输入物之间仅存在相似性,不存在完全的一致性。
输入物信息
光学成像系统
输出像信息
利用等效于电学与通信系统的方法,一个光学或光电系统 可以被描述成是一个时间/空间滤波器。对于静态的成像光学系 统,通常可以用一个等效的空间滤波器来描述。对于成像系统, 最关心的是其物与像的辐照度分布一致性,以及光度或辐射度 性能和色度性能等三个基本问题。
武汉大学 电子信息学院
11
§6.1 成像性能评测的基本理论
4、复合系统的成像关系
对于由光学系统和光电传感器共同构成的复杂光电成像系统, 可以把整个成像系统视为若干子系统,成像特性既要考虑初始目 标的形状、漫反射特征、景深及光谱成份,也要考虑传输特性、 成像特性、光电传感器的光谱响应特征、噪声、各单元器件的响 应一致性、动态范围等,对完全相干耦合成像,可按光线追击和 光波传播衍射理论,做瞳函数的振幅连乘和波差代数叠加:
第6章_光电系统设计PPT课件
![第6章_光电系统设计PPT课件](https://img.taocdn.com/s3/m/8f9a20436bec0975f565e2aa.png)
由图知,它如同一个低通滤波器的频率特性,即:
s f
so
1
1 2
f
2
2
(6-4)
式中,s(o)是频率为零(直流)或者频率很低时的响应率,f 是光信息的频
率, 为时间常数。
当频率增加时响应率 s f 要降低,当 s f 降到 s o 的 1 2 时所对应
的频率 f0 ,称为上限载止频率,这时有 1 2 f0。
率光谱分布分别是a ()和o (),光电检测器的光电灵敏度系数为s()时,那 么检测器件的输出 I ()可表示为:
I
(
)
2 1
s
a
o
d
(6-1)
上式表示出了光电检测器件的输出与光谱波长之间的关系,式中 1 和 2 分别为辐射下限波长和上限波长。
光源的辐射波长有一定的范围,存在有峰值波长,光电子检测器件对 波长有选择性,存在一个最灵敏的波长,为充分利用光能, 要求:光电器件与辐射源在光谱特性上相匹配。
第三节 光电系统的设计原则
在光电系统设计时,应针对所设计的光电系统的特点,遵守一些重要 的设计原则。
一、匹配原则
光电系统的核心是光学变换与光电变换,因而光电系统的光学部分 与电子部分的匹配是十分重要的。这些匹配包括光谱匹配、功率匹配和 阻抗匹配。匹配的核心是如何正常选择光电检测器件。
1.光谱匹配
光谱匹配是指光学系统的光谱特性与光电检测器件的光谱灵敏度特 性相匹配。在光电系统设计中,光谱匹配的核心是光源的光谱峰值波长 应与光电检测器件对光谱的灵敏波长相一致。通常是先根据光电系统的 功能要求确定光源,然后再根据光源的峰值波长选用与之光谱匹配的光 电检测器件。
若入射光的波长 为单色光,这时输出电压V 或 I 电流与入射单色 辐射通量 之比称为光谱灵敏度或光谱响应率。
第6章 电子吸收光谱
![第6章 电子吸收光谱](https://img.taocdn.com/s3/m/95a66ae0524de518964b7d7b.png)
3). 对于自旋多重度(2S+1)值和 L值相同的光 谱支项,
对于半满前的组态, J值越小,能量越低;对于半 满后的组态, J值越大,能量越低,例如,
对 d1, d9 d2,d8 d3,d7 d4,d6
d5
2D
3F
4F
5D
6S
对 Eu3+ (4f6) 7F0<7F1<7F2 < ···<7F6
H
E + T1 + T1 + T2
I
A1 + A2 + E + T1 + T2 + T2
3). 利用量子力学方法计算各配位场能级的能量。 以及它们随Δo的变化,并依据计算结果绘制成光谱 项图,即Orgel 图和 Tanabe-Sugano 图。例如 对d1 和d2组态的配合物,则
a). 先推求光谱项
对 d1 2D;
对 d2 3F, 3P, 1G, 1D, 1S
b). 然后确定dn 组态离子在八面体场中的配位场 能级:
例如, 对 d1组态(在八面体场中) :
2D
2Eg, 2T2g
对 d2组态(在八面体场中) :
3F
3A2g, 3T1g, 3T2g
3P
3T1g
1S
1A1g
1D
1Eg, 1T2g
1G
ⅱ). dn and dn+5 组态具有不同的 2s+1值和不同 的光谱项,但对于相同的L值谱项(2D,5D)具有 相同的分裂样式(如d1 和 d6);
ⅲ). 对于某一给定的组态(如 d1),在八面体场中 的配位场能级顺序正好与在四面体场中相反。
材料研究方法与测试技术
![材料研究方法与测试技术](https://img.taocdn.com/s3/m/6fd33beaf01dc281e53af0c3.png)
中国海洋大学本科生课程大纲课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修一、课程介绍1.课程描述:材料科学涵盖了金属材料工程、冶金工程、无机非金属材料工程、高分子材料工程、材料物理和材料化学等专业,它是研究材料的组成与结构、合成与制备、性质及使用性能和测试与表征等四个基本要素及其相互关系与制约规律的一门科学。
在这其中,材料性能的测试和对其结构的表征与计算,是实现按照预定性能设计材料和制备材料的关键,《材料研究方法与测试技术》正是在这个需求的基础上开设的一门核心基础课程。
《材料研究方法与测试技术》是材料科学一门具有重要学科意义且实用性极强的核心基础课之一。
它主要涉及材料研究方法的基础理论知识和材料分析、测试的技术手段,是综合性和实践性紧密相结合的课程,是每一位学习材料的学生必须掌握的知识,在材料学科中具有无可比拟的地位。
2.设计思路:《材料研究方法与测试技术》的理论内容主要是采用课堂讲述的形式,对基本理论、仪器操作和结果分析进行有机结合,培养学生利用所学基础知识分析问题,解决问题的能力,为学生以后从事材料科学研究和工程技术工作打下坚实的理论基础,进而满足社会对于材料科学与工程人才的需求。
本课程主要介绍了光学显微分析、X射线衍射分析、电子衍射分析、电子显微分析、热分析、光谱分析、核磁共振分- 5 -析及质谱分析等分析方法以及这些方法在材料研究中的综合应用,广泛满足了材料科学与工程专业的培养需求。
《材料研究方法与测试技术》作为材料科学与工程专业的一门重要专业基础课,结合信息化时代背景下材料测试技术学科的发展,利用实践和视频教学补充理论教学的方式,提高了教学效果,并通过实验项目的设置,理论联系实际,激发学生的学习兴趣,提高学生的学习积极性,培养学生的动手能力和思考能力,满足社会对于材料科学与工程人才的需求。
3. 课程与其他课程的关系:本课程是专业必修课,讲解各类金属材料、无机非金属陶瓷材料和高分子材料常用的的分析测试方法,对材料制备、设计、加工、应用具有重要意义。
第6篇 光学发展史.ppt
![第6篇 光学发展史.ppt](https://img.taocdn.com/s3/m/8bd1988c0975f46527d3e1a0.png)
❖ 但是必须指出,牛顿的前提是错误的, 他的错误在于他认为不同的透明物质是 从相同的方式折射不同颜色的光线的。
几何光学时期
❖ 牛顿在光学中另一项精彩的发现是牛顿 环。
❖ 牛顿环是光具有波动性的最好证明之一, 也说明了光的周期性。但是,因为牛顿 在关于光的本性的讨论中倾向于微粒说, 所以他不可能对光的以上性质加以进一 步的探讨。
波动光学时期
❖ 菲涅耳继续了扬的工作,1815年他用扬的干涉 原理补充了惠更斯原理,提出了惠更斯——菲 涅耳原理。运用这一原理不仅能解释光在各向 同性介质中的直线传播,同时也能解释光的衍 射现象。
❖ 1808年马吕斯(英国人,1775—1812)偶然 发现光在两种介质界面上反射时的偏振现象。
❖ 菲涅耳和阿拉果(1786一1853)在1819年提 供了相互垂直的偏振光不相干涉的证明,这是 光的横向振动理论最终的证实。
二、人类对光的本性的认识
❖ 人类对光的本性的认识,追溯其历史, 可以看出,它是由初浅到深入,由片 面到全面,从实验到理论,由现象到 本质逐步发展起来的,最后建立起光 的本性的理论。但是从科学发展的眼 光来看关于光的本性的理论并没有穷 尽,还待于进一步的探讨。
1.惠更斯和牛顿之争
❖ 早在十七世纪就开始了对光的本性的问题的讨 论,当时有两种不同的观点,一种是以笛卡儿、 胡克、惠更斯为代表的波动说,另一种是以牛 顿为代表的微粒说。
❖ 牛顿的高明之处是:他不仅详细地定性 的描述了实验现象,而是进一步作了定 量的测量。
惠更斯的贡献
❖和牛顿同时代的惠更斯,他主张光的 波动说,认为光是在“以太”中传播 的波。
光学教程(姚启钧) 第6章 光的吸收散射和色散
![光学教程(姚启钧) 第6章 光的吸收散射和色散](https://img.taocdn.com/s3/m/32de6b3a0066f5335a81211e.png)
3 吸收光谱
朗伯定律是吸收光谱的基本原理。入射的有连续波长分布的 光,透过物质后,在选择吸收区域,在有些波长范围被强烈 吸收,形成吸收光谱。 钠的吸收光谱
一般地讲,固体和液体选择吸收的波长范围较宽,称之 为吸收带;而稀薄气体选择吸收的波长范围很窄,表现 为吸收线。 反映原子、分子结构特征——原子光谱、红外光谱 大气窗口——空间遥感探测、气象等研究
第六章 光的吸收、散射和色散
6.1 电偶极辐射对反射和折射现象的解释
6.2 光的吸收
6.3 光的散射
6.4 光的色散
*6.5
色散的经典理论
1
吸收 光的 散射 色散
三种现象都是光与物质的相互作用引起的, 是不同物质光学性质的主要表现,实质上是 由光和原子中电子相互作用引起的。
对这些现象的讨论,有助于给我们提供原子和分子结构的信息。 三种现象既与生活中的许多现象有关,又与现代光学技术 的前沿课题紧密相关。 物体的颜色是因为不同的物质对不同波长 的光波有选择的吸收的缘故, 例: 蔚蓝色的天空、旭日与夕阳的红色,都是光散射 的结果, 光的吸收和散射都造成光能量的衰减,在光纤通讯中 减小介质的衰减乃是成功的关键技术之一。
16
§6.3 光的散射 问:天空为什么是蓝的?旭日ቤተ መጻሕፍቲ ባይዱ夕阳为什么是红 的,而中午的太阳看起来又是白的?云为什么是 白的?如果没有空气,天空又会是什么样的呢?
1 光的散射现象
当光束通过均匀的透明介质时,从侧面是难以看到光 的。但当光束通过不均匀的透明介质时,则从各个方向都 可以看到光,这是介质中的不均匀性使光线朝四面八方散 射的结果,这种现象称为光的散射。 例如,当一束太阳光从窗外射进室外内时,我们从侧 面可以看到光线的径迹,就是因为太阳光被空气中的灰尘 散射的缘故。
《材料分析测试方法》课程笔记
![《材料分析测试方法》课程笔记](https://img.taocdn.com/s3/m/f8bb88b1162ded630b1c59eef8c75fbfc77d9487.png)
《材料分析测试方法》课程笔记第一章:x射线的物理学基础一、x射线的性质1. x射线的定义与产生x射线是一种波长位于紫外线和γ射线之间的电磁波,其波长范围大约在0.01纳米到10纳米之间。
x射线的产生通常是通过x射线管,其中高速运动的电子撞击金属靶材(如铜或钨)时,由于突然减速,电子会将部分动能转换为x 射线。
2. x射线的特点(1)穿透能力:x射线的穿透能力远强于可见光,能够穿透大多数非金属物质,但会被重金属等高原子序数物质吸收。
(2)电离作用:x射线能够电离物质,从原子或分子中移除电子,导致形成带电的离子。
(3)荧光效应:x射线能够激发某些物质发光,这种现象称为荧光效应。
(4)生物效应:x射线对生物组织具有损害作用,可以破坏细胞结构,因此在使用时需要谨慎。
二、x射线谱1. x射线谱的分类x射线谱主要包括两种类型:连续谱和特征谱。
2. 连续谱连续谱是由高速电子撞击靶材时产生的,它包含了从低能量到高能量的一系列波长。
连续谱的强度随波长的增加而减小,其峰值波长与加速电子的电压有关。
3. 特征谱特征谱是由靶材原子的内层电子跃迁到外层轨道时释放的特定能量的光子形成的。
每种元素都有其特定的特征谱线,这些谱线对应于元素原子内电子能级的特定差异。
三、x射线与物质的相互作用1. 吸收x射线在穿透物质时,其强度会随着穿透深度的增加而减弱,这是因为物质中的原子吸收了部分x射线能量。
吸收系数与物质的种类、密度和x射线的波长有关。
2. 散射(1)弹性散射(康普顿散射):x射线光子与物质中的自由电子发生碰撞后,光子的能量和方向发生改变,但波长不变。
(2)非弹性散射(瑞利散射):x射线光子与物质中的原子或分子相互作用,能量部分转化为物质的内能,导致光子的能量降低,波长变长。
3. 荧光当x射线光子的能量足够高时,可以激发物质中的原子或分子,使其电子跃迁到更高能级,随后返回基态时释放出能量,通常以可见光的形式。
4. 产生电子对在x射线能量非常高时(大于1.022 MeV),x射线光子在物质中可以转化为一个正电子和一个负电子。
材料分析方法课后答案(更新至第十章)
![材料分析方法课后答案(更新至第十章)](https://img.taocdn.com/s3/m/0b2b31e0d15abe23482f4de1.png)
第一章 X 射线物理学基础3.讨论下列各组概念的关系 答案之一(1)同一物质的吸收谱和发射谱;答:λk 吸收 〈λk β发射〈λk α发射(2)X 射线管靶材的发射谱与其配用的滤波片的吸收谱。
答:λk β发射(靶)〈λk 吸收(滤波片)〈λk α发射(靶)。
任何材料对X 射线的吸收都有一个K α线和K β线。
如 Ni 的吸收限为0.14869 nm 。
也就是说它对0.14869nm 波长及稍短波长的X 射线有强烈的吸收。
而对比0.14869稍长的X 射线吸收很小。
Cu 靶X 射线:K α=0.15418nm K β=0.13922nm 。
(3)X 射线管靶材的发射谱与被照射试样的吸收谱。
答:Z 靶≤Z 样品+1 或 Z 靶>>Z 样品X 射线管靶材的发射谱稍大于被照射试样的吸收谱,或X 射线管靶材的发射谱大大小于被照射试样的吸收谱。
在进行衍射分析时,总希望试样对X 射线应尽可能少被吸收,获得高的衍射强度和低的背底。
答案之二1)同一物质的吸收谱和发射谱;答:当构成物质的分子或原子受到激发而发光,产生的光谱称为发射光谱,发射光谱的谱线与组成物质的元素及其外围电子的结构有关。
吸收光谱是指光通过物质被吸收后的光谱,吸收光谱则决定于物质的化学结构,与分子中的双键有关。
2)X 射线管靶材的发射谱与其配用的滤波片的吸收谱。
答:可以选择λK 刚好位于辐射源的K α和K β之间的金属薄片作为滤光片,放在X 射线源和试样之间。
这时滤光片对K β射线强烈吸收,而对K α吸收却少。
6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少?答:eVk=hc/λVk=6.626×10-34×2.998×108/(1.602×10-19×0.71×10-10)=17.46(kv)λ 0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm)其中 h为普郎克常数,其值等于6.626×10-34 e 为电子电荷,等于1.602×10-19c 故需加的最低[文档标题][文档副标题]2015-1-4 BY :二专业の学渣材料科学与工程学院管电压应≥17.46(kv),所发射的荧光辐射波长是0.071纳米。
《光学教程》姚启钧原著_第六章
![《光学教程》姚启钧原著_第六章](https://img.taocdn.com/s3/m/17c229b4fd0a79563c1e7214.png)
Iy Ix p , 退偏振度: 1 p Ix Iy
15
五、散射光的强度
• 散射光的强度
I Z I C cos , I y I 0 , I I 0 (1 cos )
dI l a dx,I a 0dx 4.答:朗伯定律和比尔定律的数学表达式分 I 别为: I ACl , I = I e I=I 0 e a 0 • 和 。 I0
I
0 a
5.答:(1)线度小于光的波长的微粒对入 射光的散射现象通常称为瑞利散射。 (2) 瑞利定律表述为:散射光强度与波长的四 次方成反比,即: • I = f () - 4 。 6.答:因为光的散射。
• 2.分类: •①
• ②按不均匀团块性质
瑞利散射:线度 / 10 线性 米氏散射:线度 线度 自发拉曼散射 拉曼散射 受激拉曼散射 非线性 布里渊散射
廷 延德尔系散射:胶体, 乳胶液,含有烟雾灰尘 乳胶液,含有烟雾灰尘 的大气等 的大气等 延德尔系散射:胶体, 延德尔系散射:胶体, 乳胶液,含有烟雾灰尘 延德尔系散射:胶体, 乳胶液,含有烟雾灰尘 的大气等 分子散射:由于分子热 运动造成局部涨落引起 运动造成局部涨落引起 的的 分子散射:由于分子热 分子散射:由于分子热 运动造成局部涨落引起 分子散射:由于分子热 运动造成局部涨落引起 的
13
三、瑞利散射
•
1. 瑞利散射: l < 的微粒对入射光的散射现象。 2. 瑞利定律:散射光强度与波长的四次方成反比, 即: I=f () -4 f ()——光源中强度按波长的分布函数 3.应用:红光散射弱、穿透力强(信号旗、信号灯) →红外线(遥感等)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子显微镜在材料研究中发挥的作用
1. 位错的观察证实了位错理论的正确性。(衍衬 像)
1940s后期, 金属薄膜(foil )的成功制备以及直接的TEM观察;Hirsch等人的电子 衍射与衍衬理论 《薄晶体的透射电子显微术 》
2. 准晶的发现扩展了晶体的范畴。(电子衍射)
1992年国际晶体学会重新研究晶体的定义: “晶体是指任何给出基本上有明确衍射图的固 体,而非周期性晶体是指无周期性的晶体”。
3.纳米碳管的发现引发了纳米材料研究的高潮。
(高分辨像)
5
电子显微镜在材料研究中发挥的作用
总之,作为结构分析手段电子显微 镜具有高空间分辨率和能量分辨率,已 成为显微结构表征和微区成份分析不可 缺少的工具。电子显微镜在材料领域的 广泛应用,对于研究和开发新材料,特 别是纳米材料的开发具有非常重要的作 用。
m m0
1
v2 c2
(c-光速)
14
二、电子波
加速电压-电子波长(表) (埃) 12.25
U
15
三、电磁透镜
定义 一个由线圈、铁壳和极靴组成的,能 够由激励电流产生轴旋转对称静磁场 的系统。
作用 对电子束进行偏折、会聚。 在TEM中用磁场来使电子波聚焦成像的 装置。
16
三、电磁透镜
电磁透镜的聚焦原理
1927年,汤普森(Thompson)电子衍射实验
2
电子显微学发展历史简要介绍
1930-1933 鲁斯卡与Knoll 制造了第一 台电子显微镜。(1939西门子)
1931.5.28 M.RÜdenberg-向德、法、英等 国申请电子显微镜专利(凭理论推测)。
1932年12月和1936年10月获得法、英的批 准,1953年获得西德的批准。电子显微镜 一词首先出现在RÜdenberg的专利中。 1942年英国制成第一台实验室用扫描电镜, 1965年开始生产商品化扫描电镜。
第二节 电磁透镜的像差与分辨本领 第三节 电磁透镜的景深与焦长
11
第一节 电子波与电磁透镜
一、光学显微镜的分辨率
分辨率:成像物体(试样)上能分辨出来的两个物
点间的最小距离。
光学显微镜的分辨率
0
1
2
:照明光源的波长
12
光学显微镜的分辨率取决于照明光源的波长;
要提高显微镜的分辨率,关键需波长短且可以聚焦 的光源。
一、电磁透镜的像差 二、分辨本领 第三节 电磁透镜的景深与焦长
21
第二节 电磁透镜的像差与分辨本领
第六章 电子光学基础
1
电子显微学发展历史简要介绍
技术条件 理论基础
1897年,布劳恩(C.F.Braun)设计并制 成最初的示波管,这为电子显微镜的 诞生准备了技术条件。
1925年,de Broglie 波粒二象性理论
1926年,布施(H.Busch)发表有关磁聚 焦的论文,指出电子束通过轴对称电磁场时 可以聚焦,如同光线通过透镜时可以聚焦一 样,因此可以利用电子成象。这为电子显微 镜做了理论上的准备。
一束平行于主轴的入射 电子束通过电磁透镜时 将被聚焦在轴线上一点, 即焦点。
17
三、电磁透镜
电磁透镜的聚焦原理
带有软磁铁壳的电磁透镜示意图
环状狭缝:大量磁力 线集中在狭缝附近的 狭小区域内,增强磁 场的强度。
18
三、电磁透镜
电磁透镜的聚焦原理
带有极靴的电磁透 镜可使有效磁场集 中到沿透镜轴向几 毫米的范围之内。
3
电子显微学发展历史简要介绍
1956年Menter得到酞氰铂和酞化氰铜的 点阵平面条纹像(1纳米)。
1967年Allpress和Sanders得到分辨率为 0.7纳米的氧化物的像。
1971年Iijima高分辨观察到氧化铌中金属 原子的分布(~0.3纳米),标志高分辨像 与晶体结构对应关系的产生。
目前,电子显微镜的分辨率接近0.1纳米。
用于材料结构表征电子显微方法
B 材料成份测定 •X-射线能谱; •电子能量损失谱。
C 磁畴结构的表征 •洛伦兹电子显微方法; •电子全息。
9
第六章 电子光学基础
第一节 电子波与电磁透镜 第二节 电磁透镜的像差与分辨本领 第三节 电磁透镜的景深与焦长
10
第六章 电子光学基础
第一节 电子波与电磁透镜 一、光学显微镜的分辨率 二、电子波分辨本领 三、电磁透镜
19
三、电磁透镜
电磁透镜的特点
会聚透镜
11 1 f L1 L2
M f L1 f
其中:f-焦距;L1-物距;L2-像距;M-放大倍数。
可变焦:改变激磁电流I
可变倍率:改变激磁电流I
景深大
焦长长
小孔径角成像
20
第六章 电子光学基础
第一节 电子波与电磁透镜 第二节 电磁透镜的像差与分辨本领
波长-比可见光小5个数量级(德布罗意)
电子波
0.0698~0.0370Å (U=30~100 kV)
聚焦-轴对称非均匀的磁场(布施)
1st TEM (鲁斯卡)
第一节 电子波与电磁透镜
二、电子波
电子显微镜的照明光源:电子波;
电子波的波长: h h
P mv
其中:P—动量;h-普朗克常数;m-电子的质量; -电子的速度
样品厚度 元素分布
7
用于材料结构表征电子显微方法
A 晶体结构的表征
1.电子衍射
2. 电子显微像
• 透射电子衍射; • 反射电子衍射;
振幅(衍射)衬度像; 明场像; 暗场像;
• 会聚束电子衍射; (对中暗场像,弱束暗场像)
• 微束电子衍射。
高分辨像; Z-衬度像; 能量过滤像; 二次电子像; 电子全息。 8
电子枪的加速电压为U,电子的能量E=eU;
eU 1 mv2 e—电子所带电荷 2
v 2eU m
h
2meU
普朗克常数
h=6.62×10-34焦耳•秒
电子的静止质量 m=9.11 × 10-31千克 电子的电荷量 e=1.60 × 10-19库伦
13
二、电子波
相对论修正
目前所使用的透射电子显微镜其电子枪的加速电 压一般都高于100千伏,这时需要对电子的能量 和静止质量m0引入相对论修正:
6
电子显微学方法和获得的信息
方法 电子衍射 质(量)厚(度)衬
度像和高分辨像 X 射线能谱 电子能量损失谱 二次电子像 洛伦茨电子显微术 电子全息 Z-衬度像 能量过滤像
可获得信息 晶体对称性,晶体取
向,样品厚度 晶体缺陷,原子排列 元素种类,分布,样
品厚度 表面形态 磁畴结构,晶体势,