通原软件实验二:16QAM调制与解调

合集下载

16QAM调制与解调的MATLAB实现及调制性能分析

16QAM调制与解调的MATLAB实现及调制性能分析

通信原理课程设计报告书课题名称16QAM 调制与解调的MATLAB 实现及调制性能分析姓 名学 号 学 院 通信与电子工程学院专 业 通信工程 指导教师李梦醒2012年 01 月 01日※※※※※※※※※ ※※ ※※ ※※ ※※※※※※※※※2009级通信工程专业通信原理课程设计16QAM调制与解调的MATLAB实现及调制性能分析(1) 掌握16QAM 调制与解调的原理。

(2) 掌握星座图的原理并能熟悉星座图的应用。

(3) 熟悉并掌握MATLAB 的使用方法。

(4) 通过对16QAM 调制性能的分析了解16QAM 调制相对于其它调制方式的优缺点。

2 设计原理正交振幅调制(Quadrature Amplitude Modulation,QAM )是一种振幅和相位联合键控。

虽然MPSK 和MDPSK 等相移键控的带宽和功率方面都具有优势,即带宽占用小和比特噪声比要求低。

但是由图1可见,在MPSK 体制中,随着8/15π图 1 8PSK 信号相位M 的增大,相邻相位的距离逐渐减小,使噪声容限随之减小,误码率难于保证。

为了改善在M 大时的噪声容限,发展出了QAM 体制。

在QAM 体制中,信号的振幅和相位作为两个独立的参量同时受到调制。

这种信号的一个码元可以表示为0()cos() (1)k k k s t A t kT t k T ωθ=+<≤+ (2—1)式中:k=整数;k A 和k θ分别可以取多个离散值。

式(2—1)可以展开为00()cos cos sin sin k k k k k s t A t A t θωθω=- (2—2)令 X k = A k cos θk , Y k = -A k sin θk 则式(2—1)变为00()cos sin k k k s t X t Y t ωω=+ (2—3)8/5π8/3π8/π8/7π8/9π8/11π8/13πk X 和k Y 也是可以取多个离散的变量。

16QAM的调制与解调

16QAM的调制与解调

通信专业课程设计二太原科技大学课程设计(论文)设计(论文)题目:16 QAM的调制解调姓名学号班级学院指导教师2012年 1月 4 日太原科技大学课程设计(论文)任务书学院(直属系):电子信息工程学院时间: 2012年12月19日16QAM的调制与解调摘要随着无线通信频带日趋紧张,研究和设计自适应信道调制技术体制是建立宽带移动通信网络的关键技术之一。

正交振幅调制技术(QAM)是一种功率和带宽相对高效的信道调制技术,因此在大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛应用。

在移动通信中,随着微蜂窝和微微蜂窝的出现,使得信道传输特性发生了很大变化。

过去在传统蜂窝系统中不能应用的正交振幅调制也引起了人们的重视。

本文首先简单简绍了QAM调制解调系统和Simulink的工作原理。

然后利用Simulink 对16QAM调制系统进行仿真,不但得到了信号在加噪前后的星座图、眼图,而且在信噪比变化条件下,得到了16QAM系统的误码率。

最后,在简单做了一个2DPSK系统仿真之后,将它与16QAM系统进行了比较,并得出了16QAM是一种相对优越的调制解调系统这一结论。

关键词:QAM ;SIMULINK ;仿真; 2DPSK ;误码率目录摘要........................................................................ 第1章绪论.. 01.1 QAM简介 01.2 SIMULINK 01.3 SIMULINK与通信仿真 (1)第2章正交振幅调制 (2)2.1 MQAM信号的星座图 (2)2.2 16QAM的调制解调原理 (4)2.3 16QAM的改进方案 (5)第3章 16QAM调制解调系统实现与仿真 (7)3.1 16QAM 调制模块的模型建立与仿真 (9)3.1.1 信号源 (9)3.1.2 串并转换模块 (9)3.1.3 2/4电平转换模块 (10)3.1.4 其余模块 (12)3.1.5 调制系统的实现 (13)3.2 16QAM解调模块的模型建立与仿真 (14)3.2.1 相干解调 (14)3.2.2 4/2电平判决 (15)3.2.3 并串转换 (17)参考文献 (20)第1章绪论1.1 QAM简介在现代通信中,提高频谱利用率一直是人们关注的焦点之一。

16QAM的调制与解调要点

16QAM的调制与解调要点

通信专业课程设计二太原科技大学课程设计(论文)设计(论文)题目:16 QAM的调制解调姓名学号班级学院指导教师2012年 1月 4 日太原科技大学课程设计(论文)任务书学院(直属系):电子信息工程学院时间: 2012年12月19日16QAM的调制与解调摘要随着无线通信频带日趋紧张,研究和设计自适应信道调制技术体制是建立宽带移动通信网络的关键技术之一。

正交振幅调制技术(QAM)是一种功率和带宽相对高效的信道调制技术,因此在大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛应用。

在移动通信中,随着微蜂窝和微微蜂窝的出现,使得信道传输特性发生了很大变化。

过去在传统蜂窝系统中不能应用的正交振幅调制也引起了人们的重视。

本文首先简单简绍了QAM调制解调系统和Simulink的工作原理。

然后利用Simulink 对16QAM调制系统进行仿真,不但得到了信号在加噪前后的星座图、眼图,而且在信噪比变化条件下,得到了16QAM系统的误码率。

最后,在简单做了一个2DPSK系统仿真之后,将它与16QAM系统进行了比较,并得出了16QAM是一种相对优越的调制解调系统这一结论。

关键词:QAM ;SIMULINK ;仿真; 2DPSK ;误码率目录第1章绪论1.1 QAM简介在现代通信中,提高频谱利用率一直是人们关注的焦点之一。

近年来,随着通信业务需求的迅速增长,寻找频谱利用率高的数字调制方式已成为数字通信系统设计、研究的主要目标之一。

正交振幅调制QAM(Quadrature Amplitude Modulation)就是一种频谱利用率很高的调制方式,其在中、大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛应用。

在移动通信中,随着微蜂窝和微微蜂窝的出现,使得信道传输特性发生了很大变化。

过去在传统蜂窝系统中不能应用的正交振幅调制也引起人们的重视。

QAM数字调制器作为DVB系统的前端设备,接收来自编码器、复用器、DVB 网关、视频服务器等设备的TS流,进行RS编码、卷积编码和QAM数字调制,输出的射频信号可以直接在有线电视网上传送,同时也可根据需要选择中频输出。

16QAM调制与解调

16QAM调制与解调

16QAM调制与解调一、实验目的1 掌握16QAM调制与解调原理。

2 掌握systemview仿真软件使用方法3 设计16QAM调制与解调仿真电路,观察同相支路、正交支路波形及16QAM 星座图。

二、仿真环境Windows98/2000/XPSystemView5.0三、16QAM调制解调原理方框图1.16QAM调制原理16QAM是用两路独立的正交4ASK信号叠加而成,4ASK是用多电平信号去键控载波而得到的信号。

它是2ASK体制的推广,和2ASK相比,这种体制的优点在于信息传输速率高。

正交幅度调制是利用多进制振幅键控(MASK)和正交载波调制相结合产生的。

16进制的正交振幅调制是一种振幅相位联合键控信号。

16QAM的产生有2种方法:(1)正交调幅法,它是有2路正交的四电平振幅键控信号叠加而成;(2)复合相移法:它是用2路独立的四相位移相键控信号叠加而成。

这里采用正交调幅法。

16QAM正交调制的原理如下图1所示。

图1 16QAM 调制器图中串/并变换器将速率为R b 的二进制码元序列分为两路,速率为R b /2.2-4电平变换为R b /2的二进制码元序列变成速率为R S =R b /log 216的4个电平信号,4电平信号与正交载波相乘,完成正交调制,两路信号叠加后产生16QAM信号.在两路速率为R b /2的二进制码元序列中,经2-4电平变换器输出为4电平信号,即M=16.经4电平正交幅度调制和叠加后,输出16个信号状态,即16QAM. R S =R b /log 216=R B /4.2.16QAM 解调原理16QAM 信号采取正交相干解调的方法解调,解调器首先对收到的16QAM 信号进行正交相干解调,一路与t c ωcos 相乘,一路与t c ωsin 相乘。

然后经过低通滤波器,低通滤波器LPF 滤除乘法器产生的高频分量,获得有用信号,低通滤波器LPF 输出经抽样判决可恢复出电平信号。

16QAM 正交相干解调如图2所示。

北邮通原软件实验报告16QAM

北邮通原软件实验报告16QAM

北邮通原软件实验报告16QAM.....实验一:16QAM调制与解调实验目的熟悉16QAM信号的调制与解调,掌握SYSTEMVIEW软件中,观察眼图与星座图的方法。

强化SYSTEMVIEW软件的使用,增强对通信系统的理解。

实验原理16QAM是指包含16种符号的QAM调制方式。

16QAM调制原理方框图:图一16QAM调制框图16QAM解调原理方框图:图二16QAM解调框图16QAM是用两路独立的正交4ASK信号叠加而成,4ASK是用多电平信号去键控载波而得到的信号。

它是2ASK体制的推广,和2ASK相比,这种体制的优点在于信息传输速率高。

正交幅度调制是利用多进制振幅键控(MASK)和正交载波调制相结合产生的。

16进制的正交振幅调制是一种振幅相位联合键控信号。

16QAM的产生有2种方法:(1)正交调幅法,它是有2路正交的四电平振幅键控信号叠加而成;(2)复合相移法:它是用2路独立的四相位移相键控信号叠加而成。

在这里我们使用第一种方法。

16QAM信号的星座图:图三16QAM星座图上图是16QAM的星座图,图中f1(t)和f2(t)是归一化的正交基函数。

各星座点等概出现。

星座图中最近的距离与解调误码率有很密切的关系。

上图中的最小距离是dmin=2。

16QAM的每个星座点对应4个比特。

哪个星座点代表哪4比特,叫做星座的比特映射。

通常采用格雷映射,其规则是:相邻的星座点只差一个比特。

实验所需模块连接图如下所示:图四模块连接图各个模块参数设置:属性类型参数设置0,2SourcePNseqAmp=1V;Rate=10Hz;Levels=4 4,13SourceSinusiodAmp=1V;Rate=100Hz12SourceGaussNoiseStdDev=0V;Mean=0V5,7,9,10Multipler——————3Adder——————17,18OperatorLinearSysButterworth,3Poles,fc=10Hz19,14,15Sink——————设置系统时间为20Sec(观察眼图),仿真频率1000Hz实验步骤按照实验所需模块连接图,连接各个模块设置各个模块的参数:信号源部分:PN序列发生器产生双极性NRZ序列,频率10HZ 图五信号源设置示意图载频:频率设置为100Hz。

16QAM的调制与解调

16QAM的调制与解调

目录一、设计思路及设计方案 (2)1)16QAM调制原理 (2)2)设计思路 (2)3)设计方案 (2)二、总体电路组成与分析 (3)1)总体电路图 (3)2)总体电路分析 (3)三、子电路系统分析 (4)1)串并变换子系统 (4)3)四电平判决子系统 (8)4)4-2变换子系统 (10)5)串并转换子系统 (13)四、仿真波形 (15)1)调制部分 (15)2).解调部分 (18)3).星座图: (22)五、设计总结 (22)六、参考文献 (23)一、设计思路及设计方案1)16QAM调制原理在16QAM中,数据信号由相互正交的两个载波合成。

16QAM是一种矢量调制,将输入比特先映射(一般采用格雷码)到一个复平面(星座)上,形成复数调制符号,然后将符号的I、Q分量(对应复平面的实部和虚部,也就是水平和垂直方向)采用幅度调制,分别对应调制在相互正交(时域正交)的两个载波(coswt 和sinwt)上,然后两路正交信号相加得到调制信号。

2)设计思路16-QAM信号,每个样点表示一种矢量状态,16-QAM有16态,每4位二进制数规定了16态中的一态,16-QAM中规定了16种载波和相位的组合,16-QAM的每个符号和周期传送4比特。

16进制的正交振幅调制是一种振幅相位联合键控信号。

16QAM的产生有2种方法:(1)正交调幅法,它是有2路正交的四电平振幅键控信号叠加而成;(2)复合相移法:它是用2路独立的四相位移相键控信号叠加而成。

这里采用正交调幅法。

3)设计方案首先,伪随机码发生器产生速率为Rb的二进制序列,此二进制码流经串一并变换器将分成两个速率为Rb/2的两电平序列,2一4电平变换器将每个速率为Rb/2的两电平序列变成速率为Rb/4,4电平信号,然后分别与两个正交的载波相乘,相加后即产生QAM信号。

QAM信号的解调器同样可以采用正交的相干解调方法。

同相I路和正交Q路的4电平基带信号用判决器判决后,分别恢复出速率等于Rb/2的二进制序列,最后经并一串变换器将两路二进制序列合成一个速率为Rb的二进制序列。

16QAM的调制与解调

16QAM的调制与解调

目录一、设计思路及设计方案 (2)1)16QAM调制原理 (2)2)设计思路 (2)3)设计方案 (3)二、总体电路组成与分析 (3)1)总体电路图 (3)2)总体电路分析 (4)三、子电路系统分析 (5)1)串并变换子系统 (5)3)四电平判决子系统 (9)4)4-2变换子系统 (11)5)串并转换子系统 (14)四、仿真波形 (16)1)调制部分 (16)2).解调部分 (19)3).星座图: (23)五、设计总结 (23)六、参考文献 (24)一、设计思路及设计方案1)16QAM调制原理在16QAM中,数据信号由相互正交的两个载波合成。

16QAM是一种矢量调制,将输入比特先映射(一般采用格雷码)到一个复平面(星座)上,形成复数调制符号,然后将符号的I、Q分量(对应复平面的实部和虚部,也就是水平和垂直方向)采用幅度调制,分别对应调制在相互正交(时域正交)的两个载波(coswt和sinwt)上,然后两路正交信号相加得到调制信号。

2)设计思路16-QAM信号,每个样点表示一种矢量状态,16-QAM有16态,每4位二进制数规定了16态中的一态,16-QAM中规定了16种载波和相位的组合,16-QAM 的每个符号和周期传送4比特。

16进制的正交振幅调制是一种振幅相位联合键控信号。

16QAM的产生有2种方法:(1)正交调幅法,它是有2路正交的四电平振幅键控信号叠加而成;(2)复合相移法:它是用2路独立的四相位移相键控信号叠加而成。

这里采用正交调幅法。

3)设计方案首先,伪随机码发生器产生速率为Rb的二进制序列,此二进制码流经串一并变换器将分成两个速率为Rb/2的两电平序列,2一4电平变换器将每个速率为Rb/2的两电平序列变成速率为Rb/4,4电平信号,然后分别与两个正交的载波相乘,相加后即产生QAM信号。

QAM信号的解调器同样可以采用正交的相干解调方法。

同相I路和正交Q路的4电平基带信号用判决器判决后,分别恢复出速率等于Rb/2的二进制序列,最后经并一串变换器将两路二进制序列合成一个速率为Rb的二进制序列。

北邮通原软件实验报告

北邮通原软件实验报告

北邮通原软件实验报告北京邮电大学实验报告题目:班级:专业:姓名:成绩:实验1:抽样定理一.实验目的(1)掌握抽样定理(2)通过时域频域波形分析系统性能二.实验原理抽样定理:设时间连续信号m(t),其最高截止频率为fm ,如果用时间间隔为T抽样过程原理图(时域)重建过程原理图(频域)具体而言:在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。

或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,这种信号必定是个周期性的信号,当抽样频率f S≥2 f h时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。

根据这一特性,可以完成信号的模-数转换和数-模转换过程。

三.实验步骤1.将三个基带信号相加后抽样,然后通过低通滤波器恢复出原信号。

实现验证抽样定理的仿真系统,同时在必要的输出端设置观察窗。

如下图所示2.设置各模块参数三个基带信号频率从上至下依次为10hz、20hz、40hz。

抽样信号频率fs设置为80hz,即2*40z。

(由抽样定理知,fs≥2fH)。

低通滤波器频率设置为40hz 。

设置系统时钟,起始时间为0,终止时间设为1s.抽样率为1khz。

3.改变抽样速率观察信号波形的变化。

四.实验结果五.实验建议、意见将抽样率fs设置为小于两倍fh的值,观察是否会产生混叠失真。

实验2:验证奈奎斯特第一准则一.实验目的(1)理解无码间干扰数字基带信号的传输;(2)掌握升余弦滚降滤波器的特性;(3)通过时域、频域波形分析系统性能。

二.实验原理基带传输系统模型奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变,即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号,因为信息完全恢复携带在抽样点幅度上。

无码间干扰基带传输时,系统冲击响应必须满足x(nTs)=1(n=0); x(nTs)=0(n=!0)。

16QAM的调制与解调要点

16QAM的调制与解调要点

太原科技大学课程设计(论文)设计(论文)题目:16 QAM的调制解调姓名学号班级学院指导教师2012年 1月 4 日太原科技大学课程设计(论文)任务书学院(直属系):电子信息工程学院时间: 2012年12月19日16QAM的调制与解调摘要随着无线通信频带日趋紧张,研究和设计自适应信道调制技术体制是建立宽带移动通信网络的关键技术之一。

正交振幅调制技术(QAM)是一种功率和带宽相对高效的信道调制技术,因此在大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛应用。

在移动通信中,随着微蜂窝和微微蜂窝的出现,使得信道传输特性发生了很大变化。

过去在传统蜂窝系统中不能应用的正交振幅调制也引起了人们的重视。

本文首先简单简绍了QAM调制解调系统和Simulink的工作原理。

然后利用Simulink 对16QAM调制系统进行仿真,不但得到了信号在加噪前后的星座图、眼图,而且在信噪比变化条件下,得到了16QAM系统的误码率。

最后,在简单做了一个2DPSK系统仿真之后,将它与16QAM系统进行了比较,并得出了16QAM是一种相对优越的调制解调系统这一结论。

关键词:QAM ;SIMULINK ;仿真; 2DPSK ;误码率目录摘要........................................................................ 第1章绪论.. 0QAM简介 0SIMULINK 0SIMULINK与通信仿真 (1)第2章正交振幅调制 (2)MQAM信号的星座图 (2)16QAM的调制解调原理 (4)16QAM的改进方案 (5)第3章 16QAM调制解调系统实现与仿真 (7)16QAM 调制模块的模型建立与仿真 (9)信号源 (9)串并转换模块 (9)2/4电平转换模块 (10)其余模块 (12)调制系统的实现 (13)16QAM解调模块的模型建立与仿真 (14)相干解调 (14)4/2电平判决 (15)并串转换 (17)参考文献 (20)第1章绪论QAM简介在现代通信中,提高频谱利用率一直是人们关注的焦点之一。

16QAM实验报告

16QAM实验报告

基于MATLAB仿真的16QAM在AWGN信道的误码性能姜杰通信1班20080820103摘要:QAM是英文Quadrature Amplitude Modulation的缩略语简称,意为正交幅度调制,是一种数字调制方式。

16QAM是指包含16种符号的QAM调制方式。

以下是基于MATLAB的MC仿真可用于分析16QAM调制在AWGN信道中的误码性能。

关键字:QAM AWGN 误码性能一.16QAM调制原理:16QAM是用两路独立的正交4ASK信号叠加而成,4ASK是用多电平信号去键控载波而得到的信号。

正交幅度调制是利用多进制振幅键控(MASK)和正交载波调制相结合产生的。

16进制的正交振幅调制是一种振幅相位联合信号。

16QAM正交调制的原理如下:二.16QAM解调原理:16QAM信号采用正交相干解调的方法来解调,解调器首先对收到的16QAM信号进行正交相干解调,一路与COSwt相乘,一路与SINwt相乘。

然后经过低通滤波器,低通滤波器滤除乘法器产生的高频分量,获得有用信号低通滤波器经抽样判决可恢复出电平信号,16QAN正交相干解调图如下:三.仿真图:四.仿真结果分析:从仿真图中可以看出,在不同信噪比的情况下,仿真值与理论值都有一定的偏差,且随着信噪比的增大,这种偏差越来越明显。

五.对比仿真图:对比分析可知,2FSK和BPSK的无码性能较好于16QAM的无码性能。

参考文献:【1】刘树棠译.现代通信系统.使用MATLAB.北京:电子工业出版社.2006. 【2】樊昌信.通信原理.第六版.北京:国防工业出版社.2008【3】 John G. Proakis通信系统原理.:北京电子工业出版社.2006。

16QAM的调制与解调要点

16QAM的调制与解调要点

通信专业课程设计二太原科技大学课程设计(论文)设计(论文)题目:16 QAM的调制解调姓名学号班级学院指导教师2012年 1月 4 日太原科技大学课程设计(论文)任务书学院(直属系):电子信息工程学院时间: 2012年12月19日16QAM的调制与解调摘要随着无线通信频带日趋紧张,研究和设计自适应信道调制技术体制是建立宽带移动通信网络的关键技术之一。

正交振幅调制技术(QAM)是一种功率和带宽相对高效的信道调制技术,因此在大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛应用。

在移动通信中,随着微蜂窝和微微蜂窝的出现,使得信道传输特性发生了很大变化。

过去在传统蜂窝系统中不能应用的正交振幅调制也引起了人们的重视。

本文首先简单简绍了QAM调制解调系统和Simulink的工作原理。

然后利用Simulink 对16QAM调制系统进行仿真,不但得到了信号在加噪前后的星座图、眼图,而且在信噪比变化条件下,得到了16QAM系统的误码率。

最后,在简单做了一个2DPSK系统仿真之后,将它与16QAM系统进行了比较,并得出了16QAM是一种相对优越的调制解调系统这一结论。

关键词:QAM ;SIMULINK ;仿真; 2DPSK ;误码率目录摘要 (I)第1章绪论 (1)1.1 QAM简介 (1)1.2 SIMULINK (1)1.3 SIMULINK与通信仿真 (2)第2章正交振幅调制 (3)2.1 MQAM信号的星座图 (3)2.2 16QAM的调制解调原理 (5)2.3 16QAM的改进方案 (6)第3章 16QAM调制解调系统实现与仿真 (8)3.1 16QAM 调制模块的模型建立与仿真 (10)3.1.1 信号源 (10)3.1.2 串并转换模块 (10)3.1.3 2/4电平转换模块 (11)3.1.4 其余模块 (13)3.1.5 调制系统的实现 (14)3.2 16QAM解调模块的模型建立与仿真 (15)3.2.1 相干解调 (15)3.2.2 4/2电平判决 (16)3.2.3 并串转换 (18)参考文献 (21)第1章绪论1.1 QAM简介在现代通信中,提高频谱利用率一直是人们关注的焦点之一。

16QAM调制与解调的MATLAB实现及调制性能分析.doc

16QAM调制与解调的MATLAB实现及调制性能分析.doc

通信原理课程设计报告书课题名称16QAM 调制与解调的MATLAB 实现及调制性能分析姓 名学 号学 院 通信与电子工程学院专 业 通信工程 指导教师李梦醒2012年 01 月 01日※※※※※※※※※ ※※ ※※ ※※ ※※※※※※※※※2009级通信工程专业通信原理课程设计16QAM 调制与解调的MATLAB 实现及调制性能分析 1设计目的 (1) 掌握16QAM 调制与解调的原理。

(2) 掌握星座图的原理并能熟悉星座图的应用。

(3) 熟悉并掌握MATLAB 的使用方法。

(4) 通过对16QAM 调制性能的分析了解16QAM 调制相对于其它调制方式的优缺点。

2 设计原理正交振幅调制(Quadrature Amplitude Modulation,QAM )是一种振幅和相位联合键控。

虽然MPSK 和MDPSK 等相移键控的带宽和功率方面都具有优势,即带宽占用小和比特噪声比要求低。

但是由图1可见,在MPSK 体制中,随着图 1 8PSK 信号相位M 的增大,相邻相位的距离逐渐减小,使噪声容限随之减小,误码率难于保证。

为了改善在M 大时的噪声容限,发展出了QAM 体制。

在QAM 体制中,信号的振幅和相位作为两个独立的参量同时受到调制。

这种信号的一个码元可以表示为(2—1)式中:k=整数;和分别可以取多个离散值。

式(2—1)可以展开为(2—2)令 X k = A k cos θk , Y k = -A k sin θk 则式(2—1)变为(2—3)和也是可以取多个离散的变量。

从式(2—3)看出,可以看作是两个正交的振幅键控信号之和。

在式(2—1)中,若θk 值仅可以取π/4和-π/4,A k 值仅可以取+A 和-A ,则此QAM 信号就成为QPSK 信号,如图2所示:图2 4QAM 信号矢量图所以,QPSK 信号就是一种最简单的QAM 信号。

有代表性的QAM 信号是16进制的,记为16QAM ,它的矢量图示于下图中:三、成绩验收盖章2010年 月 日图3 16QAM 信号矢量图图中用黑点表示每个码元的位置,并且示出它是由两个正交矢量合成的。

北邮通信原理软件实验报告实验-16QAM

北邮通信原理软件实验报告实验-16QAM

实验二、16QAM调制【实验目的】1、学会使用SystemView观察信号的星座图与眼图,分析性能2、学习正交幅度调制解调的基本原理。

【实验原理】1、正交幅度调制QAM是由两个正交载波的多电平振幅键控信号叠加而成的,因此正交幅度调制是一种频谱利用率很高的调制方式。

同时利用已调信号在同一带宽内频谱正交的性质来实现两路并行的数字信息在一个信道中传输。

2、调制原理3、解调原理4、眼图眼图的“眼睛”的大小代表码间串扰的情况。

“眼睛”张开的越大,表示码间串扰越小;反之表示码间串扰越大。

5、星座图我们通常把信号矢量端点的分布图称为星座图。

它对于调制方式的误码率有很直观的判断。

【实验内容】1、在system view软件中做出仿真连线图。

2、设置参数,观察调制信号波形3、眼图设置:在SystemView中,在分析窗口单击图标,选择style,单击slice,并且设置合适的起点和终点的时间切片,然后选择信号后,得到眼图。

4、星座图设置:在SystemView中,在分析窗口中单击图标,选择style,单击scatter plot,在右侧的窗口中选择所需要观察的信号波形,确定,得到星座图。

5、设置无噪声和有噪声情况参数,对眼图和星座图进行对比分析。

【实验结果】1、无噪声情况下,即序列均值为0,方差为0。

原基带信号:调制信号(同向)(正交)无噪眼图:无噪星座图:2、有噪声:均值为0,方差为1 眼图(有噪):星座图(有噪):【结果分析】从上述实验结果图中可以看出:1、原基带信号经过调制后,同向正交都满足。

2、在无噪情况下,眼图较清晰,眼睛睁开较大,表明码间干扰较小;星座图能量较规整,误码率相对较低。

3、在有噪情况下,眼图较,眼睛睁开较小,表明码间干扰较大;星座图能量杂乱,误码率较高。

4、可见,噪声对系统性能有一定影响。

【心得体会】通过这次实验,我在通原理论的基础上又比较系统地了解了16QAM的调制与解调,在做实验仿真时总会遇到各种问题,在这种情况下就会努力找到最饥饿路径解决问题,无形间提高了我们的动手和动脑能力,并且同学之间还能相互探讨,相互促进吧。

通原软件实验二:16QAM调制与解调

通原软件实验二:16QAM调制与解调

北京邮电大学通原软件实验实验二:16QAM调制与解调专业:信息工程学生姓名:×××指导教师:××完成时间:××××一、实验目的在全面理解16QAM 调制解调原理的基础上,强化信号星座图、眼图所表明的信号本质。

二、实验原理由于信道资源越来越紧张,许多数据传输场合二进制数字调制已无法满足需要。

为了在有限信道带宽中高速率地传输数据,可以采用多进制(M 进制,M>2)调制方式,MPSK 则是经常使用的调制方式,由于MPSK 的信号点分布在圆周上,没有最充分地利用信号平面,随着M 值的增大,信号最小距离急剧减小,影响了信号的抗干扰能力。

MQAM 称为多进制正交幅度调制,它是一种信号幅度与相位结合的数字调制方式,信号点不是限制在圆周上,而是均匀地分布在信号平面上,是一种最小信号距离最大化原则的典型运用,从而使得在同样M 值和信号功率条件下,具有比MPSK 更高的抗干扰能力。

图1:16QAM调制与解调原理图三、实验内容设计并实现16QAM调制与解调系统,观察各信号时域、频域波形,体会眼图、星座图的意义。

四、实验结果1、电路框图图2:系统电路框图2、元件参数编号属性类型参数设置0 Source PN Seg Amplitude=3V,Rate=50Hz,No.Levels=41 Source PN Seg Amplitude=3V,Rate=50Hz,No.Levels=42 Source Sinusoid Amplitude=1V,Frequency=500Hz3 Multiplier ————4 Multiplier ————5 Adder ————6 Sink Analysis ——7 Sink Analysis ——8 Source Gauss Noise Std Deviation=0.1V9 Sink Analysis ——10 Source Sinusoid Amplitude=1V,Frequency=500Hz11 Multiplier ————12 Multiplier ————13 Operator Linear SysNo.of Poles=7,Low Cottoff=100HzFilters14 Operator Linear SysNo.of Poles=7,Low Cottoff=100HzFilters15 Sink Analysis ——16 Sink Analysis ——17 Sink Analysis ——18 Sink Analysis ——19 Sink Analysis ——20 Sink Analysis ——21 Sink Analysis ——图3:元件参数列表3、仿真波形①输入信号Ⅰ时域波形图4:四电平PIN码、高频载波、高斯噪声时域波形图5:四电平PIN码、高频载波、高斯噪声频域波形②中间信号Ⅰ时域波形图6:已调信号、加噪信号、解调信号时域波形图7:已调信号、正交叠加信号频域波形③输出信号Ⅰ时域信号图8:输出信号时域波形④星座图图10:输出信号星座图⑤眼图图11:输出信号眼图五、实验分析1、高斯噪声的幅度在实验中,一开始由于高斯噪声的均值相对于输入信号来说太大了,所以得不到想要的额结果。

设计目的1掌握16QAM调制与解调原理2熟悉并掌握matlab

设计目的1掌握16QAM调制与解调原理2熟悉并掌握matlab

一、设计目的1 掌握16QAM调制与解调原理。

2 熟悉并掌握matlab软件使用方法3 设计16QAM调制与解调观察同相支路、正交支路波形。

二、QAM的产生为了满足现代通信系统对传输速率和带宽提出的新要求。

人们不断地推出一些新的数字调制解调技术。

正交幅度调制解调(quadrature ampli-tude modula tion and demodulation)就是一种高效的数字调制解调方式。

与其它调制技术相比,这种调制解调技术能充分利用带宽,且具有抗噪声能力强等优点。

因而在中、大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信等领域得到广泛应用。

三、QAM调制与解调原理1、调制原理正交振幅调制(QAM)是一种幅度和相位联合键控(APK)的调制方式。

它可以提高系统可靠性,且能获得较高的信息频带利用率,是目前应用较为广泛的一种数字调制方式。

正交振幅调制是用两路独立的基带数字信号对两个相互正交的同频载波进行抑制载波的双边带调制,利用已调信号在同一带宽内频谱正交的性质来实现两路并行的数字信息传输。

在MPSK体制中,随着M的增大,相邻相位的距离逐渐减小,是噪声容限随之减小,误码率难以保证。

为了改善在M的时的噪声容限,发展出了QAM体制。

在QAM体制中,信号的振幅和相位作为两个独立的参量同时受到调制。

这种信号的一个码元可以表示为S(k)=Akcos(Wt+Q) kT<t<=(k+1)T16QAM信号的产生方法主要有两种。

第一种是正交调幅法,即用两路独立的正交4ASK信号叠加,形成16QAM信号。

第二种是复合相移法,他用两路独立的QPSK 信号叠加,形成16QAM 信号。

基带信号经过串并变换后转化为IQ 两路并行数据流,该并行数据流的宽度为4 bit ,其中高位的1 bit 映射到内外圆,低位的3bit 映射到内(外)圆上,这样就形成如图2所示的星型星座图。

差分编码后的数据经过成型滤波器后和相互正交的正弦或余弦载波进行调制,被调制后的I Q 路正交信号再进行矢量相加,即可形成调制信号输出。

16QAM的调制与解调

16QAM的调制与解调

目录一、设计思路及设计方案1)16QAM调制原理在16QAM中,数据信号由相互正交的两个载波合成。

16QAM是一种矢量调制,将输入比特先映射(一般采用格雷码)到一个复平面(星座)上,形成复数调制符号,然后将符号的I、Q分量(对应复平面的实部和虚部,也就是水平和垂直方向)采用幅度调制,分别对应调制在相互正交(时域正交)的两个载波(coswt 和sinwt)上,然后两路正交信号相加得到调制信号。

2)设计思路16-QAM信号,每个样点表示一种矢量状态,16-QAM有16态,每4位二进制数规定了16态中的一态,16-QAM中规定了16种载波和相位的组合,16-QAM的每个符号和周期传送4比特。

16进制的正交振幅调制是一种振幅相位联合键控信号。

16QAM的产生有2种方法:(1)正交调幅法,它是有2路正交的四电平振幅键控信号叠加而成;(2)复合相移法:它是用2路独立的四相位移相键控信号叠加而成。

这里采用正交调幅法。

3)设计方案首先,伪随机码发生器产生速率为Rb的二进制序列,此二进制码流经串一并变换器将分成两个速率为Rb/2的两电平序列,2一4电平变换器将每个速率为Rb/2的两电平序列变成速率为Rb/4,4电平信号,然后分别与两个正交的载波相乘,相加后即产生QAM信号。

QAM信号的解调器同样可以采用正交的相干解调方法。

同相I路和正交Q路的4电平基带信号用判决器判决后,分别恢复出速率等于Rb/2的二进制序列,最后经并一串变换器将两路二进制序列合成一个速率为Rb的二进制序列。

二、总体电路组成与分析1)总体电路图2)总体电路分析a)参数设置:Token 17:频率:19.2kHZ 振幅:0.5V Offset:0.5V 电平:2 (即频率为19.2kHZ的由0、1两个电平构成的伪随机码)Token 18:频率: 76.8kHZ 振幅:1VToken105:高斯噪声 0.3VToken109:低通频率:70kHZToken110:低通频率:70kHZb) 电路分析:该系统主要分为调制和解调两部分,包含有串并变换子系统、2-4变换子系统、4电平判决子系统、4-2变换子系统、并串变换子系统。

(完整版)实验五16QAM调制与解调实验

(完整版)实验五16QAM调制与解调实验

实验五16QAM调制与解调实验【实验目的】使学生了解16QAM的调制与解调原理;能够通过MATLAB对其进行调制和解调;比较解调前后功率谱密度的差别。

【实验器材】装有MATLAB软件的计算机一台【实验原理】1. 16QAM 是用两路独立的正交4ASK 信号叠加而成,4ASK 是用多电平信号去键控载波而得到的信号。

它是2ASK 体制的推广,和2ASK 相比,这种体制的优点在于信息传输速率高。

2. 正交幅度调制是利用多进制振幅键控(MASK)和正交载波调制相结合产生的。

16 进制的正交振幅调制是一种振幅相位联合键控信号。

16QAM 的产生有2 种方法:(1)正交调幅法,它是有2 路正交的四电平振幅键控信号叠加而成;(2)复合相移法:它是用2 路独立的四相位移相键控信号叠加而成。

3. 16QAM 信号采取正交相干解调的方法解调,解调器首先对收到的16QAM 信号进行正交相干解调,一路与cosωc t 相乘,一路与sinωc t 相乘。

然后经过低通滤波器,低通滤波器LPF 滤除乘法器产生的高频分量,获得有用信号,低通滤波器LPF 输出经抽样判决可恢复出电平信号。

【实验内容与步骤】1. MATLAB软件的设置:对路径的设置,设置成路径指向comm2文件夹;2. 在命令行输入start指令,然后输入num值,如3,之后按照内容3输入参考代码。

3. 新建一个扩展名为M的文件,输入以下程序:M=16;k=log2(M);x=randint(30000,1);%产生二进制随机数y=modulate(modem.qammod('M',16,'InputType','Bit'),x);%调制EbNo=-5:1:10;%信噪比s_b2d=bi2de(reshape(x,k,length(x)/k).','left-msb');%二进制变为十进制for n=1:length(EbNo)snr(n)=EbNo(n)+10*log10(k);%Ratio of symbol energy to noise power spectral densityynoisy=awgn(y,snr(n),'measured');%加入高斯白噪声z=demodulate(modem.qamdemod('M',16,'OutputType','Bit'),ynoisy);%解调r_b2d=bi2de(reshape(z,k,length(z)/k).','left-msb');%二进制变为十进制[sym(n),sym_rate(n)]=symerr(s_b2d,r_b2d);%计算仿真误码率,不是误比特率。

MATLAB环境下16QAM调制及解调仿真程序说明

MATLAB环境下16QAM调制及解调仿真程序说明

姓名:Nikey之杨若古兰创作MATLAB环境下16QAM调制及解调仿真程序说明一、正交调制及相关解调道理框图正交调制道理框图相关解调道理框图二、MQAM调制介绍及本仿真程序的几点说明MQAM可以用正交调制的方法发生,本仿真中取M=16,即幅度和相位相结合的16个旌旗灯号点的调制.为了观察信道噪声对该调制方式的影响,我们在已调旌旗灯号中又加入了分歧强度的高斯白噪声,并统计其译码误码率.为了简化程序和得到可靠的误码率,我们在解调时并未从已调旌旗灯号中恢复载波,而是直接发生与调制时如出一辙的载波来进行旌旗灯号解调.三、仿真结果图附源程序代码:clear;clc;echo off;close all;N=10000; %设定码元数量fb=1; %基带旌旗灯号频率fs=32; %抽样频率fc=4; %载波频率,为便于观察已调旌旗灯号,我们把载波频率设的较低Kbase=2; % Kbase=1,不经基带成形滤波,直接调制;% Kbase=2,基带经成形滤波器滤波后,再进行调制info=random_binary(N); %发生二进制旌旗灯号序列[y,I,Q]=qam(info,Kbase,fs,fb,fc); %对基带旌旗灯号进行16QAM调制y1=y; y2=y; %备份旌旗灯号,供后续仿真用T=length(info)/fb; m=fs/fb; nn=length(info);dt=1/fs; t=0:dt:Tdt;subplot(211);%便于观察,这里显示的已调旌旗灯号及其频谱均为无噪声干扰的理想情况%因为测试旌旗灯号码元数量为10000个,在这里我们只显示其总数的1/10plot(t(1:1000),y(1:1000),t(1:1000),I(1:1000),t(1:1000),Q(1:1000),[0 35],[0 0],'b:');title('已调旌旗灯号(In:red,Qn:green)');%傅里叶变换,求出已调旌旗灯号的频谱n=length(y); y=fft(y)/n; y=abs(y(1:fix(n/2)))*2;q=find(y<1e04); y(q)=1e04; y=20*log10(y);f1=m/n; f=0:f1:(length(y)1)*f1;subplot(223);plot(f,y,'r');grid on;title('已调旌旗灯号频谱'); xlabel('f/fb');%画出16QAM调制方式对应的星座图subplot(224);constel(y1,fs,fb,fc); title('星座图');SNR_in_dB=8:2:24; %AWGN信道信噪比for j=1:length(SNR_in_dB)y_add_noise=awgn(y2,SNR_in_dB(j)); %加入分歧强度的高斯白噪声 y_output=qamdet(y_add_noise,fs,fb,fc); %对已调旌旗灯号进行解调numoferr=0;for i=1:Nif (y_output(i)~=info(i)),numoferr=numoferr+1;end;end;Pe(j)=numoferr/N; %统计误码率end;figure;semilogy(SNR_in_dB,Pe,'red*');grid on;xlabel('SNR in dB');ylabel('Pe');title('16QAM调制在分歧信道噪声强度下的误码率');%发生二进制信源随机序列function [info]=random_binary(N)if nargin == 0, %如果没有输入参数,则指定信息序列为10000个码元N=10000;end;for i=1:N,temp=rand;if (temp<0.5),info(i)=0; % 1/2的概率输出为0elseinfo(i)=1; % 1/2的概率输出为1endend;function [y,I,Q]=qam(x,Kbase,fs,fb,fc);%T=length(x)/fb; m=fs/fb; nn=length(x);dt=1/fs; t=0:dt:Tdt;%串/并变换分离出I分量、Q分量,然后再分别进行电平映照I=x(1:2:nn1); [I,In]=two2four(I,4*m);Q=x(2:2:nn); [Q,Qn]=two2four(Q,4*m);if Kbase==2; %基带成形滤波I=bshape(I,fs,fb/4); Q=bshape(Q,fs,fb/4);end;y=I.*cos(2*pi*fc*t)Q.*sin(2*pi*fc*t); %调制%QAM旌旗灯号解调function [xn,x]=qamdet(y,fs,fb,fc);dt=1/fs; t=0:dt:(length(y)1)*dt;I=y.*cos(2*pi*fc*t);Q=y.*sin(2*pi*fc*t);[b,a]=butter(2,2*fb/fs); %设计巴特沃斯滤波器I=filtfilt(b,a,I);Q=filtfilt(b,a,Q);m=4*fs/fb; N=length(y)/m; n=(.6:1:N)*m; n=fix(n); In=I(n); Qn=Q(n); xn=four2two([In Qn]);%I分量Q分量并/串转换,终极恢复成码元序列xnnn=length(xn); xn=[xn(1:nn/2);xn(nn/2+1:nn)]; xn=xn(:); xn=xn';%基带升余弦成形滤波器function y=bshape(x,fs,fb,N,alfa,delay);%设置默认参数if nargin<6; delay=8; end;if nargin<5; alfa=0.5; end;if nargin<4; N=16; end;b=firrcos(N,fb,2*alfa*fb,fs);y=filter(b,1,x);%二进制转换成四进制function [y,yn]=two2four(x,m);T=[0 1;3 2]; n=length(x); ii=1;for i=1:2:n1;xi=x(i:i+1)+1;yn(ii)=T(xi(1),xi(2));ii=ii+1;end;yn=yn1.5; y=yn;for i=1:m1;y=[y;yn];end;%四进制转换成二进制function xn=four2two(yn);y=yn; ymin=min(y); ymax=max(y); ymax=max([ymax abs(ymin)]); ymin=abs(ymax); yn=(yymin)*3/(ymaxymin);%设置门限电平,判决I0=find(yn< 0.5); yn(I0)=zeros(size(I0));I1=find(yn>=0.5 & yn<1.5); yn(I1)=ones(size(I1));I2=find(yn>=1.5 & yn<2.5); yn(I2)=ones(size(I2))*2;I3=find(yn>=2.5); yn(I3)=ones(size(I3))*3;%一名四进制码元转换为两位二进制码元T=[0 0;0 1;1 1;1 0]; n=length(yn);for i=1:n;xn(i,:)=T(yn(i)+1,:);end;xn=xn'; xn=xn(:); xn=xn';%画出星座图function c=constel(x,fs,fb,fc);N=length(x); m=2*fs/fb; n=fs/fc; i1=mn; i=1; ph0=(i11)*2*pi/n; while i <= N/m;xi=x(i1:i1+n1);y=2*fft(xi)/n; c(i)=y(2);i=i+1; i1=i1+m;end;%如果无输出,则作图if nargout<1;cmax=max(abs(c));ph=(0:5:360)*pi/180;plot(1.414*cos(ph),1.414*sin(ph),'c');hold on;for i=1:length(c);ph=ph0angle(c(i));a=abs(c(i))/cmax*1.414;plot(a*cos(ph),a*sin(ph),'r*'); end;plot([1.5 1.5],[0 0],'k:',[0 0],[1.5 1.5],'k:');hold off; axis equal; axis([1.5 1.5 1.5 1.5]); end;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京邮电大学通原软件实验实验二:16QAM调制与解调
专业:信息工程
学生姓名:×××
指导教师:××
完成时间:××××
一、实验目的
在全面理解16QAM 调制解调原理的基础上,强化信号星座图、眼图所表明的信号本质。

二、实验原理
由于信道资源越来越紧张,许多数据传输场合二进制数字调制已无法满足需要。

为了在有限信道带宽中高速率地传输数据,可以采用多进制(M 进制,M>2)调制方式,MPSK 则是经常使用的调制方式,由于MPSK 的信号点分布在圆周上,没有最充分地利用信号平面,随着M 值的增大,信号最小距离急剧减小,影响了信号的抗干扰能力。

MQAM 称为多进制正交幅度调制,它是一种信号幅度与相位结合的数字调制方式,信号点不是限制在圆周上,而是均匀地分布在信号平面上,是一种最小信号距离最大化原则的典型运用,从而使得在同样M 值和信号功率条件下,具有比MPSK 更高的抗干扰能力。

图1:16QAM调制与解调原理图
三、实验内容
设计并实现16QAM调制与解调系统,观察各信号时域、频域波形,体会眼图、星座图的意义。

四、实验结果
1、电路框图
图2:系统电路框图
2、元件参数
编号属性类型参数设置
0 Source PN Seg Amplitude=3V,Rate=50Hz,No.Levels=4
1 Source PN Seg Amplitude=3V,Rate=50Hz,No.Levels=4
2 Source Sinusoid Amplitude=1V,Frequency=500Hz
3 Multiplier ————
4 Multiplier ————
5 Adder ————
6 Sink Analysis ——
7 Sink Analysis ——
8 Source Gauss Noise Std Deviation=0.1V
9 Sink Analysis ——
10 Source Sinusoid Amplitude=1V,Frequency=500Hz
11 Multiplier ————
12 Multiplier ————
13 Operator Linear Sys
No.of Poles=7,Low Cottoff=100Hz
Filters
14 Operator Linear Sys
No.of Poles=7,Low Cottoff=100Hz
Filters
15 Sink Analysis ——
16 Sink Analysis ——
17 Sink Analysis ——
18 Sink Analysis ——
19 Sink Analysis ——
20 Sink Analysis ——
21 Sink Analysis ——
图3:元件参数列表
3、仿真波形
①输入信号
Ⅰ时域波形
图4:四电平PIN码、高频载波、高斯噪声时域波形
图5:四电平PIN码、高频载波、高斯噪声频域波形②中间信号
Ⅰ时域波形
图6:已调信号、加噪信号、解调信号时域波形
图7:已调信号、正交叠加信号频域波形③输出信号
Ⅰ时域信号
图8:输出信号时域波形
④星座图
图10:输出信号星座图
⑤眼图
图11:输出信号眼图
五、实验分析
1、高斯噪声的幅度
在实验中,一开始由于高斯噪声的均值相对于输入信号来说太大了,所以得不到想要的额结果。

2、眼图的观察
曾经在查看眼图的时候,我一直到看不到“眼睛”,反复查看原理图和元件参数都没发现错误,最终发现原来是我设置的观察时间太长了,眼图太密以至于看不清楚,所以我将其放大就看到了清晰的“眼睛”。

六、实验总结
此次试验比起实验一来说难度要大不少,花的时间也更多。

由于系统比较复杂,所以我在设计的过程中在各个信号节点均设置了示波器,这很大程度上方便了我查看每个信号的状态,以便查找错误。

相关文档
最新文档